Generic Differential Galois Extensions

Lourdes Juan

Jan 6, 2012

Joint Mathematics Meeting Boston, MA

Consider $\int f$, where

$$f = \frac{(3xe^{x} + 3)\sqrt[3]{(\log x + e^{x})^{2}} - xe^{x} - 1}{24x\sqrt[3]{(\log x + e^{x})^{2}}(\log x + e^{x} - \sqrt[3]{\log x + e^{x}})}.$$

Consider $\int f$, where

$$f = \frac{(3xe^{x} + 3)\sqrt[3]{(\log x + e^{x})^{2}} - xe^{x} - 1}{24x\sqrt[3]{(\log x + e^{x})^{2}}(\log x + e^{x} - \sqrt[3]{\log x + e^{x}})}.$$

Mathematica: "No result found in terms of standard mathematical functions"

Consider $\int f$, where

$$f = \frac{(3xe^x + 3)\sqrt[3]{(\log x + e^x)^2} - xe^x - 1}{24x\sqrt[3]{(\log x + e^x)^2}(\log x + e^x - \sqrt[3]{\log x + e^x})}.$$

Mathematica: "No result found in terms of standard mathematical functions"

Maple: Simply returns the integral without evaluating it.

Consider $\int f$, where

$$f = \frac{(3xe^{x} + 3)\sqrt[3]{(\log x + e^{x})^{2}} - xe^{x} - 1}{24x\sqrt[3]{(\log x + e^{x})^{2}}(\log x + e^{x} - \sqrt[3]{\log x + e^{x}})}.$$

Mathematica: "No result found in terms of standard mathematical functions"

Maple: Simply returns the integral without evaluating it.

Axiom: Returns an error because the integration algorithm that is implemented is incomplete.

Consider $\int f$, where

$$f = \frac{(3xe^{x} + 3)\sqrt[3]{(\log x + e^{x})^{2}} - xe^{x} - 1}{24x\sqrt[3]{(\log x + e^{x})^{2}}(\log x + e^{x} - \sqrt[3]{\log x + e^{x}})}.$$

Mathematica: "No result found in terms of standard mathematical functions"

Maple: Simply returns the integral without evaluating it.

Axiom: Returns an error because the integration algorithm that is implemented is incomplete.

Brian Miller's Algorithm:

$$\begin{split} \int \frac{(3xe^x + 3)\sqrt[3]{(\log x + e^x)^2} - xe^x - 1}{24x\sqrt[3]{(\log x + e^x)^2}(\log x + e^x - \sqrt[3]{\log x + e^x})} \\ &= \frac{1}{8}\log\left(\sqrt[3]{(\log x + e^x)^2} - 1\right) + \frac{1}{24}\log\left(\log x + e^x\right). \end{split}$$

Liouville's Theorem

Theorem (Liouville's Theorem)

Let K be a differential field of characteristic zero with constant field C and let $f \in K$. If the equation g' = f has a solution $g \in L$ where L is an elementary extension of K having the same constant field C, then there exist $v, u_1, u_2, \ldots, u_n \in E$ and constants $c_1, \ldots, c_n \in C$ such that

$$f = v' + \sum_{i=1}^{n} c_i \frac{u_i'}{u_i}$$

therefore, $\int f = v + \sum_{i=1}^{n} c_i \log u_i$.

The Structure of Picard-Vessiot Extensions

The structure of Picard-Vessiot G-extensions can be described in terms of G-torsors.

Let G be a linear algebraic group defined over a field k. A k-homogeneous space for G is a k-affine variety together with a morphism $G \times V \mapsto V$ of k-varieties inducing a transitive action of $G(\overline{k})$ on $V(\overline{k})$, where \overline{k} denotes the algebraic closure of k. If moreover the action is faithful, V is called a *principal* k-homogeneous space for G or a G-torsor. The group G itself is called the trivial G-torsor.

The Structure of Picard-Vessiot Extensions

The structure of Picard-Vessiot G-extensions can be described in terms of G-torsors.

Let G be a linear algebraic group defined over a field k. A k-homogeneous space for G is a k-affine variety together with a morphism $G \times V \mapsto V$ of k-varieties inducing a transitive action of $G(\overline{k})$ on $V(\overline{k})$, where \overline{k} denotes the algebraic closure of k. If moreover the action is faithful, V is called a *principal* k-homogeneous space for G or a G-torsor. The group G itself is called the trivial G-torsor.

Theorem

The set of G-torsors (up to G-isomorphism) maps bijectively to the first Galois cohomology set $H^1(k, G)$.

Structure Theorem (Kolchin)

Theorem

Let k be a differential field with field of constants $\mathcal C$ and let $E\supset k$ be a Picard-Vessiot extension with group G. Then E is the function field k(V) of some k-irreducible G-torsor where the action of the Galois group on E is the same as the action resulting from $G(\mathcal C)$ acting on V. Moreover, E=k(v), for some E-point $v\in V$.

Generic Extensions

Definition.

A Picard-Vessiot extension $\mathcal{E} \supset \mathcal{F}$ with group G is called *generic* when the following condition holds:

For any differential field F with field of constants \mathcal{C} there is a PVE $E \supset F$ with differential Galois group $H \leq G$ if and only if there are $f_i \in F$ such that the matrix $\mathcal{A}(f_1, \ldots, f_k)$ is well defined and the equation $X' = X \mathcal{A}(f_1, \ldots, f_k)$ gives rise to the extension $E \supset F$.

Polynomial Galois Theory Case

Generic polynomials with group G have been extensively studied in the context of Galois theory. Work by Noether in connection with a rationality question.

Polynomial Galois Theory Case

Generic polynomials with group G have been extensively studied in the context of Galois theory. Work by Noether in connection with a rationality question.

Definition.

Let $\mathbf{s} = (s_1, \dots, s_m)$ be indeterminates over a field K, and let G be a finite group. A monic polynomial $P(\mathbf{s}, X) \in K(\mathbf{s})[X]$ is called a *generic G-polynomial* over K if the following conditions are satisfied:

1. The splitting field of $P(\mathbf{s}, X)$ over $K(\mathbf{s})$ is a G-extension, that is, a Galois extension with Galois group isomorphic to G.

Polynomial Galois Theory Case

Generic polynomials with group G have been extensively studied in the context of Galois theory. Work by Noether in connection with a rationality question.

Definition.

Let $\mathbf{s} = (s_1, \dots, s_m)$ be indeterminates over a field K, and let G be a finite group. A monic polynomial $P(\mathbf{s}, X) \in K(\mathbf{s})[X]$ is called a *generic G-polynomial* over K if the following conditions are satisfied:

- 1. The splitting field of $P(\mathbf{s}, X)$ over $K(\mathbf{s})$ is a G-extension, that is, a Galois extension with Galois group isomorphic to G.
- 2. Every G-extension of a field L containing K is the splitting field (over L) of the polynomial $P(\mathbf{a}, X)$ for some $\mathbf{a} = (a_1, \ldots, a_n) \in L^n$. The polynomial $P(\mathbf{a}, X)$ is called a specialization of $P(\mathbf{s}, X)$.

Goldman's Equation

Definition.

Let G be a linear algebraic group over $\mathcal C$ and assume that a faithful representation in $\mathsf{GL}_n(\mathcal C)$ is given. Let

$$L(t,y) = Q_0(t_1,\ldots,t_r)y^{(n)} + \cdots + Q_n(t_1,\ldots,t_r)y \in C\{t_1,\ldots,t_r,y\}$$

and write (π_1, \ldots, π_n) for a fundamental system of zeros of L(t, y) such that $C\langle t_1, \ldots, t_r, \pi_1, \ldots, \pi_n \rangle$ is a PVE of $C\langle t_1, \ldots, t_r \rangle$ with group G. Then L(t, y) = 0 will be called a *generic equation with group G* if:

1. t_1, \ldots, t_r are differentially independent over C, and $C\langle t_1, \ldots, t_r \rangle \subset C\langle \pi_1, \ldots, \pi_n \rangle$.

- 1. t_1, \ldots, t_r are differentially independent over C, and $C\langle t_1, \ldots, t_r \rangle \subset C\langle \pi_1, \ldots, \pi_n \rangle$.
- 2. For every specialization $(t_1,\ldots,t_r,\pi_1,\ldots,\pi_n) \to (\bar{t}_1,\ldots,\bar{t}_r,\bar{\pi}_1,\ldots,\bar{\pi}_n)$ over $\mathcal C$ such that $\mathcal C\langle\bar{t}_1,\ldots,\bar{t}_r,\bar{\pi}_1,\ldots,\bar{\pi}_n\rangle$ is a PVE of $\mathcal C\langle\bar{t}_1,\ldots,\bar{t}_r\rangle$ and the field of constants of the latter is $\mathcal C$, the differential Galois group of this extension is a subgroup of $\mathcal G$.

- 1. t_1, \ldots, t_r are differentially independent over C, and $C\langle t_1, \ldots, t_r \rangle \subset C\langle \pi_1, \ldots, \pi_n \rangle$.
- 2. For every specialization $(t_1,\ldots,t_r,\pi_1,\ldots,\pi_n) \to (\bar{t}_1,\ldots,\bar{t}_r,\bar{\pi}_1,\ldots,\bar{\pi}_n)$ over $\mathcal C$ such that $\mathcal C\langle\bar{t}_1,\ldots,\bar{t}_r,\bar{\pi}_1,\ldots,\bar{\pi}_n\rangle$ is a PVE of $\mathcal C\langle\bar{t}_1,\ldots,\bar{t}_r\rangle$ and the field of constants of the latter is $\mathcal C$, the differential Galois group of this extension is a subgroup of G.
- 3. If $(\omega_1,\ldots,\omega_n)$ is a fundamental system of zeros of $L(y)=y^{(n)}+a_1y^{(n-1)}+\cdots+a_ny\in F\{y\}$, where F is any differential field with field of constants \mathcal{C} , and $F\langle\omega_1,\ldots,\omega_n\rangle$ is a PVE of F with differential Galois group $H\leq G$, then there exists a specialization $(t_1,\ldots,t_r)\to (\overline{t}_1,\ldots,\overline{t}_r)$ over F with $\overline{t}_i\in F$ such that $Q_o(\overline{t}_1,\ldots,\overline{t}_r)\neq 0$ and

$$a_i = Q_i(\overline{t}_1, \ldots, \overline{t}_r)Q_o^{-1}(\overline{t}_1, \ldots, \overline{t}_r).$$

Bhandari-Sankaran

(3') If F is a differential field with field of constants C and E is a PVE of F with differential Galois group $H \leq G$, then there exists a linear differential equation

$$L(y) = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0, \qquad a_i \in F$$

such that that $Q_o(\overline{t}_1,\ldots,\overline{t}_r)\neq 0$, $a_i=Q_i(\overline{t}_1,\ldots,\overline{t}_r)Q_o^{-1}(\overline{t}_1,\ldots,\overline{t}_r)$, $i=1,\ldots,n$, for suitable $\overline{t}_i\in F$ and $E=F\langle \omega_1,\ldots,\omega_n\rangle$ for a fundamental system of zeros of L(y).

Connected Case (Trivial Torso)

Let $\dim(G)=n$ and suppose that Y_{ij} , $1\leq i,j\leq n$ are differentially independent indeterminates over \mathcal{C} , and put $\mathcal{F}=\mathcal{C}\langle Y_{ij}\rangle$. Given a faithful representation of G in GL_m , the Lie algebra \mathcal{G} maps to a Lie subalgebra of gl_m and a basis $\{D_1,\ldots,D_n\}$ of the former can be identified with a linearly independent set $\{A_1,\ldots,A_n\}$ of $m\times m$ matrices. Let $\mathcal{A}(Y_{ij})=\sum_{i=1}^n Y_iA_i\in\mathcal{G}(\mathcal{F})$ and X a generic point of G, then $X'=A(Y_{ij})X$ gives a derivation on $\mathcal{F}(G)$

Theorem

The extension $\mathcal{F}(G) \supset \mathcal{F}$ is a generic Picard-Vessiot extension for G relative to the trivial G-torsor and, furthermore, it descends to subgroups of G as follows:

Let F be a differential field with field of constants C.

- 1. If $E \supset F$ is a Picard-Vessiot extension with connected differential Galois group $G' \leq G$ such that E = F(G'), then there is a specializaton $Y_i \to f_i \in F$ such that the equation $X' = \mathcal{A}(f_1, \ldots, f_n)X$ gives rise to this extension.
- 2. For every specialization $Y_i \to f_i \in F$, the differential equation $X' = \mathcal{A}(f_1, \ldots, f_n)X$ gives rise to a Picard-Vessiot extension $E \supset F$ with differential Galois group $G' \leq G$.

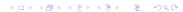
Inspiration: Mitschi-Singer results on the inverse problem.

Inspiration: Mitschi-Singer results on the inverse problem.

Definition.

Suppose that Y_{ij} are differentially independent indeterminates over \mathcal{C} and put $\mathcal{F} = \mathcal{C}\langle Y_{ij}\rangle$. We say that a Picard-Vessiot G-extension $\mathcal{E} \supset \mathcal{K}$ is generic for G relative to split G-torsors if there is a faithful differential H-action on \mathcal{F} , with $\mathcal{K} = \mathcal{F}^H$, such that

1. $\mathcal{E} = \mathcal{K}(\mathcal{W} \times \mathcal{G}^0)$ for some \mathcal{K} -irreducible H-torsor \mathcal{W} , and



Inspiration: Mitschi-Singer results on the inverse problem.

Definition.

Suppose that Y_{ij} are differentially independent indeterminates over \mathcal{C} and put $\mathcal{F} = \mathcal{C}\langle Y_{ij}\rangle$. We say that a Picard-Vessiot G-extension $\mathcal{E} \supset \mathcal{K}$ is generic for G relative to split G-torsors if there is a faithful differential H-action on \mathcal{F} , with $\mathcal{K} = \mathcal{F}^H$, such that

- 1. $\mathcal{E} = \mathcal{K}(\mathcal{W} \times G^0)$ for some \mathcal{K} -irreducible H-torsor \mathcal{W} , and
- 2. for every faithful representation of G in a GL_m , the G^0 -extension $\mathcal{F}(G^0) \supset \mathcal{F}$ has an H-equivariant equation $X' = \mathcal{A}(Y_{ij})X$, such that, given a Picard-Vessiot G-extension of the form $k(W \times G^0) \supset k$, where k is a differential field with field of constants C and W a k-irreducible H-torsor, there is an H-equivariant specialization $Y_i \to f_i$ with $f_i \in k(W)$, such that the G^0 -extension $k(W)(G^0) \supset k(W)$ has equation $X' = \mathcal{A}(f_1, \ldots, f_n)X$.

Proposition.

Let $H, G' \leq GL_m$ be algebraic groups over C, with H finite and G' not necessarily connected. Le F be a differential field with field of constants C on which H acts faithfully as a group of differential automorphisms with $C \subset F^H$. Let W be an F^H -irreducible H-torsor such that $F = F^H(W)$. Let $A \in \mathfrak{gl}_m(F)$ and assume that

- 1. A is H-equivariant.
- 2. The Picard-Vessiot extension E of F corresponding to the equation X' = AX has Galois group G'.

Then there is a conjugation action of H on G' such that E is the function field of an F^H -irreducible $H \ltimes G'$ -torsor $W \times V$, and a Picard-Vessiot extension of F^H with Galois group $H \ltimes G'$. Furthermore the action of the Galois group corresponds to the action of $H \ltimes G'$ on E induced by the action of $H \ltimes G'$ on $W \times V$.

Non-Trivial Torsors - Joint work with Arne Ledet

Let K be a differential field with field with algebraically closed field of constants C.

Let $G \subseteq GL_n(C)$ be a connected linear algebraic group, and let $H = K[X, 1/\det(X)]$ be the coordinate ring over K, where X is a generic point of G.

Non-Trivial Torsors - Joint work with Arne Ledet

Let K be a differential field with field with algebraically closed field of constants C.

Let $G \subseteq GL_n(\mathcal{C})$ be a connected linear algebraic group, and let $H = K[X, 1/\det(X)]$ be the coordinate ring over K, where X is a generic point of G.

A crossed homomorphism $e \colon \operatorname{Gal}(K) \to G(\bar{K})$, gives an e-twisted Galois action on $\bar{H} = \bar{K} \otimes_K H$ by

$$^{\sigma}z=e_{\sigma}(\sigma z),$$

and a corresponding coordinate ring for a torsor $T = \bar{H}^{Gal(K)}$.

Non-Trivial Torsors - Joint work with Arne Ledet

Let K be a differential field with field with algebraically closed field of constants C.

Let $G \subseteq GL_n(\mathcal{C})$ be a connected linear algebraic group, and let $H = K[X, 1/\det(X)]$ be the coordinate ring over K, where X is a generic point of G.

A crossed homomorphism $e\colon \mathrm{Gal}(K)\to G(\bar{K})$, gives an e-twisted Galois action on $\bar{H}=\bar{K}\otimes_K H$ by

$$^{\sigma}z=e_{\sigma}(\sigma z),$$

and a corresponding coordinate ring for a torsor $T = \bar{H}^{Gal(K)}$. The G-action on H (and \bar{H}) is given by

$${}^{g}X = Xg, \quad g \in G.$$

By Speiser's Theorem there exists $P \in GL_n(\bar{K})$ with $e_{\sigma} = P\sigma P^{-1}$, and with Y = XP we have

$$^{\sigma}Y = XP\sigma P^{-1}\sigma P = XP = Y,$$

from which it follows that we can realize T explicitly inside \bar{H} as $T = K[Y, 1/\det(Y)]$.

By Speiser's Theorem there exists $P \in GL_n(\bar{K})$ with $e_{\sigma} = P\sigma P^{-1}$, and with Y = XP we have

$$^{\sigma}Y = XP\sigma P^{-1}\sigma P = XP = Y,$$

from which it follows that we can realize T explicitly inside \bar{H} as $T = K[Y, 1/\det(Y)]$.

We then have a G-action on T given by

$$^{g}Y=g^{-1}Y, \quad g\in G.$$

Define a derivation on T by

$$Y' = YB$$

for some $B \in M_n(K)$. The fact that the derivation is expressed by multiplication from the right guarantees that the G-action on T is differential.

It then extends to \bar{H} , where

$$X' = XA = X(PBP^{-1} - P'P^{-1}),$$

and hence, if we let \mathfrak{g} denote the Lie algebra Lie(G), we see that

$$A \in \mathfrak{g}(\bar{K}),$$

and

$$B = P^{-1}AP + P^{-1}P' \in [P^{-1}P' + P^{-1}\mathfrak{g}(\bar{K})P] \cap M_n(K).$$

Generic Torsors and Extensions?

$$X' = XA = X(PBP^{-1} - P'P^{-1}),$$