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Liouville’s Theorem

Theorem (Liouville’s Theorem)

Let K be a differential field of characteristic zero with constant
field C and let f ∈ K . If the equation g ′ = f has a solution g ∈ L
where L is an elementary extension of K having the same constant
field C , then there exist v , u1, u2, . . . , un ∈ E and constants
c1, . . . , cn ∈ C such that

f = v ′ +
n∑

i=1

ci
u′i
ui

therefore,
∫

f = v +
∑n

i=1 ci log ui .



The Structure of Picard-Vessiot Extensions

The structure of Picard-Vessiot G -extensions can be described in
terms of G -torsors.

Let G be a linear algebraic group defined over a field k. A
k-homogeneous space for G is a k-affine variety together with a
morphism G × V 7→ V of k-varieties inducing a transitive action of
G (k) on V (k), where k denotes the algebraic closure of k. If
moreover the action is faithful, V is called a principal
k-homogeneous space for G or a G -torsor. The group G itself is
called the trivial G -torsor.

Theorem
The set of G -torsors (up to G -isomorphism) maps bijectively to
the first Galois cohomology set H1(k,G ).
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Structure Theorem (Kolchin)

Theorem
Let k be a differential field with field of constants C and let E ⊃ k
be a Picard-Vessiot extension with group G . Then E is the
function field k(V ) of some k-irreducible G -torsor where the action
of the Galois group on E is the same as the action resulting from
G (C) acting on V . Moreover, E = k(v), for some E -point v ∈ V .



Generic Extensions

Definition.
A Picard-Vessiot extension E ⊃ F with group G is called generic
when the following condition holds:
For any differential field F with field of constants C there is a
PVE E ⊃ F with differential Galois group H ≤ G if and only if
there are fi ∈ F such that the matrix A(f1, . . . , fk) is well
defined and the equation X ′ = X A(f1, . . . , fk) gives rise to the
extension E ⊃ F .



Polynomial Galois Theory Case

Generic polynomials with group G have been extensively studied in
the context of Galois theory. Work by Noether in connection with
a rationality question.

Definition.
Let s = (s1, . . . , sm) be indeterminates over a field K , and let G
be a finite group. A monic polynomial P(s,X ) ∈ K (s)[X ] is
called a generic G -polynomial over K if the following conditions
are satisfied:

1. The splitting field of P(s,X ) over K (s) is a G -extension, that
is, a Galois extension with Galois group isomorphic to G .

2. Every G -extension of a field L containing K is the splitting
field (over L) of the polynomial P(a,X ) for some
a = (a1, . . . , an) ∈ Ln. The polynomial P(a,X ) is called a
specialization of P(s,X ).
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Goldman’s Equation

Definition.
Let G be a linear algebraic group over C and assume that a faithful
representation in GLn(C) is given. Let

L(t, y) = Q0(t1, . . . , tr )y (n)+· · ·+Qn(t1, . . . , tr )y ∈ C{t1, . . . , tr , y}

and write (π1, . . . , πn) for a fundamental system of zeros of L(t, y)
such that C〈t1, . . . , tr , π1, . . . , πn〉 is a PVE of C〈t1, . . . , tr 〉 with
group G . Then L(t, y) = 0 will be called a generic equation with
group G if:



1. t1, . . . , tr are differentially independent over C, and
C〈t1, . . . , tr 〉 ⊂ C〈π1, . . . , πn〉.

2. For every specialization
(t1, . . . , tr , π1, . . . , πn)→ (t̄1, . . . , t̄r , π̄1, . . . , π̄n) over C such
that C〈t̄1, . . . , t̄r , π̄1, . . . , π̄n〉 is a PVE of C〈t̄1, . . . , t̄r 〉 and the
field of constants of the latter is C, the differential Galois
group of this extension is a subgroup of G .

3. If (ω1, . . . , ωn) is a fundamental system of zeros of
L(y) = y (n) + a1y (n−1) + · · ·+ any ∈ F{y}, where F is any
differential field with field of constants C, and F 〈ω1, . . . , ωn〉
is a PVE of F with differential Galois group H ≤ G , then
there exists a specialization (t1, . . . , tr )→ (t̄1, . . . , t̄r ) over F
with t̄i ∈ F such that Qo(t̄1, . . . , t̄r ) 6= 0 and

ai = Qi (t̄1, . . . , t̄r )Q−1o (t̄1, . . . , t̄r ).
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Bhandari-Sankaran

(3′) If F is a differential field with field of constants C and E is a
PVE of F with differential Galois group H ≤ G , then there exists a
linear differential equation

L(y) = y (n) + a1y (n−1) + · · ·+ any = 0, ai ∈ F

such that that Qo(t̄1, . . . , t̄r ) 6= 0,
ai = Qi (t̄1, . . . , t̄r )Q−1o (t̄1, . . . , t̄r ), i = 1, . . . , n, for suitable t̄i ∈ F
and E = F 〈ω1, . . . , ωn〉 for a fundamental system of zeros of L(y).



Connected Case (Trivial Torso)

Let dim(G )=n and suppose that Yij , 1 ≤ i , j ≤ n are differentially
independent indeterminates over C, and put F = C〈Yij〉. Given a
faithful representation of G in GLm, the Lie algebra G maps to a
Lie subalgebra of glm and a basis {D1, . . . ,Dn} of the former can
be identified with a linearly independent set {A1, . . . ,An} of
m×m matrices. Let A(Yij) =

∑n
i=1 YiAi ∈ G(F) and X a generic

point of G , then X ′ = A(Yij)X gives a derivation on F(G )



Theorem
The extension F(G ) ⊃ F is a generic Picard-Vessiot extension for
G relative to the trivial G -torsor and, furthermore, it descends to
subgroups of G as follows:
Let F be a differential field with field of constants C.

1. If E ⊃ F is a Picard-Vessiot extension with connected
differential Galois group G ′ ≤ G such that E = F (G ′), then
there is a specializaton Yi → fi ∈ F such that the equation
X ′ = A(f1, . . . , fn)X gives rise to this extension.

2. For every specialization Yi → fi ∈ F , the differential equation
X ′ = A(f1, . . . , fn)X gives rise to a Picard-Vessiot extension
E ⊃ F with differential Galois group G ′ ≤ G .



Connected by Finite case (G = H n G 0)

Inspiration: Mitschi-Singer results on the inverse problem.

Definition.
Suppose that Yij are differentially independent indeterminates
over C and put F = C〈Yij〉. We say that a Picard-Vessiot
G -extension E ⊃ K is generic for G relative to split G -torsors if
there is a faithful differential H-action on F , with K = FH , such
that

1. E = K(W × G 0) for some K-irreducible H-torsor W, and

2. for every faithful representation of G in a GLm, the
G 0-extension F(G 0) ⊃ F has an H-equivariant equation
X ′ = A(Yij)X , such that, given a Picard-Vessiot G -extension
of the form k(W × G 0) ⊃ k , where k is a differential field
with field of constants C and W a k-irreducible H-torsor,
there is an H-equivariant specialization Yi → fi with
fi ∈ k(W ), such that the G 0-extension k(W )(G 0) ⊃ k(W )
has equation X ′ = A(f1, . . . , fn)X .
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Proposition.

Let H,G ′ ≤ GLm be algebraic groups over C, with H finite and G ′

not necessarily connected. Le F be a differential field with field of
constants C on which H acts faithfully as a group of differential
automorphisms with C ⊂ FH . Let W be an FH -irreducible
H-torsor such that F = FH(W ).
Let A ∈ glm(F ) and assume that

1. A is H-equivariant.

2. The Picard-Vessiot extension E of F corresponding to the
equation X ′ = AX has Galois group G ′.

Then there is a conjugation action of H on G ′ such that E is the
function field of an FH -irreducible H n G ′-torsor W × V , and a
Picard-Vessiot extension of FH with Galois group H n G ′.
Furthermore the action of the Galois group corresponds to the
action of H n G ′ on E induced by the action of H n G ′ on W ×V .



Non-Trivial Torsors - Joint work with Arne Ledet

Let K be a differential field with field with algebraically closed field
of constants C.
Let G ⊆ GLn(C) be a connected linear algebraic group, and let
H = K [X , 1/ det(X )] be the coordinate ring over K , where X is a
generic point of G .

A crossed homomorphism e : Gal(K )→ G (K̄ ), gives an e-twisted
Galois action on H̄ = K̄ ⊗K H by

σz = eσ(σz),

and a corresponding coordinate ring for a torsor T = H̄Gal(K).
The G -action on H (and H̄) is given by

gX = Xg , g ∈ G .
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By Speiser’s Theorem there exists P ∈ GLn(K̄ ) with eσ = PσP−1,
and with Y = XP we have

σY = XPσP−1σP = XP = Y ,

from which it follows that we can realize T explicitly inside H̄ as
T = K [Y , 1/ det(Y )].

We then have a G -action on T given by

gY = g−1Y , g ∈ G .
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Define a derivation on T by

Y ′ = YB

for some B ∈ Mn(K ). The fact that the derivation is expressed by
multiplication from the right guarantees that the G -action on T is
differential.
It then extends to H̄, where

X ′ = XA = X (PBP−1 − P ′P−1),

and hence, if we let g denote the Lie algebra Lie(G ), we see that

A ∈ g(K̄ ),

and

B = P−1AP + P−1P ′ ∈ [P−1P ′ + P−1g(K̄ )P] ∩Mn(K ).



Generic Torsors and Extensions?

X ′ = XA = X (PBP−1 − P ′P−1),


