Automorphisms of Hurwitz Series

Bill Keigher* V. Ravi Srinivasan

Rutgers-Newark*
Catholic University of America

This talk is dedicated to the memory of Jerald Kovacic - colleague, friend and source of inspiration

- All rings are associative, commutative and unitary.
- A and B will denote rings (of any characteristic).
- Lemma If $d: A \to A$ is a derivation on A, and if $f: A \to B$ and $g: B \to A$ are ring homomorphisms with $f \circ g = id_B$, then $f \circ d \circ g: B \to B$ is a derivation on B.
- Der A will denote the set of derivations on A.
- For any $m, n \in \mathbf{N}$, δ_n^m will denote the Kronecker delta, i.e., $\delta_n^m = 1$ if m = n and $\delta_n^m = 0$ if $m \neq n$.

The ring of Hurwitz series over *A*:

- The ring of Hurwitz series over *A* is denoted by *HA*
- Elements of HA are sequences in A, i.e., $a : \mathbb{N} \to A$, written (a_n)
- Addition: $(a_n) + (b_n) = (a_n + b_n)$
- Zero: 0 = (0, 0, 0, ...)

Hurwitz multiplication:

- $(a_n) * (b_n) = \left(\sum_{k=0}^n \binom{n}{k} a_k b_{n-k}\right)$
- So $(a_0, a_1, a_2, ...) * (b_0, b_1, b_2, ...) =$ $(a_0b_0, a_0b_1 + a_1b_0, a_0b_2 + 2a_1b_1 + a_2b_0, ...)$
- Example: (1, 1, 1, 1, ...) * (1, 2, 4, 8, ...) = (1, 3, 9, 27, ...)
- Identity: $1 = 1_{HA} = (1, 0, 0, 0, ...)$

Derivation on *HA***:**

- lacksquare $\partial: HA o HA: (a_n) \mapsto (a_{n+1})$ "shift operator"
- \blacksquare ∂ is a derivation on HA
- There is a differential ring homomorphism

$$\psi: (A[[t]], \frac{d}{dt}) \to (HA, \partial): \sum_{n=0}^{\infty} a_n t^n \mapsto (n!a_n),$$

and if $\mathbf{Q} \subseteq A$, then $HA \cong A[[t]]$.

Some natural ring homomorphisms involving Hurwitz series:

- lacksquare $\varepsilon: HA o A: (a_n) \mapsto a_0$
- $\delta: HA \to HHA: (a_n) \mapsto ((b_m)_n)$ with $((b_m)_n) = a_{m+n}$; i.e., $\delta((a_n)) = (a_{m+n})$
- If *d* is a derivation on *A* then

$$\widetilde{d}:A \rightarrow HA:a \mapsto (a,d(a),d^2(a),\ldots)$$

is a ring homomorphism, called the *Hurwitz homomorphism* of d. Note that $\widetilde{0} = \lambda$.

It is well-known that if d is a derivation on A and $\mathbf{Q} \subseteq A$, then there is a differential ring homomorphism

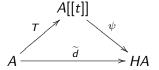
$$T:(A,d)\to (A[[t]],d/dt):a\mapsto \sum_{n=0}^\infty \frac{d^n(a)}{n!}t^n,$$

called the Taylor homomorphism of d.

It is well-known that if d is a derivation on A and $\mathbf{Q} \subseteq A$, then there is a differential ring homomorphism

$$T:(A,d)\to (A[[t]],d/dt):a\mapsto \sum_{n=0}^\infty \frac{d^n(a)}{n!}t^n,$$

called the *Taylor homomorphism* of d. When $\mathbf{Q} \subset A$, $\psi: A[[t]] \to HA$ is an isomorphism, and T and \widetilde{d} are related by the commutative diagram



However, the Taylor homomorphism T is defined only in case $\mathbf{Q} \subseteq A$, while the Hurwitz homomorphism \widetilde{d} is defined for any differential ring A of any characteristic.

The order of a Hurwitz series:

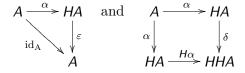
■ We define the *order* of $0 \neq h \in HA$, denoted by $\operatorname{ord}(h)$, to be the minimum $i \in \mathbb{N}$ such that $h(i) \neq 0$ and when h = 0, $\operatorname{ord}(h) := \infty$.

Divided power structure on *HA*:

- The divided powers $x^{[m]}$ in HA are given by $x^{[m]}(n) = \delta_n^m$, so e.g., $x^{[2]} = (0, 0, 1, 0, \dots, 0, \dots)$
- $(a_0, a_1, a_2, \ldots) = \sum a_n x^{[n]}$

Comorphisms on A

■ A comorphism α on a ring A is a ring homomorphism $\alpha: A \to HA$ such that the diagrams



commute.

- Examples of comorphisms on A include λ and d, where d is a derivation on A.
- The set of all comorphisms on A will be denoted by ComorA.

■ **Theorem.** There is a one-to-one correspondence:

$$Der A \rightleftharpoons Comor A$$
.

- Given a derivation d on A, we get a ring homomorphism $\widetilde{d}:A\to HA:a\mapsto (d^{(n)}(a))$, the Hurwitz homomorphism.
- Given a ring homomorphism $f: A \to HA$ with $\varepsilon \circ f = id_A$ and $\delta \circ f = Hf \circ f$, we get a derivation $\varepsilon \circ \partial \circ f$ on A.

Hurwitz automorphisms

A ring endomorphism σ of HA is called a *Hurwitz endomorphism* if for all $n \in \mathbb{N}$ and $h \in HA$, σ satisfies the following conditions,

$$(\varepsilon \circ \partial \circ \sigma \circ \lambda)^n = \varepsilon \circ \partial^n \circ \sigma \circ \lambda \tag{1}$$

$$\sigma(x^{[n]}) = x^{[n]} \tag{2}$$

$$\operatorname{ord}(h) \le \operatorname{ord}(\sigma(h))$$
 (3)

If σ is bijective, then we call σ a *Hurwitz automorphism* of *HA*. The set of all Hurwitz automorphisms of *HA* will be denoted by $\operatorname{Haut} A$.

Lemma. Let $\sigma \in \text{Haut}A$, $a \in A$, $k \in \mathbb{N}$, $h \in HA$ and define d_{σ} by $d_{\sigma} := \varepsilon \circ \partial \circ \sigma \circ \lambda$. Then

1. d_{σ} is a derivation on A and $\sigma \circ \lambda = d_{\sigma}$, i.e., the diagram

commutes, and

2.
$$\sigma(ax^{[k]})(n) = \begin{cases} 0, & \text{if } n < k; \\ \binom{n}{k} d_{\sigma}^{n-k}(a), & \text{if } n \ge k. \end{cases}$$

Theorem. Let $\sigma \in \operatorname{Haut} A$ and $h \in HA$. Then for each $n \in \mathbb{N}$,

$$\sigma(h)(n) = \sum_{k=0}^{n} \binom{n}{k} d_{\sigma}^{n-k}(h(k)),$$

where d_{σ} is the derivation given by $d_{\sigma} := \varepsilon \circ \partial \circ \sigma \circ \lambda$.

■ For any $d \in \text{Der}A$, $h \in HA$, and $n \in \mathbb{N}$, define

$$\sigma_d: HA \rightarrow HA$$

by

$$\sigma_d(h)(n) = \sum_{k=0}^n \binom{n}{k} d^{n-k}(h(k)).$$

■ Note that for the zero derivation 0_A on A, $\sigma_{0_A} = id_{HA}$.

Theorem. For any $g, h \in HA$ and $d \in Der A$:

$$\sigma_d(g+h) = \sigma_d(g) + \sigma_d(h)$$

$$\sigma_d(g*h) = \sigma_d(g)*\sigma_d(h)$$

so that σ_d is a Hurwitz endomorphism of HA.

Lemma. If $d_1, d_2 \in \text{Der}A$ with $d_1 \circ d_2 = d_2 \circ d_1$, then $\sigma_{d_1} \circ \sigma_{d_2} = \sigma_{d_1+d_2} = \sigma_{d_2} \circ \sigma_{d_1}$.

Theorem. For any $d \in \text{Der}A$, σ_d is a Hurwitz automorphism of HA and $\sigma_d^{-1} = \sigma_{-d}$.

Theorem. Let $\Phi: \mathrm{Der}A \to \mathrm{Haut}A$ and $\Psi: \mathrm{Haut}A \to \mathrm{Der}A$ be defined by $\Phi(d) = \sigma_d$ and $\Psi(\sigma) = d_\sigma$ where $d_\sigma := \varepsilon \circ \partial \circ \sigma \circ \lambda$. Then $\Phi \circ \Psi = \mathrm{id}_{\mathrm{Haut}A}$ and $\Psi \circ \Phi = \mathrm{id}_{\mathrm{Der}A}$. Thus $\mathrm{Der}A$ and $\mathrm{Haut}A$ are isomorphic sets.

Corollary. For any ring A, $Der A \cong Comor A \cong Haut A$.

Seidenberg automorphisms over A

If $Q \subseteq A$, a Seidenberg automorphism over A is an automorphism E of A[[t]] leaving t fixed and reducing to the identity modulo t.

Seidenberg automorphisms over A

If $\mathbf{Q} \subseteq A$, a Seidenberg automorphism over A is an automorphism E of A[[t]] leaving t fixed and reducing to the identity modulo t.

Such an E restricted to A gives a derivation on A, and conversely every derivation on A extends uniquely to a Seidenberg automorphism over A.

Further, if $\mathbf{Q} \subseteq A$ then

$$\psi: A[[t]] \rightarrow HA$$

is an isomorphism, and if E is a Seidenberg automorphism over A and d is the derivation on A from E, then the diagram

$$A[[t]] \xrightarrow{\psi} HA$$

$$E \downarrow \qquad \qquad \downarrow^{\sigma_d}$$

$$A[[t]] \xrightarrow{\psi} HA$$

commutes. Thus, a Hurwitz automorphism is the analog of a Seidenberg automorphism for any ring A.

