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Theorem. Let K be differential field with field of constants k. Let M/K be a
differential module. We assume that K is a real (resp., p-adic) field and k is real closed
(resp. p-adically closed).

(1). Existence. There exists a real (resp., p-adic) Picard–Vessiot extension forM/K.

(2). Unicity for the real case. Let L1, L2 denote two real Picard–Vessiot ex-
tensions for M/K. Suppose that L1 and L2 have total orderings which induce the
same total ordering on K. Then there exists a K-linear isomorphism φ : L1 → L2 of
differential fields.

(3). Unicity for the p-adic case. Let L1, L2 denote two p-adic Picard–Vessiot
extensions for M/K. Suppose that L1 and L2 have p-adic closures L+

1
and L+

2
such

that the p-adic valuations of L+

1
and L+

2
induce the same p-adic valuation on K and

such that K ∩ (L+

1
)n = K ∩ (L+

2
)n for every integer n ≥ 2 (where F n := {fn|f ∈ F}).

Then there exists a K-linear isomorphism φ : L1 → L2 of differential fields.



A real field is a field K which can be endowed with a total ordering compatible with
sum and product. Equivalently, −1 is not a sum of squares in K.
A real closed field is a real field that has no nontrivial real algebraic extensions.

Let p be a prime integer. A p-adic field is a field which admits a valuation v : K → Γ,
where Γ is a totally ordered abelian group such that v(p) is the smallest positive value
in v(K).
A p-adically closed field is a p-adic field that has no nontrivial p-adic algebraic exten-
sions.

Proposition. Let k ⊂ K denote fields of characteristic zero such that:

(i) For every smooth variety V of finite type over k, V (K) 6= ∅ implies V (k) 6= ∅.

(ii) The natural map Gal(K/K) → Gal(k/k) is bijective.

Let G be any linear algebraic group over k, then the map of pointed sets

H1(k,G(k)) → H1(K,G(K)),

induced by the inclusion G(k) ⊂ G(K) and the group isomorphism Gal(K/K) '
Gal(k/k) is bijective.

Conditions (i) and (ii) are fulfilled when k and K are both real closed or p-adically
closed.



Reduction to the case K real closed (resp. p-adically closed)

Existence. Let K̃ ⊃ K be an extension of real (resp., p-adic) differential fields
such that the field of constants of K̃ is k. Suppose that K̃ ⊗M has a real (resp.,
p-adic) Picard–Vessiot field L̃, then M has a real (resp., p-adic) Picard–Vessiot
field.

Unicity. Let L1, L2 be two real Picard–Vessiot fields for M over the real differen-
tial field K. Suppose that L1 and L2 have total orderings extending a total ordering
τ on K. Let Kr ⊃ K be the real closure of K inducing the total ordering τ . Then
the fields L1, L2 induce Picard–Vessiot fields L̃1, L̃2 for Kr ⊗M over Kr. These
fields are isomorphic as differential field extensions of Kr if and only if L1 and L2

are isomorphic as differential field extensions of K.

Let, for j = 1, 2, τj be a total ordering on Lj inducing τ on K and let Lrj be the real
closure of Lj which induces the ordering τj. We may identify the real closure Kj of K
in Lrj with K

r.

Let Vj ⊂ Lj denote the solution space of M . Then the field L̃j := Kr < Vj >⊂ Lrj is
a real Picard–Vessiot field for Kr ⊗M .
If ψ : Kr < V1 >→ Kr < V2 > is a Kr-linear differential isomorphism, ψ(V1) = V2
and ψ induces a K-linear differential isomorphism L1 = K < V1 >→ L2 = K < V2 >.
On the other hand, a K-differential isomorphism φ : L1 → L2 extends to an isomor-
phism φ̃ : Lr1 → Lr2 which maps L̃1 to L̃2.



Picard-Vessiot extensions and fibre functors.
Let < M >⊗ denote the Tannakian category generated by the differential module M ,
ρ :< M >⊗→ vect(K) the forgetful functor.

1. There exists a fibre functor ω :< M >⊗→ vect(k).
The field K contains a finitely generated k-subalgebra R, which is invariant under
differentiation, such that there exists a fibre functor < M >⊗→ vect(R/m), for m a
maximal ideal of R. Since K is a real field (resp., p-adic field) and therefore R is a
real (resp., p-adic) algebra, finitely generated over a real closed (resp., p-adically closed)
field k, there exists m such that R/m = k

2. There is a bijection between the (isomorphy classes of) fibre functors
ω :< M >⊗→ vect(k) and the (isomorphy classes of) Picard–Vessiot fields L
for M/K.
The functor Aut⊗(ω) is represented by a linear algebraic group G over k; the functor
Isom⊗

K(K ⊗ ω, ρ) is represented by a torsor P over GK := K ×k G. This torsor
is affine, irreducible and the field of fractions K(P ) of its coordinate ring O(P ) is a
Picard–Vessiot field forM/K andG identifies with the group of theK-linear differential
automorphisms of K(P ).
If L be a Picard–Vessiot field forM/K, define the fibre functor ωL :< M >⊗→ vect(k)
by ωL(N) = ker(∂ : L⊗K N → L⊗K N).



3. Suppose that K is real closed (resp., p-adically closed). Let L be a Picard–
Vessiot field for M/K. Then L is a real field (resp., a p-adic field) if and only if
the torsor Isom⊗

K(K ⊗ ωL, ρ) is trivial.

If L is a real Picard–Vessiot field, then O(P ) ⊂ L is a finitely generated real K-algebra.
From the real Nullstellensatz and the assumption that K is real closed it follows that
there exists a K-linear homomorphism φ : O(P ) → K with φ(1) = 1. The torsor
P = Spec(O(P )) has a K-valued point and is therefore trivial.

If the torsor P = Spec(O(P )) is trivial, then the affine variety P has a K-valued point.
It follows that the Picard–Vessiot field L, which is the function field of this variety, is
real.



Proof of unicity.
Let L1, L2 be two real Picard-Vessiot fields for a differential module M/K;
ωj = ωLj :< M >⊗→ vect(k) the corresponding fibre functors.

Put G = Aut⊗k (ω1). Then Isom⊗
k (ω1, ω2) is a G-torsor over k corresponding to an

element ξ ∈ H1(k,G(k)).

The GK-torsor Isom
⊗
K(K⊗ω1, K⊗ω2) corresponds to an element η ∈ H1(K,G(K)).

H1(k,G(k)) → H1(K,G(K))
ξ 7→ η

Since Lj is real, the torsor Isom
⊗
K(K ⊗ ωj, ρ) is trivial for j = 1, 2. Thus there exists

isomorphisms

αj : K ⊗ ωj → ρ,

for j = 1, 2. The isomorphism

α−1

2 ◦ α1 : K ⊗ ω1 → K ⊗ ω2

implies that η is trivial.

Since the map H1(k,G(k)) → H1(K,G(K)) is an injective map between pointed sets,
ξ is trivial. Hence there is an isomorphism ω1 → ω2, which implies that L1 and L2 are
isomorphic as differential field extensions of K.



Proof of existence.
Let M be a differential module over a real closed differential field K. We fix a fibre
functor

ω0 :< M >⊗→ vect(k)

and write G0 := Aut⊗(ω0).
Let Gρ := Aut⊗(ρ), where ρ :< M >⊗→ vect(K) is the forgetful functor.

H1(k,G0(k)) ↔ {ω :< M >⊗→ vect(k)}
H1(K,Gρ(K)) ↔ {Gρ-torsors} .

Thus ω 7→ Isom(K ⊗ ω, ρ) induces a map Φ : H1(k,G0(k)) → H1(K,Gρ(K)).
1 = Φ(ω) ⇒ Lω is a real Picard–Vessiot field.

Φ : H1(k,G0(k))
natG0−→ H1(K,G0(K))

composition
−→ H1(K,Gρ(K)).

The map “composition” is defined as follows. An element in H 1(K,G0(K)) is a right
K ×k G0-torsor. One can compose with Isom⊗(K ⊗ ω0, ρ) which is a left K ⊗k G0-
torsor and a right Gρ-torsor. The result is a right Gρ-torsor and thus an element in
H1(K,Gρ(K)). The map “composition” is clearly bijective. Since the map natG0 is
bijective, this finishes the proof of the existence.



Proof of the Proposition ( H1(k,G(k)) ↔ H1(K,G(K)))
Surjectivity
(1). Let U be the unipotent radical of G. The maps H1(k,G) → H1(k,G/U) and
H1(K,G) → H1(K,G/U) are bijective, hence we may assume that the neutral com-
ponent Go of G is reductive.
(2). Consider a commutative group C over k. Since the commutative group C(K)/C(k)
is torsion free and divisible and so it has trivial Galois cohomology, the natural maps
Hn(k, C) → Hn(K,C) are bijective for all n > 0.
(3). Let T be a maximal torus ofG, and letN be its normalizer. The mapH 1(K,N) →
H1(K,G) is surjective. Hence it will be enough to prove surjectivity for N .
(4). After replacing G by N , we have an exact sequence 1 → C → G→ F → 1, where
C is a torus and F a finite group. This gives us a commutative diagram:

1 → H1(k, C) → H1(k,G) → H1(k, F )
l ↓ l

1 → H1(K,C) → H1(K,G) → H1(K,F )

Let x be an element of H1(K,G) and let y be its image in H1(K,F ). Thus we view y
as an element of H1(k, F ).



Proof of the Proposition ( H1(k,G(k)) ↔ H1(K,G(K)))
Surjectivity
(1). Let U be the unipotent radical of G. The maps H1(k,G) → H1(k,G/U) and
H1(K,G) → H1(K,G/U) are bijective, hence we may assume that the neutral com-
ponent Go of G is reductive.
(2). Consider a commutative group C over k. Since the commutative group C(K)/C(k)
is torsion free and divisible and so it has trivial Galois cohomology, the natural maps
Hn(k, C) → Hn(K,C) are bijective for all n > 0.
(3). Let T be a maximal torus ofG, and letN be its normalizer. The mapH 1(K,N) →
H1(K,G) is surjective. Hence it will be enough to prove surjectivity for N .
(4). After replacing G by N , we have an exact sequence 1 → C → G→ F → 1, where
C is a torus and F a finite group. This gives us a commutative diagram:

1 → H1(k, C) → H1(k,G) → H1(k, F )
δ
→ H2(k, Cy)

l ↓ l l

1 → H1(K,C) → H1(K,G) → H1(K,F )
δ
→ H2(K,Cy)

Let x be an element of H1(K,G) and let y be its image in H1(K,F ). Thus we view y
as an element of H1(k, F ).
The element y belongs to the image of H1(k,G) → H1(k, F ).
The element x belongs to the image of H1(k,G) → H1(K,G).



Injectivity
Let ξ1, ξ2 be elements in H1(k,G(k)) such that their images in H1(K,G(K)) coincide.
Let ci be a 1-cocycle with values in G(k) representing ξi, i = 1, 2.

There is an element h ∈ G(K) such that

c2(α) = h−1c1(α)α(h) (1)

for all α ∈ Gal(K/K) = Gal(k/k).

There exists a finitely generated k-algebra B ⊂ K with h ∈ G(kB). Since B is real
and k is real closed, there exists a k-linear homomorphism φ : B → k with φ(1) = 1.
Further φ extends to a k-linear homomorphism kB → k, commuting with the actions
of Gal(K/K) = Gal(k/k). Applying φ to the identity (1) one obtains

c2(α) = φ(h)−1c1(α)α(φ(h)).

Thus ξ1 = ξ2.


