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Theorem. Let K be differential field with field of constants k. Let M/K be a
differential module. We assume that K is a real (resp., p-adic) field and k is real closed
(resp. p-adically closed).

(1). Existence. There exists a real (resp., p-adic) Picard—Vessiot extension for M/ K.

(2). Unicity for the real case. Let Ly, Ly denote two real Picard—Vessiot ex-
tensions for M /K. Suppose that L; and Ly have total orderings which induce the
same total ordering on K. Then there exists a K-linear isomorphism ¢ : Ly — Lo of
differential fields.

(3). Unicity for the p-adic case. Let Lq, Ly denote two p-adic Picard—Vessiot
extensions for M/K. Suppose that L and Ly have p-adic closures L] and L3 such
that the p-adic valuations of L and L3 induce the same p-adic valuation on K and
such that K N (L))" = K N (L3)" for every integer n > 2 (where F" := {f"|f € F'}).
Then there exists a K-linear isomorphism ¢ : L1 — Lo of differential fields.



A real field is a field K which can be endowed with a total ordering compatible with
sum and product. Equivalently, —1 is not a sum of squares in k.
A real closed field is a real field that has no nontrivial real algebraic extensions.

Let p be a prime integer. A p-adic field is a field which admits a valuation v : K — I,
where I' is a totally ordered abelian group such that v(p) is the smallest positive value

in v(K).

A p-adically closed field is a p-adic field that has no nontrivial p-adic algebraic exten-
slons.

Proposition. Let £ C K denote fields of characteristic zero such that:

(i) For every smooth variety V' of finite type over k, V(K) # () implies V (k) £ 0.
(ii) The natural map Gal(K/K) — Gal(k/k) is bijective.

Let G be any linear algebraic group over k, then the map of pointed sets

H'(k, G(k)) = H'(K, G(K)),

induced by the inclusion G(k) C G(K) and the group isomorphism Gal(K/K) ~
Gal(k/k) is bijective.

Conditions (i) and (ii) are fulfilled when k and K are both real closed or p-adically
closed.



Reduction to the case K real closed (resp. p-adically closed)

Existence. Let K O K be an extension of real (resp., p-adic) differential fields
such that the field of constants of K is k. Suppose that K @ M has a real (resp.,
p-adic) Picard-Vessiot field L, then M has a real (resp., p-adic) Picard-Vessiot
field.

Unicity. Let L1, Ly be two real Picard—Vessiot fields for M over the real differen-
tial field K. Suppose that Ly and Lo have total orderings extending a total ordering
7 on K. Let K" D K be the real closure of K inducing the total ordering 7. Then
the fields Ly, Ly induce Picard—Vessiot fields El, Lo for K" @ M over K". These
fields are isomorphic as differential field extensions of K" if and only if L1 and Lo
are isomorphic as differential field extensions of K.

Let, for j = 1,2, 7; be a total ordering on L; inducing 7 on K and let L’ be the real
closure of L; which induces the ordering 7;. We may identify the real closure K; of K
in L with K.

Let V; C L; denote the solution space of M. Then the field Zj =K' <V;>C L} s
a real Picard—Vessiot field for K" ®@ M.

Ify: K"< V> K" <V, >is a K'-linear differential isomorphism, (V7)) = V5
and v induces a K-linear differential isomorphism L4 = K < Vi >— Lo =K <V, >.
On the other hand, a K-differential isomorphism ¢ : L; — Lo extends to an isomor-
phism ¢ : L' — L} which maps L to L.



Picard-Vessiot extensions and fibre functors.
Let < M >4 denote the Tannakian category generated by the differential module M,
p < M >g— vect(K) the forgetful functor.

1. There exists a fibre functor w < M >g— vect(k).

The field K contains a finitely generated k-subalgebra R, which is invariant under
differentiation, such that there exists a fibre functor < M >g— vect(R/m), for m a
maximal ideal of R. Since K is a real field (resp., p-adic field) and therefore R is a
real (resp., p-adic) algebra, finitely generated over a real closed (resp., p-adically closed)
field k, there exists m such that R/m = k

2.  There is a bijection between the (isomorphy classes of) fibre functors
w < M >g— vect(k) and the (isomorphy classes of) Picard—Vessiot fields L
for M/ K.

The functor Aut®(w) is represented by a linear algebraic group G over k; the functor
ISM?}(K ® w, p) is represented by a torsor P over G := K x; G. This torsor
is affine, irreducible and the field of fractions K (P) of its coordinate ring O(P) is a
Picard—Vessiot field for M /K and G identifies with the group of the K-linear differential
automorphisms of K(P).

If L be a Picard—Vessiot field for M /K, define the fibre functor wy, :< M >g— vect(k)
by (,UL(N) = ker((? ) L@KN — L@K N)



3. Suppose that K is real closed (resp., p-adically closed). Let L be a Picard-
Vessiot field for M/K. Then L is a real field (resp., a p-adic field) if and only if
the torsor Isom’ (K ® wy, p) is trivial.

If L is a real Picard—Vessiot field, then O(P) C L is a finitely generated real K-algebra.
From the real Nullstellensatz and the assumption that K is real closed it follows that
there exists a K-linear homomorphism ¢ : O(P) — K with ¢(1) = 1. The torsor
P = Spec(O(P)) has a K-valued point and is therefore trivial.

If the torsor P = Spec(O(P)) is trivial, then the affine variety P has a K-valued point.
It follows that the Picard—Vessiot field L, which is the function field of this variety, is
real.



Proof of unicity.
Let Li,Ly be two real Picard-Vessiot fields for a differential module M/K;
wj = w, < M >g— vect(k) the corresponding fibre functors.

Put G = Aut)’(w). Then Isom;’(wi,ws) is a G-torsor over k corresponding to an
element ¢ € H'(k, G(k)).
The G g-torsor Isom% (K ®@wi, K @ wsy) corresponds to an element n € H(K, G(K)).

H'(k,G(k)) — HY(K,G(K))
§ = U
Since L; is real, the torsor Isom’ (K ® wj, p) is trivial for j = 1,2. Thus there exists
isomorphisms

aj K Q@w; — p,
for 7 = 1,2. The isomorphism

(12_10&12[(@(,01%[(@602

implies that 7 is trivial.

Since the map H'(k, G(k)) — H'(K,G(K)) is an injective map between pointed sets,
¢ is trivial. Hence there is an isomorphism w; — w9, which implies that L, and Lo are
isomorphic as differential field extensions of K.



Proof of existence.
Let M be a differential module over a real closed differential field K. We fix a fibre
functor

wp < M >g— vect(k)

and write G := Aut®(wp).
Let G, := Aut®(p), where p :< M >g— vect(K) is the forgetful functor.

HY(Kk, Go(k)) + {w:< M >z vect(k)}
HYK,G,(K)) +» {G,torsors} .

Thus w +— Isom(K ® w, p) induces a map ® : H'(k, Go(k)) — HY(K, G ,(K)).
1 = ®(w) = L, is a real Picard—Vessiot field.

O H'(k, Go(k)) "2 HY(K, Go(K)) “™25"" H\(K, G,(K)).
The map “composition” is defined as follows. An element in H'(K, Gy(K)) is a right
K x;, Go-torsor. One can compose with Isom®(K ® wy, p) which is a left K ®; G-
torsor and a right G -torsor. The result is a right G ,-torsor and thus an element in
HYK,G,(K)). The map “composition” is clearly bijective. Since the map natGy is
bijective, this finishes the proof of the existence.



Proof of the Proposition ( H!(k,G(k)) ++ H'(K,G(K)))

Surjectivity

(1). Let U be the unipotent radical of G. The maps H'(k,G) — H'(k,G/U) and
HYK,G) — HYK,G/U) are bijective, hence we may assume that the neutral com-
ponent G° of GG is reductive.

(2). Consider a commutative group C over k. Since the commutative group C(K)/C/(k)
is torsion free and divisible and so it has trivial Galois cohomology, the natural maps
H"(k,C) — H"(K,(C) are bijective for all n > 0.

(3). Let T' be a maximal torus of G, and let N be its normalizer. The map H'(K, N) —
HY(K, Q) is surjective. Hence it will be enough to prove surjectivity for V.

(4). After replacing G by N, we have an exact sequence 1 - C' — G — F' — 1, where
(' is a torus and F' a finite group. This gives us a commutative diagram:

1 - HYk,C) - HYk,G) — HYkK,F)
) | ]

1 - HY(K,C) - HK,G) - HYK,F)

Let  be an element of H'(K,G) and let y be its image in H'(K, F). Thus we view y
as an element of H'(k, F).



Proof of the Proposition ( H!(k,G(k)) ++ H'(K,G(K)))

Surjectivity

(1). Let U be the unipotent radical of G. The maps H'(k,G) — H'(k,G/U) and
HYK,G) — HYK,G/U) are bijective, hence we may assume that the neutral com-
ponent G° of GG is reductive.

(2). Consider a commutative group C over k. Since the commutative group C(K)/C/(k)
is torsion free and divisible and so it has trivial Galois cohomology, the natural maps
H"(k,C) — H"(K,(C) are bijective for all n > 0.

(3). Let T' be a maximal torus of G, and let N be its normalizer. The map H'(K, N) —
HY(K, Q) is surjective. Hence it will be enough to prove surjectivity for V.

(4). After replacing G by N, we have an exact sequence 1 - C' — G — F' — 1, where
(' is a torus and F' a finite group. This gives us a commutative diagram:

1 — HY(k,C) = H'(k,G) — H'(k,F) % H(k,C,)

! ! ) )
1 - HYK,C) - H\K,G) —» HYK,F) > HYK,C,)
Let z be an element of H'(K, G) and let y be its image in HY(K, F'). Thus we view y
as an element of H*(k, F).

The element y belongs to the image of H'(k,G) — H'(k, F).
The element x belongs to the image of H'(k,G) — HY{(K,G).



Injectivity B B
Let &1, & be elements in H'(k, G(k)) such that their images in H'(K, G(K)) coincide.
Let ¢; be a 1-cocycle with values in G(k) representing &;,7 = 1, 2.

There is an element h € G(K) such that

co(a) = hler(a)alh) (1)
for all o € Gal(K/K) = Gal(k/k).

There exists a finitely generated k-algebra B C K with h € G(kB). Since B is real
and k is real closed, there exists a k-linear homomorphism ¢ : B — k with ¢(1) = 1.

Further ¢ extends to a k-linear homomorphism kB — k, commuting with the actions
of Gal(K/K) = Gal(k/k). Applying ¢ to the identity (1) one obtains

co(@) = ¢(h) " er(@)a(o(h)).
Thus 51 = 52.



