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The logarithmic derivative

The exponential function exp : C→ C× has a many-valued analytic inverse

log : C× → C× where log is well-de�ned only up to the adding an element

of 2πiZ.

Treating exp and log as functions on functions does not help: If ∆ is some

connected Riemann surface and f : ∆→ C× is analytic, then we deduce a

�function� log(f ) : ∆→ C.

However, because log(f ) is well-de�ned up to an additive constant,

∂ log(f ) := d
dz (log(f )) is a well de�ned function. That is, for M = M (U)

the di�erential �eld of meromorphic functions we have a well-de�ned

di�erential-analytic function ∂ log : Gm(M)→ Ga(M).

Of course, one computes that ∂ log(f ) = f ′

f is, in fact, di�erential algebraic.
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Kolchin's di�erential logarithm

If M is a di�erential �eld with �eld of constants C and G is an algebraic

group over C , then

we have a map of groups ∇ : G (M)→ TG (M) given in coordinates

by (x1, . . . , xn) 7→ (x1, . . . , xn; ∂(x1), . . . , ∂(xn)),

the tangent bundle splits as TG = G n TeG (where TeG is the

tangent space to G at the identity) via (g , v) 7→ (g , d(g−1·)v), and

the map ∂ logG : G (M)→ TeG (M) given by sending g to the

TeG -component of ∇(g) via the splitting is di�erential algebraic and

its �bres are torsors for G (C ).
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The covering maps

We are given:

complex algebraic groups K < G ,

a complex submanifold U ⊆ (G/K )(C),

a discrete, Zariski dense subgroup Γ < G (C) for which Γ y U,

an algebraic variety X , and

an analytic covering map π : U → X (C) expressing X (C) = Γ\U.

For example, we may take G = PGL2, U = h = {z ∈ C : Re(z) > 0},
Γ = Γ0(N) a congruence group in PSL2(Z), X = Y0(N) a modular curve

and π = jN : h→ Y0(N)(C) the associated covering map.
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Generalized di�erential logarithm

As with the logarithm, the inverse function π−1 : X → (G/K ) is locally

analytic, but is only well-de�ned up to the action of Γ and in the same way

if ∆ is some connected Riemann surface and f : ∆→ X (C) is analytic,

then we deduce a mutlivalued function π−1(f ). Put another way, if
M = M (∆) is the di�erential �eld of meromorphic functions on ∆, we

have a multivalued analytic function π−1 : X (M)→ (G/K )(M)
well-de�ned up to the action of Γ.

If we had a di�erential algebraic map η de�ned on (G/K ) so that

η(x) = η(y)⇐⇒ (∃γ ∈ G (C))[γ · x = y ], then we would have a

well-de�ned di�erential analytic function χ de�ned by χ := η ◦ (π−1).
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Schwartzian derivative

Proposition

If M is a di�erential �eld of characteristic zero with algebraically closed

�eld of constants C , then the di�erential rational map S : K 99K K de�ned

by S(x) := ( x
′′

x ′ )′ − 1
2

( x
′′

x ′ )2 enjoys the property that S(x) = S(y) if and

only if there is some

(
a b

c d

)
∈ GL2(C ) with y = ax+b

cx+d .

Another way of putting it, the map S : P1 → P1 expresses P1 as the

quotient GL2(C )\P1 = GL2(C )\GL2 /K where K is the group of upper

triangular matrices.
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Generalized Schwartzians

Theorem (Poizat)

The theory of di�erentially closed �elds of characteristic zero eliminates

imaginaries. That is, if M is a di�erentially closed �eld of characteristic

zero, Y is some di�erentially constructible set over M, and E ⊆ Y ×Y is a

di�erentially constructible equivalence relation, then there is a di�erentially

constructible function η with domain Y having the property that

η(x) = η(y)⇐⇒ xEy.

Taking Y = (G/K ) and xEy :⇐⇒ (∃g ∈ G (C ))[g · x = y ], we obtain the

existence of generalized Schwartzians.

Corollary

If K < G are complex algebraic groups, then there is a di�erentially

constructible function η on (G/K ) having the property that for any

di�erential �eld M with �eld of constants C and any two points

x , y ∈ (G/K )(M) one has η(x) = η(y)⇐⇒ (∃γ ∈ G (C))[γ · x = y ].
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Generalized Schwartzians from algebraic groups

Poizat's theorem is itself a consequence of Weil's theorem that the

quotient of a constructible set by a constructible equivalence relation may

be realized as a constructible set.

In general, for an algebraic variety Y over C and a natural number n, there

is a truncated arc space AnX → X which represents X (C[ε]/(εn+1)). For
any di�erential �eld M with �eld of constants C, we have a map

∇ : X (M)→ AnX (M) corresponding to the map of rings

M → M[ε]/(εn+1) given by x 7→
∑n

j=0
∂j (x)
j! εj .

There is a natural action G y An(G/K ). By Weil's theorem on

constructible quotients we obtain a constructible quotient map

ρn : An(G/K )→ G\An(G/K ).

Our di�erential constructible map χ may be taken to be

ρn ◦ ∇ : (G/K )→ G\An(G/K ) for n� 0.
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The generalized logarithm as a di�erential analytically

constructible function

To say that χ : X → G\An(G/K ) is di�erential analytically constructible

means that there there is an analytically constructible function

χ̃ : An(X )→ G\An(G/K ) for which χ = χ̃ ◦ ∇.

Thomas Scanlon (UC Berkeley) ADEs from covers 12 April 2014 9 / 11



Peterzil-Starchenko GAGA

Theorem (Peterzil-Starchenko)

If X is a complex algebraic variety and Y ⊆ X (C) is an o-minimally

de�nable, analytically constructible set, then Y is algebraically

constructible.

Corollary

If there is some set F ⊆ (G/K )(C) for which π � F is o-minimally de�nable

and surjective onto X (C), then χ is di�erentially algebraic.
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When does the Peterzil-Starchenko theorem apply?

The standard o-minimal structure for these purposes is Ran,exp, in which

one is allowed all polynomials over the reals, the real exponential function,

and real analytic functions restricted to compact boxes (and any other

function built from these).

expA : Cg → A(C) where A is an abelian variety of dimension g

j : h→ A1(C), the analytic j-function expressing A1 = PSL2(Z)\h
More generally, theta functions and covering maps associated to

moduli spaces of abelian varieties and for their universal families.
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