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Abstract

Let K be a commutative field of characteristic zero equipped with a derivation δ, that is a
map δ : K → K satisfying

δ(f + g) = δf + δg and δ(fg) = δ(f)g + fδ(g) for all f, g ∈ K.

We denote by C its field of constants, V a K-vector space of dimension n, and A an element
in Kn×n. Set ∆ = δ − A, then ∆ is a δ- differential operator acting on V , that is, a C-linear
endomorphism of V satisfying the Leibniz condition:

∀f ∈ K, v ∈ V ∆(fv) = δ(f)v + f∆(v).

A well known example in the univariate case is the linear singular system of differential equa-
tions (see, e.g., [3, 19, 12]) for which δ = x d

dx
and K = C((x)), the field of formal Laurent

power series in x over the field of complex numbers. Let Y be an unknown n-dimensional
column vector, then ∆Y = 0 is rewritten as

x
dY

dx
= A(x)Y = x−p(A0 +A1x+A2x

2 + . . . )Y. (1)

where A0 := A(0), referred to as the leading coefficient matrix, has a nonzero rank r. The non-
negative integer p is called the Poincaré rank and its reduction to the minimal integer value,
the true Poincaré rank, is essential in the classification of singularities (see, e.g., [15, 17]).
If p is null then system (1) is said to be regular singular, that is, in any small sector, its
solutions grow at most as an algebraic function. Otherwise, it is irregular singular. While
Levelt investigated in [15] the existence of stationary sequences of free lattices, Moser defined
two rational numbers:

m(A) = max (0, p+
r

n
) and µ(A) = min { m(T−1∆T ) | T ∈ GL(V )}. (2)

It follows that system (1) is regular whenever µ(A) ≤ 1. For m(A) > 1, Moser proved that
m(A) > µ(A) if and only if the polynomial

θ(λ) := lim
x→0

xr det(λI +
A0

x
+A1) (3)

vanishes identically in λ. In this case, system (1) (resp. A(x)) is said to be Moser-reducible
and m(A) can be diminished by applying a coordinate transformation T ∈ GL(V ) of the form

T = (P0 + P1x) diag(1, . . . , 1, x, . . . , x)

where P0, P1 are constant matrices and det(P0) 6= 0 [17, Theorems 1 and 2, pg 381].
Based on Moser’s reduction criteria (3), Barkatou-Pfluegel [8] developed efficient algorithms

which constitute a substantial portion of the formal reduction of system (1), that is the algo-
rithmic procedure that computes the transformation w.r.t. which the matrix presentation of
the operator is in canonical form, so that formal solutions can be constructed (see, e.g., Barka-
tou and/or Pfluegel [4, 6, 18]). Moser’s notion of regularity and the mentioned algorithms,
were generalized as well to linear functional matrix equations by Barkatou-Broughton-Pfluegel
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[9]. This gave rise to the package ISOLDE [7] which is written in the computer algebra sys-
tem Maple and dedicated to the symbolic resolution of linear functional matrix equations, a
particular case of which is system (1).
Another prominent example in the univariate case is for which δ is the zero map and K =
C((ε)). Thereby, ∆ is just a linear operator in the standard way and A(ε) is the widely studied
perturbation of the constant matrix A0 by an order ε, (see, e.g., Kato [14], Baumgartel [10]).
Jeannerod-Pflugel [13] borrowed (3) from the theory of differential systems to investigate effi-
cient algorithmic resolution of the perturbed algebraic eigenvalue-eigenvector problem.
However, although Moser-based algorithms, that is algorithm based on (3), have proved their
efficiency and utility in the univariate case so far, they have not been considered yet for
operators over bivariate fields. This is the interest of this talk.

In particular, Barkatou developed in [5] a Moser-based algorithm for the differential systems
associated to δ = x d

dx
and K = Q(x), the field of rational functions in x. We show that this

algorithm can be well-generalized to two widely studied generalizations of system (1) over
bivariate differential fields, namely the singularly-perturbed linear differential systems [2, 20]
and completely integrable Pfaffian systems in two variables with normal crossings [1, 11].

Moreover, since Moser-based and Levelt’s algorithms serve the same utility, i.e. rank
reduction of system (1), it is natural to question their comparison. We also discuss results in
this direction.
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