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1 Introductory remarks

At the Friday meeting, the logarithmic derivative map came into play, since it
is the analogue for elliptic curves de�ned over constants of the Manin homo-
morphism. Let G be a di¤erentially closed di¤erential �eld, with derivation
operator � = d

dt , and with (algebraically closed) constant �eld C of character-
istic 0. Note that G is also algebraically closed. Let x; y; z be di¤erential
indeterminates. For any subset S of P2(G), and sub�eld L of G, set S (L) equal
to the set of points in L that are rational over L. Let E = E (G) be the elliptic
curve in P2(G) de�ned by the a¢ ne Legendre equation

y2 = (x� e1) (x� e2) (x� e3); e1; e2; e3 distinct elements of C:

We equip E with the Kolchin topology, making it a di¤erential algebraic group.
Let Etors be the torsion group of E, and denote by E# the Kolchin closure of
Etors . It is clear that E# = E(C). Let `� : E ! Ga (G) be the logarithmic
derivative map. Dating back to Kolchin�s 1953 paper, the fact that `� is a
surjective di¤erential rational homomorphism with kernel E# has been crucial
in the development of the Galois theory of di¤erential �elds. An essential
hypothesis is that E be de�ned over constants. The Manin homomorphism is
its replacement in the case where E does not descend to constants.
In this addendum to Friday�s talk, I will show that `� is everywhere de�ned

and surjective, and that its kernel is E#. For the fact that it is a group
homomorphism, I refer you to Kovacic, �On the inverse problem in the Galois
theory of di¤erential �elds: II�, Annals of Mathematics, 93, 269-284. The
logarithmic derivative map is the dual of the invariant di¤erential on the elliptic
curve. However, I would like to discuss it ab initio without reference to this
�and in the language of di¤erential algebraic groups. mainly because it is a
good exercise in de�ning a global section of the di¤erential algebraic variety
E by patching di¤erential rational functions on an a¢ ne open cover. I hope
to give a proof in a later note that `� is an invariant derivation on E, thus
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proving that it is a homomorphism of di¤erential algebraic groups. The proof
of surjectivity in this language is very easy.

2 The kernel of `�

In this section, we will de�ne `� on the a¢ ne open yz 6= 0, and assume that is
everywhere de�ned on E. We will show that ker `� = E#.
The de�ning equation of E = E (G) is

y2 = (x� e1) (x� e2) (x� e3); e1; e2; e3 distinct elements of C:

The associated homogeneous equation is

y2z = (x� e1z) (x� e2z) (x� e3z):

Let U be the a¢ ne open subset yz 6= 0 of P2 (G). We identify the a¢ ne open
subset z 6= 0 of the projective plane with the a¢ ne (x; y)-plane. So, U is the
complement of the x-axis. We de�ne the logarithmic derivative map

`� : E (U) �! Ga (G)

by the formula

`�(x; y) =
x0

y
:

The constant trace E (C) of E is a Zariski dense connected di¤erential alge-
braic subgroup of E (G). As we remarked in the introduction, it is the Kolchin
closure E#of Etors . We will show that ker (`� j U) = U (C).

y2 = (x� e1) (x� e2) (x� e3):
= x3 � (e1 + e2 + e3)x2 + (e1e2 + e1e3 + e2e3)x� e1e2e3:

Let

P (x) = x3 � (e1 + e2 + e3)x2 + (e1e2 + e1e3 + e2e3)x� e1e2e3:
y2 = P (x) :

Set

F (x; y) = y2 � P (x):
@F

@y
= 2y:

@F

@x
= �dP

dx
:

@F

@y
y0 =

dP

dx
x0
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Let (x; y) 2 U . Since E is a smooth algebraic curve, either@F@y or
dP
dx fails to

vanish at (x; y).

@F

@y
= 2y = 0() y = 0

() P (x) = 0

() x = e1; e2; e3:

So, the fact that the roots of P (x) are distinct guarantees the smoothness of
the elliptic curve! We have eliminated them from U .

8 (x; y) 2 U , @F

@y
6= 0 at (x; y):

8 (x; y) 2 U; x0 = 0() y0 = 0:

`� (x; y) =
x0

y
:

ker (`� j U) = U (C) :

U (C) is an open subset of the Kolchin closed subgroup E (C). Suppose `� is
everywhere de�ned on E, hence on E (C). It follows that since it vanishes on
a dense open subset of E(C) it will vanish on all of E(C): Can it vanish on a
point (x; y; z) not in E(C)? What are the points in the complement of U? If
z = 0, then (x; y; z) = (0; 1; 0), the unique point at 1. If y = 0, then x = e1
or e2 or e3. These 4 points are all in E(C). Thus, ker `� = E(C).

3 `� is an everywhere de�ned di¤erential ratio-
nal function on E.

To show this, we must extend the de�nition to an open cover of E. So, we cover
E by a �nite number of a¢ ne open subsets on which the logarithmic derivative
map is de�ned by everywhere di¤erential rational functions that agree on the
intersections.
I decided to transform the Legendre form of the de�ning equation of E to

the Weierstrass form, which is easier, since it is missing the second degree term
in the cubic P (x). So, we choose a 2 C so that the translation x 7! x�a, which
�xes y, removes the degree 2 term. This transformation does not change the
formula for the logarithmic derivative in (x; y) coordinates. It su¢ ces to show
that `� is a global section of the di¤erential structure sheaf on E, now de�ned
by the Weierstrass equation

y2 = x3 � g2x� g3; g2; g3 2 C; 4g22 � 27g33 6= 0:
y2z = x3 � g2xz2 � g3z3:
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In Weierstrass form,the inequation 4g22 � 27g33 6= 0, which tells us that the
discriminant of the cubic vanishes nowhere on the curve, guarantees that its
roots are distinct, and the elliptic curve is smooth, as we saw in the �rst section.

3.1 The a¢ ne open yz 6= 0:
As usual, we de�ne `� : E �! E (G), by the formulae

`� (x; y) =
x0

y
;

`� (x; y; z) =
zx0 � xz
yz

0

�rst in a¢ ne coordinates, then in homogeneous coordinates, on the a¢ ne open
U1 : z 6= 0; y 6= 0. `� is everywhere de�ned on U1. `� is not everywhere de�ned
on the entire open subsetz 6= 0 of E. We have not covered the points (x; y),
y 6= 0. We need an open neighborhood of these 3 points on E.
y = 0() x is a root of the cubic

Q (x) = x3 � g2x� g3:

Since all the roots are simple roots, dQdx = 3x2 � g2 does not vanish at any of
these points in E. Let U2 be the a¢ ne open subset of the open a¢ ne subset
z 6= 0, de�ned by the inequation 3x2 � g2 6= 0. De�ne

`� (x; y) =
2y0

3x2 � g2
;

`� (x; y; z) =
2 (zy0 � yz0)
3x2 � g2z2

;

on U2
What�s missing? We havent shown that the log derivative is de�ned on an

open neighborhood of the unique point at in�nity on E 1 = (0; 1; 0), which
we get by setting z = 0 in the homogenized equation. Now, set y = 1 in the
homogeneous equation for E. We now have a¢ ne coordinates (x; z), and we
get the de�ning a¢ ne equation and its homogenization

z = x3 � g2xz2 � g3z3;
y2z = x3 � g2xz2 � g3z3:

satis�ed by 1 = (0; 1) : The de�ning polynomial of E in the (x; z) plane is

P (x; z) = z �
�
x3 � g2xz2 � g3z3

�
:

We follow the technique used to capture the roots of the cubic: We use the fact
that E is smooth. Therefore, one of the partial derivatives of P (x; z) must be
nonzero at 1. Indeed, although @P

@x vanishes at 1 = (0; 0) ;

@P

@z
= 1 + 2g2xz + 3g3z

2
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does not vanish. So, to capture 1, we use the same trick we used to de�ne `�
at the 3 roots of the cubic. Let U3 be the a¢ ne open de�ned by the inequation
y 6= 0; 1 + 2g2xz + 3g3z2 6= 0. De�ne

`� (x; z) =
2x0

1 + 2g2xz + 3g3z2
;

`� (x; y; z) =
2(yx0 � xy0)

y2 + 2g2xz + 3g3z2
:

The union of the three a¢ ne open sets equals E = E (G). The di¤erential
rational functions de�ning the logarithmic derivative on these open subsets are
everywhere de�ned. However, we must verify agreement on the intersections
U1 \ U2; U1 \ U3; U2 \ U3. We will then have a global di¤erential rational
map on E. Note that although for ease of exposition I have avoided it, the
logarithmic derivative function is actually a di¤erential polynomial function on
E.

3.1.1 U1 \ U2
We must show that if z 6= 0; y 6= 0; 3x2�g22 6= 0; the formulae for `� agree. On
the one hand,

`� (x; y) =
x0

y
:

On the other hand,

`� (x; y) =
2y0

3x2 � g2
But, recall

y2 = Q (x) ; and
dQ

dx
= 3x2 � g2:

Di¤erentiate y2 = Q(x); where Q(x) = x3 � g2x� g3

2yy0 =
dQ

dx
x0:

So, �
3x2 � g2

�
x0 = 2yy0;

and the two di¤erential rational functions agree on the intersection.

3.1.2 U1 \ U3
We must now turn to the homogeneous expressions since, on the one hand we
are working in the (x; y) plane and on the other hand, we are in the (x; z) plane.
So, spose z 6= 0; y 6= 0; y2 + 2g2xz + 3g3z2 6= 0: On the one hand,

`� (x; y; z) =
zx0 � xz
yz

0
:
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On the other hand,

`� (x; y; z) =
2(yx0 � xy0)

y2 + 2g2xz + 3g3z2
:

Show �
y2 + 2g2xz + 3g3z

2
�
(zx0 � xz0) = 2yz (yx0 � xy0) :

Di¤erentiate the a¢ ne (x; z) equation

z + g2xz
2 � g3z3 = x3:

We get �
1 + 2g2xz + 3g3z

2
�
z0 = 3x2x0:

Homogenize:�
y2 + 2g2xz + 3g3z

2
�
(zy0 � yz0) =

�
3x2 � g2z2

�
(yx0 � xy0) :

Suppose 3x2 � g2z2 6= 0. In this case, (x; y; z) is in U1 \ U2 \ U3: We saw
that on U1 \ U2; �

3x2 � g2
�
x0 = 2yy0:

Homogenize.by replacing x by x
z and y by

y
z . Then,�

3x2 � g2z2
�
(zx0 � xz0) = 2yz (zy0 � yz0) :

Thus,

zx0 � xz0
yz

= 2

�
zy0 � yz0
3x2 � g2z2

�
:

=

�
2(yx0 � xy0)

y2 + 2g2xz + 3g3z2

�
:

So, the two expressions for `� agree.
We established the equation�

y2 + 2g2xz + 3g3z
2
�
(zy0 � yz0) =

�
3x2 � g2z2

�
(yx0 � xy0) :

If 3x2 � g2z2 = 0, then zy0 � yz0 = 0: Since z 6= 0; x 6= 0: So, we have
xyz 6= 0. First, we divide the equation 3x2� g2z2 = 0 by z2.Thus, 3

�
x
z

�2
= g2:

Therefore, 6x (zx0 � xz0) = 0. So, the Wronskian zx0 � xz0 = 0. Since y 6= 0;
3
�
x
y

�2
= g2

�
z
y

�2
. Therefore, 6x (yx0 � xy0) = 2g2y (yz

0 � zy0) = 0. So, the

Wronskian yx0 � xy0 = 0. So, both numerators of `� vanish at (x; y; z):
The two di¤erential rational functions agree on U1 \ U3. As usual, the

complication arose from the vanishing of a di¤erential polynomial function. In
this case, it was 3x2 � g2z2.
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3.1.3 U2 \ U3.

We have z 6= 0; y 6= 0; 3x2 � g2z2 6= 0; y2 + 2g2xz + 3g3z2. On U2,

`� (x; y; z) =
2 (zy0 � yz0)
3x2 � g2z2

:

On U3,

`� (x; y; z) =
2(yx0 � xy0)

y2 + 2g2xz + 3g3z2

But, (x; y; z) lies in U1 \U2 \U3. We showed that the three expressions for `�
agree on U1 \ U2 \ U3.

2(yx0 � xy0)
y2 + 2g2xz + 3g3z2

=
zx0 � xz0
yz

=
2 (zy0 � yz0)
3x2 � g2z2

:

So, the two expressions agree on U2\U3 = U1\U2\U3. Using these formulae,
we see again that ker `� = E (C) = E#.

4 The surjectivity of `�

Since `� is an everywhere de�ned di¤erential rational function on E = E (G),
its image is a constructible subset of Ga (G). We assume that `� is a ho-
momorphism of groups. Then, it is a homomorphism of di¤erential algebraic
groups. Therefore, its image is a di¤erential algebraic subgroup of Ga (G).
We know that the sum of the di¤erential dimensions of the kernel and image
equals the di¤erential dimension of E. The di¤erential dimension of E is 1
(x is di¤erentially algebraic over G and y is an algebraic function of x). The
di¤erential dimension of E(C) is 0. Therefore, the di¤erential dimension of
`� (E) is 1. Since every proper di¤erential algebraic subgroup of Ga (G) has
di¤erential dimension 0, it follows that `� (E) = Ga (G).
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