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JAMES FREITAG

This note is intended as a supplement for the slides I gave at a November 2012
Kolchin seminar talk. I rework some of the definitions and explain some of the
model-theoretic notation in differential algebraic terms.

1. Bounding the Kolchin polynomial of a relative canonical base

In this section, we will discuss tuples which generate differential fields over which
a given type does not fork (what might be called a relative canonical base or a
relative field of definition). Versions of this lemma appeared in preprints of my
paper about indecomposability. Thanks very much to P. Cassidy and W. Sit for
numerous discussions of the result. Following suggestions by the members of the
Kolchin seminar, I have reworked some of the definitions and proofs of the result in
order to make them more accessible to non-model theorists; this theorem is equiva-
lent to the one which can be found in a copy of my thesis at my Berkeley webpage
http://math.berkeley.edu/people/faculty/james-freitag, but as I have men-
tioned, the notation and definitions have been reworked. Throughout the note, K is
a differentially closed field of characteristic zero with derivations ∆ = {δ1, . . . , δm}
which commute.

We remind the reader that the Kolchin polynomials are ordered by eventual dom-
ination. In what follows, we will write the Kolchin polynomial of a type p in the
following canonical form

ωp(t) =
∑

0≤i≤m

ai

(
t+ i

i

)
.

The following definition will be useful for the statements of the remaining results in
the section.

Definition 1.1. Let p ∈ S(k1) and q ∈ S(k2) where k1 ≤ k2 are differential fields
and q is an extension of p. Let ωp(t) =

∑
0≤i≤m ai

(
t+i
i

)
and ωq(t) =

∑
0≤i≤m di

(
t+i
i

)
.

We say that p and q are n-equivalent if ai = bi for all i ≥ n. In this case, we also
write ωp(t) ≡n ωq(t).
Remark 1.2. This new notion, n-equivalence, is a measure of forking; for instance,
0-equivalence is equivalent to nonforking. 1-equivalent means that the forking only
changes the constant term of the Kolchin polynomial. The notion is only meaningful
for n ≤ m.
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We consider a simple example then m = 1. Let a, b be singletons considered over
the field Q. Suppose δ2(b) = 0 and a is generic over Q. Now, consider the differential
field Q(c) where δ(b) = c (note that δ(c) = 0). Then tp(a, b/Q(c)) is a forking
extension of tp(a, b/Q). The type are 1-equivalent in this case, because all of the
forking only affects the constant term of the Kolchin polynomial.

Theorem 1.3. Suppose that p(x) ∈ S(K). Then, suppose, for some differential
subfield A ⊆ K and n ∈ N that ωp|A(t) ≡n ωp(t). Then there is a tuple c̄ ∈ K such

that ωp(t) = ωp|Q〈c̄〉(t) and ωc̄/A(t) <
(
t+n
n

)
.

A diagram of the pertinent field extensions is given and discussed following the
theorem. It may be helpful in tracking some of the developments of the theorem.

Proof. Let 〈bk〉k∈N be a Morley sequence over K in the type of p.

Remark 1.4. In model theoretic terms, this simply means that each of the tuples bk
satisfy the first order formulae overK (specified by the type p) and that bk |̂ K b1, . . . bk−1.
When we look at the sequence over smaller differential subfields A ⊂ K, the first cri-
terion is preserved - knowing the first order type over a larger set means we know it
over a smaller set. The second criterion is not preserved - now, bk |̂ A b1, . . . bk−1 is
not known - perhaps b1, . . . bk tell us additional information about bk over A.

In differential algebraic terms, this simply means that each of the tuples bk gen-
erate isomorphic differential fields over K (specified by the type p) and that K〈bk〉
is algebraically disjoint from K〈b1, . . . bk−1〉 over K. When we look at the sequence
over smaller differential subfields A ⊂ K, the first criterion is preserved - knowing
the isomorphism type of the differential field extension generated by bk over a field
means we know it over a subfield. The second criterion is not preserved - there is no
reason that A〈bk〉 needs to be algebraically disjoint from A〈b1, . . . bk−1〉 over A.

By the characterization of forking in DCF0,m this simply means that for all j ∈ N,

ωp(t) = ωbj/K(t) = ωbj/K〈b0,...,bj−1〉(t)

As noted in the above remark, we do not know, however, that the same holds over
the differential subfield A ⊆ K. The sequence is still necessarily A-indiscernible,
that is tp(bj/A) does not depend on k. It is not necessarily A-independent (that
is, it may be that bi 6 |̂ A bj). In general, we simply know that ωbj/A〈b0,...,bj−1〉 is a
decreasing sequence of polynomials, again, ordered by eventual domination. By the
well-orderedness of Kolchin polynomials we know that the sequence is eventually
constant [2]. Alternatively, this fact can be seen by noting the superstability of
DCF0,m and the fact that decreases in Kolchin polynomial correspond to forking
extensions (in this case, one is not really invoking the entire strength of Sit’s theorem,
because we are assuming the sequence is of a particular nature). So, for the rest of
the proof, we fix a k such that if n ≥ k, the sequence is constant. That is, above k,
we know that we have a Morley sequence over A〈b0, . . . , bk−1〉 in the type of p. Now,
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fix a model K ′ |= DCF0,m with K ′ containing K and {b0, . . . , bk−1}. We let p′ be the
(unique) nonforking extension of p to K ′.

We can get elements c̄ ⊆ acl(A〈b0, . . . , bk−1〉) such that p′ does not fork over c̄.
In fact, by [1] (page 132) and the fact that DCF0,m eliminates imaginaries, we can
assume that c̄ ∈ K.

Remark 1.5. This is an instance of a general stability-theoretic result - one can find the
canonical base of a type (in differential algebraic terms, the field of definition of variety
corresponding to the type) from the algebraic closure of an indiscernible sequence in
the type itself. I do not know of other instance of using this technique in differential
field in the manner I am using it (to bound ranks). Certainly indiscernible sequences
have been utilized extensively (via Kolchin, Shelah, etc. for various purposes, but
notably to prove the nonminimality of differential closure).

We know that

ωp|A(t) = f(t) + h(t)

where

f(t) =
m∑
i=n

ci

(
t+ i

i

)
and

h(t) =
n−1∑
i=0

ci

(
t+ i

i

)
.

By assumption, ωp|A(t) ≡n ωp(t). Thus, f(t) ≤ ωp(t). By construction 〈bi〉 was an
indiscernible sequence, so if we define b̄ := (b0, . . . , bk−1), then,

k · f(t) ≤ ωb̄/K(t)

Then we know that

kf(t) ≤ ωb̄/A〈c̄〉(t) = ωb̄/K(t)(1)

So, for all i = 0, 1, . . . , k − 1, we have that

ωbi/A〈b0,...bi−1〉(t) ≤ ωp|A(t) = f(t) + h(t)

Clearly,

ωb̄/A(t) ≤ kf(t) + kh(t)(2)

By assumption, c̄ ∈ acl(A〈b̄〉) so ωb̄/A(t) = ωb̄c̄/A(t). Then

ωb̄/A〈c̄〉(t) + ωc̄/A(t) ≤ ωc̄b̄/A(t) = ωb̄/A(t).(3)

The left inequality is always true for tuples - at specific values of t, one is calculating
the transcendence degree of the same tuple, {θ(c̄b̄) | θ ∈ Θ(t)}, but with a bigger
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base field on the left hand side during the calculation of the transcendence degree of
{θ(b̄) | θ ∈ Θ(t)}. The field extensions on the left side of the inequality are:

Q〈A, c̄〉(θ(b̄) | θ ∈ Θ(t)) Q〈A〉(θ(c̄) | θ ∈ Θ(t))

Q〈A, c̄〉 Q〈A〉

And the one on the right side is:

Q〈A〉(θ(b̄c̄) | θ ∈ Θ(t))

Q〈A〉

Now, using 1 and 2 and 3, we see that

kf(t) + ωc̄/A(t) ≤ ωc̄b̄/A(t) = ωb̄/A(t) ≤ kf(t) + kh(t)

ωc̄/A(t) ≤ kh(t) <

(
t+ n

n

)
.

�

Remark 1.6. Let us discuss the previous result briefly. Following suggestions from
the Kolchin seminar members, I have provided a disgram of the pertinent field exten-
sions. The theorem says that any forking which only affects the terms of the Kolchin
polynomial of degree below n can be achieved by adding a tuple c̄ to the canonical
base of the restricted type which itself has Kolchin polynomial of degree less than n.

Let a |= p. Then we have the following diagram:

K〈a〉
ωa/K(t)

Q〈A, c̄〉〈a〉
ωa/Q〈A,c̄〉(t)

K

Q〈A〉〈a〉
ωa/Q〈A〉(t)

Q〈A, c̄〉

ωc̄/Q〈A〉(t)<(t+n
n )

Q〈A〉
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Our hypotheses are on the Kolchin polynomials of the field extensions with dashed
lines, while the conclusion of the theorem is the above bound on the Kolchin polyno-
mial of the field extension with the dotted line along with the equality of the Kolchin
polynomials of the field extensions of the curly line and the upper dashed line.

2. Consequences of a conjecture

In my slides, I mention the following conjecture:

Conjecture. For any type, RU(p) ≥ ωτ(p).

The above theorem would be a natural consequence of the conjecture along with
some model-theoretic developments from superstability, which I do not explain here.
Here, I want to explain what the conjecture means from the differential algebraic
standpoint. Let us suppose, for simplicity that τ(p) = 1. Then the conjecture says
that the Lascar rank of p should be at least ω. By considering the generic types of
generalizations of the heat equation, one can see that this is best one can hope for -
that typical differential dimension can not be related to Lascar rank for general types.

To say that p is a of rank at least ω means that p has a forking extension of Lascar
rank n for each n ∈ N. Recall that Lascar rank zero means that p is the type if an
element which is algebraic over the differential field generated by the base set being
considered. So, when considering types over algebraically closed differential fields,
Lascar rank zero types are simply the types of the elements in the field.

Taking a |= p ∈ S(K), this means that for each n, there is a tuple c̄ in a differential
field extension of K such that tp(a/K〈c̄〉) has Lascar rank n. Let us explain this in
differential algebro-geometric terms.

Consider the variety V = loc(a/K〈c̄〉) which is the zero set of finite many differential
polynomials inK〈c̄〉{x} for some tuple of differential indeterminants, x. Now, suppose
that there is a parameterized family of disjoint subvarieties Vd ⊂ loc(a/K〈c̄〉), that is
we have a finite set of differential polynomials f1(x, y), . . . fn(x, y) such that for some
differential algebraic variety, D,

• For d ∈ D, a generic point a1 ∈ Z(f1(x, d), . . . fn(x, d))∩V hasRU(tp(a1/K〈c, d〉) ≥
n− 1.
• For d1 6= d2 ∈ D, we have Z(f1(x, d1), . . . fn(x, d1))∩Z(f1(x, d2), . . . fn(x, d2))∩
V = ∅.

The above two conditions are equivalent to tp(a/K〈c̄〉) having Lascar rank n. So,
specifying the Lascar rank of the generic type of a variety is equivalent to find-
ing chains of uniform families of subvarieties of the original variety. The conjecture
might thus be described as a uniform version of the Kolchin catenary conjecture for
intermediate levels of the Kolchin polynomial.
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