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Lie algebras

Definition
Let R be a commutative ring with a unit.

A Lie algebra (g,[—, —]) is the data of a R-module g and a bilinear map
[—,—]: g x g — g, called the Lie bracket, such that

@ It is alternating: [x,x] = 0 for every x € g.

@ It satisfies the Jacobi identity

[X7 [y,z]] + [Y7 [Z,X]] + [27 [X,}/]] =0

for each x,y,z € g.

A Lie algebra is said to be commutative whenever its bracket is the zero
map.
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Universal enveloping algebra

Any (say unital and associative) algebra (A, ) may be turned into a Lie
algebra when equipped with the commutator bracket

.yl =x-y—y-x.
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Universal enveloping algebra

Any (say unital and associative) algebra (A, ) may be turned into a Lie
algebra when equipped with the commutator bracket

.yl =x-y—y-x.

Actually this defines a functor from the category Ass to the category Lie.

This functor admits a left adjoint namely the universal enveloping algebra
U(g) of a Lie algebra g.

One has
U(g) ~ T(ag)/(xy —yx =[x, y]: X,y € 9)
where T(M) is the tensor algebra of a R-module M.
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Poincaré-Birkhoff-Witt theorem
Let g be a Lie algebra (over R).

Let j: g — U(g) be the Lie map defined as the composition
g = T(g) = U(g) (where 7 is the canonical projection, and U/(g) is seen
as a Lie algebra under its commutator bracket).
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Let g be a Lie algebra (over R).

Let j: g — U(g) be the Lie map defined as the composition
g — T(g) = U(g) (where 7 is the canonical projection, and U(g) is seen
as a Lie algebra under its commutator bracket).

PBW Theorem J

If R is a field, then j is one-to-one.

More generally, P.M. Cohn proved in 1963 that if the underlying abelian
group of g is torsion-free, then j is one-to-one.

Remark

Actually, PBW theorem states that the associated graded algebra of 2/(g)
and the symmetric algebra of g are isomorphic.
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Question

Is there a way to extend the notion of universal enveloping algebra to the
differential setting?
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Question

Is there a way to extend the notion of universal enveloping algebra to the
differential setting?

Yes. And even (at least) two different ways.

The first one is a somewhat “trivial” extension. Indeed, a derivation on an
algebra is also a derivation for its commutator bracket. Moreover the
universal enveloping algebra may be equipped with a (universal) derivation
that extends the derivation of the Lie algebra, and the
Poincaré-Birkhoff-Witt theorem remains unchanged.

The other one is rather different (since it is not based on the commutator)
and is sketched hereafter.
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Wronskian bracket

Now, let us assume that (A, -, d) is a differential commutative algebra.

There is another Lie bracket given by the Wronskian
W(x,y) = x-d(y) = d(x) -y
which turns A into a (differential) Lie algebra.

The above correspondence is actually functorial.
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Wronskian bracket

Now, let us assume that (A, -, d) is a differential commutative algebra.

There is another Lie bracket given by the Wronskian
W(x,y) =x-d(y) —d(x)-y
which turns A into a (differential) Lie algebra.

The above correspondence is actually functorial. Whence one can ask a few
questions:

@ Does it admit a left adjoint 7 In other terms, is there a universal
enveloping differential (commutative) algebra ? (Call it the Wronskian
enveloping algebra.) Yes.

@ Under which assumptions the canonical map from a Lie algebra to its
differential enveloping algebra is one-to-one 7 Unfortunatly, | don’t
know a general answer yet.

In this talk | will also provide some examples of embedding /

non-embedding of Lie algebras into their differential associative envelope.
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Universal algebra

An operator domain or signature is a N-graded set %, i.e., a family of sets
(£(n))nen.
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Universal algebra

An operator domain or signature is a N-graded set ¥, i.e., a family of sets
(X(n))nen. The members of ¥(0) are referred to as symbols of constant,
while those of ¥(n), n > 0, are called symbols of (n-ary) functions.

A Y -algebra is a pair (A, F), where A is a set, and F is a family of
set-theoretic maps (F(n): ¥(n) — AA"), that makes possible to interpret
the symbols of functions (resp., constants) by n-ary functions on (resp.,
members of) A.

Examples
@ Monoids are Y-algebras for the signature X(0) = { e}, £(2) = {*},
Y(n)=0,n#0,2.
@ Groups are X-algebras for the signature ¥(0) = { e},
() ={(—)'} 22 ={*},£(n) =0, n#£0,1,2.
@ There are signatures for (associative) R-algebras, Lie R-algebras, and
their differential counterparts.
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Equational varieties

A class V of X-algebras is said to be an equational variety when each
member of the class satisfies some given axioms or identities.
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Equational varieties

A class V of X-algebras is said to be an equational variety when each
member of the class satisfies some given axioms or identities.

Example

Equations for monoids: xxe =e =exx, (xxy)*xz=xx* (y *z).

Each variety of ¥-algebras with its homomorphisms (maps preserving the
structural operations) forms a category.

Some (counter-)examples

@ Semigroups, inverse semigroups, monoids, commutative monoids,
groups, abelian groups, rings, R-algebras for a unital commutative ring
R, Lie R-algebras, Jordan R-algebras, etc.

o Fields (inversion is only partially defined), small categories, and the
category of monoids with invertible elements (groups!), because it is
not closed under sub-algebras (e.g., the sub-monoid N of Z).
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Algebraic functors

One of the key features of equational varieties is the fact that they come
equipped with a forgetful functor Uy: V — Set (it maps an algebra to its
carrier set). So they are concrete categories over Set (and even monadic).

11/60



Algebraic functors
One of the key features of equational varieties is the fact that they come
equipped with a forgetful functor Uy: V — Set (it maps an algebra to its
carrier set). So they are concrete categories over Set (and even monadic).

Let V and W be two equational varieties of algebras (not necessarily over
the same signature). A functor F: V — W is said to be an algebraic
functor if it preserves the forgetful functors, i.e., Uy o F = Uy.

11/60



Algebraic functors

One of the key features of equational varieties is the fact that they come
equipped with a forgetful functor Uy: V — Set (it maps an algebra to its
carrier set). So they are concrete categories over Set (and even monadic).

Let V and W be two equational varieties of algebras (not necessarily over
the same signature). A functor F: V — W is said to be an algebraic
functor if it preserves the forgetful functors, i.e., Uy o F = Uy.

Theorem (Bill Lawvere) J

Any algebraic functor admits a left adjoint.

11/60



Algebraic functors

One of the key features of equational varieties is the fact that they come
equipped with a forgetful functor Uy: V — Set (it maps an algebra to its
carrier set). So they are concrete categories over Set (and even monadic).

Let V and W be two equational varieties of algebras (not necessarily over
the same signature). A functor F: V — W is said to be an algebraic
functor if it preserves the forgetful functors, i.e., Uy o F = Uy.

Theorem (Bill Lawvere) J

Any algebraic functor admits a left adjoint.

In particular the forgetful functor Uy itself has a left adjoint. Hence for any set
X, there exists a free algebra V(X) in the variety V.

11/60



Algebraic functors
One of the key features of equational varieties is the fact that they come
equipped with a forgetful functor Uy: V — Set (it maps an algebra to its
carrier set). So they are concrete categories over Set (and even monadic).

Let V and W be two equational varieties of algebras (not necessarily over
the same signature). A functor F: V — W is said to be an algebraic
functor if it preserves the forgetful functors, i.e., Uy o F = Uy.

Any algebraic functor admits a left adjoint.

Theorem (Bill Lawvere) J

In particular the forgetful functor Uy itself has a left adjoint. Hence for any set
X, there exists a free algebra V(X) in the variety V. By this is meant that there
is a universal map nx: X — V(X) such that for each algebra (A, F) in the variety
V, and for each set-theoretic map f: X — A, there exists a unique
homomorphism of algebras #: V(X) — (A, F) such that f onx = f.

11/60
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One of the key features of equational varieties is the fact that they come
equipped with a forgetful functor Uy: V — Set (it maps an algebra to its
carrier set). So they are concrete categories over Set (and even monadic).

Let V and W be two equational varieties of algebras (not necessarily over
the same signature). A functor F: V — W is said to be an algebraic
functor if it preserves the forgetful functors, i.e., Uy o F = Uy.

Theorem (Bill Lawvere) J

Any algebraic functor admits a left adjoint.

In particular the forgetful functor Uy itself has a left adjoint. Hence for any set
X, there exists a free algebra V(X) in the variety V. By this is meant that there
is a universal map nx: X — V(X) such that for each algebra (A, F) in the variety
V, and for each set-theoretic map f: X — A, there exists a unique
homomorphism of algebras #: V(X) — (A, F) such that fonx = f. It is also
well-known that 7x is one-to-one whenever V is a non-trivial variety (i.e., there

are algebras with more than one element in the variety V).
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Generalities about differential algebras
Let R be a commutative ring with a unit.
Let V be a variety of (not necessarily associative nor unital) R-algebras
(i.e., R-modules M with a R-bilinear operation -: M x M — M subject to

some additional axioms).

For V one may have in mind Ass or Lie.
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Let R be a commutative ring with a unit.

Let V be a variety of (not necessarily associative nor unital) R-algebras
(i.e., R-modules M with a R-bilinear operation -: M x M — M subject to
some additional axioms).

For V one may have in mind Ass or Lie.

A derivation d: M — M is a R-linear map that satisfies Leibniz identity
d(x-y)=d(x)-y+x-d(y) .

By considering algebras (M, -) of V with a derivation d and

homomorphisms of algebras commuting with derivations, one gets a variety,
say DiffV, of differential algebras (in V).
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Differential ideals

A two-sided (differential) ideal / of a differential algebra (M, -, d) is just a
two-sided ideal of (M, ) (i.e., a sub-module such that M-/ C | D> - M)
such that d(/) C /.
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A two-sided (differential) ideal / of a differential algebra (M, -, d) is just a
two-sided ideal of (M, ) (i.e., a sub-module such that M-/ C | D> - M)
such that d(/) C /.

It turns out that M// becomes a differential algebra with derivation

d(x + 1) = d(x) + I and the natural epimorphism M — M/I is a
homomorphism of differential algebras.

Because an intersection of any family of differential ideals also is a

differential ideal, it makes also sense to talk about the least differential
ideal generated by a set.
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A forgetful functor (1/2)

The free differential algebra generated by an algebra
There is an obvious forgetful functor DiffV — V which admits a left
adjoint (since it is an algebraic functor).

Hence any algebra in V “freely generates” a differential algebra (in V).
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Hence any algebra in V “freely generates” a differential algebra (in V).

The construction: let (M, -) be an algebra in V. Let FDiffV(|M|) be the
free differential algebra in V generated by the set |M| (carrier set of
(M,-)), and let j: |[M| — |FDiffV(|M|)| be the canonical map. Let / be
the differential ideal generated by j(x + y) —j(x) — j(¥),

JOy) =i(iy), (<) = Hi(x), x,y € [M], r € R.

Then, FDiffV(|M])/] is the free differential algebra generated by (M, -).
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A forgetful functor (2/2)

Universal property

Let (N, -, e) be a differential algebra in V, and let ¢: (M,-) — (N, -) be an
algebra map.
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A forgetful functor (2/2)

Universal property

Let (N, -, e) be a differential algebra in V, and let ¢: (M,-) — (N, -) be an
algebra map.

Let ngﬁA: FDiffV(|M|) — (N, -, e) be the unique differential algebra map such
that ¢ oj = ¢.

Of course | C ker ¢ (since ¢ is an algebra map).

Hence there is a unique differential algebra map
¢: FDIiffV(IM|)/1 — (N, -, e) such that g oo j = ¢.
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Example
The free differential Lie algebra generated by a Lie algebra / by a set
One may apply the results from the previous slide with V = Lie in order to
obtain the free differential Lie algebra DL(g) := FDiffLie(|g|)/! generated
by a Lie algebra g.
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envelope DL(g) (because (g,0) is itself a differential Lie algebra).

One can even describe FDiffLie(X) for a set X: Let Mx be the free
magma on the set X x N, and let Ax := RMx be the free R-module
generated by Mx.

Ax is a (non associative) algebra with bilinear multiplication extending the
product in Mx. It is even the free (non associative) differential algebra
with derivation d given on generators (x, i) by d(x,i) == (x,i + 1), x € X,
ieN.

FDiffLie(X) = Ax/J, with the quotient derivation, where J is the two-sided
differential ideal of Ax generated by tt, (rs)t + (st)r + (tr)s, r,s, t € Mx.
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Another example

The free commutative differential algebra generated by an algebra / a set

The usual algebra R{X} of differential polynomials in the (mutually
commuting) variables x € X is the free commutative differential algebra
generated by the set X.
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The free commutative differential algebra generated by an algebra / a set

The usual algebra R{X} of differential polynomials in the (mutually
commuting) variables x € X is the free commutative differential algebra
generated by the set X.

Let A be a commutative (associative) algebra with a unit. Then, R{|A|}/I,
where [ is the two-sided differential ideal generated by the relations that
would turn the canonical map j: |A| — R{|A|} into an algebra map, is the
free commutative differential algebra generated by A.

Remarks
@ A embeds, as sub-algebra, into R{|A|}/I by j.
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Another example

The free commutative differential algebra generated by an algebra / a set

The usual algebra R{X} of differential polynomials in the (mutually
commuting) variables x € X is the free commutative differential algebra
generated by the set X.

Let A be a commutative (associative) algebra with a unit. Then, R{|A|}/I,
where [ is the two-sided differential ideal generated by the relations that
would turn the canonical map j: |A| — R{|A|} into an algebra map, is the
free commutative differential algebra generated by A.

Remarks
@ A embeds, as sub-algebra, into R{|A|}/I by j.

@ The above construction may be adapted for not necessarily
commutative algebras.
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Reflective sub-category (1/2)
V — DiffV

The variety V embeds into the variety DiffV since any algebra in V may be
seen as a differential algebra with the zero (or trivial) derivation.
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any differential algebra (in V) “freely generates” an algebra in V.
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Reflective sub-category (1/2)
V — DiffV

The variety V embeds into the variety DiffV since any algebra in V may be
seen as a differential algebra with the zero (or trivial) derivation.

Of course this embedding preserves the forgetful functors, hence admits a
left adjoint, i.e., V is a reflective sub-category of DiffV, this means that
any differential algebra (in V) “freely generates” an algebra in V.

The construction: let (M, -, d) be a member of DiffV. Let /; be the
(algebraic) ideal generated im(d). Thus, M/l; is a member of V, and the
natural projection m: M — M/l is a homomorphism of algebras.
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Reflective sub-category (2/2)

Universal property

Given an algebra (N, -) and a homomorphism of differential algebras
¢: (M,-,d)— (N,-,0),
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Reflective sub-category (2/2)

Universal property

Given an algebra (N, -) and a homomorphism of differential algebras

¢: (M,-,d) — (N,-,0), because ¢ o d = 0, it passes to the quotient and
gives rise to a unique homomorphism of algebras ¢: (M/l4,-) — (N, )
such that ¢ o = ¢.

19/60



Table of contents

© Differential Lie algebras and their enveloping differential algebras

20/ 60



Extension of the usual universal enveloping algebra to the
differential setting

Let (A, d) be a differential (associative) algebra.
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One has d([x,y]) = d(xy — yx) = d(x)y + xd(y) — d(y)x — yd(x) =
[d(x),y] + [x,d(y)]. Hence, (A,[—,—], d) is a differential Lie algebra.
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Extension of the usual universal enveloping algebra to the
differential setting

Let (A, d) be a differential (associative) algebra.

One has d([x, y]) = d(xy — yx) = d(x)y + xd(y) — d(y)x — yd(x) =
[d(x),y] + [x,d(y)]. Hence, (A,[—,—], d) is a differential Lie algebra.

This gives rise to a functor DiffAss — DiffLie which makes commute the
following diagram (of forgetful functors).

DiffAss=2m™- bkt g e
forgets der.i \Lforgets der.

Ass ——— > Lie
Comm. bracket

All functors in this diagram admit a left adjoint.
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A construction

Let (g,[—, —], d) be a differential Lie algebra.

Let O be the unique derivation on T(g) that extends d.
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A construction

Let (g,[—, —], d) be a differential Lie algebra.

Let O be the unique derivation on T(g) that extends d. It satisfies
Ixy —yx=[x,y]) = d(x)y+xd(y) = d(y)x—yd(x) = [d(x), y] =[x, d(y)]

22/60



A construction

Let (g,[—, —], d) be a differential Lie algebra.
Let O be the unique derivation on T(g) that extends d. It satisfies

Axy —yx—[x,y]) = d(x)y +xd(y)—d(y)x—yd(x)—[d(x), y] =[x, d(y)] =
d(x)y —yd(x) — [d(x),y] + xd(y) — d(y)x — [x,d(y)],
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A construction

Let (g,[—, —], d) be a differential Lie algebra.

Let O be the unique derivation on T(g) that extends d. It satisfies
Oy —yx =[x, y]) = d(x)y +xd(y) = d(y)x—yd(x) = [d(x), y] =[x, d(y)] =
d(x)y — yd(x) — [d(x),y] + xd(y) — d(y)x — [x,d(y)], so it factors as a

linear map 0: U(g) — U(g) which is easily seen to be a derivation.
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Universal property

(U(g), ) satisfies the following universal property:
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(U(g), ) satisfies the following universal property:

Let (A, D) be a differential algebra, and let
¢: (g,[—,—). d) = (A,[—,—], D) be a homomorphism of differential Lie
algebras.
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Universal property

(U(g), ) satisfies the following universal property:

Let (A, D) be a differential algebra, and let
¢: (g,[—,—). d) = (A,[—,—], D) be a homomorphism of differential Lie
algebras.

Then, there is a unique homomorphism of differential algebras

¢ (U(g),d) — (A, D) such that ¢ oj = ¢, where j: g — U(g) is the
canonical differential Lie map.
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Conclusion for the first approach

The universal enveloping algebra lifts to the realm of differential algebras.
Hence symbolically one has

(g, d) —= (U(a), 5)

|

U(g)
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Conclusion for the first approach

The universal enveloping algebra lifts to the realm of differential algebras.
Hence symbolically one has

(g, d) —= (U(a), 5)

|

PBW theorem remains unchanged.

U(g)
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The Wronskian bracket

The second approach

Let (A, d) be a commutative differential (associative and unital) R-algebra.
Let us define the Wronskian bracket
W(x,y) :=xd(y) —d(x)y .

Of course it is alternating W/(x, x) = xd(x) — d(x)x = 0 (since A is
commutative).

Moreover it satisfies Jacobi identity.

Hence (A, W) turns to be a Lie algebra.
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Furthermore d(W(x,y)) = d(xd(y) — d(x)y)
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Furthermore d(W(x,y)) = d(xd(y) — d(x)y) =
d(x)d(y) + xd?(y) — d*(x)y — d(x)d(y)
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Furthermore d(W(x,y)) = d(xd(y) — d(x)y) =
d(x)d(y) + xd?(y) — d*(x)y — d(x)d(y) = xd*(y) — d*(x)y.
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Furthermore d(W(x,y)) = d(xd(y) — d(x)y) =
d(x)d(y) + xd?(y) — d*(x)y — d(x)d(y) = xd*(y) — d*(x)y.

While
W(d(x),y) + W(x,d(y)) = d(x)d(y) — d*(x)y + xd*(y) — d(x)d ().

Hence (A, W, d) is a differential Lie algebra.
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Furthermore d(W(x,y)) = d(xd(y) — d(x)y) =
d(x)d(y) + xd?(y) — d*(x)y — d(x)d(y) = xd*(y) — d*(x)y.

While
W(d(x),y) + W(x,d(y)) = d(x)d(y) — d*(x)y + xd*(y) — d(x)d ().

Hence (A, W, d) is a differential Lie algebra.

This defines a functor, say the Wronskian, (A, d) — (A, W, d) from
DiffComAss to DiffLie.

Remark

Composing with the obvious forgetful functor DiffLie — Lie, the above
construction provides a functor (A, d) — (A, W) from DiffComAss to Lie.
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Wronskian enveloping algebra

One observes that the Wronskian functor preserves the obvious forgetful
functors,

so it is an algebraic functor,

and it admits a left adjoint W, the Wronskian enveloping algebra.
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Construction of the differential enveloping algebra (1/2)

1st step: universal extension of the derivation on the symmetric algebra

Let (g, [—, —], d) be a differential Lie algebra.

Let S(g) be the symmetric algebra of the module g which becomes a
commutative differential algebra with the unique derivation O that extends

the map 9(x) = d(x) on the generators x € g.
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Construction of the differential enveloping algebra (1/2)

1st step: universal extension of the derivation on the symmetric algebra

Let (g, [—, —], d) be a differential Lie algebra.

Let S(g) be the symmetric algebra of the module g which becomes a
commutative differential algebra with the unique derivation O that extends
the map 9(x) = d(x) on the generators x € g.

Remark

Actually, one defines the derivation O on the tensor algebra T(g), and since
it commutes to the permutation of variables, it factors through S(g).

28 /60



Construction of the Wronskian enveloping algebra (2/2)

2nd step: identify on generators the Wronskian and the original Lie bracket

Let us consider the (algebraic) ideal / generated by d(x)y — xd(y) — [x, y],
X,y eg.
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One observes that 9(/) C . Hence [ is actually a differential ideal.
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Construction of the Wronskian enveloping algebra (2/2)

2nd step: identify on generators the Wronskian and the original Lie bracket

Let us consider the (algebraic) ideal / generated by d(x)y — xd(y) — [x, y],
X,y €g.

One observes that 9(/) C . Hence [ is actually a differential ideal.

Then, the Wronskian enveloping algebra W(g, [, —], d) is (S(g)/!, ).
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Universal property of the Wronskian enveloping algebra

Let (A, d) be any commutative differential algebra, and let
o: (g,[—,—),d) — (A W,5) be a homomorphism of differential Lie
algebras.
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Universal property of the Wronskian enveloping algebra

Let (A, d) be any commutative differential algebra, and let
o: (g,[—,—),d) — (A W,5) be a homomorphism of differential Lie

algebras.

'I:hen, there exists a unique differen:cial algebra map
¢: (S(g)/1,0) — (A,0) such that ¢(x + /) = ¢(x) for each x € g.
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Proof

Let ¢: S(g) — A be the unique algebra map that extends ¢.
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homomorphism of differential algebras.
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Proof

Let ¢: S(g) — A be the unique algebra map that extends ¢.

One easily observes that ¢ commutes to the derivations, and so defines a
homomorphism of differential algebras.

Moreover it satisfies

H(d(x)y —xd(y) = [x,¥]) = 8(6(x))9(y) = $(x)8(6(y)) — [$(x), 6(¥)]
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Proof

Let ¢: S(g) — A be the unique algebra map that extends ¢.

One easily observes that ¢ commutes to the derivations, and so defines a
homomorphism of differential algebras.

Moreover it satisfies
P(d(x)y —xd(y) =[x, y]) = 6(¢(x))d(y) — ¢(x)d(e(y)) — [#(x), o(¥)] =
W(o(x), ¢(y)) — [¢(x), &(¥)]
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Proof

Let ¢: S(g) — A be the unique algebra map that extends ¢.

One easily observes that ¢ commutes to the derivations, and so defines a
homomorphism of differential algebras.

Moreover it satisfies
P(d(x)y — xd(y) — [x,y]) = 4(
W(o(x), o(y)) — [¢(x), o(¥)] =

(() x))o(y) — ¢(x)o(o(y)) — [¢(x), o(y)] =
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Proof

Let ¢: S(g) — A be the unique algebra map that extends ¢.

One easily observes that ¢ commutes to the derivations, and so defines a
homomorphism of differential algebras.

Moreover it satisfies
P(d(x)y — xd(y) — [x,y]) = 4(
W(o(x), o(y)) — [¢(x), o(¥)] =

Hence it factors through / and provides a unique homomorphism of
differential algebras ¢ from (S(g)//, ) to (A, J) such that

Sx+1)=d(x), x € g. O

(() x))o(y) — ¢(x)o(o(y)) — [¢(x), o(y)] =
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Statement of the problem

Given a differential Lie R-algebra (g, d), and its Wronskian enveloping

algebra (W(g, d), 0), the (differential) Lie map can: g — S(g)//,
x — x + 1, is referred to as the canonical map.
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Given a differential Lie R-algebra (g, d), and its Wronskian enveloping

algebra (W(g, d), 0), the (differential) Lie map can: g — S(g)//,
x — x + 1, is referred to as the canonical map.

Embedding problem

Under which conditions on (g, d) and on R is the canonical map
one-to-one?
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Statement of the problem

Given a differential Lie R-algebra (g, d), and its Wronskian enveloping

algebra (W(g, d), 0), the (differential) Lie map can: g — S(g)//,
x — x + 1, is referred to as the canonical map.

Embedding problem

Under which conditions on (g, d) and on R is the canonical map
one-to-one?

Remark

can is one-to-one if, and only if, there are a differential commutative
algebra (A, d), and a one-to-one differential Lie map

¢: (g,d) = ((A, W), ).
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Example: sl(K)

Let K be a field of characteristic zero.

The Lie algebra sl»(K) embeds into the algebra of vector fields of K[x] by
the identification of the elements of its Chevalley basis e = —1, h = —2x,
and f = x2 (the familiar commutation rules are satisfied [h, €] = 2e,

[h, f] = —2f and [e, f] = h).

It is a differential Lie algebra when equipped with the usual derivation of
polynomials.

Hence it embeds into the commutative differential algebra (K[x], Z) as a
sub-Lie algebra under the Wronskian bracket, therefore it embeds into its
Wronskian enveloping algebra.
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Warning: The case of a non-differential Lie algebra (1/3)

For Lie algebras without derivation, there are two different notions for the
Wronskian envelope, depending on whether or not one identifies Lie with a
sub-category of DiffLie via the embedding functor g — (g, 0).
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Warning: The case of a non-differential Lie algebra (1/3)

For Lie algebras without derivation, there are two different notions for the
Wronskian envelope, depending on whether or not one identifies Lie with a
sub-category of DiffLie via the embedding functor g — (g, 0).

@ Hence, the Wronskian envelope of g may be defined either as the
Wronskian envelope (g, 0) of the differential Lie algebra (g,0) with

the zero derivation,

@ or it may be defined as a left adjoint to the composite forgetful
Whronskian bracket .cq - forgets der. .
DiffLie ———— Lie.

functor DiffComAss

Therefore, there are two formulations for the embedding problem.
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Warning: The case of a non-differential Lie algebra (2/3)

As a Lie algebra with the zero derivation

Let (g,[—, —]) be a Lie algebra. It may be identified with the differential
Lie algebra (g, [—, —],0).
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Warning: The case of a non-differential Lie algebra (2/3)

As a Lie algebra with the zero derivation

Let (g,[—, —]) be a Lie algebra. It may be identified with the differential
Lie algebra (g, [—, —],0).

The derivation on S(g) that extends the zero derivation is also just the zero
derivation.
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Let (g,[—, —]) be a Lie algebra. It may be identified with the differential
Lie algebra (g, [—, —],0).

The derivation on S(g) that extends the zero derivation is also just the zero
derivation.

The differential ideal / is equal to the (algebraic) ideal generated by [x, y],
X,y € g.

Hence it follows that in case g is not commutative (i.e., [—, —] does not
vanish identically), g does not embed into its universal enveloping
differential (commutative) algebra W(g) even if R is a field!
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Warning: The case of a non-differential Lie algebra (2/3)

As a Lie algebra with the zero derivation

Let (g,[—, —]) be a Lie algebra. It may be identified with the differential
Lie algebra (g, [—, —],0).

The derivation on S(g) that extends the zero derivation is also just the zero
derivation.

The differential ideal / is equal to the (algebraic) ideal generated by [x, y],
X,y € g.

Hence it follows that in case g is not commutative (i.e., [—, —] does not
vanish identically), g does not embed into its universal enveloping
differential (commutative) algebra W(g) even if R is a field!

In this case, the embedding problem is rather obvious (of course, any
commutative Lie algebra embeds into its Wronskian envelope, which
reduced to the symmetric algebra).
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Warning: The case of a non-differential Lie algebra (3/3)

Composite of left adjoints

The composite forgetful functor
forgets der.

DiffComAss Vonskian bracket, pyigr) jo f78°% 9 ) ia s an algebraic
functor, hence admits a left adjoint.

37/60



Warning: The case of a non-differential Lie algebra (3/3)

Composite of left adjoints

The composite forgetful functor
forgets der.

DiffComAss Vonskian bracket, pyigr) jo f78°% 9 ) ia s an algebraic
functor, hence admits a left adjoint.

Thus, by composition of left adjoints, the Wronskian envelope of a Lie
algebra g may be defined as the the Wronskian envelope W(DL(g)) of the
free differential Lie algebra DL(g) generated by the Lie algebra g.
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Warning: The case of a non-differential Lie algebra (3/3)

Composite of left adjoints

The composite forgetful functor

. Wronskian brack copy - forgets der. .. . :
DiffComAss —20102% 22t Byifflje 2= %" |je is an algebraic
functor, hence admits a left adjoint.

Thus, by composition of left adjoints, the Wronskian envelope of a Lie
algebra g may be defined as the the Wronskian envelope W(DL(g)) of the
free differential Lie algebra DL(g) generated by the Lie algebra g.

Embedding problem

Under which conditions on g and on R is the canonical map from g to
W(DL(g)) one-to-one?
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Remark
The canonical map g — W(DL(g)) is one-to-one if, and only if, there are
a differential commutative algebra (A, d), and a one-to-one Lie map

¢: g — (A W).
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Remark

The canonical map g — W(DL(g)) is one-to-one if, and only if, there are
a differential commutative algebra (A, ), and a one-to-one Lie map

o g— (A W).

Indeed, in this case there is a unique differential Lie algebra map
¢: (DL(g),d) — ((A, W), 5) such that ¢ o cang = ¢, where
cang: g — DL(g) is the canonical map (a Lie algebra map).
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Remark

The canonical map g — W(DL(g)) is one-to-one if, and only if, there are
a differential commutative algebra (A, ), and a one-to-one Lie map
¢:g— (A W).

Indeed, in this case there is a unique differential Lie algebra map
¢: (DL(g),d) — ((A, W), 5) such that ¢ o cang = ¢, where
cang: g — DL(g) is the canonical map (a Lie algebra map).

Then, there is a unique differential algebra map

~

b: W(DL(g)),d) — (A, d) such that ¢ o can = ¢, hence

N

$ocano cang = (b which implies that
cano cang =g RN DL(g) =5 W(DL(g)) is one-to-one.
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Augmented modules

Let (M, €) be an augmented R-module, i.e., a R-module together with a
linear map e: M — R, called its augmentation map.
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Let (M, €) be an augmented R-module, i.e., a R-module together with a
linear map e: M — R, called its augmentation map.
[t admits a Lie bracket

[u,v]e == e(v)u — e(u)v.

The Lie algebra (M, [—, —]¢) is referred to as the associated Lie algebra of
(M, e).
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Augmented modules
Let (M, €) be an augmented R-module, i.e., a R-module together with a
linear map e: M — R, called its augmentation map.
It admits a Lie bracket
[u,v]e == e(v)u — e(u)v.
The Lie algebra (M, [—, —]¢) is referred to as the associated Lie algebra of

(M, e).

Proposition
The associated Lie algebra of an augmented module embeds into its
Wronskian envelope.
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Sketch of the proof

Given an augmented module (M, ¢€), it can be shown that there is a unique
derivation d. on the symmetric algebra S(M) of M that extends e.

Let u,v € M. Then, W(u,v) = udc(v) — de(u)v = ue(v) — e(u)v = [u, v]..
Hence the canonical embedding M < S(M) is a Lie map. O]
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Modules with a “rank one” projection

Let M be a R-module. Let P: M — M be a rank one (linear) projection,
i.e., P2 = P and im(P) ~ R (as modules).
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Modules with a “rank one” projection

Let M be a R-module. Let P: M — M be a rank one (linear) projection,
i.e., P2 = P and im(P) ~ R (as modules).

Remark

It is essentially the same object as an augmented module (M, €) with a
surjective augmentation map ¢, because in this case, since R is free on
{1}, the short exact sequence 0 — kere < M 5 R — 0 splits, so

M ~ ker e @ Re (with €(e) = 1), and one has a rank one projection
P(x) :=¢e(x)e.
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i.e., P2 = P and im(P) ~ R (as modules).

Remark

It is essentially the same object as an augmented module (M, €) with a
surjective augmentation map ¢, because in this case, since R is free on
{1}, the short exact sequence 0 — kere < M 5 R — 0 splits, so

M ~ ker e @ Re (with €(e) = 1), and one has a rank one projection
P(x) :=¢e(x)e.

Conversely, if P is a rank one projection on M, then for each x € M there
is a unique scalar (P(x) | e) € R such that P(x) = (P(x) | e)e, where e a
generator of im(P) ~ R. Then, (P(-) | e): M — R is a surjective
augmentation map.
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Modules with a “rank one” projection

Let M be a R-module. Let P: M — M be a rank one (linear) projection,
i.e., P2 = P and im(P) ~ R (as modules).

Remark

It is essentially the same object as an augmented module (M, €) with a
surjective augmentation map ¢, because in this case, since R is free on
{1}, the short exact sequence 0 — kere < M 5 R — 0 splits, so

M ~ ker e @ Re (with €(e) = 1), and one has a rank one projection
P(x) :=¢e(x)e.

Conversely, if P is a rank one projection on M, then for each x € M there
is a unique scalar (P(x) | e) € R such that P(x) = (P(x) | e)e, where e a
generator of im(P) ~ R. Then, (P(-) | e): M — R is a surjective
augmentation map.

Once chosen a generator e of im(P), one has a Lie algebra structure on M
given by [u,v] = (P(v) | e)u — (P(u) | e)v.
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An application (1/2)

Let (A, d) be a commutative R-algebra with a unit.
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Let A :={ac A: d(a) =0} = kerd be the ring of constants of (A, d)
(it is even a R-sub-algebra of A, and (A, d) — A? is a functorial
correspondence).
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An application (1/2)

Let (A, d) be a commutative R-algebra with a unit.

Let A :={ac A: d(a) =0} = kerd be the ring of constants of (A, d)
(it is even a R-sub-algebra of A, and (A, d) — A? is a functorial
correspondence).

Let Fix(A,d) :={a€ A: d(a) = a} be the R-module of fixed points of d.
(Again, (A, d) — Fix(A, d) is functorial.)

One has A9 N Fix(A, d) = (0), and
A? @ Fix(A,d) = {a € A: d?(a) = d(a) }.
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An application (1/2)

Let (A, d) be a commutative R-algebra with a unit.

Let A :={ac A: d(a) =0} = kerd be the ring of constants of (A, d)
(it is even a R-sub-algebra of A, and (A, d) — A? is a functorial
correspondence).

Let Fix(A,d) :={a€ A: d(a) = a} be the R-module of fixed points of d.
(Again, (A, d) — Fix(A, d) is functorial.)

One has A9 N Fix(A, d) = (0), and
A? @ Fix(A,d) = {a € A: d?(a) = d(a) }.

Moreover, the restriction of d to A? @ Fix(A, d) is a linear projection with
im(d) = Fix(A, d).
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An application (2/2)

Assuming that the ring of constants A9 is R1, ~ R, one gets a rank one
projection id — d on R1a & Fix(A, d) onto R14.
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Assuming that the ring of constants A9 is R1, ~ R, one gets a rank one
projection id — d on R1a & Fix(A, d) onto R14.

The associated Lie bracket is thus given by
[yl =y —d(y) | La)x — (x = d(x) | 1a)y.
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An application (2/2)

Assuming that the ring of constants A9 is R1, ~ R, one gets a rank one
projection id — d on R1a & Fix(A, d) onto R14.

The associated Lie bracket is thus given by
[yl =y —d(y) | La)x — (x = d(x) | 1a)y.

Example

@ Let R[x] with its usual derivation d(x) = 1. Then, R[x]¢ = R and
Fix(R[x],d) = (0). Then, [r,s] =0 for all r,s € R.
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An application (2/2)

Assuming that the ring of constants A9 is R1, ~ R, one gets a rank one

projection id — d on R1a & Fix(A, d) onto R14.

The associated Lie bracket is thus given by
[yl =y —d(y) | La)x — (x = d(x) | 1a)y.

Example

@ Let R[x] with its usual derivation d(x) = 1. Then, R[x]¢ = R and
Fix(R[x],d) = (0). Then, [r,s] =0 for all r,s € R.

@ Let d be the unique derivation of R[x] such that d(x) = x. Then,
d(x™) = nx". It follows that Fix(R[x],d) = Rx and R[x]? = R.
Hence [rx + s, tx + v] = (rx + s)(tx + v — d(tx + v) |
1) —(tx+v)(rx+s—d(rx+s) | 1) = (rx+s)v—(tx+v)s = x(rv —

st).

v
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Remark: Change of base ring

Let (A, d) be a commutative differential algebra. Then (A, d) is also a
A9-algebra, and d is a A%-derivation.
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commutative differential A%-algebra denoted by (A, d) 4a.
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Remark: Change of base ring

Let (A, d) be a commutative differential algebra. Then (A, d) is also a
A9-algebra, and d is a A9-derivation. Hence (A, d) becomes a
commutative differential A%-algebra denoted by (A, d) 4a.

Moreover, (A, d)9, = A?, and Fix((A, d)44) = Fix(A,d) (as A%-modules).
Therefore, the previous construction applies, and A @ (A, d) turns to be a

Lie A9-algebra that embeds into its Wronskian envelope (via the canonical
Lie map).
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e Jacobi, Poisson and Lie-Rinehart algebras
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Lie-Rinehart algebras

Let (M, ) be a (not necessarily associative) R-algebra. Let Derg(M,-) be
its Lie R-algebra of R-linear derivations (under the usual commutator
bracket). When (M, -) is commutative, Detg(M, -) becomes a A-module in

an obvious way.
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Lie-Rinehart algebras

Let (M, ) be a (not necessarily associative) R-algebra. Let Derg(M,-) be
its Lie R-algebra of R-linear derivations (under the usual commutator
bracket). When (M, -) is commutative, Detg(M, -) becomes a A-module in
an obvious way.

Definition
A Lie-Rinehart algebra over R is a triple (A, g,0), where
@ Ais a commutative R-algebra with a unit,

@ g is a Lie R-algebra which is also a left A-module (with A-action
denoted by a - x),

@ 0: g — Derg(A) is both a Lie R-algebra map, and a A-linear map
(d(a- x)(b) = a(d(x)(b))) which turns A into a g-module,

C [X7a'y] =a- [X,)/] +D(X)(a) "y, a€A x,y€g.
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Lie-Rinehart algebras

Let (M, ) be a (not necessarily associative) R-algebra. Let Derg(M,-) be
its Lie R-algebra of R-linear derivations (under the usual commutator
bracket). When (M, -) is commutative, Detg(M, -) becomes a A-module in
an obvious way.

Definition
A Lie-Rinehart algebra over R is a triple (A, g,0), where
@ Ais a commutative R-algebra with a unit,

@ g is a Lie R-algebra which is also a left A-module (with A-action
denoted by a - x),
@ 0: g — Derg(A) is both a Lie R-algebra map, and a A-linear map
(d(a- x)(b) = a(d(x)(b))) which turns A into a g-module,
o [x,a-y]=a-[x,y]+0(x)(a)-y, a€ A, x,y €g.
By abuse, 0 is referred to as the anchor map of the Lie-Rinehart algebra
(A 9)-
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Remark and example

The structure of a Lie-Rinehart algebra is modeled on the properties of the
pair (C°(V),X(V)), where V is a finite-dimensional smooth manifold,

C*(V) is the ring of smooth functions on V/, and X(V) is the Lie algebra
of smooth vector fields on V.
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Remark and example

The structure of a Lie-Rinehart algebra is modeled on the properties of the
pair (C°(V),X(V)), where V is a finite-dimensional smooth manifold,
C*(V) is the ring of smooth functions on V/, and X(V) is the Lie algebra
of smooth vector fields on V.

Example

Let A be a commutative R-algebra with a unit. Then, (A, Derg(A)) is a
Lie-Rinehart algebra.
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Remark and example

The structure of a Lie-Rinehart algebra is modeled on the properties of the
pair (C°(V),X(V)), where V is a finite-dimensional smooth manifold,
C*(V) is the ring of smooth functions on V/, and X(V) is the Lie algebra
of smooth vector fields on V.

Example

Let A be a commutative R-algebra with a unit. Then, (A, Derg(A)) is a
Lie-Rinehart algebra.

Given a Lie-Rinehart algebra (A, g), the Lie algebra g, together with the
anchor, is also referred to as a Lie (R, A)-pseudoalgebra.
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Some functors

Any commutative differential R-algebra (A, d) may be turned into a
Lie-Rinehart algebra (A, (A, W)) with anchor map a — 0(a) := ad, and this
is functorial. This allows to view DiffComAss as sub-category of LieRin.
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Some functors

Any commutative differential R-algebra (A, d) may be turned into a
Lie-Rinehart algebra (A, (A, W)) with anchor map a — 0(a) := ad, and this
is functorial. This allows to view DiffComAss as sub-category of LieRin.

In particular, any commutative R-algebra A provides a Lie-Rinehart algebra
(A, (A,0)).

It also provides another Lie-Rinehart algebra, namely (A, (0)), which is even
the free Lie-Rinehart algebra generated by A.

There is also a forgetful functor LieRin — Lie, and it admits a left adjoint
given on objects by g — (R, g). (This may also be interpreted as an
embedding of Lie into the category of Lie (R, R)-pseudoalgebras.)
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Wronskian envelope of a Lie-Rinehart algebra (sketch)

DiffComAss is a reflective sub-category of LieRin.
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Wronskian envelope of a Lie-Rinehart algebra (sketch)

DiffComAss is a reflective sub-category of LieRin.

Let (A, g) be a Lie-Rinehart algebra with anchor map 2. Let D(A, g) be the
free commutative differential R-algebra generated by the set |A| LI |g|.
Hence it is the commutative algebra of differential polynomials R{|A| U |g|}
with variables in |A| U |g|.
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Wronskian envelope of a Lie-Rinehart algebra (sketch)

DiffComAss is a reflective sub-category of LieRin.

Let (A, g) be a Lie-Rinehart algebra with anchor map 2. Let D(A, g) be the
free commutative differential R-algebra generated by the set |A| LI |g|.
Hence it is the commutative algebra of differential polynomials R{|A| U |g|}
with variables in |A| U |g|.

Then, let /(A, g) be the differential ideal of D(A, g) generated by the
relations that turn the canonical map (A, g) — (D(A, g), (D(A, g), W))
into a Lie-Rinehart map. Then, D(A, g)//(A, g) is the free commutative
differential algebra generated by (A, g).
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Jacobi algebra

A Jacobi algebra is a commutative R-algebra with a unit, together with a
Lie bracket (called a Jacobi bracket) over R which satisfies Jacobi-Leibniz
rule:

[ab, c] = a[b, c] + bla, c] — ab[1,4, c]
a,b,c €A
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Jacobi algebra

A Jacobi algebra is a commutative R-algebra with a unit, together with a
Lie bracket (called a Jacobi bracket) over R which satisfies Jacobi-Leibniz
rule:

[ab, c] = a[b, c] + bla, c] — ab[1,4, c]
a,b,c €A

It follows that adi, = [14,:]: A— Ais a R-derivation of the associative
algebra A, and that [, =] — W[y, _] is an alternating biderivation.
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Poisson and differential commutative algebras

Remark
Actually each triple (A, D, d) where A is a commutative algebra, D is an
alternating biderivation, and d is a derivation such that D + W, is a Lie

bracket provides a Jacobi algebra (A, D + Wy).
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Poisson and differential commutative algebras

Remark

Actually each triple (A, D, d) where A is a commutative algebra, D is an
alternating biderivation, and d is a derivation such that D + W, is a Lie
bracket provides a Jacobi algebra (A, D + Wy).

A commutative Poisson algebra thus is a Jacobi algebra whose associated
derivation is zero.
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Poisson and differential commutative algebras

Remark

Actually each triple (A, D, d) where A is a commutative algebra, D is an
alternating biderivation, and d is a derivation such that D + W, is a Lie
bracket provides a Jacobi algebra (A, D + Wy).

A commutative Poisson algebra thus is a Jacobi algebra whose associated
derivation is zero.

A commutative differential algebra, with its Wronskian bracket, is a Jacobi
algebra whose associated biderivation is zero.

This provides two embedding functors

PoissCom — Jac + DiffComAss.

Moreover, there is also a forgetful functor Jac — DiffComAss,
(Av [_7 _]) = (A7 [1A7 _])
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Various envelopes

PoissCom is reflective in Jac:
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Various envelopes

PoissCom is reflective in Jac: given a Jacobi algebra (A,[—, —]), let us
consider its Jacobi ideal /poiss generated by [14,x], x € A, then A/lpoiss is
the free commutative Poisson algebra generated by (A, [—, —]).
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algebraic functor between (equational) varieties.
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PoissCom is reflective in Jac: given a Jacobi algebra (A,[—, —]), let us
consider its Jacobi ideal /poiss generated by [14,x], x € A, then A/lpoiss is
the free commutative Poisson algebra generated by (A, [—, —]).

DiffComAss is reflective in Jac, since the embedding functor is an
algebraic functor between (equational) varieties.

There is also a notion of a Jacobi envelope of a differential commutative
algebra since the functor Jac — DiffComAss is an algebraic functor. One
observes that any differential commutative algebra embeds into its Jacobi
envelope.
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Various envelopes

PoissCom is reflective in Jac: given a Jacobi algebra (A,[—, —]), let us
consider its Jacobi ideal /poiss generated by [14,x], x € A, then A/lpoiss is
the free commutative Poisson algebra generated by (A, [—, —]).

DiffComAss is reflective in Jac, since the embedding functor is an
algebraic functor between (equational) varieties.

There is also a notion of a Jacobi envelope of a differential commutative
algebra since the functor Jac — DiffComAss is an algebraic functor. One
observes that any differential commutative algebra embeds into its Jacobi
envelope.

One finally mentions the composite forgetful functor

Jac — DiffComAss — LieRin, (A,[—, —]) = (A, (A, Waq, ), which
makes it possible to consider the Jacobi envelope of a Lie-Rinehart algebra
as the Jacobi envelope of the free commutative differential algebra
generated by a Lie-Rinehart algebra.
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Table of contents

@ Kirillov's local Lie algebras and Lie algebroids
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The Lie side

There is also an obvious forgetful functor Jac — Lie, forgetting the
multiplicative structure. It is an algebraic functor, so that it admits a left
adjoint.
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The Lie side

There is also an obvious forgetful functor Jac — Lie, forgetting the
multiplicative structure. It is an algebraic functor, so that it admits a left
adjoint.

Given a Lie algebra g, one considers the free Jacobi algebra Jac(|g|)
generated by the carrier set of g.
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The Lie side

There is also an obvious forgetful functor Jac — Lie, forgetting the
multiplicative structure. It is an algebraic functor, so that it admits a left
adjoint.

Given a Lie algebra g, one considers the free Jacobi algebra Jac(|g|)
generated by the carrier set of g.

Let J be its Jacobi ideal generated by the relations that make the canonical
image of g in Jac(|g|) a Lie algebra.
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The Lie side

There is also an obvious forgetful functor Jac — Lie, forgetting the
multiplicative structure. It is an algebraic functor, so that it admits a left
adjoint.

Given a Lie algebra g, one considers the free Jacobi algebra Jac(|g|)
generated by the carrier set of g.

Let J be its Jacobi ideal generated by the relations that make the canonical
image of g in Jac(|g|) a Lie algebra.

Then, Jac(|g|)/J is the universal Jacobi envelope of g.
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Relations between some envelopes

Because the following diagram of forgetful functors commutes, the
Wronskian envelope of a Lie algebra g may be described as the free
differential commutative algebra generated by the Jacobi envelope of g.

Jac<— ODiffComAss

\Lie/
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Relations between some envelopes

Because the following diagram of forgetful functors commutes, the
Wronskian envelope of a Lie algebra g may be described as the free
differential commutative algebra generated by the Jacobi envelope of g.

Jac<\A—3DiffComAss
Lie

Moreover the following diagram of functors also commutes, implying that
the Wronskian envelope of a Lie algebra g is also the differential envelope
of the Lie-Rinehart algebra (R, g).

LieRin <—— DiffComAss
Lie
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Local Lie algebras

Let V be a finite-dimensional smooth manifold. Let E be a line bundle
over V/, i.e., a vector bundle over V each fibre of which is one-dimensional.
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Let V be a finite-dimensional smooth manifold. Let E be a line bundle
over V/, i.e., a vector bundle over V each fibre of which is one-dimensional.

Let Sec(E) its space of global sections. E is said to be trivial whenever
E = V x R in which case C*°(V) = Sec(E).
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Local Lie algebras

Let V be a finite-dimensional smooth manifold. Let E be a line bundle
over V/, i.e., a vector bundle over V each fibre of which is one-dimensional.

Let Sec(E) its space of global sections. E is said to be trivial whenever
E = V x R in which case C*°(V) = Sec(E).

Following A. A. Kirillov (1976), a local Lie algebra is a structure of a Lie
algebra on Sec(E) which is local, i.e., the support of [s1, s2] is contained in
the intersection of the supports of s; and s, (recall that the support of a
section is the closure of the set of points at which the section does not
vanish).
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Local Lie algebras

Let V be a finite-dimensional smooth manifold. Let E be a line bundle
over V/, i.e., a vector bundle over V each fibre of which is one-dimensional.

Let Sec(E) its space of global sections. E is said to be trivial whenever
E = V x R in which case C*°(V) = Sec(E).

Following A. A. Kirillov (1976), a local Lie algebra is a structure of a Lie
algebra on Sec(E) which is local, i.e., the support of [s1, s2] is contained in
the intersection of the supports of s; and s, (recall that the support of a
section is the closure of the set of points at which the section does not
vanish).

When E is a trivial line bundle, then the local Lie bracket is of the form
[51, 52] = /\(dsl, ng) + Slr(SQ) — F(51)52

where A is a bivector field, and I is a vector field.
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Local Lie algebras

Let V be a finite-dimensional smooth manifold. Let E be a line bundle
over V/, i.e., a vector bundle over V each fibre of which is one-dimensional.

Let Sec(E) its space of global sections. E is said to be trivial whenever
E = V x R in which case C*°(V) = Sec(E).

Following A. A. Kirillov (1976), a local Lie algebra is a structure of a Lie
algebra on Sec(E) which is local, i.e., the support of [s1, s2] is contained in
the intersection of the supports of s; and s, (recall that the support of a
section is the closure of the set of points at which the section does not
vanish).

When E is a trivial line bundle, then the local Lie bracket is of the form
[51, 52] = /\(dsl, ng) + Slr(SQ) — F(51)52
where A is a bivector field, and T is a vector field.

This implies that such a local Lie algebra (C*°(V),[—, —]) is precisely a

Jacobi algebra.
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Lie algebroids (1/2)
A Lie algebroid on a vector bundle E over a finite-dimensional smooth
manifold V is a (R, C*>°(V))-Lie pseudoalgebra on the C°°(V)-module
Sec(E).
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Lie algebroids (1/2)
A Lie algebroid on a vector bundle E over a finite-dimensional smooth

manifold V is a (R, C*>°(V))-Lie pseudoalgebra on the C°°(V)-module
Sec(E).

The anchor map of the corresponding Lie-Rinehart algebra

(C>®°(V), Sec(E)) is described by a vector bundle morphism d: E — TV
which induces the Lie map from (Sec(E), [—, —]) to the Lie algebra
(X(V),[—, —]vr) of vector fields on V.
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Lie algebroids, introduced by J. Pradines (1967), are the infinitesimal parts
of differentiable groupoids.
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Lie algebroids (1/2)
A Lie algebroid on a vector bundle E over a finite-dimensional smooth

manifold V is a (R, C*>°(V))-Lie pseudoalgebra on the C°°(V)-module
Sec(E).

The anchor map of the corresponding Lie-Rinehart algebra

(C>®°(V), Sec(E)) is described by a vector bundle morphism d: E — TV
which induces the Lie map from (Sec(E), [—, —]) to the Lie algebra
(X(V),[—, —]vr) of vector fields on V.

Lie algebroids, introduced by J. Pradines (1967), are the infinitesimal parts
of differentiable groupoids.

Example

© A Lie algebroid on the tangent bundle TV is given by the canonical
bracket [—, —] s on X(V) = Sec(TM).
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Lie algebroids (1/2)
A Lie algebroid on a vector bundle E over a finite-dimensional smooth

manifold V is a (R, C*>°(V))-Lie pseudoalgebra on the C°°(V)-module
Sec(E).

The anchor map of the corresponding Lie-Rinehart algebra

(C>®°(V), Sec(E)) is described by a vector bundle morphism d: E — TV
which induces the Lie map from (Sec(E), [—, —]) to the Lie algebra
(X(V),[—, —]vr) of vector fields on V.

Lie algebroids, introduced by J. Pradines (1967), are the infinitesimal parts
of differentiable groupoids.

Example

© A Lie algebroid on the tangent bundle TV is given by the canonical
bracket [—, —] s on X(V) = Sec(TM).

@ Every Lie algebra is a Lie algebroid over the one point manifold.
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Lie algebroids (2/2)

Lie algebroids on the trivial line bundle, hence Lie algebroids brackets on
C>°(V), are particular local Lie algebras of the form

[f.gl=1T(g)—T(f)g

for a certain vector field I on V.
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Lie algebroids (2/2)

Lie algebroids on the trivial line bundle, hence Lie algebroids brackets on
C>°(V), are particular local Lie algebras of the form

[f.gl=1T(g)—T(f)g
for a certain vector field I on V.

It follows that the underlying Lie algebra of the Lie pseudoalgebra
(C*°(V),[—,—]) embeds into its Wronskian envelope.
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Lie algebroids (2/2)

Lie algebroids on the trivial line bundle, hence Lie algebroids brackets on
C>°(V), are particular local Lie algebras of the form

[f.gl=1T(g)—T(f)g
for a certain vector field I on V.

It follows that the underlying Lie algebra of the Lie pseudoalgebra
(C*°(V),[—,—]) embeds into its Wronskian envelope.

Remark

Other examples of embedding of a Lie pseudoalgebra into its Wronskian
envelope are given by Lie algebras of vector fields tangent to a given
foliation with one-dimensional leaves.

58 /60



Conclusion

The embedding problem of a (differential) Lie algebra into its Wronskian
enveloping algebra seems to be quite harder than the classical situation and
related to Lie algebras of (one-dimensional) vector field. But Lie algebras
of vector fields satisfy some non-trivial identities.
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Conclusion

The embedding problem of a (differential) Lie algebra into its Wronskian
enveloping algebra seems to be quite harder than the classical situation and
related to Lie algebras of (one-dimensional) vector field. But Lie algebras
of vector fields satisfy some non-trivial identities.

It might be useful to tackle this problem by dividing it into two parts: first
the embedding problem of a Lie algebra into its Jacobi envelope, and
secondly the embedding problem of a Jacobi algebra into its differential
envelope.
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Open problems

@ Is there an explicit description of the free Jacobi algebra on a set? of
the differential envelope of a Jacobi algebra?
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@ Does the Wronskian envelope of a differential Lie algebra admit a
structure of a (commutative) Hopf (differential) algebra? The
terminal map (g, d) — (0) lifts to a differential algebra morphism
e: W(g) — W(0) ~ R, hence W(g) is an augmented (differential)
algebra.
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Open problems

@ Is there an explicit description of the free Jacobi algebra on a set? of
the differential envelope of a Jacobi algebra?

@ Does the Wronskian envelope of a differential Lie algebra admit a
structure of a (commutative) Hopf (differential) algebra? The
terminal map (g, d) — (0) lifts to a differential algebra morphism
e: W(g) — W(0) ~ R, hence W(g) is an augmented (differential)
algebra. The diagonal 6: g — g x g provides a differential algebra map
A:W(g) = W(g X g).
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Open problems

Is there an explicit description of the free Jacobi algebra on a set? of
the differential envelope of a Jacobi algebra?

Does the Wronskian envelope of a differential Lie algebra admit a
structure of a (commutative) Hopf (differential) algebra? The
terminal map (g, d) — (0) lifts to a differential algebra morphism

e: W(g) — W(0) ~ R, hence W(g) is an augmented (differential)
algebra. The diagonal 6: g — g x g provides a differential algebra map
A:W(g) - W(g x g). Is W a comonoidal functor from the cartesian
monoidal category of differential Lie algebras to the monoidal category
of commutative differential algebras under their tensor product?
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