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Lie algebras
Definition

Let R be a commutative ring with a unit.

A Lie algebra (g, [−,−]) is the data of a R-module g and a bilinear map
[−,−] : g× g→ g, called the Lie bracket, such that

It is alternating: [x , x ] = 0 for every x ∈ g.

It satisfies the Jacobi identity

[x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0

for each x , y , z ∈ g.

A Lie algebra is said to be commutative whenever its bracket is the zero
map.

3 / 60



Universal enveloping algebra

Any (say unital and associative) algebra (A, ·) may be turned into a Lie
algebra when equipped with the commutator bracket

[x , y ] = x · y − y · x .

Actually this defines a functor from the category Ass to the category Lie.

This functor admits a left adjoint namely the universal enveloping algebra
U(g) of a Lie algebra g.

One has
U(g) ' T(g)/〈xy − yx − [x , y ] : x , y ∈ g〉

where T(M) is the tensor algebra of a R-module M.
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Poincaré-Birkhoff-Witt theorem
Let g be a Lie algebra (over R).

Let j : g→ U(g) be the Lie map defined as the composition
g ↪→ T(g)

π−→ U(g) (where π is the canonical projection, and U(g) is seen
as a Lie algebra under its commutator bracket).

PBW Theorem
If R is a field, then j is one-to-one.

More generally, P.M. Cohn proved in 1963 that if the underlying abelian
group of g is torsion-free, then j is one-to-one.

Remark
Actually, PBW theorem states that the associated graded algebra of U(g)
and the symmetric algebra of g are isomorphic.
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Question

Is there a way to extend the notion of universal enveloping algebra to the
differential setting?

Yes. And even (at least) two different ways.

The first one is a somewhat “trivial” extension. Indeed, a derivation on an
algebra is also a derivation for its commutator bracket. Moreover the
universal enveloping algebra may be equipped with a (universal) derivation
that extends the derivation of the Lie algebra, and the
Poincaré-Birkhoff-Witt theorem remains unchanged.

The other one is rather different (since it is not based on the commutator)
and is sketched hereafter.
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Wronskian bracket
Now, let us assume that (A, ·, d) is a differential commutative algebra.

There is another Lie bracket given by the Wronskian

W (x , y) = x · d(y)− d(x) · y

which turns A into a (differential) Lie algebra.

The above correspondence is actually functorial.

Whence one can ask a few
questions:

1 Does it admit a left adjoint ? In other terms, is there a universal
enveloping differential (commutative) algebra ? (Call it the Wronskian
enveloping algebra.) Yes.

2 Under which assumptions the canonical map from a Lie algebra to its
differential enveloping algebra is one-to-one ? Unfortunatly, I don’t
know a general answer yet.

In this talk I will also provide some examples of embedding /
non-embedding of Lie algebras into their differential associative envelope.
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Universal algebra
An operator domain or signature is a N-graded set Σ, i.e., a family of sets
(Σ(n))n∈N.

The members of Σ(0) are referred to as symbols of constant,
while those of Σ(n), n > 0, are called symbols of (n-ary) functions.

A Σ-algebra is a pair (A,F ), where A is a set, and F is a family of
set-theoretic maps (F (n) : Σ(n)→ AAn

)n that makes possible to interpret
the symbols of functions (resp., constants) by n-ary functions on (resp.,
members of) A.

Examples
Monoids are Σ-algebras for the signature Σ(0) = { e }, Σ(2) = { ∗ },
Σ(n) = ∅, n 6= 0, 2.
Groups are Σ-algebras for the signature Σ(0) = { e },
Σ(1) = { (−)−1 }, Σ(2) = { ∗ }, Σ(n) = ∅, n 6= 0, 1, 2.
There are signatures for (associative) R-algebras, Lie R-algebras, and
their differential counterparts.
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Equational varieties
A class V of Σ-algebras is said to be an equational variety when each
member of the class satisfies some given axioms or identities.

Example
Equations for monoids: x ∗ e = e = e ∗ x , (x ∗ y) ∗ z = x ∗ (y ∗ z).

Each variety of Σ-algebras with its homomorphisms (maps preserving the
structural operations) forms a category.

Some (counter-)examples
Semigroups, inverse semigroups, monoids, commutative monoids,
groups, abelian groups, rings, R-algebras for a unital commutative ring
R , Lie R-algebras, Jordan R-algebras, etc.
Fields (inversion is only partially defined), small categories, and the
category of monoids with invertible elements (groups!), because it is
not closed under sub-algebras (e.g., the sub-monoid N of Z).
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Algebraic functors
One of the key features of equational varieties is the fact that they come
equipped with a forgetful functor UV : V→ Set (it maps an algebra to its
carrier set). So they are concrete categories over Set (and even monadic).

Let V and W be two equational varieties of algebras (not necessarily over
the same signature). A functor F : V→W is said to be an algebraic
functor if it preserves the forgetful functors, i.e., UW ◦ F = UV.

Theorem (Bill Lawvere)
Any algebraic functor admits a left adjoint.

In particular the forgetful functor UV itself has a left adjoint. Hence for any set
X , there exists a free algebra V(X ) in the variety V. By this is meant that there
is a universal map ηX : X → V(X ) such that for each algebra (A,F ) in the variety
V, and for each set-theoretic map f : X → A, there exists a unique
homomorphism of algebras f̂ : V(X )→ (A,F ) such that f̂ ◦ ηX = f . It is also
well-known that ηX is one-to-one whenever V is a non-trivial variety (i.e., there
are algebras with more than one element in the variety V).
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Generalities about differential algebras

Let R be a commutative ring with a unit.

Let V be a variety of (not necessarily associative nor unital) R-algebras
(i.e., R-modules M with a R-bilinear operation · : M ×M → M subject to
some additional axioms).

For V one may have in mind Ass or Lie.

A derivation d : M → M is a R-linear map that satisfies Leibniz identity

d(x · y) = d(x) · y + x · d(y) .

By considering algebras (M, ·) of V with a derivation d and
homomorphisms of algebras commuting with derivations, one gets a variety,
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Differential ideals

A two-sided (differential) ideal I of a differential algebra (M, ·, d) is just a
two-sided ideal of (M, ·) (i.e., a sub-module such that M · I ⊆ I ⊇ I ·M)
such that d(I ) ⊆ I .

It turns out that M/I becomes a differential algebra with derivation
d̃(x + I ) = d(x) + I and the natural epimorphism M → M/I is a
homomorphism of differential algebras.

Because an intersection of any family of differential ideals also is a
differential ideal, it makes also sense to talk about the least differential
ideal generated by a set.
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A forgetful functor (1/2)
The free differential algebra generated by an algebra

There is an obvious forgetful functor DiffV→ V which admits a left
adjoint (since it is an algebraic functor).

Hence any algebra in V “freely generates” a differential algebra (in V).

The construction: let (M, ·) be an algebra in V. Let FDiffV (|M|) be the
free differential algebra in V generated by the set |M| (carrier set of
(M, ·)), and let j : |M| → |FDiffV (|M|)| be the canonical map. Let I be
the differential ideal generated by j(x + y)− j(x)− j(y),
j(x · y)− j(x)j(y), j(rx)− rj(x), x , y ∈ |M|, r ∈ R .

Then, FDiffV (|M|)/I is the free differential algebra generated by (M, ·).
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A forgetful functor (2/2)
Universal property

Let (N, ·, e) be a differential algebra in V, and let φ : (M, ·)→ (N, ·) be an
algebra map.

Let φ̂ : FDiffV (|M|)→ (N, ·, e) be the unique differential algebra map such
that φ̂ ◦ j = φ.

Of course I ⊆ ker φ̂ (since φ is an algebra map).

Hence there is a unique differential algebra map
φ̃ : FDiffV (|M|)/I → (N, ·, e) such that φ̃ ◦ π ◦ j = φ.
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Example
The free differential Lie algebra generated by a Lie algebra / by a set

One may apply the results from the previous slide with V = Lie in order to
obtain the free differential Lie algebra DL(g) := FDiffLie(|g|)/I generated
by a Lie algebra g.

It is easily seen that any algebra g canonically embeds into its differential
envelope DL(g) (because (g, 0) is itself a differential Lie algebra).

One can even describe FDiffLie(X ) for a set X : Let MX be the free
magma on the set X × N, and let AX := RMX be the free R-module
generated by MX .

AX is a (non associative) algebra with bilinear multiplication extending the
product in MX . It is even the free (non associative) differential algebra
with derivation d given on generators (x , i) by d(x , i) := (x , i + 1), x ∈ X ,
i ∈ N.

FDiffLie(X ) = AX/J, with the quotient derivation, where J is the two-sided
differential ideal of AX generated by tt, (rs)t + (st)r + (tr)s, r , s, t ∈ MX .
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Another example
The free commutative differential algebra generated by an algebra / a set

The usual algebra R{X} of differential polynomials in the (mutually
commuting) variables x ∈ X is the free commutative differential algebra
generated by the set X .

Let A be a commutative (associative) algebra with a unit. Then, R{|A|}/I ,
where I is the two-sided differential ideal generated by the relations that
would turn the canonical map j : |A| → R{|A|} into an algebra map, is the
free commutative differential algebra generated by A.

Remarks
A embeds, as sub-algebra, into R{|A|}/I by j .
The above construction may be adapted for not necessarily
commutative algebras.
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Reflective sub-category (1/2)
V ↪→ DiffV

The variety V embeds into the variety DiffV since any algebra in V may be
seen as a differential algebra with the zero (or trivial) derivation.

Of course this embedding preserves the forgetful functors, hence admits a
left adjoint, i.e., V is a reflective sub-category of DiffV, this means that
any differential algebra (in V) “freely generates” an algebra in V.

The construction: let (M, ·, d) be a member of DiffV. Let Id be the
(algebraic) ideal generated im(d). Thus, M/Id is a member of V, and the
natural projection π : M → M/Id is a homomorphism of algebras.
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Reflective sub-category (2/2)
Universal property

Given an algebra (N, ·) and a homomorphism of differential algebras
φ : (M, ·, d)→ (N, ·, 0),

because φ ◦ d = 0, it passes to the quotient and
gives rise to a unique homomorphism of algebras φ̂ : (M/Id , ·)→ (N, ·)
such that φ̂ ◦ π = φ.
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Extension of the usual universal enveloping algebra to the
differential setting

Let (A, d) be a differential (associative) algebra.

One has d([x , y ]) = d(xy − yx) = d(x)y + xd(y)− d(y)x − yd(x) =
[d(x), y ] + [x , d(y)]. Hence, (A, [−,−], d) is a differential Lie algebra.

This gives rise to a functor DiffAss→ DiffLie which makes commute the
following diagram (of forgetful functors).

DiffAssComm. bracket//

forgets der .
��

DiffLie

forgets der .
��

Ass //
Comm. bracket

// Lie

All functors in this diagram admit a left adjoint.
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A construction

Let (g, [−,−], d) be a differential Lie algebra.

Let ∂ be the unique derivation on T(g) that extends d .

It satisfies
∂(xy−yx−[x , y ]) = d(x)y+xd(y)−d(y)x−yd(x)−[d(x), y ]−[x , d(y)] =
d(x)y − yd(x)− [d(x), y ] + xd(y)− d(y)x − [x , d(y)], so it factors as a
linear map ∂̃ : U(g)→ U(g) which is easily seen to be a derivation.
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Universal property

(U(g), ∂̃) satisfies the following universal property:

Let (A,D) be a differential algebra, and let
φ : (g, [−,−], d)→ (A, [−,−],D) be a homomorphism of differential Lie
algebras.

Then, there is a unique homomorphism of differential algebras
φ̂ : (U(g), ∂̃)→ (A,D) such that φ̂ ◦ j = φ, where j : g→ U(g) is the
canonical differential Lie map.
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Conclusion for the first approach

The universal enveloping algebra lifts to the realm of differential algebras.
Hence symbolically one has

(g, d)
j //

��

(U(g), ∂̃)

��
g

j
// U(g)

PBW theorem remains unchanged.
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The Wronskian bracket
The second approach

Let (A, d) be a commutative differential (associative and unital) R-algebra.

Let us define the Wronskian bracket

W (x , y) := xd(y)− d(x)y .

Of course it is alternating W (x , x) = xd(x)− d(x)x = 0 (since A is
commutative).

Moreover it satisfies Jacobi identity.

Hence (A,W ) turns to be a Lie algebra.
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Furthermore d(W (x , y)) = d(xd(y)− d(x)y)

=
d(x)d(y) + xd2(y)− d2(x)y − d(x)d(y) = xd2(y)− d2(x)y .

While
W (d(x), y) + W (x , d(y)) = d(x)d(y)− d2(x)y + xd2(y)− d(x)d(y).

Hence (A,W , d) is a differential Lie algebra.

This defines a functor, say the Wronskian, (A, d) 7→ (A,W , d) from
DiffComAss to DiffLie.

Remark
Composing with the obvious forgetful functor DiffLie→ Lie, the above
construction provides a functor (A, d) 7→ (A,W ) from DiffComAss to Lie.
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Wronskian enveloping algebra

One observes that the Wronskian functor preserves the obvious forgetful
functors,

so it is an algebraic functor,

and it admits a left adjoint W, the Wronskian enveloping algebra.
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Construction of the differential enveloping algebra (1/2)
1st step: universal extension of the derivation on the symmetric algebra

Let (g, [−,−], d) be a differential Lie algebra.

Let S(g) be the symmetric algebra of the module g which becomes a
commutative differential algebra with the unique derivation ∂ that extends
the map ∂(x) = d(x) on the generators x ∈ g.

Remark
Actually, one defines the derivation ∂ on the tensor algebra T(g), and since
it commutes to the permutation of variables, it factors through S(g).
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Construction of the Wronskian enveloping algebra (2/2)
2nd step: identify on generators the Wronskian and the original Lie bracket

Let us consider the (algebraic) ideal I generated by d(x)y − xd(y)− [x , y ],
x , y ∈ g.

One observes that ∂(I ) ⊆ I . Hence I is actually a differential ideal.

Then, the Wronskian enveloping algebra W(g, [−,−], d) is (S(g)/I , ∂̃).
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Universal property of the Wronskian enveloping algebra

Let (A, δ) be any commutative differential algebra, and let
φ : (g , [−,−], d) 7→ (A,W , δ) be a homomorphism of differential Lie
algebras.

Then, there exists a unique differential algebra map
φ̃ : (S(g)/I , ∂̃)→ (A, δ) such that φ̃(x + I ) = φ(x) for each x ∈ g.
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Proof

Let φ̂ : S(g)→ A be the unique algebra map that extends φ.

One easily observes that φ̂ commutes to the derivations, and so defines a
homomorphism of differential algebras.

Moreover it satisfies
φ̂(d(x)y − xd(y)− [x , y ]) = δ(φ(x))φ(y)− φ(x)δ(φ(y))− [φ(x), φ(y)] =
W (φ(x), φ(y))− [φ(x), φ(y)] = 0.

Hence it factors through I and provides a unique homomorphism of
differential algebras φ̃ from (S(g)/I , ∂̃) to (A, δ) such that
φ̃(x + I ) = φ(x), x ∈ g.
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Statement of the problem

Given a differential Lie R-algebra (g, d), and its Wronskian enveloping
algebra (W(g, d), ∂̃), the (differential) Lie map can : g→ S(g)/I ,
x 7→ x + I , is referred to as the canonical map.

Embedding problem
Under which conditions on (g, d) and on R is the canonical map
one-to-one?

Remark
can is one-to-one if, and only if, there are a differential commutative
algebra (A, δ), and a one-to-one differential Lie map
φ : (g, d)→ ((A,W ), δ).
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Example: sl2(K)

Let K be a field of characteristic zero.

The Lie algebra sl2(K) embeds into the algebra of vector fields of K[x ] by
the identification of the elements of its Chevalley basis e = −1, h = −2x ,
and f = x2 (the familiar commutation rules are satisfied [h, e] = 2e,
[h, f ] = −2f and [e, f ] = h).

It is a differential Lie algebra when equipped with the usual derivation of
polynomials.

Hence it embeds into the commutative differential algebra (K[x ], d
dx ) as a

sub-Lie algebra under the Wronskian bracket, therefore it embeds into its
Wronskian enveloping algebra.
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Warning: The case of a non-differential Lie algebra (1/3)

For Lie algebras without derivation, there are two different notions for the
Wronskian envelope, depending on whether or not one identifies Lie with a
sub-category of DiffLie via the embedding functor g 7→ (g, 0).

Hence, the Wronskian envelope of g may be defined either as the
Wronskian envelope W(g, 0) of the differential Lie algebra (g, 0) with
the zero derivation,

or it may be defined as a left adjoint to the composite forgetful

functor DiffComAss Wronskian bracket−−−−−−−−−−−→ DiffLie forgets der .−−−−−−−→ Lie.

Therefore, there are two formulations for the embedding problem.
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Warning: The case of a non-differential Lie algebra (2/3)
As a Lie algebra with the zero derivation

Let (g, [−,−]) be a Lie algebra. It may be identified with the differential
Lie algebra (g, [−,−], 0).

The derivation on S(g) that extends the zero derivation is also just the zero
derivation.

The differential ideal I is equal to the (algebraic) ideal generated by [x , y ],
x , y ∈ g.

Hence it follows that in case g is not commutative (i.e., [−,−] does not
vanish identically), g does not embed into its universal enveloping
differential (commutative) algebra W(g) even if R is a field!

In this case, the embedding problem is rather obvious (of course, any
commutative Lie algebra embeds into its Wronskian envelope, which
reduced to the symmetric algebra).
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Warning: The case of a non-differential Lie algebra (3/3)
Composite of left adjoints

The composite forgetful functor

DiffComAss Wronskian bracket−−−−−−−−−−−→ DiffLie forgets der .−−−−−−−→ Lie is an algebraic
functor, hence admits a left adjoint.

Thus, by composition of left adjoints, the Wronskian envelope of a Lie
algebra g may be defined as the the Wronskian envelope W(DL(g)) of the
free differential Lie algebra DL(g) generated by the Lie algebra g.

Embedding problem
Under which conditions on g and on R is the canonical map from g to
W(DL(g)) one-to-one?
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Remark
The canonical map g→W(DL(g)) is one-to-one if, and only if, there are
a differential commutative algebra (A, δ), and a one-to-one Lie map
φ : g→ (A,W ).

Indeed, in this case there is a unique differential Lie algebra map
φ̂ : (DL(g), d)→ ((A,W ), δ) such that φ̂ ◦ cang = φ, where
cang : g→ DL(g) is the canonical map (a Lie algebra map).

Then, there is a unique differential algebra map
ˆ̂φ : (W(DL(g)), d)→ (A, δ) such that ˆ̂φ ◦ can = φ̂, hence
ˆ̂
φ ◦ can ◦ cang = φ which implies that
can ◦ cang = g

cang−−→ DL(g)
can−−→W(DL(g)) is one-to-one.
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Augmented modules

Let (M, ε) be an augmented R-module, i.e., a R-module together with a
linear map ε : M → R , called its augmentation map.

It admits a Lie bracket

[u, v ]ε := ε(v)u − ε(u)v .

The Lie algebra (M, [−,−]ε) is referred to as the associated Lie algebra of
(M, ε).

Proposition
The associated Lie algebra of an augmented module embeds into its
Wronskian envelope.
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Sketch of the proof

Given an augmented module (M, ε), it can be shown that there is a unique
derivation dε on the symmetric algebra S(M) of M that extends ε.

Let u, v ∈ M. Then, W (u, v) = udε(v)−dε(u)v = uε(v)− ε(u)v = [u, v ]ε.
Hence the canonical embedding M ↪→ S(M) is a Lie map.
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Modules with a “rank one” projection
Let M be a R-module. Let P : M → M be a rank one (linear) projection,
i.e., P2 = P and im(P) ' R (as modules).

Remark
It is essentially the same object as an augmented module (M, ε) with a
surjective augmentation map ε, because in this case, since R is free on
{ 1 }, the short exact sequence 0→ ker ε ↪→ M ε−→ R → 0 splits, so
M ' ker ε⊕ Re (with ε(e) = 1), and one has a rank one projection
P(x) := ε(x)e.

Conversely, if P is a rank one projection on M, then for each x ∈ M there
is a unique scalar 〈P(x) | e〉 ∈ R such that P(x) = 〈P(x) | e〉e, where e a
generator of im(P) ' R . Then, 〈P(·) | e〉 : M → R is a surjective
augmentation map.

Once chosen a generator e of im(P), one has a Lie algebra structure on M
given by [u, v ] = 〈P(v) | e〉u − 〈P(u) | e〉v .
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An application (1/2)

Let (A, d) be a commutative R-algebra with a unit.

Let Ad := { a ∈ A : d(a) = 0 } = ker d be the ring of constants of (A, d)
(it is even a R-sub-algebra of A, and (A, d) 7→ Ad is a functorial
correspondence).

Let Fix(A, d) := { a ∈ A : d(a) = a } be the R-module of fixed points of d .
(Again, (A, d) 7→ Fix(A, d) is functorial.)

One has Ad ∩ Fix(A, d) = (0), and
Ad ⊕ Fix(A, d) = { a ∈ A : d2(a) = d(a) }.

Moreover, the restriction of d to Ad ⊕ Fix(A, d) is a linear projection with
im(d) = Fix(A, d).
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An application (2/2)

Assuming that the ring of constants Ad is R1A ' R , one gets a rank one
projection id − d on R1A ⊕ Fix(A, d) onto R1A.

The associated Lie bracket is thus given by
[x , y ] = 〈y − d(y) | 1A〉x − 〈x − d(x) | 1A〉y .

Example
1 Let R[x ] with its usual derivation d(x) = 1. Then, R[x ]d = R and

Fix(R[x ], d) = (0). Then, [r , s] = 0 for all r , s ∈ R .

2 Let d be the unique derivation of R[x ] such that d(x) = x . Then,
d(xn) = nxn. It follows that Fix(R[x ], d) = Rx and R[x ]d = R .
Hence [rx + s, tx + v ] = (rx + s)〈tx + v − d(tx + v) |
1〉−(tx+v)〈rx+s−d(rx+s) | 1〉 = (rx+s)v−(tx+v)s = x(rv − st).
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Remark: Change of base ring

Let (A, d) be a commutative differential algebra. Then (A, d) is also a
Ad -algebra, and d is a Ad -derivation.

Hence (A, d) becomes a
commutative differential Ad -algebra denoted by (A, d)Ad .

Moreover, (A, d)d
Ad = Ad , and Fix((A, d)Ad ) = Fix(A, d) (as Ad -modules).

Therefore, the previous construction applies, and Ad ⊕ (A, d) turns to be a
Lie Ad -algebra that embeds into its Wronskian envelope (via the canonical
Lie map).
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Lie-Rinehart algebras
Let (M, ·) be a (not necessarily associative) R-algebra. Let DerR(M, ·) be
its Lie R-algebra of R-linear derivations (under the usual commutator
bracket). When (M, ·) is commutative, DerR(M, ·) becomes a A-module in
an obvious way.

Definition
A Lie-Rinehart algebra over R is a triple (A, g, d), where

A is a commutative R-algebra with a unit,
g is a Lie R-algebra which is also a left A-module (with A-action
denoted by a · x),
d : g→ DerR(A) is both a Lie R-algebra map, and a A-linear map
(d(a · x)(b) = a(d(x)(b))) which turns A into a g-module,
[x , a · y ] = a · [x , y ] + d(x)(a) · y , a ∈ A, x , y ∈ g.

By abuse, d is referred to as the anchor map of the Lie-Rinehart algebra
(A, g).
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Remark and example

The structure of a Lie-Rinehart algebra is modeled on the properties of the
pair (C∞(V ),X(V )), where V is a finite-dimensional smooth manifold,
C∞(V ) is the ring of smooth functions on V , and X(V ) is the Lie algebra
of smooth vector fields on V .

Example
Let A be a commutative R-algebra with a unit. Then, (A,DerR(A)) is a
Lie-Rinehart algebra.

Given a Lie-Rinehart algebra (A, g), the Lie algebra g, together with the
anchor, is also referred to as a Lie (R,A)-pseudoalgebra.
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Some functors

Any commutative differential R-algebra (A, d) may be turned into a
Lie-Rinehart algebra (A, (A,W )) with anchor map a 7→ d(a) := ad , and this
is functorial. This allows to view DiffComAss as sub-category of LieRin.

In particular, any commutative R-algebra A provides a Lie-Rinehart algebra
(A, (A, 0)).

It also provides another Lie-Rinehart algebra, namely (A, (0)), which is even
the free Lie-Rinehart algebra generated by A.

There is also a forgetful functor LieRin→ Lie, and it admits a left adjoint
given on objects by g 7→ (R, g). (This may also be interpreted as an
embedding of Lie into the category of Lie (R,R)-pseudoalgebras.)
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Wronskian envelope of a Lie-Rinehart algebra (sketch)

DiffComAss is a reflective sub-category of LieRin.

Let (A, g) be a Lie-Rinehart algebra with anchor map d. Let D(A, g) be the
free commutative differential R-algebra generated by the set |A| t |g|.
Hence it is the commutative algebra of differential polynomials R{|A| t |g|}
with variables in |A| t |g|.

Then, let I (A, g) be the differential ideal of D(A, g) generated by the
relations that turn the canonical map (A, g)→ (D(A, g), (D(A, g),W ))
into a Lie-Rinehart map. Then, D(A, g)/I (A, g) is the free commutative
differential algebra generated by (A, g).
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Jacobi algebra

A Jacobi algebra is a commutative R-algebra with a unit, together with a
Lie bracket (called a Jacobi bracket) over R which satisfies Jacobi-Leibniz
rule:

[ab, c] = a[b, c] + b[a, c]− ab[1A, c]

a, b, c ∈ A.

It follows that ad1A = [1A, ·] : A→ A is a R-derivation of the associative
algebra A, and that [−,−]−W[1A,−] is an alternating biderivation.
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Poisson and differential commutative algebras
Remark
Actually each triple (A,D, d) where A is a commutative algebra, D is an
alternating biderivation, and d is a derivation such that D + Wd is a Lie
bracket provides a Jacobi algebra (A,D + Wd ).

A commutative Poisson algebra thus is a Jacobi algebra whose associated
derivation is zero.

A commutative differential algebra, with its Wronskian bracket, is a Jacobi
algebra whose associated biderivation is zero.

This provides two embedding functors

PoissCom ↪→ Jac←↩ DiffComAss.

Moreover, there is also a forgetful functor Jac→ DiffComAss,
(A, [−,−]) 7→ (A, [1A,−]).
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Various envelopes
PoissCom is reflective in Jac:

given a Jacobi algebra (A, [−,−]), let us
consider its Jacobi ideal Ipoiss generated by [1A, x ], x ∈ A, then A/Ipoiss is
the free commutative Poisson algebra generated by (A, [−,−]).

DiffComAss is reflective in Jac, since the embedding functor is an
algebraic functor between (equational) varieties.

There is also a notion of a Jacobi envelope of a differential commutative
algebra since the functor Jac→ DiffComAss is an algebraic functor. One
observes that any differential commutative algebra embeds into its Jacobi
envelope.

One finally mentions the composite forgetful functor
Jac→ DiffComAss→ LieRin, (A, [−,−]) 7→ (A, (A,Wad1A

)), which
makes it possible to consider the Jacobi envelope of a Lie-Rinehart algebra
as the Jacobi envelope of the free commutative differential algebra
generated by a Lie-Rinehart algebra.
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The Lie side

There is also an obvious forgetful functor Jac→ Lie, forgetting the
multiplicative structure. It is an algebraic functor, so that it admits a left
adjoint.

Given a Lie algebra g, one considers the free Jacobi algebra Jac(|g|)
generated by the carrier set of g.

Let J be its Jacobi ideal generated by the relations that make the canonical
image of g in Jac(|g|) a Lie algebra.

Then, Jac(|g|)/J is the universal Jacobi envelope of g.
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Relations between some envelopes
Because the following diagram of forgetful functors commutes, the
Wronskian envelope of a Lie algebra g may be described as the free
differential commutative algebra generated by the Jacobi envelope of g.

Jac

""

DiffComAss? _oo

xx
Lie

Moreover the following diagram of functors also commutes, implying that
the Wronskian envelope of a Lie algebra g is also the differential envelope
of the Lie-Rinehart algebra (R, g).

LieRin

$$

DiffComAssoo

xx
Lie
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Local Lie algebras
Let V be a finite-dimensional smooth manifold. Let E be a line bundle
over V , i.e., a vector bundle over V each fibre of which is one-dimensional.

Let Sec(E ) its space of global sections. E is said to be trivial whenever
E = V × R in which case C∞(V ) = Sec(E ).

Following A. A. Kirillov (1976), a local Lie algebra is a structure of a Lie
algebra on Sec(E ) which is local, i.e., the support of [s1, s2] is contained in
the intersection of the supports of s1 and s2 (recall that the support of a
section is the closure of the set of points at which the section does not
vanish).

When E is a trivial line bundle, then the local Lie bracket is of the form

[s1, s2] = Λ(ds1, ds2) + s1Γ(s2)− Γ(s1)s2

where Λ is a bivector field, and Γ is a vector field.

This implies that such a local Lie algebra (C∞(V ), [−,−]) is precisely a
Jacobi algebra.
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Lie algebroids (1/2)
A Lie algebroid on a vector bundle E over a finite-dimensional smooth
manifold V is a (R,C∞(V ))-Lie pseudoalgebra on the C∞(V )-module
Sec(E ).

The anchor map of the corresponding Lie-Rinehart algebra
(C∞(V ), Sec(E )) is described by a vector bundle morphism d : E → TV
which induces the Lie map from (Sec(E ), [−,−]) to the Lie algebra
(X(V ), [−,−]vf ) of vector fields on V .

Lie algebroids, introduced by J. Pradines (1967), are the infinitesimal parts
of differentiable groupoids.

Example
1 A Lie algebroid on the tangent bundle TV is given by the canonical

bracket [−,−]vf on X(V ) = Sec(TM).
2 Every Lie algebra is a Lie algebroid over the one point manifold.
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Lie algebroids (2/2)

Lie algebroids on the trivial line bundle, hence Lie algebroids brackets on
C∞(V ), are particular local Lie algebras of the form

[f , g ] = f Γ(g)− Γ(f )g

for a certain vector field Γ on V .

It follows that the underlying Lie algebra of the Lie pseudoalgebra
(C∞(V ), [−,−]) embeds into its Wronskian envelope.

Remark
Other examples of embedding of a Lie pseudoalgebra into its Wronskian
envelope are given by Lie algebras of vector fields tangent to a given
foliation with one-dimensional leaves.
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Conclusion

The embedding problem of a (differential) Lie algebra into its Wronskian
enveloping algebra seems to be quite harder than the classical situation and
related to Lie algebras of (one-dimensional) vector field. But Lie algebras
of vector fields satisfy some non-trivial identities.

It might be useful to tackle this problem by dividing it into two parts: first
the embedding problem of a Lie algebra into its Jacobi envelope, and
secondly the embedding problem of a Jacobi algebra into its differential
envelope.
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Open problems

1 Is there an explicit description of the free Jacobi algebra on a set? of
the differential envelope of a Jacobi algebra?

2 Does the Wronskian envelope of a differential Lie algebra admit a
structure of a (commutative) Hopf (differential) algebra? The
terminal map (g, d)→ (0) lifts to a differential algebra morphism
ε : W(g)→W(0) ' R , hence W(g) is an augmented (differential)
algebra. The diagonal δ : g→ g× g provides a differential algebra map
∆: W(g)→W(g× g). Is W a comonoidal functor from the cartesian
monoidal category of differential Lie algebras to the monoidal category
of commutative differential algebras under their tensor product?
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