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Notation
• K is an ordinary differential field of characteristic zero

with derivation δ : K → K:

δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + aδ(b).

• Y = {y1, . . . , yn} is a set of differential indeterminates.

• δ∞Y = {δmy | y ∈ Y, m = 0, 1, 2, . . .} is the set of
derivatives.

• K{Y } = K[δ∞Y ] endowed with δ : K{Y } → K{Y } is
the differential ring of differential polynomials.
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Jacobi bound for linear systems
• Given a system of n linear differential polynomials

L1, . . . , Ln ∈ K{Y }

which for every y ∈ Y implies an equation in y alone.

• Let aij = ordyj
Li, 1 ≤ i, j ≤ n

(here we assume that ordy f = −∞ if f does not involve
any derivatives of y)

• For a permutation π ∈ Sn, let

dπ = a1π(1) + . . . + anπ(n)

be called a diagonal sum.

• Let h = maxπ∈Sn
dπ.
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Jacobi bound for linear systems
Theorem [Ritt, 1935] There exists a triangular system of
differential polynomials R1, . . . , Rn equivalent to L1, . . . , Ln

and satisfying
n
∑

i=1
ordyi

Ri ≤ h.

Proof...

• Show that there exists a finite diagonal sum.

• Consider elimination ranking y1 > . . . > yn.

• If ai1 participates in a maximum diagonal sum, then
reduction w.r.t. Li, if it is possible, does not increase h.
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Jacobi bound for linear systems
Theorem [Ritt, 1935] There exists a triangular system of
differential polynomials R1, . . . , Rn equivalent to L1, . . . , Ln

and satisfying
n
∑

i=1
ordyi

Ri ≤ h.

Proof...

If such reductions are not possible, this is because

• Only one Li involves y1 ⇒ proceed similarly with the
elimination of y2, . . . , yn−1.

• There exists i such that ai1 is maximal among
a11, . . . , an1 and participates in a finite diagonal sum.
Without loss of generality, assume that i = n.
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Jacobi bound for linear systems
Theorem [Ritt, 1935] There exists a triangular system of
differential polynomials R1, . . . , Rn equivalent to L1, . . . , Ln

and satisfying
n
∑

i=1
ordyi

Ri ≤ h.

Proof...

• Change the indices of L1, . . . , Ln−1 and y2, . . . , yn so
that

a11 + . . . + an−1,n−1

is maximal. This sum is finite.

• Then one can reduce Ln w.r.t. L1 without increasing h.

¤
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Notation
• Fix a ranking <: a total order on derivatives such that

for all u, v ∈ δ∞Y

[u < δu] and [u < v ⇒ δu < δv].

• For a polynomial f , let uf = δkyi be the derivative of
the highest rank w.r.t. ≤ occurring in f . Then

f = ifud
f + g(uf ), deg g < d.

• lv f = yi, ld f = uf , rk f = ud
f , sf = iδf .

• Ranks ud1

1 and ud2

2 can be compared w.r.t. <:

ud1

1 < ud2

2 ⇐⇒ [u1 < u2] or [u1 = u2 and d1 < d2].
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Some basics of differential algebra
• Polynomial f is algebraically reduced w.r.t. g, if

degug
f < degug

g.

• f is partially reduced w.r.t. g, if f is free of δkug, k > 0.

• f is (fully) reduced w.r.t. g, if f is algebraically and
partially reduced w.r.t. g.

• Set A is autoreduced, if every element of A is reduced
w.r.t. every other element of A.

• For an autoreduced set A, let min A denote the
polynomial in A of the least rank.

• For autoreduced sets A and B, rk A < rk B iff

[rk B ⊂ rk A] or [min(rk A \ rk B) < min(rk B \ rk A)].

The Kolchin Seminar in Differential Algebra. March 18, 2006 – page 7/26



Regular ideals
• For any finite polynomial sets A, H, ideal

[A] : H∞ = {f | ∃ h ∈ H∞ hf ∈ [A]}

is differential.

• Ideal [A] : H∞ is called regular, if
• A is autoreduced
• H ⊇ HA = {if , sf | f ∈ A}
• H is partially reduced w.r.t. A.

• Theorem. [Boulier et al, 1995] Regular ideals are
radical.

• Rosnefeld’s Lemma. If differential ideal [A] : H∞ is
regular and polynomial f is partially reduced w.r.t. A,
then

f ∈ [A] : H∞ ⇐⇒ f ∈ (A) : H∞

The Kolchin Seminar in Differential Algebra. March 18, 2006 – page 8/26



Regular decomposition
• The Rosenfeld-Gröbner algorithm yields a regular

decomposition of a radical differential ideal:

{F} =
k

⋂

i=1

Ri, Ri = [Ai] : H∞
i .

• There exist efficient algebraic methods
(plus parallel and modular Monte-Carlo algorithms
currently under development by M. Moreno Maza et al)
for computing a regular decomposition of a radical ideal:

√
G =

l
⋂

i=1

Ji, Ji = (Ai) : H∞
i .
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Motivation for our bound
• Given a system of differential polynomials F , find a

number d, so that every algebraic regular decomposition
of the radical algebraic ideal

√

F (d), F (d) = {f (i) | f ∈ F, 0 ≤ i ≤ d}

“yields”a regular decomposition of {F}.
• First step: estimate the order of differential

polynomials in a regular decomposition

{F} =
k

⋂

i=1

[Ai] : H∞
i .
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Rosenfeld-Gröbner algorithm
Algorithm Rosenfeld-Gröbner(F0)

Input: A finite set of differential polynomials F0

Output: A finite set T of regular systems such that {F0} =
T

(A,H)∈T [A] : H∞

T := ∅

U := {(F0, ∅)}

while U 6= ∅ do

Take and remove any (F, H) ∈ U

Let C be an autoreduced subset of F of the least rank

R := d-rem(F \ C, C) \ {0}

if R = ∅ then

if 1 6∈ (C) : (d-rem(H, C) ∪ HC)∞ then T := T ∪ {(C, d-rem(H, C) ∪ HC)}

else

U := U ∪ {(C ∪ R, H ∪ HC)}

end if

U := U ∪ {(F ∪ {h}, H) | h ∈ HC , h ∈ K}

end while

return T
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Special case: n = 2

• Let F ⊂ K{y, z}.
• Let my(F ) and mz(F ) be the the maximal orders of

derivatives of y and z occurring in F .

• Let M(F ) = my(F ) + mz(F ).

Lemma. For all (F, H) ∈ U in the Rosenfeld-Gröbner
algorithm,

M(F ) ≤ M(F0).

Proof...

Show that M(F ) cannot increase in the Rosenfeld-Gröbner
algorithm:

• Let (F, H) ∈ U .

• Let C be an autoreduced subset of F of the least rank.
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Special case: n = 2

• Let F ⊂ K{y, z}.
• Let my(F ) and mz(F ) be the the maximal orders of

derivatives of y and z occurring in F .

• Let M(F ) = my(F ) + mz(F ).

Lemma. For all (F, H) ∈ U in the Rosenfeld-Gröbner
algorithm,

M(F ) ≤ M(F0).

Proof...

• |C| ≤ 2.

• Let R = d-rem(F \ C, C).
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Special case: n = 2

• Let F ⊂ K{y, z}.
• Let my(F ) and mz(F ) be the the maximal orders of

derivatives of y and z occurring in F .

• Let M(F ) = my(F ) + mz(F ).

Lemma. For all (F, H) ∈ U in the Rosenfeld-Gröbner
algorithm,

M(F ) ≤ M(F0).

Proof...

• Let |C| = 1. Without loss of generality, ld C = {y(dy)}.
• my(C ∪ R) = dy, mz(C ∪ R) ≤ mz(F ) + (my(F ) − dy).

• Therefore M(C ∪ R) ≤ M(F ).
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Special case: n = 2

• Let F ⊂ K{y, z}.
• Let my(F ) and mz(F ) be the the maximal orders of

derivatives of y and z occurring in F .

• Let M(F ) = my(F ) + mz(F ).

Lemma. For all (F, H) ∈ U in the Rosenfeld-Gröbner
algorithm,

M(F ) ≤ M(F0).

Proof...

• Let |C| = 2. Then ld C = {y(dy), z(dz)} and

M(C ∪ R) = dy + dz ≤ M(F ).
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Special case: n = 2

• Let F ⊂ K{y, z}.
• Let my(F ) and mz(F ) be the the maximal orders of

derivatives of y and z occurring in F .

• Let M(F ) = my(F ) + mz(F ).

Lemma. For all (F, H) ∈ U in the Rosenfeld-Gröbner
algorithm,

M(F ) ≤ M(F0).

Proof...

• Finally, if G ⊂ F ∪ HF , then M(G) ≤ M(F ).

¤
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General case; fixed leading variables
• Let F ⊂ K{y1, . . . , yn}.
• Let C be an autoreduced subset of F of the least rank

with

ld C = {y(d1)
1 , . . . , y

(dk)
k }.

• Then

mi(C∪R) ≤







di, i = 1, . . . , k

mi(F ) + max
1≤j≤k

(mj(F ) − dj), i = k + 1, . . . , n
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General case; fixed leading variables
Define

Mlv C(F ) = My1,...,yk
(F ) = (n − k)

k
X

i=1

mi(F ) +
n

X

i=k+1

mi(F ) (1 ≤ |C| < n).

Then inequality

mi(C ∪ R) ≤

(

di, i = 1, . . . , k

mi(F ) + max
1≤j≤k

(mj(F ) − dj), i = k + 1, . . . , n

implies:

Mlv C(C ∪ R) = My1,...,yk
(C ∪ R) =

(n − k)
k

P

i=1

mi(C ∪ R) +
n

P

i=k+1

mi(C ∪ R) ≤

(n − k)
k

P

i=1

di +
n

P

i=k+1

mi(F ) + (n − k) max
1≤j≤k

(mj(F ) − dj) ≤

(n − k)
k

P

i=1

mi(F ) +
n

P

i=k+1

mi(F )−

−(n − k)
k

P

i=1

(mi(F ) − di) + (n − k) max
1≤j≤k

(mj(F ) − dj) ≤ Mlv C(F ).
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Changing leading variables
• A non-leading variable yk+1 becomes leading:

My1,...,yk+1(F ) =

(n − k − 1)
k+1
∑

i=1
mi(F ) +

n
∑

i=k+2

mi(F ) ≤

My1,...,yk
(F ) + (n − k − 2)mk+1(F ) ≤

(n − k − 1)My1,...,yk
(F ).

• A leading variable becomes non-leading: make sure this
does not happen!
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Leading variables become non-leading
Example 1:

• F = {x, x2 + z, y2 + z}, x > y > z

• C = {x, y2 + z}, lv C = {x, y}
• R = d-rem(F \ C, C) = {z}
• F1 = C ∪ R = {x, y2 + z, z}
• C1 = {x, z}, lv C1 = {x, z}
• y ∈ lv C but y 6∈ lv C1

• y disappeared from leading variables only temporarily:
reduce y2 + z w.r.t. z, and y becomes a leading variable
again.

• ⇒ one can try to replace autoreduced sets by weak
d-triangular sets in the Rosenfeld-Gröbner algorithm
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Leading variables become non-leading
Example 2:

• F = {x, x2 + z, zy2}, x > y > z

• C = {x, zy2}, lv C = {x, y}
• R = d-rem(F \ C, C) = {z}
• F1 = C ∪ R = {x, zy2, z}
• C1 = {x, z}, lv C1 = {x, z}
• y disappeared from leading variables permanently:

zy2 →z 0.

• Observation: In the component (F1, H1), where
H1 = H ∪ HC , we have z ∈ F1 ∩ H1, hence

{F1} : H∞
1 = (1).
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Differentially triangular sets
• A set of polynomials A is a weak differentially

triangular set, if ld A is autoreduced.

• A weak differentially triangular set A is differentially
triangular, if every element of A is partially reduced
w.r.t. the other elements of A.

• One can expand the definition of regular ideals [Hubert]:
Ideal [A] : H∞ is called regular, if
• A is differentially triangular
• H ⊇ sA

• H is partially reduced w.r.t. A.
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Modified Rosenfeld-Gröbner algorithm
Algorithm Rosenfeld-Gröbner(F0) (based on [Hubert, 2001])

Input: A finite set of differential polynomials F0

Output: A finite set T of regular systems such that {F0} =
T

(A,H)∈T [A] : H∞

T := ∅

U := {(F0 \ {min F0}, {min F0}, ∅)}

while U 6= ∅ do

Take and remove any (F, C, H) ∈ U

R := d-rem(F, C) \ {0}

if R = ∅ then T := T ∪Autoreduce&Check(C,H ∪ HC)

else C> := {p ∈ C | lv p = lv(min R)}

C̄ := C \ C> ∪ {min R} # Note: C̄ is a weak d-triangular set s.t.

F̄ := C> ∪ R \ {min R} # rk C̄ < rk C and lv C ⊆ lv C̄.

H̄ := d-rem(H ∪ HC̄ , C̄)

if 0 6∈ H̄ then U := U ∪ {(F̄ , C̄, H̄)}

end if

U := U ∪ {(F ∪ {h}, C, H) | h ∈ HC , h 6∈ K}

end while

return T
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Reduction w.r.t. a weak d-∆ set
Algorithm Rosenfeld-Gröbner(F0)

Input: A finite set of differential polynomials F0

Output: A finite set T of regular systems such that {F0} =
T

(A,H)∈T [A] : H∞

...

while U 6= ∅ do

Take and remove any (F, C, H) ∈ U

Let mi = max{ordyi
f | f ∈ F ∪ C}, i = 1, . . . , n

B :=Differentiate&Autoreduce(C, {mi}
n
i=1)

if B 6= ∅ then

R := alg-rem(F, B) \ {0}

if R = ∅ then T := T∪Autoreduce&Check(C,H ∪ HC)

else

...

end if

U := U ∪ {(F ∪ {h}, C, H) | h ∈ HC , h 6∈ K}

end if

end while

return T
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Algorithm Differentiate&Autoreduce
Algorithm Differentiate&Autoreduce(C, {mi})

Input: a weak d-triangular set C = C1, . . . , Ck with ld C = y
(d1)
1 , . . . , y

(dk)
k ,

and a set of non-negative integers {mi}
n
i=1, mi ≥ mi(C)

Output: set B = {Bj
i | 1 ≤ i ≤ k, 0 ≤ j ≤ mi − di} satisfying

B ⊂ [C], rk B0
i = rk Ci, rk B

j
i = y

(di+j)
i (j > 0)

i
B

j
i

∈ H∞
C + [C] (j ≥ 0)

B
j
i is partially reduced w.r.t. C \ {Ci}

mi(B) ≤ mi +
Pk

j=1(mj − dj), i = k + 1, . . . , n

or ∅, if it is detected that [C] : H∞
C = (1)

for i := 1 to k do

B0
i := alg-rem(Ci, {B

r
l | 1 ≤ l < i, 0 < r ≤ ml − dl})

if rk B0
i 6= rk Ci then return ∅

for j := 1 to mi − di do

B
j
i := alg-rem(δBj−1

i , δ(C \ {Ci}))

if ld B
j
i 6= y

(di+j)
i then return ∅

end for

end for

return B
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Differentiate&Autoreduce is correct
Lemma. Let C be a weak d-triangular set, and let f be a
polynomial such that lv f 6∈ lv C and if ∈ H∞

C + [C]. Let
f →C g. Then

• rk g 6= rk f ⇒ [C] : H∞
C = (1)

• rk g = rk f ⇒ ig ∈ H∞
C + [C]

• B0
1 = C1 is partially reduced w.r.t. C2, . . . , Ck.

• δB0
1 is reduced w.r.t. δlCi, l > 1, i = 2, . . . , k

• rk δB0
1 = y

(d1+1)
1

• B1
1 = alg-rem(δB0

1 , δ(C \ {C})
• Lemma ⇒ [C] : H∞

C = (1) or

rk B1
1 = y

(d1+1)
1 and iB1

1
∈ H∞

C + [C].
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Differentiate&Autoreduce is correct
Lemma. Let C be a weak d-triangular set, and let f be a
polynomial such that lv f 6∈ lv C and if ∈ H∞

C + [C]. Let
f →C g. Then

• rk g 6= rk f ⇒ [C] : H∞
C = (1)

• rk g = rk f ⇒ ig ∈ H∞
C + [C]

• B1
1 is partially reduced w.r.t. C2, . . . , Ck.

• ⇒ similarly for all Br
1, 1 < r < m1 − d1.

• For B1 = B0
1 , . . . , B

m1−d1

1 , we have:

B1 ⊂ [C], HB1
⊂ H∞

C + [C]
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Differentiate&Autoreduce is correct
Lemma. Let C be a weak d-triangular set, and let f be a
polynomial such that lv f 6∈ lv C and if ∈ H∞

C + [C]. Let
f →C g. Then

• rk g 6= rk f ⇒ [C] : H∞
C = (1)

• rk g = rk f ⇒ ig ∈ H∞
C + [C]

• B0
2 = alg-rem(C2, {B0

1 , . . . , B
(m1−d1)
1 )

• C2 is partially reduced w.r.t. C3, . . . , Ck and y
(d1+l)
1 ,

l > m1 − d1.

• By Lemma, two cases are possible:
• rk B0

2 = rk C2, iB0
2
∈ H∞

B1
+ [B] ⊂ H∞

C + [C]

• [B] : H∞
B = (1) ⇒ [C] : H∞

C = (1)

• Similarly for B1
2 , . . . , B

m2−d2

2 and Br
i , i > 2.
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Differentiate&Autoreduce is correct
Inequality

mi(B) ≤ mi +
k

∑

j=1

(mj − dj), i = k + 1, . . . , n

follows from the fact that the two nested loops

for i := 1 to k do

. . .

for j := 1 to mi − di do

. . .

end for

end for

have
∑k

j=1(mj − dj) iterations, and at each iteration each

polynomial is differentiated at most once.
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Final algorithm and bound
Algorithm Rosenfeld-Gröbner(F0)

Output: {F0} =
T

(A,H)∈T [A] : H∞ satisfying M(A) ≤ (n − 1)!M(F0), (A, H) ∈ T

T := ∅, U := {(F0 \ {min F0}, {min F0}, ∅)}

while U 6= ∅ do

Take and remove any (F, C, H) ∈ U

Let mi = max{ordyi
f | f ∈ F ∪ C}, i = 1, . . . , n

B :=Differentiate&Autoreduce(C, {mi}
n
i=1)

if B 6= ∅ then

R := alg-rem(F, B) \ {0}

if R = ∅ then T := T ∪Autoreduce&Check(C,H ∪ HC)

else C> := {p ∈ C | lv p = lv(min R)}

C̄ := C \ C> ∪ {min R}

F̄ := C> ∪ R \ {min R}

H̄ := d-rem(H ∪ HC̄ , C̄)

if 0 6∈ H̄ then U := U ∪ {(F̄ , C̄, H̄)}

end if

U := U ∪ {(F ∪ {h}, C, H) | h ∈ HC , h 6∈ K}

end if

end while

return T
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Final proof of the bound

• mi(B) ≤ mi +
k

P

j=1
(mj − dj), k < i ≤ n

•

mi(R) ≤

(

di, 1 ≤ i ≤ k

mi(B), k < i ≤ n

• Mlv C(R) ≤ (n − k)
k

P

i=1
di +

n
P

i=k+1

mi +
n

P

i=k+1

(mi − di) ≤ Mlv C(F ∪ C)

• Two cases are possible:
• |C| < n: Again two cases:

• |C̄| < n:

Mlv C̄(F̄∪C̄) ≤

8

>

<

>

:

Mlv C(F ∪ C), lv C̄ = lv C

(n − | lv C| − 1)Mlv C(F ∪ C), lv C̄ = lv C ∪ {y},

y 6∈ lv C

• |C̄| = n: M(F̄ ∪ C̄) = Mlv C(F̄ ∪ C̄) ≤ M(F ∪ C).

• |C| = n. Then also |C̄| = n and M(F̄ ∪ C̄) ≤
Pn

i=1 di ≤ M(F ∪ C).

• Therefore M(A) ≤ (n − 1)!M(F0).
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