Wild Behavior of Truncation in Hahn Fields

Santiago Camacho

University of Illinois

5 de Mayo, 2017

Santiago Camacho (University of Illinois) Wild Behavior of Truncation in Hahn Fields

Valued Fields

A valued field is a field K equipped with a surjective map $v: K \to \Gamma \cup \{\infty\}$, such that for all $f, g \in K$ we have (V0) $v(f) = \infty \iff f = 0$ (V1) v(fg) = v(f) + v(g), (V2) $v(f + g) \ge \min\{v(f), v(g)\}$

- The valuation ring is $\mathcal{O} := \{f \in K : v(f) \ge 0\}$,
- 2 the maximal ideal of \mathcal{O} , $\mathcal{O} := \{f \in K : v(f) > 0\}$, and
- **③** the residue field of *K* is defined to be $\mathbf{k} := \mathcal{O}/\mathcal{O}$.

A monomial group of K is a subgroup $\mathfrak{M} \subseteq K^{\times}$ such that $v : \mathfrak{M} \to \Gamma$ is a group isomorphism.

An **additive complement to** \mathcal{O} is an additive subgroup V of K such that $K = V \oplus \mathcal{O}$.

Hahn Series

Let **k** be a field, and Γ be an ordered abelian group. We consider the Hahn field $\mathcal{K} = \mathbf{k}((t^{\Gamma}))$ consisting of elements $f = \sum_{\gamma \in \Gamma} f_{\gamma} t^{\gamma}$ with well-ordered support, where $\operatorname{supp}(f) = \{\gamma : f_{\gamma} \neq 0\}$.

$$f+g=\sum_{\gamma\in\Gamma}(f_\gamma+g_\gamma)t^\gamma; \quad fg=\sum_{\gamma\in\Gamma}\left(\sum_{\delta\in\Gamma}f_\delta g_{\gamma-\delta}
ight)t^\gamma$$

For Hahn fields we have the following

- $\mathcal{O} := \{ f \in K : \operatorname{supp}(f) \ge 0 \},\$
- a (canonical) additive complement of \mathcal{O} , namely

$$V = \{f \in K : \operatorname{supp}(f) < 0\},\$$

• and a (canonical) choice of monomial group $\mathfrak{M} = t^{\Gamma}$.

Examples of Hahn Fields

1 For $\mathbf{k} = \mathbb{R}$ and $\Gamma = \mathbb{Z}$, we obtain the Laurent series field in *t*

$$\mathbb{R}((t^{\mathbb{Z}})) = \left\{ \sum_{i>k} f_i t^i : k \in \mathbb{Z}, \,\, f_i \in \mathbb{R}
ight\}$$

2 For $\mathbf{k} = \mathbb{R}$ and $\Gamma = \mathbb{Q}$ an example of an element in $\mathbf{k}((t^{\Gamma}))$ is

$$f = \sum_{n>0} t^{1-\frac{1}{n}} + \sum_{n>0} t^n$$

Note that the order type of the support of *S* is $\omega + \omega$

Truncation In Hahn Fields

Given $f \in \mathbf{k}((t^{\Gamma}))$ and $\delta \in \Gamma$ we define the truncation of f at δ as

$$f|_{\delta} = \sum_{\gamma < \delta} f_{\gamma} t^{\gamma}.$$

For any Laurent series a truncation is a Laurent polynomial
 For f = ∑_{n>0} t^{1-1/n} + ∑_{n>0} tⁿ ∈ ℝ((t^Q)) as above
 f|₂ = ∑_{n>0} t^{1-1/n} + t

We call $S \subseteq \mathbf{k}((t^{\Gamma}))$ truncation closed if for all $f \in S$ all truncations of f lie inside S (i.e. for all $\gamma \in \Gamma$ we have $f|_{\gamma} \in S$).

A derivation ∂ on a field ${\cal K}$ is an additive map that satisfies the Liebniz rule.

•
$$\partial(f+g) = \partial(f) + \partial(g)$$

•
$$\partial(fg) = \partial(f)g + f\partial(g)$$

A strong derivation in a Hahn field opens sums

•
$$\partial(\sum_{\gamma} f_{\gamma} t^{\gamma}) = \sum_{\gamma} \partial(f_{\gamma} t^{\gamma})$$

Any strong derivation induces an additive map $c : \Gamma \to \mathbf{k}((t^{\Gamma}))$ given by $c(\gamma) = (t^{\gamma})^{\dagger} = (t^{\gamma})'/t^{\gamma}$.

- Theorem (van den Dries, Fornasiero, Mourgues, Ressayre, Marker, Macintyre)
- Let S be a truncation closed subset of $\mathbf{k}((t^{\Gamma}))$.
 - The ring and the field generated by S are truncation closed.
- If F is a truncation closed subfield of $\mathbf{k}((t^{\Gamma}))$ and $char(\mathbf{k}) = 0$
 - The henselization of F in $\mathbf{k}((t^{\Gamma}))$ is truncation closed.
 - If F is henselian, then any algebraic extension is truncation closed.
 - Any extensions of F given by $\exp(f)$ or $\log(1+f)$, for f ranging over element of positive support in F, are also truncation closed.

Robustness with derivation

Theorem

Let ∂ be a derivation on $K = \mathbf{k}((t^{\Gamma}))$. Let F be a truncation closed subfield of K If the induced map is such that $c(\Gamma) \subseteq \mathbf{k}$, then the differential ring generated by F is truncation closed.

Definition

An ordered valued differential field is an H-field if

•
$$\mathcal{O} = \operatorname{conv}(C) = C \oplus \mathcal{O}$$

• If f > C, then f' > 0

Definition

An H-field K is Liouville closed if K is real closed, (K)' = K and $K^{\dagger} = K$.

The field of Logarithmic-Exponential series ${\mathbb T}$ is (informaly) a series field in which the monomials are

- Real powers of x
- e^f for f a series with negative support
- products of the above
- precomposition of the above by iterations of the logarithm

Theorem

Let F be a truncation closed differential subfield of \mathbb{T} closed under logarithms, then the Liouville closure of F is truncation closed.

Take any set S

Take any set S Consider all Cartesian powers of S, namely $S^0, S, S^2, \ldots, S^n, \ldots$

Take any set SConsider all Cartesian powers of S, namely $S^0, S, S^2, \ldots, S^n, \ldots$ Let $\mathcal{F} = \{\mathcal{F}_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$

Take any set SConsider all Cartesian powers of S, namely $S^0, S, S^2, \ldots, S^n, \ldots$ Let $\mathcal{F} = \{\mathcal{F}_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ The Structure $S = (S; \mathcal{F}) = \{S_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ is the smallest such that

• $\mathcal{F} \subseteq \mathcal{S}$ and $\{s\} \in \mathcal{S}_1$ for $s \in S$

Take any set SConsider all Cartesian powers of S, namely $S^0, S, S^2, \ldots, S^n, \ldots$ Let $\mathcal{F} = \{\mathcal{F}_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ The Structure $S = (S; \mathcal{F}) = \{S_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ is the smallest such that

- $\mathcal{F} \subseteq \mathcal{S}$ and $\{s\} \in \mathcal{S}_1$ for $s \in S$
- The "diagonals" $\Delta_{1,n} = \{(x_1, x_2, \dots, x_n) : x_1 = x_n\}$ are in \mathcal{S}^n ,

Take any set SConsider all Cartesian powers of S, namely $S^0, S, S^2, \ldots, S^n, \ldots$ Let $\mathcal{F} = \{\mathcal{F}_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ The Structure $S = (S; \mathcal{F}) = \{S_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ is the smallest such that

• $\mathcal{F} \subseteq \mathcal{S}$ and $\{s\} \in \mathcal{S}_1$ for $s \in S$

- The "diagonals" $\Delta_{1,n} = \{(x_1, x_2, \dots, x_n) : x_1 = x_n\}$ are in \mathcal{S}^n ,
- it is closed under unions $(A, B \in S_n \rightarrow A \cup B \in S^n)$,

Take any set *S* Consider all Cartesian powers of *S*, namely $S^0, S, S^2, \ldots, S^n, \ldots$ Let $\mathcal{F} = \{\mathcal{F}_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ The Structure $\mathcal{S} = (S; \mathcal{F}) = \{\mathcal{S}_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ is the smallest such that

- $\mathcal{F} \subseteq \mathcal{S}$ and $\{s\} \in \mathcal{S}_1$ for $s \in S$
- The "diagonals" $\Delta_{1,n} = \{(x_1, x_2, \dots, x_n) : x_1 = x_n\}$ are in \mathcal{S}^n ,
- it is closed under unions $(A, B \in S_n \rightarrow A \cup B \in S^n)$,
- it is closed under complements $(A \in \mathcal{S}_n \to \mathcal{S}^n \setminus A \in \mathcal{S}_n)$,

Take any set *S* Consider all Cartesian powers of *S*, namely $S^0, S, S^2, \ldots, S^n, \ldots$ Let $\mathcal{F} = \{\mathcal{F}_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ The Structure $\mathcal{S} = (S; \mathcal{F}) = \{\mathcal{S}_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ is the smallest such that

- $\mathcal{F} \subseteq \mathcal{S}$ and $\{s\} \in \mathcal{S}_1$ for $s \in S$
- The "diagonals" $\Delta_{1,n} = \{(x_1, x_2, \dots, x_n) : x_1 = x_n\}$ are in \mathcal{S}^n ,
- it is closed under unions $(A, B \in S_n \rightarrow A \cup B \in S^n)$,
- it is closed under complements $(A \in S_n \to S^n \setminus A \in S_n)$,
- it is closed under projections (A $\in \mathcal{S}_{m+n}
 ightarrow \pi_m(A) \in \mathcal{S}_m$), and

Take any set *S* Consider all Cartesian powers of *S*, namely $S^0, S, S^2, \ldots, S^n, \ldots$ Let $\mathcal{F} = \{\mathcal{F}_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ The Structure $\mathcal{S} = (S; \mathcal{F}) = \{\mathcal{S}_n \subseteq \mathcal{P}(S^n) : n \in \mathbb{N}\}$ is the smallest such that

- $\mathcal{F} \subseteq \mathcal{S}$ and $\{s\} \in \mathcal{S}_1$ for $s \in S$
- The "diagonals" $\Delta_{1,n} = \{(x_1, x_2, \dots, x_n) : x_1 = x_n\}$ are in \mathcal{S}^n ,
- it is closed under unions $(A, B \in S_n \rightarrow A \cup B \in S^n)$,
- it is closed under complements ($A \in \mathcal{S}_n o S^n \setminus A \in \mathcal{S}_n$),
- it is closed under projections (A $\in \mathcal{S}_{m+n}
 ightarrow \pi_m(A) \in \mathcal{S}_m$), and
- it is closed under Cartesian products $(A \in S_m, B \in S_n \rightarrow A \times B \in S_{m+n})$

We call the elements of S_n definable sets.

Concrete example of $\mathbb R$

Consider $(\mathbb{R}; +, \times)$ polynomials can be defined (since composition is defined)

$$Graph(g \circ f) = \pi_{x,z}(\mathbb{R} \times Graph(g) \cap Graph(f) \times \mathbb{R})$$

 $\{(x,z) : f(x) = y \& g(y) = z\}$

An ordering can be defined

$$x \leq y \iff \exists z(x+z^2=y)$$

Theorem (Tarski)

All definable sets are of the form

$$\{x \in \mathbb{R}^n : f(x) = 0 \& g_i(x) > 0\}$$

for some $f, \{g_i\}_{i < m} \in \mathbb{R}[X_1, \dots, X_n]$

Examples of Model Theoretic Structures

Tame (Stable)

- (S) Any set with no structure
- (\mathbb{C} ; \times , +), in fact any algebraically closed field
- Differentially closed fields of characteristic 0

Examples of Model Theoretic Structures

Tame (Stable)

- (S) Any set with no structure
- (\mathbb{C} ; \times , +), in fact any algebraically closed field
- Differentially closed fields of characteristic 0

Relatively Tame (NIP or NSOP)

- (V; E) The random graph
- ($\mathbb{R};+,\times$), in fact any real closed field
- $(\mathcal{P};+, imes,\mathcal{O})$ Puisseux series over $\mathbb C$ and in fact any ACVF

Examples of Model Theoretic Structures

Tame (Stable)

- (S) Any set with no structure
- (\mathbb{C} ; \times , +), in fact any algebraically closed field
- Differentially closed fields of characteristic 0

Relatively Tame (NIP or NSOP)

- (V; E) The random graph
- ($\mathbb{R};+, imes$), in fact any real closed field
- $(\mathcal{P}; +, \times, \mathcal{O})$ Puisseux series over $\mathbb C$ and in fact any ACVF

Completely Wild

- (ℤ;+,×)
- (V,\in) any model of ZFC(axiomatic set theory)
- ($\mathcal{B}; \wedge, \neg$) any atomless boolean algebra

The Model Theoretic Universe

Map of the Universe

	ble	superstable		st	stable (NOP)	
strongly	minimal	o-mi	nimal	dp	o-minimal	
NIP	supe	ersimple		sim	simple (NTP)	
NSOP1	NT	P1	NTP ₂		NSOP	
NSOP ₃	NS	SOP4 NSOP		P _{n+1}	NSOP _{co}	
List of • ACF • Q-Ve • (Z, s • Hrus mini-	Exam ector s $x \mapsto x - s$ shovsk imal se ite set	ples pace + 1) d's ne et	es ew si	trong	lly ()	

Santiago Camacho (University of Illinois) Wild Behavior of Truncation in Hahn Fields

The Strict Order Property

Definition

A relation $\varphi(x; y)$ on $M^x \times M^y$ has the **Strict Order Property**, SOP for short, if there are $\{b_i\}_{i \in \mathbb{N}} \subseteq M^y$ such that

$$\varphi(M^{x}; b_{i}) \subseteq \varphi(M^{x}, b_{j}) \iff i < j$$

The Independence Property

Definition

A relation $\varphi(x; y)$ on M has the **independence property**, IP for short, if there are $A = \{a_i\}_{i \in \mathbb{N}} \subseteq M^x$, and $\{b_I\}_{I \in \mathcal{P}(\mathbb{N})} \subseteq M^y$ such that

$$= arphi(a_i; b_I) \iff i \in I$$

In such case we say that the relation $\varphi(x; y)$ shatters A.

5 de Mayo, 2017

15 / 24

Some definable properties

Let $K = \mathbf{k}((t^{\Gamma}))$ be a Hahn field. Let $\mathcal{K} = (K; 0, 1, +, \times, \mathcal{O}, \mathfrak{M}, V)$.

Note that for $x \in f$

$$x|_0 = v \iff \exists y \in \mathcal{O} : x = v + y$$

and for any $\mathfrak{m} \in \mathfrak{M}$

$$x|_{v(\mathfrak{m})} = \mathfrak{m}((\mathfrak{m}^{-1}x)|_0).$$

Moreover we can identify when a monomial belongs to the "support" of an element

$$\mathfrak{m} \in \mathrm{supp}(f) \iff f - f|_{\nu(\mathfrak{m})} \asymp \mathfrak{m}$$

IP in Truncation

Definition

A relation $\varphi(x; y)$ on M has the **IP**, if there are $A = \{a_i\}_{i \in \mathbb{N}} \subseteq M^x$, and $\{b_l\}_{l \in \mathcal{P}(\mathbb{N})} \subseteq M^y$ such that

$$= \varphi(a_i; b_I) \iff i \in I$$

In such case we say that the relation $\varphi(x; y)$ shatters A.

Proposition

"x is in the support of y" has IP

Proof.

Let $\Theta = \{\theta_i : i \in \mathbb{N}\}$ be a well ordered subset of Γ . For each $I \subseteq \mathcal{P}(\mathbb{N})$ let $f_I = \sum_{i \in I} t^{\theta_i}$. Then the formula "x is in the support of y" shatters the set t^{Θ}

We say that a formula $\varphi(x; y)$ has the **tree property of the second kind**, or TP2 for short, if there are tuples $\{b_j^i : i, j \in \mathbb{N}\} \subseteq M^y$ such that for any $\sigma : \mathbb{N} \to \mathbb{N}$ the set $\{\varphi(x; b_{\sigma(i)}^i) : i \in \mathbb{N}\}$ is consistent and for any *i* and $j \neq k$ we have $\{\varphi(x; b_j^i), \varphi(x; b_k^i)\}$ is inconsistent.

We say that a formula $\varphi(x; y)$ has the **tree property of the second kind**, or TP2 for short, if there are tuples $\{b_j^i : i, j \in \mathbb{N}\} \subseteq M^y$ such that for any $\sigma : \mathbb{N} \to \mathbb{N}$ the set $\{\varphi(x; b_{\sigma(i)}^i) : i \in \mathbb{N}\}$ is consistent and for any *i* and $j \neq k$ we have $\{\varphi(x; b_j^i), \varphi(x; b_k^i)\}$ is inconsistent. $\varphi(x; b_0^0) \qquad \varphi(x; b_1^0) \qquad \varphi(x; b_2^0) \qquad \dots \qquad \varphi(x; b_i^0) \qquad \dots$

$$\varphi(x; b_0^1) \qquad \varphi(x; b_1^1) \qquad \varphi(x; b_2^1) \qquad \dots \qquad \varphi(x; b_j^1)$$

$$\varphi(x; b_0^i) \qquad \varphi(x; b_1^i) \qquad \varphi(x; b_2^i) \qquad \dots \qquad \varphi(x; b_j^i) \qquad \dots$$

Santiago Camacho (University of Illinois) Wild Behavior of Truncation in Hahn Fields

Inconsistent

$$\varphi(x; b_0^0) \qquad \varphi(x; b_1^0) \qquad \varphi(x; b_2^0) \qquad \dots \qquad \varphi(x; b_j^0) \qquad \dots$$

$$\varphi(x; b_0^1) \qquad \varphi(x; b_1^1) \qquad \varphi(x; b_2^1) \qquad \dots \qquad \varphi(x; b_j^1) \qquad \dots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \ddots \qquad \vdots \qquad \ddots \qquad \vdots \qquad \ddots$$

$$\varphi(x; b_0^i) \qquad \varphi(x; b_1^i) \qquad \varphi(x; b_2^i) \qquad \dots \qquad \varphi(x; b_j^i) \qquad \dots$$

÷

· · .

÷

÷

÷

.

.

.

٠

۰.

Checking TP2

Lemma

Let T be a complete theory and $M \models T$. Let $A = \{a_i : i \in \mathbb{N}\} \subseteq M^x$ and $B = \{b_l : l \in \mathcal{P}(\mathbb{N})\} \subseteq M^y$. Assume that there is $\varphi(x; y)$ such that for any fixed $b_l \in B$

 $\models \varphi(a; b_I) \iff$ there is $i \in I$ such that $a = a_i$.

Then φ has TP2. In this case we say φ exclusively shatters A.

The Place of Truncation in the Model Theoretic Universe

Corollary

"x is in the support of y" has TP2

Proof.

Let Θ be a well ordered subset of Γ . For each $I \subseteq \mathcal{P}(\mathbb{N})$ let $f_I = \sum_{i \in I} t^{\theta_i}$. Then the formula "x is in the support of y" exclusively shatters the set t^{Θ}

Bibliography

- C. Towards a Model Theory of Hahn Fields with Truncation (in preparation)
- Gabriel Conant www.forkinganddividing.com
- L. van den Dries, A. Macintyre, D. Marker *Logarithmic-Exponential Power Series*. Journal of the London Mathematical Society(2) 56 (1997), N. 3, 417–434.
- L. van den Dries *Truncation in Hahn Fields*, Valuation Theory in Interaction, 579-595.

More Bibliography

- A. Fornasiero, F.V. Kuhlmann, S. Kuhlmann *Towers of complements to valuation rings and truncation closed embeddings of valued fields.* Journal of Algebra 323 (2010), no. 3, 574–600.
- Fornasiero, Antongiulio: *Embedding Henselian fields into power series*, Journal of Algebra 304 (2006), 112-156
- M.H. Mourgues, J.P. Ressayre, *Every real closed field has an integer part*. Journal of Symbolic Logic 58 (1993), No.2, 641–647