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Valued Fields

A valued field is a field K equipped with a surjective map
v : K → Γ ∪ {∞}, such that for all f , g ∈ K we have

(V0) v(f ) =∞ ⇐⇒ f = 0
(V1) v(fg) = v(f ) + v(g),
(V2) v(f + g) ≥ min{v(f ), v(g)}

1 The valuation ring is O := {f ∈ K : v(f ) ≥ 0},
2 the maximal ideal of O, O := {f ∈ K : v(f ) > 0}, and
3 the residue field of K is defined to be k := O/O.

A monomial group of K is a subgroup M ⊆ K× such that v : M→ Γ is
a group isomorphism.
An additive complement to O is an additive subgroup V of K such that
K = V ⊕O.
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Hahn Series

Let k be a field, and Γ be an ordered abelian group. We consider the Hahn
field K = k((tΓ)) consisting of elements f =

∑
γ∈Γ fγtγ with well-ordered

support, where supp(f ) = {γ : fγ 6= 0}.

f + g =
∑
γ∈Γ

(fγ + gγ)tγ ; fg =
∑
γ∈Γ

∑
δ∈Γ

fδgγ−δ

 tγ

For Hahn fields we have the following
O := {f ∈ K : supp(f ) ≥ 0},
a (canonical) additive complement of O, namely

V = {f ∈ K : supp(f ) < 0},

and a (canonical) choice of monomial group M = tΓ.
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Examples of Hahn Fields

1 For k = R and Γ = Z, we obtain the Laurent series field in t

R((tZ)) =

∑
i>k

fi t i : k ∈ Z, fi ∈ R


2 For k = R and Γ = Q an example of an element in k((tΓ)) is

f =
∑
n>0

t1− 1
n +

∑
n>0

tn

Note that the order type of the support of S is ω + ω

Santiago Camacho (University of Illinois) Wild Behavior of Truncation in Hahn Fields 5 de Mayo, 2017 4 / 24



Truncation In Hahn Fields

Given f ∈ k((tΓ)) and δ ∈ Γ we define the truncation of f at δ as

f |δ =
∑
γ<δ

fγtγ .

1 For any Laurent series a truncation is a Laurent polynomial
2 For f =

∑
n>0 t1− 1

n +
∑

n>0 tn ∈ R((tQ)) as above

f |2 =
∑
n>0

t1− 1
n + t

We call S ⊆ k((tΓ)) truncation closed if for all f ∈ S all truncations of f
lie inside S (i.e. for all γ ∈ Γ we have f |γ ∈ S ).
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Some derivations in Hahn fields

A derivation ∂ on a field K is an additive map that satisfies the Liebniz
rule.

∂(f + g) = ∂(f ) + ∂(g)
∂(fg) = ∂(f )g + f ∂(g)

A strong derivation in a Hahn field opens sums
∂(

∑
γ fγtγ) =

∑
γ ∂(fγtγ)

Any strong derivation induces an additive map c : Γ→ k((tΓ)) given by
c(γ) = (tγ)† = (tγ)′/tγ .
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Robustness of Truncation

Theorem (van den Dries, Fornasiero, Mourgues, Ressayre, Marker,
Macintyre )
Let S be a truncation closed subset of k((tΓ)).

The ring and the field generated by S are truncation closed.
If F is a truncation closed subfield of k((tΓ)) and char(k) = 0

The henselization of F in k((tΓ)) is truncation closed.
If F is henselian, then any algebraic extension is truncation closed.
Any extensions of F given by exp(f ) or log(1 + f ), for f ranging over
element of positive support in F , are also truncation closed.
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Robustness with derivation

Theorem
Let ∂ be a derivation on K = k((tΓ)). Let F be a truncation closed
subfield of K If the induced map is such that c(Γ) ⊆ k, then the
differential ring generated by F is truncation closed.

Definition
An ordered valued differential field is an H-field if
O = conv(C) = C ⊕ O
If f > C , then f ′ > 0
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Definition
An H-field K is Liouville closed if K is real closed, (K )′ = K and K † = K .

The field of Logarithmic-Exponential series T is (informaly) a series field in
which the monomials are

Real powers of x
ef for f a series with negative support
products of the above
precomposition of the above by iterations of the logarithm

Theorem
Let F be a truncation closed differential subfield of T closed under
logarithms, then the Liouville closure of F is truncation closed.
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Structures

Take any set S

Consider all Cartesian powers of S, namely S0, S, S2, . . . ,Sn, . . .
Let F = {Fn ⊆ P(Sn) : n ∈ N}
The Structure S = (S;F) = {Sn ⊆ P(Sn) : n ∈ N} is the smallest such
that
F ⊆ S and {s} ∈ S1 for s ∈ S
The “diagonals” ∆1,n = {(x1, x2, . . . , xn) : x1 = xn} are in Sn,
it is closed under unions (A,B ∈ Sn → A ∪ B ∈ Sn),
it is closed under complements (A ∈ Sn → Sn \ A ∈ Sn),
it is closed under projections (A ∈ Sm+n → πm(A) ∈ Sm), and
it is closed under Cartesian products
(A ∈ Sm,B ∈ Sn → A× B ∈ Sm+n)

We call the elements of Sn definable sets.
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Concrete example of R
Consider (R; +,×)
polynomials can be defined (since composition is defined)

Graph(g ◦ f ) = πx ,z(R× Graph(g) ∩ Graph(f )× R)
{(x , z) : f (x) = y & g(y) = z}

An ordering can be defined

x ≤ y ⇐⇒ ∃z(x + z2 = y)

Theorem (Tarski)
All definable sets are of the form

{x ∈ Rn : f (x) = 0 & gi (x) > 0}

for some f , {gi}i<m ∈ R[X1, . . . ,Xn]
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Examples of Model Theoretic Structures

Tame (Stable)
(S) Any set with no structure
(C;×,+), in fact any algebraically closed field
Differentially closed fields of characteristic 0

Relatively Tame (NIP or NSOP)
(V ; E ) The random graph
(R; +,×), in fact any real closed field
(P; +,×,O) Puisseux series over C and in fact any ACVF

Completely Wild
(Z; +,×)
(V ,∈) any model of ZFC(axiomatic set theory)
(B;∧,¬) any atomless boolean algebra
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The Model Theoretic Universe
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The Strict Order Property

Definition
A relation ϕ(x ; y) on Mx ×My has the Strict Order Property, SOP for
short, if there are {bi}i∈N ⊆ My such that

ϕ(Mx ; bi ) ⊆ ϕ(Mx , bj) ⇐⇒ i < j
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The Independence Property

Definition
A relation ϕ(x ; y) on M has the independence property, IP for short, if
there are A = {ai}i∈N ⊆ Mx , and {bI}I∈P(N) ⊆ My such that

|= ϕ(ai ; bI) ⇐⇒ i ∈ I

In such case we say that the relation ϕ(x ; y) shatters A.
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Some definable properties

Let K = k((tΓ)) be a Hahn field.
Let K = (K ; 0, 1,+,×,O,M,V ).

Note that for x ∈ f

x |0 = v ⇐⇒ ∃ y ∈ O : x = v + y

and for any m ∈M
x |v(m) = m((m−1x)|0).

Moreover we can identify when a monomial belongs to the “support” of an
element

m ∈ supp(f ) ⇐⇒ f − f |v(m) � m
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IP in Truncation

Definition
A relation ϕ(x ; y) on M has the IP, if there are A = {ai}i∈N ⊆ Mx , and
{bI}I∈P(N) ⊆ My such that

|= ϕ(ai ; bI) ⇐⇒ i ∈ I

In such case we say that the relation ϕ(x ; y) shatters A.

Proposition
“x is in the support of y” has IP

Proof.
Let Θ = {θi : i ∈ N} be a well ordered subset of Γ.
For each I ⊆ P(N) let fI =

∑
i∈I tθi .

Then the formula “x is in the support of y” shatters the set tΘ
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The Tree Property of the Second Kind
We say that a formula ϕ(x ; y) has the tree property of the second kind,
or TP2 for short, if there are tuples {bi

j : i , j ∈ N} ⊆ My such that for any
σ : N→ N the set {ϕ(x ; bi

σ(i)) : i ∈ N} is consistent and for any i and
j 6= k we have {ϕ(x ; bi

j ), ϕ(x ; bi
k)} is inconsistent.

ϕ(x ; b0
0) ϕ(x ; b0

1) ϕ(x ; b0
2) . . . ϕ(x ; b0

j ) . . .

ϕ(x ; b1
0) ϕ(x ; b1

1) ϕ(x ; b1
2) . . . ϕ(x ; b1

j ) . . .

...
...

... . . . ... . . .

ϕ(x ; bi
0) ϕ(x ; bi

1) ϕ(x ; bi
2) . . . ϕ(x ; bi

j ) . . .

...
...

... . . . ... . . .
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The Tree Property of the Second Kind

Consistent
ϕ(x ; b0

0) ϕ(x ; b0
1)

��

ϕ(x ; b0
2) . . . ϕ(x ; b0

j )

uu

. . .

ϕ(x ; b1
0) ϕ(x ; b1

1)

%%

ϕ(x ; b1
2)

yy

. . . ϕ(x ; b1
j ) . . .

...
...

��

...

))

. . . ... . . .

ϕ(x ; bi
0) ϕ(x ; bi

1)

yy

ϕ(x ; bi
2) . . . ϕ(x ; bi

j )

||

. . .

...
...

... . . . ... . . .
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The Tree Property of the Second Kind

Inconsistent
ϕ(x ; b0

0) ϕ(x ; b0
1) ϕ(x ; b0

2) . . . ϕ(x ; b0
j ) . . .

ϕ(x ; b1
0) ϕ(x ; b1

1) --ϕ(x ; b1
2) . . . ϕ(x ; b1

j )qq . . .

...
...

... . . . ... . . .

ϕ(x ; bi
0) --

ϕ(x ; bi
1) ϕ(x ; bi

2)qq
. . . ϕ(x ; bi

j ) . . .

...
...

... . . . ... . . .
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Checking TP2

Lemma
Let T be a complete theory and M |= T . Let A = {ai : i ∈ N} ⊆ Mx and
B = {bI : I ∈ P(N)} ⊆ My . Assume that there is ϕ(x ; y) such that for
any fixed bI ∈ B

|= ϕ(a; bI) ⇐⇒ there is i ∈ I such that a = ai .

Then ϕ has TP2. In this case we say ϕ exclusively shatters A.
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The Place of Truncation in the Model Theoretic Universe

Corollary
“x is in the support of y” has TP2

Proof.
Let Θ be a well ordered subset of Γ. For each I ⊆ P(N) let fI =

∑
i∈I tθi .

Then the formula “x is in the support of y” exclusively shatters the set
tΘ
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