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Continuous time computation

Motivation

How can we link computation and continuous dynamical
systems?

What does this tell us about continuous dynamical
systems?
Is there a canonical continuous dynamical system with
respect to computability?
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Continuous time computation

The differential analyser

Computing in continuous time with an analog computer:

The differential analyser, which concept dates to Lord
Kelvin and his brother James Thomson in 1876, and
was constructed at MIT under the supervision of
Vannevar Bush in 1932.
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Continuous time computation

The differential analyser

Figure: Hartree and Porter Meccano differential analyzer originally
built in 1934
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Continuous time computation

Analog circuits

- -
--

- -

−1

t

∫ ×∫cos t
sin t

− sin t

Figure: A circuit that calculates sin and cos. Its initial conditions are
sin(0) = 0 and cos(0) = 1. The output w of the integrator unit

∫
obeys dw = u dv where u and v are its upper and lower inputs
respectively.

The circuit above is represented by the system of equations

y ′1 = y2
y ′2 = −y1

which solution is y1 = sin t and y2 = cos t given the initial
conditions y1(0) = 0 and y2(0) = 1.
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Continuous time computation

Shannon’s GPAC

In 1941 Claude Shannon proposed a mathematical model for
the Differential Analyser.

Shannon proved that, given a sufficient number of integrators,
any differentially algebraic function, i.e., a solution of

p(t , y , y ′, . . . , y (n)) = 0

could be generated.

Shannon’s model was refined by Graça and Costa (2003) who
showed that all non-degenerate GPAC functions are precisely
PIVP functions, i.e. solutions of polynomial initial value
problems

ȳ ′ = p(ȳ , t) , ȳ(0) = x̄ .



Introduction Polynomial IVPs Polynomial IVPs and CA References

Continuous time computation

Shannon’s GPAC

In 1941 Claude Shannon proposed a mathematical model for
the Differential Analyser.

Shannon proved that, given a sufficient number of integrators,
any differentially algebraic function, i.e., a solution of

p(t , y , y ′, . . . , y (n)) = 0

could be generated.

Shannon’s model was refined by Graça and Costa (2003) who
showed that all non-degenerate GPAC functions are precisely
PIVP functions, i.e. solutions of polynomial initial value
problems
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Dynamical systems

Dynamical systems

A discrete dynamical system [X ,N, φ] defined on the
topological space X over N is a function φ : X ×N→ X with the
properties:

1 initial condition: φ(x ,0) = x for all x ∈ X ;
2 semigroup property: φ(φ(x , t1), t2) = φ(x , t1 + t2) for all

t1, t2 ∈ N (for φ(., .) ∈ X ).

A continuous dynamical system [X ,R+
0 , φ] is defined

analogously, where N is replaced by R+
0 .
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Dynamical systems

Dynamical systems

Maps and flows:

A discrete dynamical system can be written as
yt+1 = f (yt ), with y0 = x , where f (.) = φ(.,1) is called the
transition function.

If φ is continuously differentiable with respect to t then, a
continuous dynamical system gives rise to an initial value
problem y ′ = f (t , y), y(0) = x , where f is called a vector
field.
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Dynamical systems

On [0,1]× [0,1] there is a piecewise linear function that
simulates the transition function of an arbritrary TM (Moore
1991)

On R there is an analytic closed form function that
simulates the transition function of an arbritrary TM (Moore
and Koiran 1996)
3-dimensional piecewise constant differential flows on
bounded domains simulate the dynamics of an arbritrary
TM (Asarin, Maler and Pnueli 1995)
On R3 there is a continuous flow y ′ = f (t , y) that simulates
the dynamics of an arbritrary TM (Branicky 1996)
It is conjectured that no analytic map on a compact,
finite-dimensional space can simulate a Turing machine
through a reasonable encoding (Moore 1998).
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Preliminaries

Polynomial initial value problems

Analytic solutions;

Common: they define most of the usual mathematical
functions, in particular the “elementary functions” of
Analysis;
Widely used: e.g. Lorenz, Lokta-Volterra, or Van der Pol
equations;
Challenging: many open questions;
They satisfy an elimination result: Given y ′ = f (y , t) and
y(0) = x , with the components of f being compositions of
polynomials and PIVP functions, y is given by the first
components of some PIVP function (Graça, Buescu and
Campagnolo 2009).
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Preliminaries

Polynomial initial value problems

Some particular questions for PIVPs:

Are PIVP functions computable?

Is the domain of the solution computable?
Is it even decidable if the domain is bounded?
Is the reachability problem for PIVPs decidable?
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Preliminaries

Overview

Unbounded domain Suspension
in Rn

yt+1 = f (yt ) −→ y ′ = p(t , y)

Encoding ↖ ↙ computation
in Nn of y

TM

TM: Turing machine
Discrete dynamical system:
y0 = x , yt+1 = f (yt ), x ∈ Nn, f : Nn → Nn, t ∈ N
Continuous dynamical system:
y(0) = x , y ′ = p(t , y), x ∈ Rn, p : Rn+1 → Rn, t ∈ R+

0
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Preliminaries

Computability of solutions

Definition (PIVP function with parameters in S)
ȳ (or yi ) is a PIVP function with parameters in S if ȳ is the
solution of a polynomial initial value problem ȳ ′ = p(ȳ , t),
ȳ(0) = ȳ0 where the coefficients of p and the components of ȳ0
are in S.

Theorem (follows from Graça, Zhong and Buescu, 2007)

Let ȳ : (α, β) ⊂ R→ Rk be a PIVP function with computable
parameters. Then, ȳ is computable on (α, β).
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Simulation of Turing machines

Encoding TMs

Encoding Turing machine as a discrete dynamical system on
N3:

(ω,q,h)
ψ−→ x ∈ N3

δ ↓ ↓ f

(ω′,q′,h′)
ψ−→ f (x) ∈ N3

If the tape contents is

. . . 000a−p . . . a−1a0a1 . . . an000 . . .

ai ∈ {1, . . . ,9}, q ∈ {1, . . . ,m}, then

ψ :


x1 = a0 + a1 10 + · · ·+ an 10n

x2 = a−1 + a−2 10 + · · ·+ a−p 10p−1

x3 = q
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Simulation of Turing machines

Extension

Definition
The map Ω : Rm → Rm is a robust extension of the map
ω : Nm → Nm if there are δin, δev , δout ∈ (0, 1

2) such that

||n0 − x0||∞ ≤ δin, ||Ω− Ω||∞ ≤ δev

implies that
||ω[k ](n0)− Ω

[k ]
(x0)||∞ ≤ δout

for all k ∈ N
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Simulation of Turing machines

Let Q[π] := {bnπ
n + · · ·+ b1π + b0 ∈ R |b0, . . . ,bn ∈ Q}.

Theorem (Graça, Campagnolo and Buescu, 2008)

The transition function ω : N3 → N3 of a Turing machine (under
the encoding ψ) admits a robust extension Ω : R3 → R3.
Ω can be chosen to be a composition of polynomials with
coefficients in Q[π] and PIVP functions with parameters in Q[π].

Sketch of the proof.
Use a trigonometric interpolation of x mod 10 to obtain a0
from x1. Use polynomial interpolations to represent the next
state, the next symbol, the direction of the move of the head
and update x1 and x2. Use error contracting functions
(compositions of polynomials and trigonometric functions) to
keep the error within, say, 1

4 of the exact encoding.
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Simulation of Turing machines

Suspension

Definition (Robust suspension)
The solution φ of y ′ = f (t , y), y(0) = x ∈ Nm

is a robust suspension of the map ω : Nm → Nm if there are
δin, δev , δout , δtime ∈ (0, 1

2) such that

||x − y0||∞ ≤ δin, ||f − f ||∞ ≤ δev , ||t − k ||∞ ≤ δtime

implies that the solution φ of y ′ = f (t , y), y(0) = y0

satisfies
||ω[k ](x)− φ(t)||∞ ≤ δout for all k ∈ N

.
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Simulation of Turing machines

Construction of the suspension: Branicky’s clocks

The solution of
y ′ = c (b − y)3φ(t),

where φ(t) > 0, approaches at t = 1 the “target” b with
arbitrary precision depending on c, irrespectively of the
initial condition at t = 0.

The following system of polynomial ODEs allows to iterate
the map Ω{

z ′1 = c1(Ω(r(z2))− z1)3 θ(sin 2πt)
z ′2 = c2(r(z1)− z2)3 θ(− sin 2πt)

z1(0) = x0
z2(0) = x0

where r is a rounding function and θ = H(x) ∗ xk .
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Simulation of Turing machines

Construction of the suspension: example

Figure: Suspension of the iteration of f (n) = 2n with ODEs
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Simulation of Turing machines

Construction of the suspension: removing the non-PIVP functions

Consider the perturbed version of the ODE y ′ = c (b − y)3φ(t):

ȳ ′ = c (b̄(t)− ȳ)3φ(t) + e(t)

where |b̄(t)− b| ≤ ρ and |e(t)| ≤ δ.

Lemma
If |y(1)− b| ≤ γ then |ȳ(1)− b| ≤ γ + ρ+ δ/2.

Again, this allows to replace the rounding function r and the
control functions θ(sin 2πt) by appropriate PIVP functions and
re-write the suspension of Ω as a PIVP.
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Simulation of Turing machines

Suspension for discrete dynamical systems with PIVP functions

Theorem (Graça, Buescu and Campagnolo, 2009)
If the map ω : Nm → Nm admits a robust extension
Ω : Rm → Rm whose components are compositions of
polynomials and PIVP functions with parameters in Q[π], then
ω admits a robust suspension φ which a PIVP function with
parameters in Q[π].

Corollary

The transition function ω : N3 → N3 of a Turing machine (under
the encoding ψ) admits a robust suspension φ. Moreover φ is a
PIVP function with parameters in Q[π].
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Applications

Reachability

Corollary
The following problem is undecidable:

Given a vector of polynomial p : Rn+1 → Rn with
coefficients in Q[π], y0 ∈ Q×Qn, and an open set A in
Rn decide if the solution of

y ′ = p(t , y), y(0) = y0

crosses A.
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Applications

Boundedness of the maximal interval of existence

Note: the maximal interval of the PIVP

y ′ = α(y2 − 1)t , y(0) = 3

is bounded for α > 0 and unbounded for α ≤ 0.

Unless one can decide α 6= 0 this gives rise to trivial
undecidability results.

Let’s restrict the parameters of the PIVP to Q[π], which is a
comparable set, i.e., given α, β ∈ Q[π] we can decide if α = β
and α < β.
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Applications

Theorem (Graça, Buescu and Campagnolo, 2009)
The following problem is undecidable:

Given a vector of polynomial p : Rn+1 → Rn with
coefficients in Q[π] and y0 ∈ Qn, decide if the maximal
interval of existence of the solution of
y ′ = p(t , y), y(0) = y0 is bounded.

Sketch of the proof.
Let xq be the component of the PIVP that encodes the state in
the suspension of a TM M. We set M s.t. it halts iff xq reaches
m. Consider the system (equivalent to a PIVP)

z ′1 = xq − (m − 1
2

), z2 =
1
z1
, z1(0) = z2(0) = −1.

If M halts then z ′1 becomes eventually larger than, say, 1/8 and
z2 blows up. Otherwise, z1 always decreases and the solution
is defined everywhere.
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Summary and questions (part 1)

There are PIVPs able to simulate arbitrary Turing
machines (on unbounded domains);

Although the solutions of PIVPs with computable
parameters are computable, several properties of those
dynamical systems are undecidable, even if the
parameters of the system are in Q[π].
PIVPs, which are a well known model of physical
phenomena, are also a robust yet powerful model of
continuous time computation.
Can we get rid of π and obtain the result about
suspensions for PIVPs with parameters in Q?
Can we do a more genuine suspension of discrete
dynamical systems, which doesn’t rely on “clocks”?
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parameters of the system are in Q[π].

PIVPs, which are a well known model of physical
phenomena, are also a robust yet powerful model of
continuous time computation.
Can we get rid of π and obtain the result about
suspensions for PIVPs with parameters in Q?
Can we do a more genuine suspension of discrete
dynamical systems, which doesn’t rely on “clocks”?
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Motivation

Is f :⊂ R→ R computable?

Several notions of computability for real functions:

Turing machine approach: Computable Analysis
GPAC functions
BSS machines
...



Introduction Polynomial IVPs Polynomial IVPs and CA References

Computable analysis

Computable analysis

Since real numbers and many other objects studied in
analysis are “infinite” objects containing an “infinite
amount of information”, one has to approximate them
by “finite” objects containing only a “finite amount of
information” and to perform the actual computations
on these finite objects.
(Brattka et al., A Tutorial on Computable Analysis,
2008)

For instance, a real number is computable if there is a Turing
machine with no input that outputs a binary expansion of that
number (note: the output tape is one-way).
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Computable analysis

Computable reals

Definition (Cauchy representation)
A sequence {rn} of rationals is a ρ-name of a real number x if
there exists three functions a,b, c from N to N such that for all
n ∈ N

rn = (−1)a(n) b(n)

c(n) + 1
and |rn − x | ≤ 2−n.

Definition (Computable real number)
x ∈ R is computable if it has a computable ρ-name, i.e., if a, b
and c are computable.
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Computable analysis

Computable real functions

M is an oracle Turing machine if, at any step of the computation
of M using oracle φ : N→ Nk , M is allowed to query the value
of φ(n) for any n. (Below, φ is a ρ-name for x .)

Definition (Computable function)
A function f : D ⊂ Rm → Rp is computable if there is an oracle
Turing machine such that for any accuracy n and any ρ-name
for x ∈ D given as oracle, computes a rational vector r
satisfying ||r − f (x)|| ≤ 2−n.

In other words, the machine produces a rapidly converging
rational sequence with limit f (x) from a rapidly converging
rational sequence with limit x .

Definition
C(R) denotes the set of computable functions.
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Computable analysis

Equivalent formulation of CA: modulus of continuity

Theorem (see Ko (1991), Corollary 2.14)
f : [0,1]→ R is in C(R) iff there exist three computable
functions m : N→ N, sgn, abs : N3 → N such that:

1 m is a modulus of continuity for f , i.e. for all n ∈ N and all
x , y ∈ [0,1],

|x − y | ≤ 2−m(n) =⇒ |f (x)− f (y)| ≤ 2−n

2 For all (j , k) ∈ N2 such that j
2k ∈ [0,1], and all n ∈ N,∣∣∣∣(−1)sgn(j,k ,n) abs(j , k ,n)

2n − f
(

j
2k

)∣∣∣∣ ≤ 2−n.
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Approximation of computable real functions with PIVPs

C(R)
?
= PIVP functions with parameters in X (X ⊂ R)

⊇ TRUE, if X is a subset of the computable reals
(follows from Graça, Zhong and Buescu, 2007).

⊆ FALSE, even if X = R. This follows from the fact
that, for instance, Euler’s gamma function

Γ(x) =

∫ +∞

0
tx−1e−tdt

is not differentially algebraic (Hölder, 1887).
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Approximation of computable real functions with PIVPs

Approximation of computable real functions with PIVPs

Definition
y(t ; x1, . . . , xk ) is a PIVP function with parameters in S if there
are polynomials p : Rn → Rn with coefficients in S and PIVP
functions q1, . . . ,qn with parameters in S such that y is the
solution of y ′ = p(y , t) and y(0) = (q1(x), . . . ,qn(x)), where x
is some x1, . . . , xk ∈ R.
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Approximation of computable real functions with PIVPs

(A) approximating C(R): two initial conditions x and η ≈ n

Lemma (Bournez, Campagnolo, Graça and Hainry, 2007)
Let f : [0,1]→ R be a computable function. Then there exists a
PIVP function y(t ; x , η) with parameters in Q[π], where
x ∈ [0,1] and |η − n| ≤ ε < 1/2 (n ∈ N), and some T ≥ 0 s.t.

|y1(t ; x , η)− f (x)| ≤ 2−n for all t ≥ T .

Sketch of the proof (i): a “cascade” of ODEs
ODE initial conditions depend on value after Ti

y ′ = p1(y , t) x , η y1(t ; x , η) ≈ 2n

y2(t ; x , η) ≈ x 2m(n)

y ′ = p2(y , t) x1 ≈ 2n, x2 ≈ x 2m(n) y3(t ; x1, x2) ≈
abs(x 2m(n),m(n),n)

y ′ = p3(y , t) x3 ≈ abs(x 2m(n),m(n),n) y4 ≈ f (x)
x4 ≈ 2n
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Approximation of computable real functions with PIVPs

Switching dynamics

Sketch of the proof (ii): define y ′ = f (y , t) where:

f (y , t) =


p1(y , t) , t < T1
p2(y , t) , T1 + δ < t < T1 + T2
p3(y , t) , T1 + T2 + δ < t < T1 + T2 + T3.

Given f1 and f2 (dotted lines) define
some f = φ1

y f1 + φ1
y f2 (solid line)

such that

|f (t)− f1(t)| ≤ ε if y(t) ≤ α− 1/4
|f (t)− f2(t)| ≤ ε if y(t) ≥ α+ 1/4.

y(t) is the control function:
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Approximation of computable real functions with PIVPs

(B) approximating C(R): one initial condition x .

Theorem (Bournez, Campagnolo, Graça and Hainry, 2007)
If f : [0,1]→ R is computable, then there is a PIVP function
y(t ; x) with parameters in Q[π] such that:

1 limt→∞ y2(t ; x) = 0;
2 for x ∈ [0,1], and t ∈ [0,+∞), |y1(t ; x)− f (x)| ≤ y2(t ; x).

Sketch of the proof.
Use the PIVP of the previous lemma with initial condition
x ∈ [0,1] and replace initial condition η by a component y3 with:

y3 ≈ 1 for 0 < t < T1, y3 ≈ 2 for T1 + δ < t < T2 , . . . ,
depending on y4;
y4 ≈ the state of a TM that indicates that
|y1(t ; x)− f (x)| ≤ 2−n.
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Approximation of computable real functions with PIVPs

Characterization of C(R)

Definition (LIM∗)
Let C be a class of functions over R. LIM∗ is an operation
which takes f1, f2 ∈ C, such that limt→∞ f2(t , x) = 0, and returns
f (x) = limt→+∞ f1(t , x) if |f1(t , x)− f (x)| ≤ f2(t , x) for positive t .
C(LIM∗) is the closure of C under LIM∗.

Lemma (Campagnolo and Ojakian 2007)
C(R) = C(R)(LIM∗).

Theorem (Reformulation of the main result of Bournez,
Campagnolo, Graça and Hainry 2007)
On [0,1], C(R) = PIVPQ[π](LIM∗).
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Summary and questions (part 2)

Real computable functions can be approximated by PIVP
functions on compact intervals, which is a further evidence
of their computational completeness.

Is the result true for unbounded intervals?
Can we replace LIM∗ by a more natural limit with the
approximation requirement |f1(t , x)− f (x)| ≤ 1

t ?
Can we replace the set of parameters Q[π] by Q?
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