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Abstract

An avatar is an incarnation of a concept.

Throughout its development, differential algebraic geometry has
received its impetus from interesting examples that both instruct
and point to new paths to explore.
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Yuri Manin, 1979

Three possible languages for the variational formalism: the
classical, geometric, and differential algebra

The language of differential algebra is better suited
for expressing invariant properties of differential
equations, and puts at the disposal of the investigator the
extensive apparatus of commutative algebra, differential
algebra and algebraic geometry.

The numerous “explicit
formulas” for the solutions of the classical and newest
differential equations have good interpretations in this
language; the same may be said for conservation laws.
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However, the language of differential algebra which
has been traditional since the work of Ritt does not
contain the means for describing changes of the functions
(dependent variables) and the variables xi (independent
variables), and for clarifying properties which are
invariant under such changes.

This is one of the main
reasons for the embryonic state of so-called “Bäcklund
transformations” in which there has been a recent surge
of interest.
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Notation etc.

All rings have characteristic 0. C = field of complex nos.
Commuting derivation operators: ∆ = {δ1, · · · , δm} ,
F =C (x1, . . . , xm) , δi | F = ∂xi

Definition

∆-field F † is differentially closed ⇐⇒ A set of ∆-poly eqs / F †

with a soln rational over an extension ∆-field of F † has a solution
rational over F †.

F † =diff closure (F ),C=
(
F †)∆



Affi ne n-space F †n = An.

y = (y1, . . . , yn): ∆-indeterminates.
y (r ) = derivatives of the yi of order ≤ r .
F † {y} = ∪r∈NF †

[
y (r )

]
: ∆-polynomial ring.
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Kolchin topology

Definitions

X ⊆ An is Kolchin closed (a ∆-variety) if it is the set of solns of a
finite set of ∆-poly eqs.

Definition

Let F1, . . . ,Fr be in F †{y}. The ∆-ideal [F1, . . . ,Fr ] generated
by F1, . . . ,Fr is the ideal generated by F1, . . . ,Fr and their
derivatives of all orders. Both [F1, . . . ,Fr ] and its radical have the
same set X of zeros.

√
[F1, . . . ,Fr ] = defining ∆-ideal of X . X is

irreducible iff its defining ∆-ideal is prime.
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Differential rational functions

X : ∆-variety in An

p : its defining ∆-ideal.
y = (y1, . . . , yn), yj = yj mod p. F † {y} = ring of ∆-poly fcns on
X. Its quotient field F † 〈X 〉 is the field of ∆-rational functions on
X .



Bäcklund transformations

A ∆-rational map ϕ : X 99K Ap is a p-tupleof ∆-rational functions
on X . Dom T is a Kolchin-open dense subset U of X .

Theorem

(Chevalley-Seidenberg ConstructabilityTheorem) T (U) contains a
Kolchin-open subset of its Kolchin closure.
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Example

F = C (x), ∆ =
{

δ = d
dx

}
. PII (c) is the second order ordinary

differential equation

y ′′ = 2y3 + xy + c, c ∈ C.

It defines a ∆-subvariety X (c) of the affi ne line A1.

Spose c 6= 1
2 .

T (y) := −y − c − 1
2

∂xy − y2 − x
2
.

T (X (c)) = X (c − 1). It is a morphism of ∆-varieties.
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Example —A transformation of the affi ne line

∆ = {δ1, . . . , δm}
The logarithmic derivative map: `δi : A1 99K A1 `δiy =

δi y
y



Linear differential algebraic groups

Definition

Affi ne ∆- group is a group G

1 with underlying set an affi ne ∆-variety
2 such that the group laws are morphisms of ∆-varieties.

All ∆-groups in this talk are ∆-subgroups of GL(n,F †).
Gm := GL(1,F †), Ga = (F †,+).

Definition

∆-group homomorphism: group homomorphism and morphism of
∆-varieties.
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The dimension polynomial

X := ∆-subvariety of An, with defining ∆-ideal p, and field
F † 〈X 〉 of ∆-rational functions.
∆-dim (X ) = ∆-tr degF † (F † 〈X 〉)
= max # ∆- alg indep generators of F † 〈X 〉 /F †.



Classical differential equations theory

∆-dim(X ) = # arbitrary fcns of m independent variables on
which X depends, generically.

∆-dim does not distinguish when a ∆-subvariety is proper.
We seek a finer measure.
F † 〈X 〉 = lim

−→
r∈N

F †
(
y (r )

)
, where y (r ) is the family of derivatives of

y of order ≤ r . It is an inductive limit of finitely generated fields.



Classical differential equations theory

∆-dim(X ) = # arbitrary fcns of m independent variables on
which X depends, generically.
∆-dim does not distinguish when a ∆-subvariety is proper.
We seek a finer measure.

F † 〈X 〉 = lim
−→
r∈N

F †
(
y (r )

)
, where y (r ) is the family of derivatives of

y of order ≤ r . It is an inductive limit of finitely generated fields.



Classical differential equations theory

∆-dim(X ) = # arbitrary fcns of m independent variables on
which X depends, generically.
∆-dim does not distinguish when a ∆-subvariety is proper.
We seek a finer measure.
F † 〈X 〉 = lim

−→
r∈N

F †
(
y (r )

)
, where y (r ) is the family of derivatives of

y of order ≤ r . It is an inductive limit of finitely generated fields.



Dim poly dX : a numerical polynomial.
dX (y) = tr degF†F †

(
y (r )

)
, r � 0.

dX =
m

∑
j=0
am

(
X +m
m

)
, am ∈ Z.

am = ∆-tr degF † (F † 〈X 〉) = ∆-dim (X )
d := deg dX = ∆-type (X )
ad = typ dim X measures # arbitrary fcns of d indep.variables on
which X depends, generically.
X  Y =⇒ dX < dY
dX not a diff birat invariant.d and ad are diff. birat. invariants
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Example 1 —Turbulence into Heat

F =C (x , t)
∆ = {∂x , ∂t}
F † = diff closure of C (x , t)

H =
{
u ∈ Ga : ∂2xy − ∂ty = 0

}
.

H is a ∆-subgroup of the additive group Ga.



Dim poly of Heat variety

Defining diffpoly (H):

h = ∂2xy − ∂ty .

dH = 2
(
X + 1
1

)
− 1 = 2X + 1.

Algorithm: Kolchin, Differential algebra and algebraic groups,
Lemma 16, p. 51 and Theorem 6, p. 115.

∆-type (H) = 1.
Typ ∆-dim (H) = 2.
Generically, the solns heat eq depend on 2 arbitrary functions of
t.
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A power series expansion

Near the origin, f (t) and g(t), are restrictions to x = 0 of y and
∂xy .

y(x , t) = y(t, 0) + ∂xy(t, 0)x + ∂2xy(t, 0)
x2

2!
+ ∂3xy(t, 0)

x3

3!
....

= f (t) + g(t)x + f ′(t)
x2

2!
+ g ′ (t)

x3

3!
....



The ring F † {y}of ∆-polynomial functions on H is the
∂x -polynomial ring

F † [y , ∂xy , ∂2xy , . . .
]

So, every ∆-rational function on H can be written uniquely as a
quotient of relatively prime ∂x -polynomials.

Fact

Every proper ∆-subgroup of the Heat variety H has ∆-type 0 ( is a
finite-dimensional C-vector space).
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The Cole-Hopf transformation

`∂x : H 99K A1 is called the Cole-Hopf transformation. Dom
(`∂x ) is the Kolchin dense open set H\{0}. What is the image of
H\ {0} under the Cole-Hopf transformation? Let v ∈ A1.
Describe the fiber (`∂x )

−1 (v) in H.



v ∈ `∂x (H\ {0})⇐⇒ ∃u 6= 0 in H such that ∂xu − vu = 0. u
satisfies the differential equations

h = ∂tu + ∂2xu = 0,

g = ∂xu − vu = 0,

and the inequation
u 6= 0.



The defining ∆-ideal F 〈v〉 {y} of the fiber is the prime ∆-ideal:

p = [h, g ] .

h = ∂ty + ∂2xy , g = ∂xy − vy

Fix an orderly ranking of the derivative operators, with ∂x < ∂t .

Rosenfeld algorithm (pseudoreduction) −→ autoreduced set of
generators of p: Each poly is free of derivatives of the leader of
the other.
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The autoreduced set is:

{g , r},
g = ∂xy − vy ,
r = ∂ty +

(
v2 + ∂xv

)
y .

∂xy = leader of g . ∂ty = leader of r .

∂t∂xy = ∂x∂ty
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Rosenfeld coherence:

S = ∂x r − ∂tg ∈ p.

= vr +
(
v2 + ∂xv

)
g + b(v)y , where

b(v) = ∂2xv + ∂tv + 2v∂xv .
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Rosenfeld coherence condition

b(v) = ∂2xv + ∂tv + 2v∂xv .

b (v) = 0 =⇒ S is in the ideal generated by g , r . The leaders of
g , r are < ∂t∂xy , the lowest common derivative of the leaders.
Thus, the set {g , r} is a coherent.autoreduced set Thus it is a
characteristic set of p.

Therefore, y /∈ p. Therefore, there is a
nonzero element in the fiber over v in H.
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If b (v) 6= 0, p = [y ]. 0 is the only solution of the given system of
equations and inequation. Thus, `∂x (H\ {0}) ={

v ∈ Ga : 0 = b(v) = ∂2xv + ∂tv + 2v∂xv
}
.

The differential equation b(v) = 0 is called the Burgers equation
(without external force) (Johannes Martinus Burgers—1895-1981,
Harry Bateman, 1914). It models turbulence that is not sensitive
to initial conditions. Denote the ∆-variety defined by b by B.
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The Integrability conditions

∃u ∈ H such that g (u) = r (u) = 0⇐⇒

`∂xu = v

`∂tu = −(v2 + ∂xv)

⇐⇒ ∂tv = −∂x (v2 + ∂xv)⇐⇒ b (v) = 0.

So, the Burgers equation is the integrability condition for the
existence of a nonzero pre-image of v .
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The principal bundle defined by Cole-Hopf

Let v ∈ B. The fiber over v in H. Let u ∈ H be such that
`∂xu = v .

`∂−1x (v) = Gm (C) u.

So, the Heat variety covers the Burgers variety — `∂x defines a
principal bundle for the multiplicative ∆-group of constant field C.

We turn to our second example: another well-known principal
bundle.
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The Tau functions belonging to PI

The irreducible Painlevé equations are 6 ordinary differential
equations of second order and defined over C (x) of the form

y ′′ = F
(
x , y , y ′, c

)
,

where F is a rational function, and c is a constant.



The equations satisfy:

1 Painlevé Property: the absence of movable singularities. The
locations of the singularities of the solutions (apart from
poles) depend only on the coeffi cients of F .

2 The equation cannot be integrated algebraically, or
transformed into a simpler equation or the defining first order
differential equation of an elliptic function.

Property 2: generically, the solutions are essentially transcendental
Paul Prudent Painlevé and his student B. Gambier from 1900 to
1906 (about 100 years ago).
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Painlevé I

∆ = {δ}, F = C (x) , δ = d
dx ;F † = diff closure (F )

PI: y ′′ = 6y2 + x

All solutions are essentially transcendental.
The variety has no rational solutions and no ∆-subvariety of typical
dim 1.



Theorem

Let W ⊂ A1 be defined by PI. ∃ ∆-subvariety T of typical
dimension 4 of Gm and a surjective morphism µ : T −→ W whose
fibers are principal homogeneous spaces (cosets) of a ∆-subgroup
G of Gm.

G is defined by the differential equation

d
dx

(
y ′

y

)
=
d
dx

(
`
d
dx
y
)
= 0.

µ (τ) = − d
dx

(
τ′

τ

)
, τ ∈ T .

G =
{
y = ec1x+c0 | c0, c1 ∈ C

}
.
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T has defining differential equation(
τ′

τ

)′′′
− 6

((
τ′

τ

)′)2
− x = 0.

Definition

The elements of T are called the τ-functions associated with PI.

Surjectivity: µ is dominant. µ (T ) contains a Kolchin-open dense
subset U of W . W \U must be empty.
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The elements of T are called the τ-functions associated with PI.

Surjectivity: µ is dominant. µ (T ) contains a Kolchin-open dense
subset U of W . W \U must be empty.



Let V ,W be irreducible ∆-varieties of the same type. Let
ϕ : V −→ W be a dominant ∆-rational morphism. Is the
following generalization of Sit’s theorem true generically?

typdim ϕ−1 (w) + typdim W = typdim V



Classification of simple diff alg groups

Definitions

An algebraic group (∆-group) is simple if every proper normal
algebraic subgroup (∆-subgroup) is finite. Equivalently, its Lie
algebra is simple.
A Chevalley group is a simple algebraic group that is defined over
the field Q of rational numbers.



Theorem

Let Γ be a simple ∆-group.

1 ∃ Chevalley group H such that Γ is isomorphic to a Zariski
dense ∆-subgroup G of H.

2 If G 6= H, ∃ A in the Lie algebra of matrices of H such that G
is the ∆-subgroup of H defined by the equation

YAY −1 + Y ′ · Y −1 = A.

Y ′ = [A,Y ] Lax eqn

Note: The Lax eqn is the defining equation of G , Lie G , and the
assoc.subalg of M

(
n,F †) generated by G .
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Gauge action

Let F = C (x) , F † = diff closure of F . Then,
(
F †)∆

= C.
The ∆- group SL(2,F †) acts by affi ne transformations on its Lie
algebra of matrices sl

(
2,F †):

A 7−→ ZAZ−1 + Z ′ · Z−1.

The gauge action is transitive.

The proper Zariski dense ∆-subgroups of SL
(
2,F †) are the

isotropy groups of matrices in sl
(
2,F †) under the gauge

action.We turn now to our third example.
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Configurations of four points on the projective line

This is the story of configurations of 4 points on P1(F †) (Emile
Picard)

Riccati varieties on the projective line P1(F †) behave
like circles on the projective line P1(C).
A ∆-variety V in A1

(
F †) is a Riccati variety if it is the set of

solutions of

y ′ = a0 + a1y + a2y2, a0, a1, a2 ∈ F †.

y : y1y0 The homogenization of the Riccati equation is

y ′1y0 − y1y ′0 = a0y20 + a1y1y0 + a2y21

∞ = (1, 0). The affi ne variety V is Kolchin closed in P1(F †) if
and only if a2 6= 0.
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The representing matrix

Definition

The matrix

A =
(
( 12 )a1 a0
−a2 −( 12 )a1

)
.

represents the Riccati equation

y ′ = a0 + a1y + a2y2.



Example

Example

Let

A =
(
0 x

2
−1 0

)
.

A represents the Riccati equation

y ′ =
x
2
+ y2.



The projective representation of the special linear group

P1
(
F †) = A1

(
F †) ∪∞.

a+∞ = ∞+ a = ∞, if a ∈ A1
(
F †
)

a ·∞ = ∞ · a = ∞ if a 6= 0
a
0
= ∞ if a 6= 0 a

∞
= 0 if a 6= ∞



Definition

PSL(2,F †) is the group of projective linear transformations of

P1(F †). Let
(

α β
γ δ

)
∈ SL(2,F †).

Let u ∈ PSL(2,F †), u 6= ∞,−d
c

T (u) =
αu + β

γu + δ

T (∞) =
α

γ
T
(
− δ

γ

)
= ∞.



The triple-transitivity of the projective special linear group.

Let u1, u2, u3 be distinct points in P1
(
F †). ∃ a unique projective

linear transformation λ mapping u1, u2, u3 to 0, 1,∞.

λ (u) =
(u − u1) (u2 − u3)
(u1 − u2) (u3 − u)

if u1, u2, u3 6= ∞.

λ (u) = −
(
u2 − u3
u3 − u

)
if u1 = ∞,

λ (u) = −
(
u − u1
u3 − u

)
if u2 = ∞,

λ (u) = −
(
u − u1
u1 − u2

)
if u3 = ∞.
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If u1, u2, u3 6= ∞, the determinant of any matrix representing λis
(u1 − u2) (u2 − u3) (u3 − u1) 6= 0

F † algebraically closed =⇒ ∃ a
representing matrix with det 1. This is also true when one of
ui = ∞.λ is called the cross-ratio of the quadruple (u, u1, u2, u3).

Corollary

Let u1, u2, u3 and v1, v2, v3 be triples of distinct points in P1(F †).
. There is a unique projective linear transformation λ mapping
u1, u2, u3 to v1, v2, v3.
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Corollary

PSL
(
2,F †) is not 4-transitive.

Corollary

Let u, u1, u2, u3 and v , v1, v2, v3be quadruples of points in
P1(F †), with u1, u2, u3 and v1, v2v3 distinct. There is a projective
linear transformation mapping u, u1, u2, u3 to v , v1, v2, v3 iff their
cross-ratios are equal.

Corollary

Cross-ratio is an invariant of the projective linear group.



The Metaphor

Theorem

Let u1, u2, u3 be distinct points in P1 (C). There is a unique circle
or line C containing u1, u2, u3. The circle is the curve in the
complex plane defined by the condition

(u − u1) (u2 − u3)
(u1 − u2) (u3 − y)

= x ∈ P1 (R) , R the field of real numbers.

PSL (2,C) permutes the circles in P1 (C) . Let R be the field of
real numbers. PSL (2,R) is the stabilizer of P1 (R).

A subgroup G
of PSL (2,C) stabilizes a circle ⇐⇒ if it conjugate to PSL (2,R).
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Riccati eq —simplest NMS eq.

Fix a fundamental system u1, u2, u3 of disinct solutions of a Riccati
equation. A function u 6= u1, u2, u3 lies on the same Riccati
variety ⇐⇒ their cross-ratio is a constant ⇐⇒

∃c ∈ C :
(u − u1) (u2 − u3)
(u1 − u2) (u3 − u)

= c. (Picard)

This is called a non-linear superposition principle.

Thus, the only
singularities of u are poles.
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Note: By Lie’s Theorem, a non-linear superposition principle
−→u = F (−→u1 , . . . ,−→ur , c1, . . . , cs ) (−→u = (u1, . . . , un)) for the
solution set of a first order ordinary (δ = d

dt ) vector differential
equation exists if and only if the equation is in the form

−→u ′ = z1(t)−→u1 + · · ·+ zr (t)−→ur ,

where the vector fields −→u1 , · · · ,−→ur generate a finite-dimensional
Lie algebra. If n = 1, as it is here, this Lie algebra is a proper
subalgebra (over R or C for Lie) of the Lie algebra of vector fields
on a 1-manifold. Thus, it is the Lie algebra

sl2 =
{
z1 (t)

d
du
+ z2 (t) u

d
du
+ z3 (t) u2

d
du

}
,

giving us the Riccati equation.

du
dt
= z1 (t) + z2 (t) u + z3 (t) u2.



Theorem

Let u1, u2, u3 be distinct points in P1
(
F †). There is a unique

Riccati variety V containing u1, u2, u3. The Riccati variety is the
∆-variety defined by the condition

(u − u1) (u2 − u3)
(u1 − u2) (u3 − u)

=
(u2 − u3) u + u1 (u3 − u2)
(u2 − u1) u + u3 (u1 − u2)

∈ P1 (C) .



The space of Riccati varieties

Identify the Riccati variety V :

y ′ = a0 + a1y + a2y2

with
(
a0 a1 a2

)
, the coordinate vector of the representing

matrix A =
(
( 12 )a1 a0
−a2 −( 12 )a1

)
with respect to an appropriate

basis of sl
(
2,F †) of matrices in sl (2,C).

Set
(
a0 a1 a2

)
= R (a0, a1, a2).



Let

Z =
(

α β
γ δ

)
, αδ− βγ = 1.



Let
(
b0 b1 b2

)
= R (b0, b1, b2). The gauge action by Z

transforms R (a0, a1, a2) into R (b0, b1, b2)(
b0 b1 b2

)t

=

 α2 −αβ β2

−2αγ αδ+ βγ −2βδ

γ2 −δγ δ2

(a0 a1 a2
)t

+
(
αβ′ − α′β δα′ − δ′α+ βγ′ − β′γ γδ′ − γ′δ

)t
.



The stabilizers of Riccati varieties

Theorem

PSL(2,F †) permutes the Riccati varieties in P1
(
F †) by an action

induced by the its gauge action of SL
(
2,F †) on its Lie algebra.

Theorem

G ⊂ SL
(
2,F †) is the stabilizer of a Riccati variety ⇐⇒it is a

proper Zariski dense ∆-subgroup ⇐⇒ G is the isotropy group of
the matrix A representing the equation.

Corollary

The stabilizers of Riccati varieties are conjugate to SL (2,C)
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The classical solutions of PII

We turn to an application of the gauge action on Riccati varieties.
Deformation equations suggest the presence of a differential
algebraic group.

PII (c) : y ′′ = 2y3 + xy + c .

Let X (c) be the variety it defines.

Theorem

The Painlevé variety X
( 1
2

)
has a ∆-subvariety V

( 1
2

)
of typical

dimension 1. It is a Riccati variety, defined by the equation

y ′ = y2 + (
1
2
)x .
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The ∆-rational map

z 7−→ −z
′

z
transforms the Airy equation

z ′′ +
x
2
z = 0

into the equation

y ′ = y2 + (
1
2
)x .

So, the elements of V ( 12 ) are called Airy solutions of PII (
1
2 ).



Corollary

The Riccati variety V
( 1
2

)
is a homogeneous space, under the

gauge action of SL
(
2,F †), of the isotropy group G of the matrix

A =
(
0 x

2
−1 0

)
.
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