Rooks, Recurrences and Residues

Shaoshi Chen

Department of Mathematics North Carolina State University, Raleigh

Kolchin Seminar in Differential Algebra October 19, 2012

Joint with Manuel Kauers and Michael F. Singer

Outline

- ▶ Motivation: enumerating 3D Walks.
- Integrability problems:

Given $f \in K(y, z)$, decide whether

$$f = D_y(g) + D_z(h)$$
 for some $g, h \in K(y, z)$.

Telescoping problems:

Given $f \in k(x, y, z)$, find $L \in k(x)\langle D_x \rangle$ such that

$$L(x, D_x)(f) = D_y(g) + D_z(h)$$
 for some $g, h \in k(x, y, z)$.

Enumerating 3D Rook Walks

The Rook moves in a straight line as below in first quadrant of the 3D space.

 R_n : The number of different Rook walks from (0,0,0) to (n,n,n).

2D-diagonals

f(m, n): the number of different Rook walks from (0, 0) to (m, n).

$$F(x,y) = \sum_{m,n\geq 0} f(m,n) x^m y^n = \frac{1}{1 - \frac{x}{1-x} - \frac{y}{1-y}}.$$

The diagonal of F(x, y) is

$$\operatorname{diag}(F) := \sum_{n \geq 0} f(n, n) x^{n}.$$

Notation: \mathbb{F} an algebraically closed field of char zero (= $\overline{\mathbb{Q}}, \mathbb{C}, \ldots$).

Lemma: Let $G := y^{-1} \cdot F(y, x/y)$ and $L(x, D_x)$ be a linear differential operator with coefficients in $\mathbb{F}(x)$. Then

$$L(x, D_x)(G) = D_y(H)$$
 with $H \in \mathbb{F}(x, y)$ \Rightarrow $L(\operatorname{diag}(F)) = 0$

Residues

Assume that K be a field of characteristic zero.

Definition. Let $f \in K(y)$. The residue of f at $\beta_i \in \overline{K}$ w.r.t. z, denoted by $\operatorname{res}_y(f, \beta_i)$, is the coefficient $\alpha_{i,1}$ in

$$f = p + \sum_{i=1}^{n} \sum_{j=1}^{m_i} \frac{\alpha_{i,j}}{(y - \beta_i)^j}, \text{ where } p \in K[y], \ \alpha_{i,j}, \beta_i \in \overline{K}.$$

Lemma. $f = D_y(g)$ with $g \in K(y) \Leftrightarrow$ All residues of f w.r.t. y are zero. Remark. This lemma is not true for algebraic functions!!! Hermite Reduction.

$$f = D_y(g) + \frac{A}{B}$$
, where $\deg_y(A) < \deg_y(B)$ and B squarefree.

Poisson formula.

$$\operatorname{res}_{y}(f,\beta_{i}) = \frac{A(\beta_{i})}{D_{v}(B)(\beta_{i})}.$$

Telescopers for Rational Functions: The Bivariate Case

Let $\mathbb{F}(x)\langle D_x \rangle$ be the ring of linear differential operators in x with coefficients in $\mathbb{F}(x)$.

Problem. For $f \in \mathbb{F}(x,y)$, find $L \in \mathbb{F}(x)\langle D_x \rangle$ such that

$$\underbrace{L(x,D_x)}_{\text{Telescoper}}(f)=D_y(g) \quad \text{for some } g\in \mathbb{F}(x,y).$$

Simpler Problem. For $h \in \mathbb{F}(x, y)$, decide whether

$$h = D_y(g)$$
 for some $g \in \mathbb{F}(x, y)$

Answer. $h = D_y(g)$ iff $\operatorname{res}_y(h, \beta) = 0$ for any root β of the den(h).

Idea. To find $L \in \mathbb{F}(x)\langle D_x \rangle$ such that h = L(f) has only zero residues.

Telescoping via Residues: The Bivariate Rational Case

Hermite Reduction.

$$f = D_y(g_1) + \frac{A}{B}$$
, where $\deg_y(A) < \deg_y(B)$ and B squarefree.

Rothstein-Trager Resultant. $R(x, z) := \text{resultant}_y(B, A - zD_y(B)).$

$$R(x, \operatorname{res}_y(A/B, \beta)) = 0$$
 for any root β of B in $\overline{\mathbb{F}(x)}$.

Theorem (Abel 1827). There exists $L \in \mathbb{F}(x)\langle D_x \rangle$ s.t. $L(\gamma) = 0$ for any root $\gamma \in \overline{\mathbb{F}(x)}$ of R(x, z).

$$L(\operatorname{res}_{y}(f,\beta)) = \operatorname{res}_{y}(L(f),\beta) = 0 \ (\forall \beta) \quad \Rightarrow \quad L(f) = D_{y}(g).$$

Telescopers for 2D Rook Walks

For the 2D Rook walks, the rational function is

$$f := \frac{(-1+y)(-y+x)}{y(y-2x-2y^2+3xy)}$$

Resultant: The Rothstein-Trager Resultant is

$$R(x,z) := (-x + 2zx)(40z^2x^2 + x - 2x^2 + x^3 - 4z^2x - 36z^2x^3)$$

So the residues of f w.r.t. y are respectively

$$r_1 = \frac{1}{2}$$
, $r_2 = \frac{\sqrt{(9x-1)(x-1)}}{18x-2}$, $r_3 = -\frac{\sqrt{(9x-1)(x-1)}}{18x-2}$

Annihilators for residues: $L_1 = D_x$ and

$$L_2 = L_3 = (9x^2 - 10x + 1)D_x + (18x - 14)$$

Finally, the telescoper for f is

$$L := (9x^2 - 10x + 1)D_x^2 + (18x - 14)D_x.$$

Recurrences

R(n): the number of different Rook walks from (0,0) to (n,n).

Let S_n be the shift operator defined by $S_n(R(n)) = R(n+1)$.

$$L(x,D_x)\left(\sum_{n\geq 0}R(n)x^n\right)=0\quad\Rightarrow\quad P(n,S_n)(R(n))=0.$$

For the 2D Rook walks, we get the linear recurrence:

$$R(n+2) = \frac{(-10n-14)R(n+1) + 9nR(n)}{n+2}$$
 $(R(1) = 2, R(2) = 14).$

Running the recurrence, R(n) is as follows.

2, 14, 106, 838, 6802, 56190, 470010, 3968310, ... OEIS:A051708

Enumerating 3D Walks

The Rook moves in 3-dimensional space.

Question: How many different Rook walks from (0,0,0) to (n,n,n)?

3D-diagonals

f(m, n, k): the number of different Rook walks from (0, 0, 0) to (m, n, k).

$$F(x,y,z) = \sum_{m,n\geq 0} f(m,n,k) x^m y^n z^k = \frac{1}{1 - \frac{x}{1-x} - \frac{y}{1-y} - \frac{z}{1-z}}.$$

The diagonal of F(x, y, z) is

$$\mathsf{diag}(F) := \sum_{n \geq 0} f(n, n, n) x^n.$$

Lemma: Let $\tilde{F}:=(yz)^{-1}\cdot F(y,z/y,x/z)$ and $L(x,D_x)\in \mathbb{F}(x)\langle D_x\rangle$. Then

$$\underbrace{L(x,D_x)}_{(\tilde{F})}(\tilde{F}) = D_y(G) + D_z(H) \quad \text{with } G,H \in \mathbb{F}(x,y,z) \ \Rightarrow \ L(\text{diag}(F)) = 0.$$

Telescoper

Telescoping Problems

Telescopers for trivariate rational functions:

Given $f \in \mathbb{F}(x, y, z)$, find $L \in \mathbb{F}(x)\langle D_x \rangle$ such that

$$L(x, D_x)(f) = D_y(g) + D_z(h)$$
 for some $g, h \in \mathbb{F}(x, y, z)$.

Telescopers for bivariate algebraic functions:

Given $\alpha(x,y)$ algebraic over $\mathbb{F}(x,y)$, find $L \in \mathbb{F}(x)\langle D_x \rangle$ such that

$$L(x, D_x)(\alpha) = D_y(\beta)$$
 for some algebraic $\beta(x, y)$ over $\mathbb{F}(x, y)$.

Goal: The two telescoping problems above are equivalent!

Integrability Problems

Rational Integrability:

Given $f(y,z) \in \mathbb{E}(y,z)$, decide

$$f = D_y(g) + D_z(h)$$
 for some $g, h \in \mathbb{E}(y, z)$.

If such g, h exist, we say that f is rational Integrable w.r.t. y and z.

Algebraic Integrability:

Given $\alpha(y)$ algebraic over $\mathbb{E}(y)$, decide

$$\alpha = D_y(\beta)$$
 for some algebraic β over $\mathbb{E}(y)$.

If such β exists, we say that α is algebraic Integrable w.r.t. y.

Goal: The two Integrable problems above are equivalent!

Residues

Definition. Let $f \in \mathbb{E}(y)(z)$. The residue of f at β_i w.r.t. z, denoted by $\operatorname{res}_z(f,\beta_i)$, is the coefficient $\alpha_{i,1}$ in

$$f = p + \sum_{i=1}^n \sum_{j=1}^{m_i} \frac{\alpha_{i,j}}{(z - \beta_i)^j}, \quad \text{where } p \in \mathbb{E}(y)[z], \ \alpha_{i,j}, \beta_i \in \overline{\mathbb{E}(y)}.$$

Lemma. Let $f \in \mathbb{E}(y)(z)$ and $\beta \in \overline{\mathbb{E}(y)}$.

- ▶ $\partial(\operatorname{res}_{z}(f,\beta)) = \operatorname{res}_{z}(\partial(f),\beta)$ with $\partial \in \{D_{x},D_{y}\}.$
- ▶ $f = D_z(g)$ \Leftrightarrow All residues of f w.r.t. z are zero.

Remark. The second assertion is not true for algebraic functions!!!

Equivalence between Two Integrability Problems

Theorem (Picard1902). Let $f = A/B \in \mathbb{E}(y, z)$. Then

$$f = D_y(g) + D_z(h) \Leftrightarrow \operatorname{res}_z(f, \beta) = D_y(\gamma_\beta) \text{ for all } \beta \text{ s.t. } B(\beta) = 0.$$

Example 1. Let $f = (y + z)^{-1}$. Since $\operatorname{res}_{z}(f, -y) = 1 = D_{y}(y)$, f is rational Integrable w.r.t. y and z. In fact,

$$f = D_y \left(\frac{y}{y+z} \right) + D_z \left(-\frac{y}{y+z} \right).$$

Example 2. Let $f = (yz)^{-1}$. Since $\operatorname{res}_z(f,0) = (y)^{-1}$ is not algebraic integrable, f is not rational integrable w.r.t. y and z.

Equivalence between Two Telescoping Problems

Assume that $\mathbb{E} = \mathbb{F}(x)$.

Theorem (Telescoping). Let $f \in \mathbb{F}(x, y, z)$ and $L \in \mathbb{F}(x)\langle D_x \rangle$. Then

 $L(x, D_x)$ is a telescoper for f w.r.t. y and z

 $L(x, D_x)$ is a telescoper for every residue of f w.r.t. z

Remark.

$$L_i(x, D_x)(\alpha_i) = D_y(\beta_i), \ 1 \le i \le n$$

₩

 $L = \mathsf{LCLM}(L_1, L_2, \dots, L_n)$ is a telescoper for all α_i .

Differentials and Residues

Let $K = \mathbb{F}(x,y)(\alpha)$ where α is an algebraic function over $\mathbb{F}(x,y)$. Think of $\alpha(x,y)$ as a parameterized family of algebraic functions of y (with parameter x).

Differentials.

$$\Omega_{K/\mathbb{F}(x)} := \{ \beta \, dy \mid \beta \in K \}.$$

▶ df = 0 for all $f \in \mathbb{F}(x)$ and $D_x(\beta dy) = D_x(\beta) dy$.

Residues. Let \mathcal{P} be a place of K (with no ramification). Then any $\beta \in K$ has a \mathcal{P} -adic expansion

$$\beta = \sum_{i \geq \rho} a_i t^i$$
, where $\rho \in \mathbb{Z}$, $a_i \in \overline{\mathbb{F}(x)}$ and $t \in K$.

The residues of β at \mathcal{P} is a_{-1} , denoted by res $\mathcal{P}(\beta)$.

 $res_{\mathcal{P}}(D_{\mathsf{x}}(\beta)) = D_{\mathsf{x}}(\operatorname{res}_{\mathcal{P}}(\beta)).$

Differential Equations for Residues

Let $K = \mathbb{F}(x,y)(\alpha)$ and $\beta = A/B$ with $A \in \mathbb{F}(x)[y,\alpha]$ and $B \in \mathbb{F}(x)[y]$. Let B^* be the squarefree part of B w.r.t. y.

Theorem. There exists $L \in \mathbb{F}(x)\langle D_x \rangle$ such that all residues of $L(\alpha)$ are zero and

$$\deg_{D_x}(L) \leq [K : \mathbb{F}(x,y)] \cdot \deg_y(B^*).$$

Definition. A differential $\omega \in \Omega_{K/\mathbb{F}(x)}$ is of second kind if all residues of ω are zero.

Lemma.

- ▶ If ω is exact i.e. $\omega = d(\beta)$, then ω is of second kind.
- Let $\Phi_{K/\mathbb{F}(x)} := \{\text{differentials of second kind}\}/\{\text{exact differentials}\}.$ Then

$$\dim_{\mathbb{F}(x)}(\Phi_{K/\mathbb{F}(x)}) = 2 \cdot \operatorname{\mathsf{genus}}(\mathsf{K}).$$

Telescopers for Bivariate Algebraic Functions

Algorithm. Given $\alpha(x, y)$ algebraic over $\mathbb{F}(x, y)$, do

- 1. Compute $L_1 \in \mathbb{F}(x)\langle D_x \rangle$ such that $\omega = L_1(\alpha) dy$ is of second kind.
- 2. Find $a_0, \ldots, a_{2g} \in \mathbb{F}(x)$ with g := genus(K) with $K = \mathbb{F}(x, y)(\alpha)$, not all zero, such that

$$a_{2g}D_x^{2g}(\omega)+\cdots+a_0\omega=d(\beta)$$
 for some $\beta\in K$.

Remark.

- ▶ If $\alpha \in \mathbb{F}(x,y)$, Step 2 is not needed since g = 0.
- If ω is of second kind, so is $D_x^i(\omega)$ for all $i \in \mathbb{N}$.

Manin's example

The elliptic integral

$$I(x) := \int_{\Gamma} f(x,y) dy$$
, where $f = \frac{1}{\sqrt{y(y-1)(y-x)}}$.

Telescoper for f

$$L(x, D_x)(f) = D_y \left(\frac{2y(y-1)}{(-y+x)\sqrt{-y(y-1)(-y+x)}} \right),$$

where

$$L = (4x^2 - 4x)Dx^2 + (8x - 4)Dx + 1.$$

Then I(x) satisfies the Picard-Fuchs equation

$$D_x^2(I(x)) + \frac{2x-1}{x(x-1)}D_x(I(x)) + \frac{1}{4x(x-1)}I(x) = 0.$$

Telescopers for 3D Rook Walks

Transformation.
$$F = P/Q := (yz)^{-1} f(y, z/y, x/z)$$
.

$$\frac{P}{Q} = \frac{(-1+y)(y-z)(-z+x)}{zy(zy-2yx-2z^2+3xz-2y^2z+3y^2x+3z^2y-4zyx)}$$

Residues. Roots of $R(x, y, u) := Resultant_z(Q, P - u \cdot D_z(Q))$ are

$$r_1 = \frac{y-1}{y(3y-2)}, \ r_2 = -r_3 = \frac{(y-1)^2}{y(3y-2)\sqrt{-4y^3+16xy^2+4y^2-y-24xy+9x}}.$$

Telescopers. $L_1 = D_x$ and $L_2 = L_3$ with

$$L_{2} = D_{x}^{3} + \frac{(4608 x^{4} - 6372 x^{3} + 813 x^{2} + 514 x - 4) D_{x}^{2}}{x (-2 + 121 x + 475 x^{2} - 1746 x^{3} + 1152 x^{4})} + \frac{4 (576 x^{3} - 801 x^{2} - 108 x + 74) D_{x}}{x (-2 + 121 x + 475 x^{2} - 1746 x^{3} + 1152 x^{4})}$$

Recurrences for 3D Rook Walks

 $L = LCLM(L_1, L_2, L_3)$ is a telescopers for $\mathbb{F}(x, y, z)$.

 \downarrow

$$L(x, D_x)\left(\sum_n f(n, n, n)x^n\right) = 0$$

Recurrence. Let r(n) := f(n, n, n). From $L(x, D_x)$ via gfun, we get $(1152n^2 + 1152n^3)r(n) + (-7830n - 3204 - 6372n^2 - 1746n^3)r(n+1) + (2957n + 762 + 2238n^2 + 475n^3)r(n+2) + (4197n + 4698 + 1240n^2 + 121n^3)r(n+3) + (-22n^2 - 80n - 96 - 2n^3)r(n+4) = 0.$

With initial values r(0) = 1, r(1) = 6, r(2) = 222, r(3) = 9918, we get 1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, ...

Summary

Equivalence.

$$L(x, D_x)(f) = D_y(g) + D_z(h), \quad f, g, h \in \mathbb{F}(x, y, z)$$

$$\updownarrow$$

$$L(x, D_x)(\alpha) = D_y(\beta)$$
 for any residue α of f w.r.t. z .

Note. One can also reduce rational m vars to algebraic m-1 vars.

Order Bound. Let $K = \mathbb{F}(x, y)(\alpha)$ and n be the number of poles of α .

$$L(x, D_x)(\alpha) = D_y(\beta) \quad \Rightarrow \quad \operatorname{ord}(L) \leq [K : \mathbb{F}(x, y)] \cdot n + 2 \cdot \operatorname{genus}(K).$$

Future Work. Walks in higher dimension (4D, 5D, ...).