Rooks, Recurrences and Residues

Shaoshi Chen

Department of Mathematics
North Carolina State University, Raleigh

Kolchin Seminar in Differential Algebra
October 19, 2012

Joint with Manuel Kauers and Michael F. Singer
Outline

- **Motivation**: enumerating 3D Walks.

- **Integrability problems**:

 Given \(f \in K(y, z) \), decide whether

 \[
 f = D_y(g) + D_z(h) \quad \text{for some } g, h \in K(y, z).
 \]

- **Telescoping problems**:

 Given \(f \in k(x, y, z) \), find \(L \in k(x)\langle D_x \rangle \) such that

 \[
 L(x, D_x)(f) = D_y(g) + D_z(h) \quad \text{for some } g, h \in k(x, y, z).
 \]
Enumerating 3D Rook Walks

The Rook moves in a straight line as below in first quadrant of the 3D space.

\[R_n: \] The number of different Rook walks from \((0, 0, 0)\) to \((n, n, n)\).
2D-diagonals

\(f(m, n) \): the number of different Rook walks from \((0, 0)\) to \((m, n)\).

\[
F(x, y) = \sum_{m, n \geq 0} f(m, n) x^m y^n = \frac{1}{1 - \frac{x}{1-x} - \frac{y}{1-y}}.
\]

The diagonal of \(F(x, y)\) is

\[
\text{diag}(F) := \sum_{n \geq 0} f(n, n) x^n.
\]

Notation: \(\mathbb{F} \) an algebraically closed field of char zero \((= \bar{\mathbb{Q}}, \mathbb{C}, \ldots)\).

Lemma: Let \(G := y^{-1} \cdot F(y, x/y) \) and \(L(x, D_x) \) be a linear differential operator with coefficients in \(\mathbb{F}(x) \). Then

\[
\underbrace{L(x, D_x)(G)}_{\text{Telescoper}} = D_y(H) \quad \text{with} \quad H \in \mathbb{F}(x, y) \quad \Rightarrow \quad L(\text{diag}(F)) = 0
\]
Residues

Assume that K be a field of characteristic zero.

Definition. Let $f \in K(y)$. The residue of f at $\beta_i \in \overline{K}$ w.r.t. z, denoted by $\text{res}_y(f, \beta_i)$, is the coefficient $\alpha_{i,1}$ in

$$f = p + \sum_{i=1}^{n} \sum_{j=1}^{m_i} \frac{\alpha_{i,j}}{(y - \beta_i)^j},$$

where $p \in K[y]$, $\alpha_{i,j}, \beta_i \in \overline{K}$.

Lemma. $f = D_y(g)$ with $g \in K(y) \iff$ All residues of f w.r.t. y are zero.

Remark. This lemma is not true for algebraic functions!!!

Hermite Reduction.

$$f = D_y(g) + \frac{A}{B},$$

where $\deg_y(A) < \deg_y(B)$ and B squarefree.

Poisson formula.

$$\text{res}_y(f, \beta_i) = \frac{A(\beta_i)}{D_y(B)(\beta_i)}.$$
Let $\mathbb{F}(x)\langle D_x \rangle$ be the ring of linear differential operators in x with coefficients in $\mathbb{F}(x)$.

Problem. For $f \in \mathbb{F}(x, y)$, find $L \in \mathbb{F}(x)\langle D_x \rangle$ such that

$$L(x, D_x)(f) = D_y(g)$$

for some $g \in \mathbb{F}(x, y)$. (Telescoper)

Simpler Problem. For $h \in \mathbb{F}(x, y)$, decide whether

$$h = D_y(g)$$

for some $g \in \mathbb{F}(x, y)$

Answer. $h = D_y(g)$ iff $\text{res}_y(h, \beta) = 0$ for any root β of the $\text{den}(h)$.

Idea. To find $L \in \mathbb{F}(x)\langle D_x \rangle$ such that $h = L(f)$ has only zero residues.
Telescoping via Residues: The **Bivariate** Rational Case

Hermite Reduction.

\[f = D_y(g_1) + \frac{A}{B}, \quad \text{where } \deg_y(A) < \deg_y(B) \text{ and } B \text{ squarefree.} \]

Rothstein-Trager Resultant. \(R(x, z) := \text{resultant}_y(B, A - zD_y(B)) \).

\[R(x, \text{res}_y(A/B, \beta)) = 0 \quad \text{for any root } \beta \text{ of } B \text{ in } \overline{\mathbb{F}(x)}. \]

Theorem (Abel 1827). There exists \(L \in \mathbb{F}(x)[D_x] \) s.t. \(L(\gamma) = 0 \) for any root \(\gamma \in \overline{\mathbb{F}(x)} \) of \(R(x, z) \).

\[L(\text{res}_y(f, \beta)) = \text{res}_y(L(f), \beta) = 0 \quad (\forall \beta) \quad \Rightarrow \quad L(f) = D_y(g). \]
Telescopers for 2D Rook Walks

For the 2D Rook walks, the rational function is

\[f := \frac{(-1 + y)(-y + x)}{y(y - 2x - 2y^2 + 3xy)} \]

Resultant: The Rothstein-Trager Resultant is

\[R(x, z) := (-x + 2zx)(40z^2x^2 + x - 2x^2 + x^3 - 4z^2x - 36z^2x^3) \]

So the residues of \(f \) w.r.t. \(y \) are respectively

\[r_1 = \frac{1}{2}, \quad r_2 = \frac{\sqrt{(9x - 1)(x - 1)}}{18x - 2}, \quad r_3 = -\frac{\sqrt{(9x - 1)(x - 1)}}{18x - 2} \]

Annihilators for residues: \(L_1 = D_x \) and

\[L_2 = L_3 = (9x^2 - 10x + 1)D_x + (18x - 14) \]

Finally, the telescoper for \(f \) is

\[L := (9x^2 - 10x + 1)D_x^2 + (18x - 14)D_x. \]
Recurrences

\(R(n) \): the number of different Rook walks from \((0, 0)\) to \((n, n)\).

Let \(S_n \) be the shift operator defined by \(S_n(R(n)) = R(n + 1) \).

\[
L(x, D_x) \left(\sum_{n \geq 0} R(n)x^n \right) = 0 \quad \Rightarrow \quad P(n, S_n)(R(n)) = 0.
\]

For the 2D Rook walks, we get the linear recurrence:

\[
R(n + 2) = \frac{(-10n - 14)R(n + 1) + 9nR(n)}{n + 2} \quad (R(1) = 2, \ R(2) = 14).
\]

Running the recurrence, \(R(n) \) is as follows.

2, 14, 106, 838, 6802, 56190, 470010, 3968310, ... \[\text{OEIS: A051708} \]
Enumerating 3D Walks

The Rook moves in 3-dimensional space.

Question: How many different Rook walks from \((0, 0, 0)\) to \((n, n, n)\)?
3D-diagonals

\(f(m, n, k) \): the number of different Rook walks from \((0, 0, 0)\) to \((m, n, k)\).

\[
F(x, y, z) = \sum_{m,n \geq 0} f(m, n, k) x^m y^n z^k = \frac{1}{1 - \frac{x}{1-x} - \frac{y}{1-y} - \frac{z}{1-z}}.
\]

The diagonal of \(F(x, y, z) \) is

\[
\text{diag}(F) := \sum_{n \geq 0} f(n, n, n) x^n.
\]

Lemma: Let \(\tilde{F} := (yz)^{-1} \cdot F(y, z/y, x/z) \) and \(L(x, D_x) \in \mathbb{F}(x)\langle D_x \rangle \). Then

\[
L(x, D_x)(\tilde{F}) = D_y(G) + D_z(H)
\]
with \(G, H \in \mathbb{F}(x, y, z) \Rightarrow L(\text{diag}(F)) = 0. \)
Telescoping Problems

Telescopers for trivariate rational functions:
Given $f \in \mathbb{F}(x, y, z)$, find $L \in \mathbb{F}(x)\langle D_x \rangle$ such that

$$L(x, D_x)(f) = D_y(g) + D_z(h) \quad \text{for some } g, h \in \mathbb{F}(x, y, z).$$

Telescopers for bivariate algebraic functions:
Given $\alpha(x, y)$ algebraic over $\mathbb{F}(x, y)$, find $L \in \mathbb{F}(x)\langle D_x \rangle$ such that

$$L(x, D_x)(\alpha) = D_y(\beta) \quad \text{for some algebraic } \beta(x, y) \text{ over } \mathbb{F}(x, y).$$

Goal: The two telescoping problems above are equivalent!
Integrability Problems

Rational Integrability:

Given \(f(y, z) \in \mathbb{E}(y, z) \), decide

\[
f = D_y(g) + D_z(h) \quad \text{for some } g, h \in \mathbb{E}(y, z).
\]

If such \(g, h \) exist, we say that \(f \) is rational integrable w.r.t. \(y \) and \(z \).

Algebraic Integrability:

Given \(\alpha(y) \) algebraic over \(\mathbb{E}(y) \), decide

\[
\alpha = D_y(\beta) \quad \text{for some algebraic } \beta \text{ over } \mathbb{E}(y).
\]

If such \(\beta \) exists, we say that \(\alpha \) is algebraic integrable w.r.t. \(y \).

Goal: The two integrable problems above are equivalent!
Residues

Definition. Let \(f \in \mathbb{E}(y)(z) \). The *residue* of \(f \) at \(\beta_i \) w.r.t. \(z \), denoted by \(\text{res}_z(f, \beta_i) \), is the coefficient \(\alpha_{i,1} \) in

\[
f = p + \sum_{i=1}^{n} \sum_{j=1}^{m_i} \frac{\alpha_{i,j}}{(z - \beta_i)^j},
\]

where \(p \in \mathbb{E}(y)[z] \), \(\alpha_{i,j}, \beta_i \in \mathbb{E}(y) \).

Lemma. Let \(f \in \mathbb{E}(y)(z) \) and \(\beta \in \mathbb{E}(y) \).

- \(\partial(\text{res}_z(f, \beta)) = \text{res}_z(\partial(f), \beta) \) with \(\partial \in \{D_x, D_y\} \).
- \(f = D_z(g) \iff \text{All residues of } f \text{ w.r.t. } z \text{ are zero.} \)

Remark. The second assertion is not true for algebraic functions!!!
Equivalence between Two Integrability Problems

Theorem (Picard1902). Let \(f = A/B \in \mathbb{F}(y, z) \). Then

\[
f = D_y(g) + D_z(h) \iff \text{res}_z(f, \beta) = D_y(\gamma\beta) \text{ for all } \beta \text{ s.t. } B(\beta) = 0.
\]

Example 1. Let \(f = (y + z)^{-1} \). Since \(\text{res}_z(f, -y) = 1 = D_y(y) \), \(f \) is rational Integrable w.r.t. \(y \) and \(z \). In fact,

\[
f = D_y \left(\frac{y}{y + z} \right) + D_z \left(-\frac{y}{y + z} \right).
\]

Example 2. Let \(f = (yz)^{-1} \). Since \(\text{res}_z(f, 0) = (y)^{-1} \) is not algebraic integrable, \(f \) is not rational integrable w.r.t. \(y \) and \(z \).
Equivalence between Two Telescoping Problems

Assume that $\mathbb{E} = \mathbb{F}(x)$.

Theorem (Telescoping). Let $f \in \mathbb{F}(x, y, z)$ and $L \in \mathbb{F}(x)(D_x)$. Then

$L(x, D_x)$ is a telescoper for f w.r.t. y and z

$L(x, D_x)$ is a telescoper for every residue of f w.r.t. z

Remark.

$L_i(x, D_x)(\alpha_i) = D_y(\beta_i)$, $1 \leq i \leq n$

$L = \text{LCLM}(L_1, L_2, \ldots, L_n)$ is a telescoper for all α_i.
Differentials and Residues

Let $K = \mathbb{F}(x, y)(\alpha)$ where α is an algebraic function over $\mathbb{F}(x, y)$. Think of $\alpha(x, y)$ as a parameterized family of algebraic functions of y (with parameter x).

Differentials.

$$\Omega_{K/\mathbb{F}(x)} := \{ \beta \, dy \mid \beta \in K \}.$$

- $df = 0$ for all $f \in \mathbb{F}(x)$ and $D_x(\beta dy) = D_x(\beta)dy$.

Residues. Let \mathcal{P} be a place of K (with no ramification). Then any $\beta \in K$ has a \mathcal{P}-adic expansion

$$\beta = \sum_{i \geq \rho} a_i t^i, \quad \text{where } \rho \in \mathbb{Z}, \ a_i \in \mathbb{F}(x) \text{ and } t \in K.$$

The residues of β at \mathcal{P} is a_{-1}, denoted by $\text{res } \mathcal{P}(\beta)$.

- $\text{res } \mathcal{P}(D_x(\beta)) = D_x(\text{res } \mathcal{P}(\beta))$.

Shaoshi Chen
Rooks, Recurrences and Residues
Differential Equations for Residues

Let $K = \mathbb{F}(x, y)(\alpha)$ and $\beta = A/B$ with $A \in \mathbb{F}(x)[y, \alpha]$ and $B \in \mathbb{F}(x)[y]$. Let B^* be the squarefree part of B w.r.t. y.

Theorem. There exists $L \in \mathbb{F}(x)\langle D_x \rangle$ such that all residues of $L(\alpha)$ are zero and

$$\deg_{D_x}(L) \leq [K : \mathbb{F}(x, y)] \cdot \deg_y(B^*).$$

Definition. A differential $\omega \in \Omega_{K/\mathbb{F}(x)}$ is of second kind if all residues of ω are zero.

Lemma.

- If ω is exact i.e. $\omega = d(\beta)$, then ω is of second kind.
- Let $\Phi_{K/\mathbb{F}(x)} := \{\text{differentials of second kind}\}/\{\text{exact differentials}\}$. Then

$$\dim_{\mathbb{F}(x)}(\Phi_{K/\mathbb{F}(x)}) = 2 \cdot \text{genus}(K).$$
Telescopers for Bivariate Algebraic Functions

Algorithm. Given $\alpha(x, y)$ algebraic over $\mathbb{F}(x, y)$, do

1. Compute $L_1 \in \mathbb{F}(x)\langle D_x \rangle$ such that $\omega = L_1(\alpha) \, dy$ is of second kind.

2. Find $a_0, \ldots, a_{2g} \in \mathbb{F}(x)$ with $g := \text{genus}(K)$ with $K = \mathbb{F}(x, y)(\alpha)$, not all zero, such that

 $$a_{2g} D_x^{2g}(\omega) + \cdots + a_0 \omega = d(\beta) \quad \text{for some } \beta \in K.$$

Remark.

- If $\alpha \in \mathbb{F}(x, y)$, Step 2 is not needed since $g = 0$.
- If ω is of second kind, so is $D_x^i(\omega)$ for all $i \in \mathbb{N}$.
Manin’s example

The elliptic integral

\[I(x) := \int_{\Gamma} f(x, y) \, dy, \quad \text{where} \quad f = \frac{1}{\sqrt{y(y - 1)(y - x)}}. \]

Telescopener for \(f \)

\[L(x, D_x)(f) = D_y \left(\frac{2y(y - 1)}{(-y + x)\sqrt{-y(y - 1)(-y + x)}} \right), \]

where

\[L = (4x^2 - 4x)Dx^2 + (8x - 4)Dx + 1. \]

Then \(I(x) \) satisfies the Picard-Fuchs equation

\[D_x^2(I(x)) + \frac{2x - 1}{x(x - 1)} D_x(I(x)) + \frac{1}{4x(x - 1)} I(x) = 0. \]
Telescopers for 3D Rook Walks

Transformation. \(F = P/Q := (yz)^{-1}f(y, z/y, x/z) \).

\[
P = \frac{(-1 + y)(y - z)(-z + x)}{zy(zy - 2 yx - 2 z^2 + 3 xz - 2 y^2 z + 3 y^2 x + 3 z^2 y - 4 zyx)}
\]

Residues. Roots of \(R(x, y, u) := \text{Resultant}_z(Q, P - u \cdot D_z(Q)) \) are

\[
r_1 = \frac{y - 1}{y(3y - 2)}, \quad r_2 = -r_3 = \frac{(y - 1)^2}{y(3y - 2) \sqrt{-4y^3 + 16xy^2 + 4y^2 - y - 24xy + 9x}}.
\]

Telescopers. \(L_1 = D_x \) and \(L_2 = L_3 \) with

\[
L_2 = D_x^3 + \frac{4608 x^4 - 6372 x^3 + 813 x^2 + 514 x - 4}{x (-2 + 121 x + 475 x^2 - 1746 x^3 + 1152 x^4)} D_x^2
\]

\[
+ \frac{4 (576 x^3 - 801 x^2 - 108 x + 74)}{x (-2 + 121 x + 475 x^2 - 1746 x^3 + 1152 x^4)} D_x
\]
Recurrences for 3D Rook Walks

\[L = \text{LCLM}(L_1, L_2, L_3) \] is a telescopers for \(\mathbb{F}(x, y, z) \).

\[\downarrow \]

\[L(x, D_x) \left(\sum_n f(n, n, n)x^n \right) = 0 \]

Recurrence. Let \(r(n) := f(n, n, n) \). From \(L(x, D_x) \) via \text{gfun}, we get

\[
(1152n^2 + 1152n^3)r(n) + (-7830n - 3204 - 6372n^2 - 1746n^3)r(n + 1) + (2957n + 762 + 2238n^2 + 475n^3)r(n + 2) + (4197n + 4698 + 1240n^2 + 121n^3)r(n + 3) + (-22n^2 - 80n - 96 - 2n^3)r(n + 4) = 0.
\]

With initial values \(r(0) = 1, r(1) = 6, r(2) = 222, r(3) = 9918 \), we get

\[1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, \ldots \]
Equivalence.

\[L(x, D_x)(f) = D_y(g) + D_z(h), \quad f, g, h \in \mathbb{F}(x, y, z) \]

\[\Leftrightarrow \]

\[L(x, D_x)(\alpha) = D_y(\beta) \quad \text{for any residue } \alpha \text{ of } f \text{ w.r.t. } z. \]

Note. One can also reduce rational \(m \) vars to algebraic \(m - 1 \) vars.

Order Bound. Let \(K = \mathbb{F}(x, y)(\alpha) \) and \(n \) be the number of poles of \(\alpha \).

\[L(x, D_x)(\alpha) = D_y(\beta) \quad \Rightarrow \quad \text{ord}(L) \leq [K : \mathbb{F}(x, y)] \cdot n + 2 \cdot \text{genus}(K). \]

Future Work. Walks in higher dimension (4D, 5D, ...).