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Outline

I Motivation: enumerating 3D Walks.

I Integrability problems:

Given f ∈ K (y , z), decide whether

f = Dy (g) + Dz(h) for some g , h ∈ K (y , z).

I Telescoping problems:

Given f ∈ k(x , y , z), find L ∈ k(x)〈Dx〉 such that

L(x ,Dx)(f ) = Dy (g) + Dz(h) for some g , h ∈ k(x , y , z).
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Enumerating 3D Rook Walks

The Rook moves in a straight line as below in first quadrant of the 3D
space.

Rn: The number of different Rook walks from (0, 0, 0) to (n, n, n).
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2D-diagonals

f (m, n): the number of different Rook walks from (0, 0) to (m, n).

F (x , y) =
∑

m,n≥0

f (m, n) xmyn =
1

1− x
1−x −

y
1−y

.

The diagonal of F (x , y) is

diag(F ) :=
∑
n≥0

f (n, n) xn.

Notation: F an algebraically closed field of char zero (= Q,C, . . .).

Lemma: Let G := y−1 · F (y , x/y) and L(x ,Dx) be a linear differential
operator with coefficients in F(x). Then

L(x ,Dx)︸ ︷︷ ︸
Telescoper

(G ) = Dy (H) with H ∈ F(x , y) ⇒ L(diag(F )) = 0
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Residues

Assume that K be a field of characteristic zero.
Definition. Let f ∈ K (y). The residue of f at βi ∈ K w.r.t. z , denoted
by res y (f , βi ), is the coefficient αi ,1 in

f = p +
n∑

i=1

mi∑
j=1

αi ,j

(y − βi )j
, where p ∈ K [y ], αi ,j , βi ∈ K .

Lemma. f = Dy (g) with g ∈ K (y)⇔ All residues of f w.r.t. y are zero.
Remark. This lemma is not true for algebraic functions!!!
Hermite Reduction.

f = Dy (g) +
A

B
, where degy (A) < degy (B) and B squarefree.

Poisson formula.

res y (f , βi ) =
A(βi )

Dy (B)(βi )
.
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Telescopers for Rational Functions: The Bivariate Case

Let F(x)〈Dx〉 be the ring of linear differential operators in x with
coefficients in F(x).

Problem. For f ∈ F(x , y), find L ∈ F(x)〈Dx〉 such that

L(x ,Dx)︸ ︷︷ ︸
Telescoper

(f ) = Dy (g) for some g ∈ F(x , y).

Simpler Problem. For h ∈ F(x , y), decide whether

h = Dy (g) for some g ∈ F(x , y)

Answer. h = Dy (g) iff res y (h, β) = 0 for any root β of the den(h).

Idea. To find L ∈ F(x)〈Dx〉 such that h = L(f ) has only zero residues.
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Telescoping via Residues: The Bivariate Rational Case

Hermite Reduction.

f = Dy (g1) +
A

B
, where degy (A) < degy (B) and B squarefree.

Rothstein-Trager Resultant. R(x , z) := resultanty (B,A− zDy (B)).

R(x , res y (A/B, β)) = 0 for any root β of B in F(x).

Theorem (Abel 1827). There exists L ∈ F(x)〈Dx〉 s.t. L(γ) = 0 for any
root γ ∈ F(x) of R(x , z).

L(res y (f , β)) = res y (L(f ), β) = 0 (∀β) ⇒ L(f ) = Dy (g).
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Telescopers for 2D Rook Walks

For the 2D Rook walks, the rational function is

f :=
(−1 + y)(−y + x)

y(y − 2x − 2y2 + 3xy)

Resultant: The Rothstein-Trager Resultant is

R(x , z) := (−x + 2zx)(40z2x2 + x − 2x2 + x3 − 4z2x − 36z2x3)

So the residues of f w.r.t. y are respectively

r1 =
1

2
, r2 =

√
(9x − 1) (x − 1)

18x − 2
, r3 = −

√
(9x − 1) (x − 1)

18x − 2

Annihilators for residues: L1 = Dx and

L2 = L3 = (9x2 − 10x + 1)Dx + (18x − 14)

Finally, the telescoper for f is

L := (9x2 − 10x + 1)D2
x + (18x − 14)Dx .
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Recurrences

R(n): the number of different Rook walks from (0, 0) to (n, n).

Let Sn be the shift operator defined by Sn(R(n)) = R(n + 1).

L(x ,Dx)

∑
n≥0

R(n)xn

 = 0 ⇒ P(n,Sn)(R(n)) = 0.

For the 2D Rook walks, we get the linear recurrence:

R(n + 2) =
(−10n − 14)R(n + 1) + 9nR(n)

n + 2
(R(1) = 2,R(2) = 14).

Running the recurrence, R(n) is as follows.

2, 14, 106, 838, 6802, 56190, 470010, 3968310, . . . OEIS:A051708
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Enumerating 3D Walks

The Rook moves in 3-dimensional space.

Question: How many different Rook walks from (0, 0, 0) to (n, n, n)?
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3D-diagonals

f (m, n, k): the number of different Rook walks from (0, 0, 0) to (m, n, k).

F (x , y , z) =
∑

m,n≥0

f (m, n, k) xmynzk =
1

1− x
1−x −

y
1−y −

z
1−z

.

The diagonal of F (x , y , z) is

diag(F ) :=
∑
n≥0

f (n, n, n) xn.

Lemma: Let F̃ := (yz)−1 · F (y , z/y , x/z) and L(x ,Dx) ∈ F(x)〈Dx〉. Then

L(x ,Dx)︸ ︷︷ ︸
Telescoper

(F̃ ) = Dy (G )+Dz(H) with G ,H ∈ F(x , y , z) ⇒ L(diag(F )) = 0.
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Telescoping Problems

Telescopers for trivariate rational functions:

Given f ∈ F(x , y , z), find L ∈ F(x)〈Dx〉 such that

L(x ,Dx)(f ) = Dy (g) + Dz(h) for some g , h ∈ F(x , y , z).

Telescopers for bivariate algebraic functions:

Given α(x , y) algebraic over F(x , y), find L ∈ F(x)〈Dx〉 such that

L(x ,Dx)(α) = Dy (β) for some algebraic β(x , y) over F(x , y).

Goal: The two telescoping problems above are equivalent!
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Integrability Problems

Rational Integrability:

Given f (y , z) ∈ E(y , z), decide

f = Dy (g) + Dz(h) for some g , h ∈ E(y , z).

If such g , h exist, we say that f is rational Integrable w.r.t. y and z .

Algebraic Integrability:

Given α(y) algebraic over E(y), decide

α = Dy (β) for some algebraic β over E(y).

If such β exists, we say that α is algebraic Integrable w.r.t. y .

Goal: The two Integrable problems above are equivalent!
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Residues

Definition. Let f ∈ E(y)(z). The residue of f at βi w.r.t. z , denoted
by res z(f , βi ), is the coefficient αi ,1 in

f = p +
n∑

i=1

mi∑
j=1

αi ,j

(z − βi )j
, where p ∈ E(y)[z ], αi ,j , βi ∈ E(y).

Lemma. Let f ∈ E(y)(z) and β ∈ E(y).

I ∂(res z(f , β)) = res z(∂(f ), β) with ∂ ∈ {Dx ,Dy}.

I f = Dz(g) ⇔ All residues of f w.r.t. z are zero.

Remark. The second assertion is not true for algebraic functions!!!
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Equivalence between Two Integrability Problems

Theorem (Picard1902). Let f = A/B ∈ E(y , z). Then

f = Dy (g) + Dz(h) ⇔ res z(f , β) = Dy (γβ) for all β s.t. B(β) = 0.

Example 1. Let f = (y + z)−1. Since res z(f ,−y) = 1 = Dy (y), f is
rational Integrable w.r.t. y and z . In fact,

f = Dy

(
y

y + z

)
+ Dz

(
− y

y + z

)
.

Example 2. Let f = (yz)−1. Since res z(f , 0) = (y)−1 is not algebraic
integrable, f is not rational integrable w.r.t. y and z .
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Equivalence between Two Telescoping Problems

Assume that E = F(x).

Theorem (Telescoping). Let f ∈ F(x , y , z) and L ∈ F(x)〈Dx〉. Then

L(x ,Dx) is a telescoper for f w.r.t. y and z

m

L(x ,Dx) is a telescoper for every residue of f w.r.t. z

Remark.
Li (x ,Dx)(αi ) = Dy (βi ), 1 ≤ i ≤ n

⇓

L = LCLM(L1, L2, . . . , Ln) is a telescoper for all αi .
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Differentials and Residues

Let K = F(x , y)(α) where α is an algebraic function over F(x , y). Think
of α(x , y) as a parameterized family of algebraic functions of y (with
parameter x).

Differentials.
ΩK/F(x) := {β dy | β ∈ K}.

I df = 0 for all f ∈ F(x) and Dx(βdy) = Dx(β)dy .

Residues. Let P be a place of K (with no ramification). Then any β ∈ K
has a P-adic expansion

β =
∑
i≥ρ

ai t
i , where ρ ∈ Z, ai ∈ F(x) and t ∈ K .

The residues of β at P is a−1, denoted by res P(β).

I res P(Dx(β)) = Dx(res P(β)).
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Differential Equations for Residues

Let K = F(x , y)(α) and β = A/B with A ∈ F(x)[y , α] and B ∈ F(x)[y ].
Let B∗ be the squarefree part of B w.r.t. y .

Theorem. There exists L ∈ F(x)〈Dx〉 such that all residues of L(α) are
zero and

degDx
(L) ≤ [K : F(x , y)] · degy (B∗).

Definition. A differential ω ∈ ΩK/F(x) is of second kind if all residues of ω
are zero.

Lemma.

I If ω is exact i.e. ω = d(β), then ω is of second kind.

I Let ΦK/F(x) := {differentials of second kind}/{exact differentials}.
Then

dimF(x)(ΦK/F(x)) = 2 · genus(K).
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Telescopers for Bivariate Algebraic Functions

Algorithm. Given α(x , y) algebraic over F(x , y), do

1. Compute L1 ∈ F(x)〈Dx〉 such that ω = L1(α) dy is of second kind.

2. Find a0, . . . , a2g ∈ F(x) with g := genus(K ) with K = F(x , y)(α),
not all zero, such that

a2gD
2g
x (ω) + · · ·+ a0ω = d(β) for some β ∈ K .

Remark.

I If α ∈ F(x , y), Step 2 is not needed since g = 0.

I If ω is of second kind, so is D i
x(ω) for all i ∈ N.
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Manin’s example

The elliptic integral

I (x) :=

∫
Γ
f (x , y) dy , where f =

1√
y(y − 1)(y − x)

.

Telescoper for f

L(x ,Dx)(f ) = Dy

(
2y(y − 1)

(−y + x)
√
−y(y − 1)(−y + x)

)
,

where
L = (4x2 − 4x)Dx2 + (8x − 4)Dx + 1.

Then I (x) satisfies the Picard-Fuchs equation

D2
x (I (x)) +

2x − 1

x(x − 1)
Dx(I (x)) +

1

4x(x − 1)
I (x) = 0.
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Telescopers for 3D Rook Walks

Transformation. F = P/Q := (yz)−1f (y , z/y , x/z).

P

Q
=

(−1 + y) (y − z) (−z + x)

zy (zy − 2 yx − 2 z2 + 3 xz − 2 y2z + 3 y2x + 3 z2y − 4 zyx)

Residues. Roots of R(x , y , u) := Resultantz(Q,P − u · Dz(Q)) are

r1 =
y − 1

y(3y − 2)
, r2 = −r3 =

(y − 1)2

y(3y − 2)
√
−4y3 + 16xy2 + 4y2 − y − 24xy + 9x

.

Telescopers. L1 = Dx and L2 = L3 with

L2 =Dx
3 +

(
4608 x4 − 6372 x3 + 813 x2 + 514 x − 4

)
Dx

2

x (−2 + 121 x + 475 x2 − 1746 x3 + 1152 x4)

+
4
(
576 x3 − 801 x2 − 108 x + 74

)
Dx

x (−2 + 121 x + 475 x2 − 1746 x3 + 1152 x4)
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Recurrences for 3D Rook Walks

L = LCLM(L1, L2, L3) is a telescopers for F(x , y , z).

⇓

L(x ,Dx)

(∑
n

f (n, n, n)xn

)
= 0

Recurrence. Let r(n) := f (n, n, n). From L(x ,Dx) via gfun, we get

(1152n2 + 1152n3)r(n) + (−7830n − 3204− 6372n2 − 1746n3)r(n + 1) + (2957n

+ 762 + 2238n2 + 475n3)r(n + 2) + (4197n + 4698 + 1240n2 + 121n3)r(n + 3)

+ (−22n2 − 80n − 96− 2n3)r(n + 4) = 0.

With initial values r(0) = 1, r(1) = 6, r(2) = 222, r(3) = 9918, we get

1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, . . .
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Summary

Equivalence.

L(x ,Dx)(f ) = Dy (g) + Dz(h), f , g , h ∈ F(x , y , z)

m

L(x ,Dx)(α) = Dy (β) for any residue α of f w.r.t. z .

Note. One can also reduce rational m vars to algebraic m − 1 vars.

Order Bound. Let K = F(x , y)(α) and n be the number of poles of α.

L(x ,Dx)(α) = Dy (β) ⇒ ord(L) ≤ [K : F(x , y)] · n + 2 · genus(K ).

Future Work. Walks in higher dimension (4D, 5D, ...).
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