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N always denotes the set {0, 1, 2, 3, . . . } of natural numbers, and

Z+ always denotes the set {1, 2, 3, . . . } = N \ {0} of positive integers.

Rings are always assumed to admit unities, and ring homomorphisms are assumed
to preserve unities.

Groups are written multiplicatively, with identity denoted e, unless specifically
stated to the contrary.

1. Introduction

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Men-
schenwerk.

[God made the whole numbers, all the rest is the work of man.]

Leopold Kronecker

Kronecker died in 1891. When axiomatic set theory was developed in the early
1920s, closely following the ratification of the Nineteenth Amendment of the United
States Constitution, an appropriate revision might have been:

God made sets, all the rest is a human construct.

When category theory entered the picture in mid-century a further revision seemed
necessary:

God made classes, all the rest is a human construct.

This last formulation is a good summary of how this author views mathematics,
but I need to be more specific: for me the “mathematical world” must be treated as
being distinct from the “real world.” In this matter I seem to be in good company.

. . . I . . . use the word ‘reality’ . . . with two different connotations.
. . . By physical reality I mean the material world, the world of day and
night, earthquakes and eclipses, the world which physical science tries to
describe.

[But] . . . for me, and I suppose for most mathematicians, there is
another reality, which I will call ‘mathematical reality’.

G.H. Hardy
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The quote is from [Hardy, §22], and continues with additional comments which are
quite relevant to these notes.

. . . there is no sort of agreement about the nature of mathematical
reality among either mathematicians or philosophers. Some hold that it
is ‘mental’ and that in some sense we construct it, others that it is outside
and independent of us. . . .

I should not wish to argue any of these questions here even if I were
competent to do so, but I will state my own position dogmatically in order
to avoid any misapprehensions. I believe that mathematical reality lies
outside us, that our function is to discover or observe it, and that the
theorems which we prove, and which we describe grandiloquently as our
‘creations’, are simply our notes of our observations. This view has been
held, in one form or another, by many philosophers of high reputation
from Plato onwards, and I shall use the language which is natural to a
man who holds it. A reader who does not like the philosophy can alter
the language: it will make very little difference to my conclusions.

I share a good deal of Hardy’s philosophy1, but I again need to be more spe-
cific. For me the mathematical world contains nothing but classes (which include
sets2, and therefore functions), whereas the real world, which encompasses death and
taxes, also encompasses the notations and formulas, the set-theoretical axioms, and
the logical constructs, such as sentential inference, which serve as indispensable guides
for understanding the mathematical world.

Such a viewpoint comes from experience. I have never held a natural number in my
hands, let alone seen one, but I am quite confident when writing down an expression
such as3 3 + 5 = 8 that my symbols actually represent something “out there.” A
physicist reading this might be reminded of a “parallel universe.” That concept
is similar to my mathematical world in the sense of being separate and physically
inaccessible, while simultaneously being amenable to description by means of formulas
(which for me include equations).

For someone of my philosophical persuasion a definition such as “a polynomial (in
a single variable x) is an expression of the form anx

n + an−1x
n−1 + · · · + a1x + a0”

makes no sense: it confuses notation with what that notation is intended to represent,

1But not, unfortunately, his mathematical abilities!
2We will eventually explain our view of the distinction between sets and classes, which is not

that a set is a class which is an element of a set.
3I checked this particular sum on several calculators, so am fairly confident that it is correct, or

at least in the right ballpark.
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and as a consequence offers not even a hint as to what mathematical world entity
is being described4. Moreover, it is not clear to me that I could easily use such a
definition to prove anything about polynomials in a manner which would be regarded
as currently acceptable mathematical rigor 5. When training to become a professional
mathematician those in my generation would eventually encounter a definition of a
polynomial based ultimately on set theory. For example, if one requires coefficients
in a commutative ring R one could define a polynomial6 to be a function from a
collection7 {(x, n)}n∈N into R which has value 0 for almost all8 (x, n), wherein x
can denote any set disjoint from R. From this perspective, and assuming R = Z,
the notation 3x12 − 5x3 + 7 would be regarded as a “short-hand” representation of
the function

(x, 12) 7→ 3,

(x, 3) 7→ −5,

(x, 0) 7→ 7, and

(x, n) 7→ 0 if n /∈ {0, 3, 12}.
Alternatively, a “free object” approach to polynomials might be preferable to those
who favor categorical formulations, and is more in keeping with the idea of “substitut-
ing for variables.” In either case one generally reverts to the classical notation once
the definition has been thoroughly dissected at the formal level and absorbed into the
unconscious, the advantage being that one is now able proceed with confidence that
something in the mathematical world is actually being discussed9.

My experiences listening to talks on model theory often remind me of my long-
ago struggles to understand the definition of a polynomial. Model theorists refer

4On the other hand, such a definition is probably sufficient for the majority of non-mathematicians
who use polynomials in their work, and they no doubt outnumber professional mathematicians. I
am not advocating changing the way polynomials are introduced in secondary schools.

5I doubt if a nineteenth century mathematician would have been bothered by the definition I
have given in quotes. But my experience has been that, even if they communicated their definition
in that form, they understood what they were doing at a far deeper level, and that their arguments,
once understood, are not generally difficult to formulate in contemporary terms. Indeed, a good deal
of “modern mathematical constructs” (sheaf cohomology, algebraic function fields, etc.) could be
viewed as aids for understanding what the masters already knew. Example: in [Gunn, §4, Theorem
6, p. 51], Gunning attributes a theorem involving an exact cohomology sequence to Weierstrass.

6A slight variation of the definition I give is found in [Lang, Chapter II, §3, p. 97].
7Think of (x, n) as xn.
8I.e. all but at most finitely many.
9Mathematical “formalists” (and probably many others!) would regard all this as nonsense. For

the pure formalist mathematics amounts to a collection of real-world rules governing meaningless
marks on paper.
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constantly to “sets of formulas,” which for me makes no sense, since these two en-
tities inhabit completely different worlds10. For example, in [Marker, Chapter 4, §1,
Definition 4.1.1, p. 115] one finds

Definition 4.4.1 : Let p be the set of LA-formulas in free variables
v1, . . . , vn. We call p an n-type if . . . .

Model Theory is a very active field, and has made enormous contributions to
mathematics, e.g. E. Hrushovski’s proof of the geometric Mordell-Lang conjecture in
algebraic function fields11. It is particularly useful in differential algebra, which is how
Model Theory caught my attention and why I wanted to learn about it. Unfortunately,
my philosophical approach to mathematics seemed to prevent me from benefiting fully
from the many contacts I have with model theorists at the CUNY Graduate Center12.

Fortunately, I eventually realized13 that if one views model theory from the stand-
point of universal algebras the concept of a “set of formulas” can be developed in such
a way as to be as mathematically straightforward as the concepts of a group and of
a topological space. These notes indicate, probably in far more detail than anyone
would ever care to see, how this can be done. Specifically, I begin with an entity,
which I call a “UA type” (for “universal algebra type”), having a simple set-theoretic
definition, associate a category with each such entity, prove that this category admits
free objects, and indicate how and why it seems quite natural to refer the elements
of the free objects as “formulas,” or at least as “propositions,” even though (in this
author’s opinion) that is not what they “really” are14.

10Formulas are human constructs; sets are not. Indeed, when one lists the axioms of set theory
[as will be done later in these notes] one of the first axioms that appears is that of “specification.”
This (roughly) states that if X is a set and p(x) is a “formula,” then there is a subset Y ⊂ X
consisting precisely of those x ∈ X for which p(x) is true. As one reads further down such a list
if is often the case that one will eventually encounter a statement such as “We have yet to assume
the existence of any set.” Given the statement of the Axiom of Specification, and the fact that, if
supplied with real-world paper and pencil I can create formulas at will, it seems implicit from such
a presentation that formulas cannot be sets.

11Reference [Bou] seems to cover all the background, both in model theory and Abelian varieties
that allow one to understand both the statement and proof. (A fair knowledge of algebraic geometry
is assumed.)

12To be honest I have to admit that much of my frustration is of my own making: I have never
attended a full course in Model Theory, despite many opportunities to do so, and it has been years
since I took courses in logic. I wanted to quickly learn what was going on in that field, primarily
because of the applications to differential algebra, but I did not go about doing that in a very
intelligent way.

13Which should not be mistaken for an assertion that my current understanding is actually correct!
14To graduate from propositions to more general formulas one must move up from sentential
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This approach is reminiscent of the way Kolchin formulated differential algebra in
[Kol] (and elsewhere), although he did not use categorical terminology. There my UA
type is replaced with a pair (∆, R) consisting of a set ∆ (the derivation operators)
and a commutative ring R, and each such pair is associated with a category having
as objects R-algebras on which the elements δ ∈ ∆ act as commuting derivations15,
and having as morphisms R-algebra homomorphisms which commute with the action
of each δ. He proves the category admits a free object on any set X = {xα}, the
elements of which are called differential polynomials in the differential indeterminates
xα.

Contemporary texts on Model Theory begin with a slightly more ambitious pro-
gram than what I have outlined at the end the penultimate paragraph. They open
with a generalization of a UA type which in [Marker, Chapter 1, §1. Definition 1.1.1,
p. 8] is called a language, but16 in [Roth, Chapter 1, §1.1, p. 3] is called a signature
(“languages” do not appear in [Roth] until page 11, and “signatures” never appear
[at least in the index] in [Marker]). The analogue of what I have labeled a T -algebra
is called a structure, and, as one would expect, these references establish (generally
not using categorical language) that for any fixed language/signature all such entities
and their associated homomorphisms form a category.

My introduction to the universal algebra approach17 was a casual reading of por-
tions of [B-M], which I subsequently began to study in earnest. Unfortunately, almost
immediately18 I ran into set-theoretic difficulties with a proof of one of the basic re-
sults needed from universal algebra. My resolution of that difficulty consumes about
34 pages (§5-9) of these notes!

inference (“Propositional Calculus”) to “first order logic” (“Predicate Calculus”). These notes end
with sentential inference, but once the philosophy of that construction is understood the form one
expects the extension to take (if not the intermediate technical details) becomes predictable (see,
e.g. [B-M, Chapters 3-5]).

15A derivation on an R-algebra A is a mapping δ : a ∈ A 7→ a ′ ∈ A such that for any a, b ∈ A
one has

• (a+ b) ′ = a ′ + b ′ and

• (ab) ′ = ab ′ + a ′b.

Derivations δ1, δ2 on A commute if δ1(δ2(a)) = δ2(δ1(a)) for all a ∈ A.
16Individuals interested in learning Model Theory need to know that no two workers in the field use

the same terminology. Despite this, they all remain friends. This does, however, present problems
for those not in the field when it comes to choosing which terminology to use, and I am friends with
both David Marker and Philipp Rothmaler (or at least I think was before I started writing these
notes)!

17Which I soon discovered could be found in many places; particularly in books on that subject.
18On pages 5 & 6 of that reference.
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I have the same set-theoretic difficulties with the proof of the existence of an
algebraic closure for a field given by Lang in [Lang, Chapter V, §2, pp. 231-2]. Since
that result (if not the proof) is assumed familiar to readers, for the purposes of this
introduction I will here describe my problem in that context. Given a field K0 Lang
proves that one can construct a field extension K1 of K0 which contains a root
of every polynomial in19 K0[x]. (I am fine with this portion of the argument.) He
then applies the analogous construction to K1, obtaining a field K2 which contains
a root of every polynomial in K1[x] (again fine); then applies . . . , thereby obtaining
a recursively defined sequence K0 ⊂ K1 ⊂ K2 ⊂ · · · of fields. He completes the proof
by verifying that the set-theoretic union ∪n∈NKn admits the structure of a field (this
is easy), and that this union, with this field structure, is an algebraic closure of K0

(again easy).
So what is the problem? For me the problem is that, from a set-theoretic view-

point, it is not clear that union ∪n∈NKn makes sense. To invoke the Axiom of Unions
(which will be stated in §6) one needs to know that the collection {Kn}n∈N is a set,
and since this collection is defined recursively, that would require realizing the under-
lying recursive function n 7→ Kn by means of the Recursion Theorem20. But I could
not see how this could be done.

However, I did see how to make the argument rigorous by moving to the axioms
Saunders Mac Lane has proposed as a (temporary) set-theoretic foundation for (a
good deal of) category theory. These are explained in §6, and that is a major reason
why the notes are so lengthy. (There are additional reasons for dealing with category
theory: as already indicated, we make heavy use of free objects.) Once that work is
out of the way we apply the results to Lang’s argument before moving on the the real
goal, which is the universal algebra construction which bothered me in the first place.
Those who are not concerned about my set-theoretic and philosophical problems21

should stop reading here22 and start looking elsewhere. Reference [B-M] is recom-
mended (it was my main reference, and I like the approach very much), but readers
are warned that much of the terminology found there is not, in my experience, what is
currently used in model theory. I have tried to employ contemporary terminology23.

During the talk it was pointed out that one can make sense out of my neme-

19Throughout this paragraph x denotes a single indeterminate.
20This theorem will be stated, proved, and illustrated in §7.
21Or would “hang-ups” be more appropriate?
22Assuming that has not already happened.
23Which brings me back to my point that no two model theorists seem agree on terminology.

They do seem agree, however, that terminology used by any other model theorist, even if totally
appropriate, should be avoided at all costs.
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sis unions with appeals to the Axiom of Specification rather than to the Axiom of
Unions24. In particular, for that purpose there was no need to introduce Mac Lane’s
axioms. However, because elsewhere I deal with categories, and because it clarified
(for this author) the role of the Axiom of Replacement, I decided to leave things as I
originally developed them25.

A remark on terminology is in order. In §6 I go to great lengths to distinguish
between “sets” and “classes,” but in other places I cast off formality and write about
“collections” without specifying the meaning. I do this in part, as Halmos writes in
[Hal, §1, p. 1],

. . . to avoid terminological monotony . . . ,

but also to indicate points within the exposition where I regard the level of the
discussion as being informal. To illustrate, suppose we agree that the integers Z
form a set and we want to assert the same about the even integers. Two possible
choices for doing this, which for this author represent opposite extremes, are to state
that

The collection of even integers is a set.

and to state that

By the Axiom of Specification those n ∈ Z satisfying ∃m ∈ Z such that
n = 2m constitute a subset of Z, and therefore a set. This is the set of
even integers.

Absent any need to stress some very technical point(s), and offered only these two
choices, I would opt for the first without a second thought. Even though it is open
to (or even “invites”) misinterpretation, I am confident that my meaning would be
clear to anyone at the level I would expect of readers. The problem, of course, is
the implicit circularity: the statement could easily be interpreted as “the set of even
integers is a set,” which is not very informative.

24In [Hal, §19, pp. 74-5] Halmos uses that axiom to deal with an example involving a set-theoretic
construction completely analogous to the two which had bothered me.

25In other words, I was getting a severe case of “burn out” from writing these notes, particularly
the footnotes, and had no desire to essentially start all over.
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2. UA Types

A UA type is26 an ordered pair (T, ar) consisting of a set T and a function ar : T →
N; T is the underlying set of the UA type; the elements of T are the operations (of
the UA type, as opposed to “on the UA type”) ; ar is the associated27 arity function
(and UA is an abbreviation for “universal algebra”). In practice one denotes the UA
type by T (in the same spirit as denoting a topological space (X, τ) by X). If we
define

(2.1) Tn := ar−1({n}), n ∈ N,

then one has

(2.2) T =
∐

n≥0 Tn (disjoint union).

In these notes the sets Tn within the decomposition (2.2) will generally be finite,
and that suggests expressing T in the form

T = {t01, t02, . . . , t0m0 , t11, . . . , t1m1 , t21, . . . },

where
Tn = {tn1, tn2, . . . , tnmn}, n = 0, 1, 2, . . . .

However, in model theory, which is of primary importance for us, this is rarely (if
ever) done. Instead the tnj are replaced by various symbols28 which prove very
convenient for applications, but which can initially lead one to believe (incorrectly)
that one is not actually dealing with (elements of) sets29. For example, instead of
T = {t01, t11, t21, t22} one is (far) more likely to encounter notation along the lines of

(2.3) T = {0,−,+, · },
26In [B-M] what we call a UA type is simply called a “type.” We have avoided that terminology

since in model theory that word has a completely different meaning. Two common synonyms for
“UA type” are: similarity type and type of universal algebra (which strikes one more as an example
of a definition than an actual definition). I settled on “UA type” to keep universal algebras in mind,
but readers are warned that this terminology is not used by other authors.

27“arity” rhymes with “clarity.”
28Such conventions are also used, but far more sparingly, in other areas of mathematics. For

example, a relation on a set X, which by definition is a subset R ⊂ X ×X, is often denoted by a
symbol such as ∼ or <, and rather than adhere to the set-theoretic custom of writing (x1, x2) ∈ R
one writes something like x1Rx2 or, in these two particular cases, x1 ∼ x2 and x1 < x2.

29Elements of sets are always sets. In particular, when one writes tnj ∈ T both tnj and T
represent sets.
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(read 0, −, +, and · as “zero, inversion, plus” and ”times” (or “dot”) respectively),
in which case writing + ∈ T would make perfect sense, and rather than T0 =
{t01}, T1 = {t11} and T2 = {t21, t22} one will probably see

(2.4) T0 = {0}, T1 = {−}, and T2 = {+, · }.

The reason for such notation will quickly become evident.
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3. n-ary Operations

Here A denotes a set.

Define

(3.1)


A0 := {∅},
A1 := A; and

An+1 := An × A if n ≥ 1 and An has been defined.

A function f : An → A is called an30 n-ary operation (on A), although when n is
small alternate terminology is generally employed: when n = 0, 1 or 2 one speaks of
a31 nullary, unary or binary operation respectively. When one is considering a col-
lection of such operations on A with varying n one simply refers to arity operations.

Examples 3.2 :

(a) By definition all nullary operations on A are of the form ∅ ∈ A0 7→ a ∈ A,
and there is (obviously) a unique such mapping for each a ∈ A. The nullary
operations on A can thereby be identified with the points of A, and we will
adhere to this convention. Put another way: each nullary operation on A
amounts to “distinguishing” (or “focusing on”, or “picking out”) a specific point
of A.

(b) In any ring R the additive inverse mapping r ∈ R 7→ −r ∈ R is a unary
operation.

(c) In any group G the multiplicative inverse mapping g ∈ G 7→ g−1 ∈ G sending
an element to its multiplicative32 inverse is a unary operation.

(d) Any derivation δ : R→ R on a ring R is a unary operation.

(e) Addition and multiplication are binary operations on any ring.

30“n-ary” rhymes with “plenary,” although for some it rhymes with “hen dairy” (emphasis on
“hen”). The controversy was supposedly resolved by the Treaty of Btfsplk, but this seems not to be
the case.

31“nullary” rhymes with “scullery,” and “unary” with “spoon-ah-ree,” although for some it rhymes
with “you carry” (emphasis on “you”). This matter was also on the agenda at Btfsplk.

32If the group were written additively the terminology would need to be changed accordingly, since
(b) would then be a special case.
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(f) For any ring R and any n ≥ 1 the mapping (r1, r2, . . . , rn) ∈ Rn 7→
∑n

j=1 rj ∈
R is an n-ary opertion on R.

(g) (Boolean operations) Let X be a non-empty set and let A := P(X) denote
the power set of X, i.e. the set of all subsets of X. Then the complementation
mapping S ∈ A 7→ (X \A) ∈ A is a unary operation on A, and the union and
intersection mappings (S, T ) ∈ A× A 7→ S ∪ T and (S, T ) ∈ A× A 7→ S ∩ T
are binary operations on A.

Any collection of arity operations on A gives rise to further arity operations
by means of Cartesian products of these operations, restrictions (including constant
mappings), various diagonal mappings diagn(A) : a ∈ A 7→ (a, a, . . . , a) ∈ An with
n ≥ 1 (note these include the identity mapping idA : A→ A), and finite compositions
thereof. Any such operations is said to be induced by the given operations33.

Examples 3.3 :

(a) (Subtraction) Let R be a ring and let σ : R × R → R and ρ : R → R
denote the corresponding addition and the additive inverse mappings. Then
the induced operation σ ◦ (idA × ρ) : (r, s) ∈ R2 7→ σ(r, ρ(s)) = r − s ∈ R is a
binary operation.

(b) Let G be a group and let µ : G × G → G and ρ : G → G denote the
corresponding multiplication and multiplicative inverse mappings. Then the
induced operation µ◦ (ρ× idA) : (g, h) ∈ G2 7→ g−1h ∈ G is a binary operation.

(c) (Fixing variables) Let f : A × A → A be a binary operation on a set A and
let b be an element of A. Then the mappings a ∈ A 7→ f(b, a) ∈ A and
a ∈ A 7→ f(a, b) ∈ A, which amount to restricting f to {b} ×A and A× {b}
respectively, are unary operations on A. One might describe these induced
mappings as resulting by “fixing the value of first variable at (i.e. to be) b”
and “fixing the value of the second variable at b” respectively. Similarly, if
f : An → A and 1 ≤ m ≤ n, then by fixing (the values of) m variables one
obtains an (n−m)-ary operation on A.

33The definition is, admittedly, somewhat vague. It would seem preferable to impose some sort of
“algebraic” structure on the collection of all arity operations on a set, and when this set is a T -algebra
define the operations “induced” the collection {tA} to be the operations within the intersection of
all those “algebras” containing the given collection. However, since the several conditions we have
stated explicitly are easily verified in all the examples we will encounter, the added generality did
not seem worth the effort.
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4. Algebras of UA Type T

In this section T = (T, ar) denotes a UA type.

A set A is an34 algebra of UA type T , which for brevity we refer to as a35 T -
algebra, if for each n ∈ N with Tn 6= ∅ there is a mapping from Tn into the n-ary
operations on A. The n-ary function An → A associated with an element t ∈ Tn is
denoted36 tA when n > 0, but when n = 0 the convention introduced in Example
3.2(a) is adopted: in that instance tA denotes the value at ∅ of the nullary function
{∅} → A associated with t. Thus

(4.1) t ∈ Tn ⇒

{
tA ∈ A if n = 0, whereas

tA : An → A if n > 0.

In particular: to define a T -algebra structure on a set A it suffices to associate a
point of A with each t ∈ T0 (the points need not be distinct) and, for each n > 0,
an n-ary operation tA : An → A with each t ∈ Tn (the n-ary operations associated
with distinct points of a fixed Tn need not be distinct).

Any T -algebra is assumed to possess all those arity operations induced by the
various tA. In other words, when working with a T -algebra one has all these induced
operations at one’s disposal.

In analogy with the terminology used with group actions, when A is a T -algebra
one says that the “operations of T act on A,” or simply that37 T “acts on A.”
When there is a need to distinguish the set A from the UA type T , i.e. to regard A
independently of the operations associated with T , we refer to A as the underlying
set of the T -algebra38.

34One could just as easily introduce the notation of a coalgebra of UC type: one would replace
n-ary operations An → A with n-airy co-operations A →

∐n
j=1A, wherein the coproduct symbol∐

indicates the disjoint union. These have no doubt been studied, but most likely using different
terminology.

35The terminology “T -algebra” is fairly common, but does not always have the meaning we have
assigned. We are following [B-M, Chapter I, §1, Definition 1.5, p. 2]. In [Roth, Chapter 2, §2.2,
p. 12], what we call a T -algebra is called a term algebra.

36Notation such as tAn might seem preferable, but becomes a bit cumbersome.
37The “T acts on A ” terminology is not standard, but I find it convenient.
38Again there is a simple analogy with conventions used in topology: a topological space X is, if

one wants to be reasonably precise, an ordered pair (X, τ) consisting of a set X and a collection τ
of subsets thereof satisfying certain properties (which are assumed familiar). However, in practice
one condenses the notation (X, τ) to X, whereupon “X” suddenly represents two distinct entities:
the pair (X, τ), and the set “underlying” the topological space.
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Examples 4.2 :

(a) Let T = {t21, t22} = T2, let R be a ring, and let α : R × R → R and
µ : R × R → R be the respective addition and multiplication functions on R.
Then the mapping

(i)

{
t21 7→ α

t22 7→ µ

gives R the structure of a T -algebra.

In this description we are regarding the ring R as (at least) a 3-tuple (R,α, µ)
of sets, with the functions α and µ being subsets of (R×R)×R. In particular,
the symbols t21, t22, α and β in (i) are to be regarded as representing sets.

(b) Example (a) was presented in a manner which (hopefully) can easily be under-
stood by any mathematician. But it texts on Universal Algebra and/or Model
Theory it would be presented more along the following lines39.

Let T = {+, · }. (It is implicit from the use of the symbols + and · that the
two operations are assumed binary.) Then any ring R is a T -algebra: map
+ to the addition function (r1, r2) ∈ R × R 7→ r1 + r2 ∈ R and · to the
multiplication function (r1, r2) ∈ R×R 7→ r1r2 ∈ R. (We now begin to see the
reason for the +, · notation.)

As the ring example ending the previous paragraph suggests, when A is a T -
algebra and symbolic notation (such as + or ·) is used to represent a binary
operation t ∈ T the same notation is generally used in connection with the
corresponding function tA : A2 → A. For example, when T = {+, · } and
a1, a2 ∈ A one would write the function value +A(a1, a2) as a1 + a2 and the
function value ·A(a1, a2) as a1 · a2. Similar abbreviations are also used for
unary operations: if T = T1 = {−} and a ∈ A the corresponding function
value −A(a) would be written as −a if, say, A were a ring and one had
additive inverses in mind. On the other hand, when a multiplicative group G
is regarded as a {−}-algebra the function value −G(g) at a point g ∈ G would
be denoted g−1.

Such abbreviations are also used with nullary operations, but in that context
one must not forget that the actions on a T -algebra A are identified with points

39In fact such a presentation would probably be little (or no) more than: Any ring is a {+, · }-
algebra.
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of A. For example, if T = {0} the (unique) value 0A(∅) of the corresponding
function 0A : {∅} → A would be written as 0. (Think of it this way: the
function 0A “picks out” the element of A which one wishes to designate by
means of the symbol 0. This adds a bit of formalism to such statements as “the
additive identity of any ring will be denoted by 0.”)

(c) In Example (b) one could assume R is the trivial ring 0, in which case the
addition and multiplication functions are identical. Viewing this ring as a T -
algebra creates a distinction between these two operations which is otherwise
absent.

(d) Any ring is also an S-algebra for S = {+} or {·}. In particular, there is no
claim that both binary operations of the ring are under consideration. Similarly,
there is no claim that rings are the only {+, · }-algebras.

A mapping f : A→ B between T -algebras is a homomorphism (of T -algebras )
if

(4.3) f(tA(a1, a2, . . . , an)) = tB(f(a1), f(a2), . . . , f(an)) for all t ∈ T,

which for n = 0 we take to mean

(4.4) f(tA) = tB

(recall (4.1)). Example: Any ring homomorphism is a homomorphism of {+, · }-
algebras.

Conditions (4.3) and (4.4) are often summarized by the statement: all operations
of T are preserved. One might also40 describe these conditions by: f is “equivariant”
w.r.t. the actions of the operations of T on A and B.

It should be evident that we are dealing with a category: the objects are T -
algebras; the morphisms are homomorphisms between such entities. This is the
category of T -algebras, which we denote by AT . When we refer to an isomorphism
of T -algebras, this context is implicit. To keep the category in mind we will often
refer to T -algebra homomorphisms as morphisms.

Suppose A is a T -algebra and B is a subset of A. We say that B is a T -
subalgebra of A if B is “closed under every tA,” i.e. if

(4.5) tA(b1, b2, . . . , bn) ∈ B whenever b1, b2, . . . , bn ∈ B and t ∈ Tn.
40But one does not.
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Example: any subring of a ring R is a {+, · }-subalgebra of the {+, · }-algebra R. If
A and B are T -algebras satisfying B ⊂ A and tB = tA|Bar(t) for all t ∈ T then A
is an extension of B, and when that is the case B is clearly a T -subalgebra of A.

Our immediate goal is to prove the existence of free objects in AT . For reasons
which will become clear in §8, this will require a substantial amount of preliminary
work.
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5. The Recursion Theorem

The Recursion Theorem is the theoretical justification for allowing recursive defini-
tions in mathematics, i.e. “definitions by induction” as exemplified by (3.1). We
present this classical result as a “warm up” for our discussion of set theory; we will
eventually require a generalization.

Theorem 5.1 (The Recursion Theorem) : Let X be a non-empty set, let x0 ∈
X, and let f : X → X be any function. Then there is a unique function g : N→ X
such that

(i) g(0) = x0

and is such that the diagram

(ii)

X
f−→ X

g ↑ ↑ g

N n7→n+1−→ N

commutes. Equivalently: there is a unique function g : N → X such that (i) holds
and

(iii) g(n+ 1) = f(g(n)) for all n ≥ 0.

The theorem is attributed to Dedekind (1888) in [Potter2, Chapter II, §5.3, (5.3.1),
p. 93].

Proof : In the proof41 we view functions set-theoretically as in Example 4.2(a), i.e.
we view a function p : Y → Z between sets Y and Z as a subset p ⊂ Y × Z such
that for each y ∈ Y there is precisely one z ∈ Z such that (y, z) ∈ p.

Let C ⊂ P(N ×X) denote all those subsets A ⊂ N ×X which contain (0, x0)
and satisfy (n+1, f(x)) ∈ A whenever (n, x) ∈ A. The collection obviously contains
N×X, and is therefore non-empty.

We will show that the intersection g := ∩A∈CA is a function from Z into X
satisfying properties (i)-(iii). To establish this it suffices to prove that

(iv) W = N,
41Which is adapted from [Hal, Section 12, pp. 48-9].
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where W ⊂ Z denotes the collection of those n ∈ Z such that (n, x) ∈ g for precisely
one x ∈ X. We argue by induction on n.

By construction we have (0, x0) ∈ g. If (0, y) ∈ g also holds and y 6= x0 then

Â := g \ {(0, y)} ∈ C. Since Â is a proper subset of g, this would contradict the
fact that g ⊂ A for all A ∈ C. The case n = 0 is thereby established.

Now suppose 0 ≤ n ∈ N and n ∈ W , hence that there is a unique x ∈ X such
that (n, x) ∈ g. Then from the definition of C we have (n + 1, f(x)) ∈ g, and if
n + 1 /∈ g there must be a y ∈ X, y 6= f(x), such that (n + 1, y) ∈ g. In this

instance one checks that42 the set Ã := g \{(n+1, y)} satisfies Ã ∈ C, and we again
contradict the fact that g ⊂ A for all A ∈ C.

Turning to uniqueness, suppose ĝ : N → X also satisfies (i)-(iii). Then from
(i) we have ĝ(0) = x0 = g(0), and ĝ and g therefore argree at 0. However, if
0 ≤ n ∈ N and ĝ and g agree at n then from (iii) we see that

ĝ(n+ 1) = f(ĝ(n)) = f(g(n)) = g(n+ 1).

The two functions ĝ and g therefore agree at all n ∈ N, and ĝ = g is thereby
established. q.e.d.

It is generally easy to sense when the Recursion Theorem is being used implicitly,
but even then the associated set X and the function f : X → X may not be so easy
to determine. The following formulation can sometimes be helpful in that regard.

Corollary 5.243: Let X be a non-empty set, let x0 ∈ X, and suppose {fn : X →
X }n∈N is any family of functions. Then there is a unique function g : N→ X such
that

(i) g(0) = x0

and such that for each n ∈ N the diagram

(ii)

X
fn−→ X

g ↑ ↑ g

N m7→m+1−→ N

commutes. Equivalently: there is a unique function g : N → X such that (i) holds
and

(iii) g(n+ 1) = fn(g(n)) for all n ≥ 0.

42For more detail see [Hal, Section 12, p. 49].
43See [Potter2, Chapter II, §5.3, (5.3.3), p. 94].
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Proof : Define X̃ := N×X and define f̃ : X̃ → X̃ by

(iv) f̃ : (n, x) 7→ (n+ 1, fn(x)).

Then by Theorem 5.1 there is a unique function g̃ : N→ X̃ such that

(v) g̃(0) = (0, x0)

and

(vi) g̃(n+ 1) = f̃(g̃(n)) for all n ∈ N.

Let π1 : (n, x) → N and π2 : (n, x) ∈ X̃ denote the projections onto the first
and second factors respectively, i.e. π1 : (n, x) 7→ n and π2 : (n, x) 7→ x. Define
g := π2 ◦ g̃ : N→ N and write g̃ accordingly, i.e. as

g̃(n) = ((π1 ◦ g̃)(n), g(n)), n ∈ N.

We claim that g̃(n) must have the form

(v) g̃(n) = (n, g(n)) for all n ∈ N,

i.e, that π1 ◦ g̃ = idN. For n = 0 this is obvious from (v). If it is true for 0 ≤ n ∈ N
then we see from the calculations

g̃(n+ 1) = f̃(g̃(n))

= f(n, g(n)) (by the induction hypothesis)

= (n+ 1, fn(g(n))) (by (iv))

= (n+ 1, g(n+ 1)) (because g(n+ 1) := π2(g̃(n+ 1)))

that it also holds for n+ 1, and the claim is thereby established.
Equality (iii) is apparent from the final two lines of this last calculation. q.e.d.

Corollary 5.3 : There is precisely one function h : N→ N such that

h(n) = n! := n · (n− 1) · (n− 2) · · · 3 · 2 · 1 for all n ≥ 0.

Proof : Take X := N and fn : m ∈ N 7→ nm ∈ N in Corollary 5.2. (Note that the
collection {fn} is not defined recursively.) q.e.d.
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In practice this corollary would most likely be expressed in the form of a definition:
the “factorial” n! of any integer n ∈ N is defined by44

(5.4) n! :=

{
1 if n = 0 ,

n · (n− 1)! if n ≥ 1.

Unfortunately, even after one works through the usual axioms of set theory45 and the
consequent principle of mathematical induction (which is assumed familiar), it is not
at all clear mathematically, even though it seems quite clear intuitively, that (5.4)
provides a sufficient amount of information to specify a unique function46 g : N→ N.
The Recursion Theorem, which stands imposingly behind Corollary 5.3, is what saves
the day: the information is indeed sufficient. In general, one should be able to back
up any definition by recursion by appealing to the Recursion Theorem47.

44Of course there is also a non-recursive definition of n! for n ≥ 0, i.e.

n! := Γ(n+ 1),

where Γ : x ∈ (0,∞) 7→
∫∞
0
tx−1e−t dt is the classical Gamma function (see, e.g. [Rudin, Chapter 8,

§8.17-22, pp. 192-195]). But for the proof of interest by Lang there is no evident alternate approach
to defining the relevant sequence of fields.

45Those axioms will be reviewed in the following section.
46A function f : X → Y between sets X and Y is, by definition, a subset of X × Y satisfying

certain properties, and the axioms of set theory are quite specific and fairly restrictive with regard
to how subsets can be defined.

47On the other hand, if one did this with every recursive definition encountered one would never
make any progress on the actual topic of interest.
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6. Remarks on the Set-Theoretical Foundations of

Category Theory

To continue with the study of T -algebras we need a somewhat lengthy digression
on set theory for reasons described in the Introduction. Readers comfortable with
set/class distinctions and category theory should consider skipping to §7 immediately.

When set theory was first introduced it appeared to unify a great deal of mathe-
matics in a very efficient way, but it was quickly realized that one had to be careful
about just what collections could be regarded as sets. For example, the collection of
all sets cannot qualify as a set : for if the collection X of all sets is a set we could
use the Axiom of Specification (see (b) below) to construct the subset Y consisting
of those sets x satisfying x /∈ x. One now asks if Y ∈ Y . If so it must be the case
that Y /∈ Y , which is an obvious contradiction. On the other hand, the alternative
Y /∈ Y fares no better; the contradiction48 is now Y ∈ Y . This indirect proof, before
being interpreted as such, was known as Russell’s paradox.

The confusion engendered by such a simple argument leads to an obvious question:
how can one be confident, in any particular mathematical discussion, that when one
refers to certain collections as “sets” they are deserving of that designation? Thus
far the general agreement has been to base set theory on a collection of axioms which
seem intuitively plausible, and which collectively eliminate all known paradoxes, and
to adhere to these axioms, at least implicitly, when doing mathematics. In such
an approach “set” (some prefer “class”) and “membership” are taken as primitive
concepts, i.e. the terms are never defined, but at an intuitive level it can be useful
to think of a set as a mound of pebbles, possibly consisting of just one pebble, or
as a collection of mounds of pebbles, and of “membership” in one of these sets as
being one of the pebbles within that mound, or the single pebble, or as one of the
mounds within that collection of mounds. A real-world symbol ∈, which we call the
membership symbol, is introduced to help in describing sets and their members, and
real-world rules, i.e. axioms, based on experience and needs, are listed to govern the
ways in which one is allowed to deal with sets.

Preferably all the axioms should be “based on experience,” i.e. they should be
“intuitively plausible” in the spirit of the axioms of plane Euclidean geometry. In
that subject “point” and “line” are primitives, but because of the mental images
these terms elicit it does not take a great deal of effort for the mathematically inclined
to accept an axiom such as “two distinct lines meet (i.e., intersect) in at most one

48From the point of view of pure logic the actual contradiction, in both instances, is the sentence
(Y ∈ Y ) ∧ (Y /∈ Y ). (One reads the symbol ∧ as “and.”)
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point.” One might regard “the union of two sets is a set” as a comparable axiom in
set theory49.

Unfortunately, a few of the set-theoretic axioms we will list may not seem intu-
itively plausible, an example for this author50 being the Axiom of Foundation. In
that case the appearance is by necessity, i.e. so as to reduce the chances of uncovering
another paradox similar to that of Russell.

The current leaders as far as formal axiomatic set-theoretic systems are concerned
are the two51 associated with the name pairs52 Zermelo-Fraenkel (ZF) and Hilbert-
Bernays (HB). However, for mathematicians who do not specialize in that area, or in
foundations, a less formal (“naive”) approach generally suffices in everyday practice53.
That is the route we will take.

In what follows the symbol ⇒ should be read as “implies” unless otherwise stated,
and the symbol ⇔ as “if and only if” or “is equivalent to.”

Here is our list54:

(a) (The Axiom of Extension) Two sets X are equal if and only if x ∈ X ⇔ x ∈ Y ;

• This axiom governs how the equality sign “=” (which for this
author belongs to real-world logic) is to be used in connection with
the membership symbol ∈.

• One reads a ∈ B as “a is in B,” or “a is a member of B,”
or “a is an element of B.” These last two choices leave one with
the impression that “members of sets” and “elements of sets” are
something other than sets. That is a false impression:

the elements of a set can only be sets.

In more formal presentations of set theory, e.g. the appendix to
[Kelly], one generally sticks with small letters, e.g. one would write

49Readers are assumed familiar with unions, intersections and complements of sets, i.e. with a
working knowledge of set theory as has been used in the previous sections of these notes. However,
readers are not assumed familiar with formal presentations of the discipline.

50Intuition is, after all, subjective.
51For workers in set theory the Morse-Kelly (MK) axioms are also quite important. See the

appendix on set theory in [Kelly].
52Technically, ZFC and HBC. The C indicates that the Axiom of Choice [in our list in the form

or Zermelo’s postulate] is included.
53The paradigm for such an approach is [Hal], but that reference does not encompass category

theory.
54What we list are basically the ZF axioms. For more precise statements see e.g. [B-M, Chapter

VI, §2, pp. 52-56].
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a ∈ b rather than a ∈ B, thereby avoiding being fooled by the no-
tation. We will, nevertheless, adopt that misleading notation: it is
used in practically all mathematics not concerned with formal set
theory or foundations.

• If A and B are sets and x ∈ A ⇒ x ∈ B we say that A is
a subset of B, or that B contains A, and indicate this by writing
A ⊂ B or B ⊃ A respectively. Note that A = B ⇒ A ⊂ B. A
is a proper subset of B, or B properly contains A, if A ⊂ B and
A 6= B. From the Axiom of Extension we see that

X = Y ⇔ X ⊂ Y and Y ⊂ X.

(b) (The Axiom of Specification55) If X is a set, and if p(t) is a statement56 having
the property that p(x) can be determined either true or false for each x ∈ X,
then there is a set Y which consists precisely of those x ∈ X for which p(x)
is true (in particular, Y ⊂ X);

• One generally specifies the set Y by writing {x ∈ X : p(x) }.
Including the “∈ X” in this notation is crucial. For example, writing
{x : x /∈ x } could quickly lead to the Russell paradox, whereas
writing {x ∈ X : x /∈ x }, where X is the (assumed) set of all
sets, could simply be the first step in a repetition of our proof by
contradiction that there is no such set.

• If the existence of at least one set X is assumed (which has yet
to be the case), it follows by taking p(x) to be the statement x 6= x
that there is a set ∅, called the empty set or null set, which contains
no elements. Any other set is non-empty.

55This is also called the comprehension axiom, or the comprehension principle, for elements of
X.

56Halmos uses the word “condition” [Hal, Section 2, p. 6], and goes on to state (his x is my t
and his S(x) is my p(t)):

A “condition” here is just a sentence. The symbolism S(x) is intended to indicate that
the letter x is free in the sentence S(x); that means that x occurs in S(x) at least
once without being introduced by one of the phrases “for some x” or “for all x.”

The terminologies “statement, condition” and “sentence” are admittedly vague. Readers who
would like to see finer precision can find far more detail elsewhere, e.g. the first five chapters of
[Eisbg]. (However, that particular reference uses the Hilbert-Bernays approach to set theory.)
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• Suppose X is a set containing a point x0 one wishes to be re-
moved. If this is done, and all other points remain, does the re-
maining collection constitute a set? The Axiom of Specification en-
sures this will be the case, since that result can be described by
{x ∈ X : x 6= x0 }.
• The difference X \ Y of sets X and Y is defined by {x ∈ X :
x /∈ Y }. The Axiom of Specification guarantees this is a set. (This
definition does not assume Y ⊂ X.)

• It will prove useful, for our purposes, to refer to the set X in the
statement of the Axiom of Specification as the ambient set. Readers
are warned that this is not standard terminology.

• Let X = N, and let p(x) be the statement: x ∈ N is even,
greater than 2, and is the sum of two prime numbers. The Axiom
of Specification ensures that Y := {x ∈ N : p(x) } is a set, since
(in principle) one can determine if p(x) is true for any given positive
even integer x. Example: for x := 23, 212, 867, 370 the statement is
true since (as everybody knows) x is the sum of the two (obviously57)
prime integers 27, 484, 207 and 23, 185, 383, 163, and we thereby
conclude that x ∈ Y . The Goldbach conjecture, which has yet to
be either established or refuted, is that Y is the set of positive even
integers greater than 2.

(c) (The Axiom of Pairing) For any two sets X and Y there is a set Z which
admits both X and Y as elements;

• By means of the Axiom of Specification one can then guarantee
the existence of a subset {X, Y } ⊂ Z having only X and Y as
elements, i.e.

{X, Y } := {z ∈ Z : z = X or z = Y }.

{X, Y } is the pair formed by X and Y .

• When Y = X one writes {X, Y } as {X} and refers to this last
set as a “singleton” (set).

57Particularly when you have a good computer algebra package on your office computer!
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• When Y is replaced by {X, Y } one writes the pair {X, {X, Y }}
as (X, Y ) are refers to such sets as “ordered pairs”. The definition
enables one to prove that (X, Y ) = (Z,W ) if and only if X = Z
and Y = W .

(d) The Cartesian product of any two sets is a set;

• The definition of the Cartesian product of two sets is assumed
familiar. However, since the concept will soon arise in greater gener-
ality, it seems worth repeating here. The Cartesian product X × Y
of sets X and Y is the collection of all ordered pairs (x, y) with
x ∈ X and y ∈ Y .

• A function between sets X and Y is defined to be a subset
f ⊂ X × Y such that for each x ∈ X, (x, y1) ∈ f and (x, y2) ∈
f ⇒ y1 = y2. One indicates such an f by the notation f : X → Y ,
and for any ordered pair (x, y) ∈ f one refers to y as the value of
f at x and indicates this by writing y as f(x).

• The range of a function f : X → Y between two sets is denoted
f(X) and consists of those y ∈ Y such that y = f(x) for some
x ∈ X.

• A function f : X → Y between sets X and Y is: injective,
or is one(-to)-one, or is an injection, if x1, x2 ∈ X and x1 6= x2
imply f(x1) 6= f(x2); surjective, or is onto, or is a surjection, if
Y = f(X); bijective, or is one(-to)-one onto, or is a bijection, if it
is both injective and surjective.

(e) (The Axiom of Powers) Given any set X there is a set Y with the property
that every subset of X is an element of Y .

• By means of the Axiom of Specification one can then guarantee
the existence of a set consisting precisely of the subsets of X, i.e.

P(X) := { y ∈ Y : y ⊂ X }.

P(X) is the power set of X.
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• Note that the assignment x ∈ X 7→ {x} ∈ P(X) defines an
injection σP(X) : X → P(X), which at the intuitive level would
indicate that P(X) is “at least as big” as X. One might also argue,
again at the intuitive level, that P(X) is actually “bigger” than X
since there can be no surjection τ : X → P(X). Indeed, if such a τ
exists the set S = {x ∈ X : x /∈ τ(x)} would be in the range of τ ,
and we could therefore pick a point x0 ∈ X such that τ(x0) = S.
From the definition of S we then see that

x0 ∈ S ⇔ x0 /∈ τ(x) ⇔ x0 /∈ S,

and we therefore have a contradiction58.

(f) (The Axiom of Replacement59) Let X be a set and let p(s, t) be a statement
having the the following two properties:

• p(x, y) can be determined either true of false for each pair of sets (x, y)
with x ∈ X; and

• p(s, t) is “functional” for such pairs in the sense that

- for each x ∈ X there is a set y such that p(x, y) is true, and

- if p(x, y) is true and p(x, z) is true then y = z.

Then there is a set Y consisting of those sets y such that p(x, y) is true for
some x ∈ X.

• The simplest consequence of this axiom is that: the range of any
function is a set.

Proof : Let f : X → W be a function between sets X and
W and let p(s, t) be the statement t ∈ W and (s, t) ∈ f .
Then the collection of sets y such that p(x, y) is true for
some x ∈ X is precisely the image f(X) of f . q.e.d.

58The argument is curiously similar to that associated with Russell’s paradox.
59The statement is adapted from [Mac2, Chapter I, §6, p. 23]. The result is also known as the

Axiom of Substitution.
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• The range of a function f : X → Y between sets is also called
the image of the function, or the image of X (under f). Since
for any subset A ⊂ X the restriction60 f |A : A → Y is again a
function, the image f |A(A) is again a set. This set is written f(A)
and is called the image (of A ) (under f).

• The image of a function f : X → Y between sets is also called
a family of elements of Y , or a family of sets, the sets being the
elements of f(X), and when this terminology is used the notation
and terminology undergo radical changes: in place of f : X → Y
one writes {yx}x∈X , without specific mention of f , but with the
understanding that

yx := f(x),

and one refers to X as the index(ing) set (of the family). Specific
reference to Y is also quite often omitted.

• One of the major reasons for introducing the Axiom of Replace-
ment is to enable one to deal with “ordinal numbers.” Since we will
have no occasion to do so in these notes, we refer interested readers
elsewhere, e.g. to [Hal, §19] or to [Roth, Chapter 7, §5, Lemma 7.5.5,
pp. 100-101].

(g) (The Axiom of Unions) For any set X there is a set ∪X consisting of all sets
z having the property that z ∈ x for some x ∈ X. ∪X is the union of the
elements of X.

• This definition is often written

∪X := { z : z ∈ x for some x ∈ X },

but it is worth mentioning explicitly that the notation does not in-
dicate an application of the Axiom of Specification: no ambient set
has been given.

• When X = {A,B} is a pair one writes ∪X as A ∪ B, the
displayed definition in the previous item would generally be written

A ∪B := {x : x ∈ A or x ∈ B },
60Readers are assumed familiar with this terminology.
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and one would refer to A∪B as the union of the sets A and B. This
construction with sets is assumed thoroughly familiar to readers, but
that might not be the case that ∪X is familiar, hence relating them
seems appropriate.

• Note that
∪∅ = ∅.

Otherwise there is a set z such that z ∈ x for some x ∈ ∅, whereas
x ∈ ∅ contradicts the fact that ∅ has no points.

• Intersections get little attention in axiomatic treatments of set
theory since they are easily handled using (b) or variations thereof.
The major thing one needs to keep in mind is that ∩∅ is not defined
(and the same therefore holds for empty families of sets, i.e. families
indexed by the empty set): otherwise contradictions result (just as
with attempts to define division within rings by 0). See, for example,
[Hal, Section 9, p. 35].

(h) (The Axiom of Foundation61) Every non-empty set X contains an element yX
such that if z ∈ yX then z /∈ X.

• Given sets A and B, think of A ∈ B as A being “below” B.
The Axiom of Foundation asserts that nothing in X is below yX ,
hence that yX is at the “foundation” of X (but need not be unique
in that regard).

• A statement equivalent to the Axiom of Foundation is: each non-
empty set X contains an element yX such that X ∩ yX = ∅.

• When taken in combination with the Axiom of Specification this
axiom provides further insurance against paradoxes of the type dis-
covered by Russell. Indeed, an immediate consequence is: no set can
be an element of itself.

Proof : This is obvious for the empty set, since that set
has no elements. So assume X is a non-empty set and
X ∈ X. By the Axiom of Foundation there is an element
yX ∈ X such that yX /∈ X, and we are thereby faced with
the contradiction yX ∈ X and yX /∈ X. q.e.d.

61This is also called the Axiom of Regularity.
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(i) (The Axiom of Infinity) The collection N of natural numbers is a set;

• This is the first axiom which asserts the existence of a set.

• The successor of a set X is defined to be the set X+ := X∪{X}.
The Axiom of Infinity is often stated in the more general form: there
is a set which contains the empty set and also contains the successor
of each of its elements. One can then define 0 := ∅, 1 := 0+, 2 := 1+,
etc. and apply the Axiom of Specification to this set to realize N as
a subset (and therefore as a set). Moreover, one can subsequently
prove that N satisfies the “Peano Axioms” and establish the prin-
ciple of mathematical induction. From that point one can formulate
rigorous definitions of addition an multiplication in N and prove all
the familiar properties of, and the relationship between, these binary
operations, e.g. associativity and the distributive law62. Working
though such constructions would be too much of a diversion for our
purposes. All that we require are the initial statement and the prin-
ciple of mathematical induction63.

and

(j) (Zermelo’s Postulate) If {Xα} is any family of pairwise disjoint non-empty sets
there is a set Y such that Y ∩Xα is a singleton for each index α.

In the everyday practice of mathematics one frequently encounters “families of
subsets” of a given set X. (For example, a topology on a set X is defined as a family
of subsets satisfying various properties.) The terminology refers to the image of a
function f : I → P(X) and, so as to conform with the notation introduced in the
final bulleted item of (f), would generally be written

(6.1) {Xι}ι∈I , wherein Xι := f(ι).

In this context the union of the elements of f(X) is expressed in a somewhat different
(and probably far more familiar) way. By definition we have (after adjusting notation
to fit the present context)

∪f(I) := {x : x ∈ y for some y ∈ f(I) }.
62See, e.g. [Hal, §12, pp. 46-49].
63Which we have no intention of proving!
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However, the equivalences

y ∈ f(I) ⇔ y = f(ι) for some ι ∈ I
⇔ y = Xι for some ι ∈ I,

imply that ∪f(I) could also be written

∪f(I) := {x : x ∈ Xι for some ι ∈ I }.

In fact (as every reader knows!) one writes the definition of ∪f(I) in this case as

(6.2) ∪ι∈IXι := {x : x ∈ Xι for some ι ∈ I },

and one generally refers to the “union of the family {Xι}ι∈I” without explicitly men-
tioning the function f . Moreover, when I is understood, or naming this index set is
not essential, one would abbreviate {Xι}ι∈I to {Xι}, and ∪ι∈IXι to ∪ιXι, or even
to ∪Xι.

One goes a bit further when I = N (or subsets thereof, by means of simple
modifications of what follows), in which case one can meaningfully speak of finite,
countable, and at-most countable sets. In those instances examples of the notation
used (assumed thoroughly familiar to readers) are: ∪nj=0Aj (for finite unions) and
∪∞j=0Aj (for [countably] infinite unions), although in the second case one might just
as likely use ∪n∈NAn.

Zermelo’s Postulate is equivalent to (but is, at least for this author, far easier to
grasp intuitively than) the “Axiom of Choice”. To detail that axiom and verify this
assertion define the Cartesian product

∏
α∈I Xα of any family of (sub)sets (of some

set X) to be the collection of all functions f : I → ∪α∈IXα such that f(α) ∈ Xα

for all α ∈ I. It is easily seen from the Axiom of Specialization that this collection∏
α∈I Xα of subsets of I ×∪α∈IXα must a set: whether or not this set is non-empty

is another matter. Elements f ∈
∏

α∈I Xα are called choice functions for the family
{Xα}: each selects (“chooses”) a single point, i.e. f(α), from each Xα.

When I = {α1, α2} has exactly two elements each such function f : I →
∏

αXα

is uniquely determined by the ordered pair (f(α1), f(α2)) ∈ Xα1 × Xα2 and, con-
versely, each ordered pair (x1, x2) ∈ Xα1 × Xα2 uniquely determines a function
f : I → X1 ∪ X2, i.e., αj ∈ I 7→ xj ∈ Xαj

. One easily concludes, in this re-
stricted context, that there is is a bijection between the previously defined (using
ordered pairs) Cartesian product Xα1 ×Xα2 and our newly defined (using functions)
Cartesian product

∏
α∈I Xα. The existence of this bijection is our justification64 for

64And that of others. See, e.g. [Hal, §9, p. 36].
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regarding the current (via functions) definition as a generalization of that assumed in
(e).

Theorem 6.3 : The following statements are equivalent:

(a) Zermelo’s Postulate; and

(b) (The Axiom of Choice) the Cartesian product of any non-empty family of non-
empty sets is non-empty.

There are formulations of the Axiom of Choice which do not involve “families,”
e.g. see65 [B-M, Chapter VI, §2, (ZF7), p. 55].

Proof :

(a)⇒ (b) : Given any non-empty family {Yα}α∈I of non-empty subsets of a set Y
define a family of subsets {Xα}α of the set X := Y ×I by Xα := Yα×{α}, α ∈ I. By
construction the Xα are pairwise disjoint (this is the only reason for their construction
from the given Yα), and we can therefore use Zermelo’s Postulate to guarantee the
existence of a set Z such that Z ∩ Xα consists of a single point (yα, α) for each
α ∈ I. The function f : α ∈ I 7→ yα ∈ Yα is a choice function for the family {Yα}.

(b)⇒ (a) : Given any non-empty family {Xα}α∈I of non-empty pairwise disjoint
sets let f : I → ∪αXα be a choice function. (Such f exist since (b) is assumed
true.) Then Y := f(I) is a set by (f), and Y ∩ Xα = {f(α)} for each α ∈ I.

q.e.d.

Axiomatic formulations of set theory seemed perfectly acceptable66 to the majority
of working mathematicians until category theory arrived on the scene in the middle
of the last century: suddenly the need to incorporate the collection of all sets into
mainstream mathematics became blatantly apparent.

The development of category theory . . . posed problems for the set the-
oretic foundations of mathematics.

S. Mac Lane [Mac1, p. 192].

65Although these authors use the “Axiom of Choice” terminology, the statement of the result is
closer to the spirit of Zermelo’s Postulate.

66Modulo a few odd consequences of the Axiom of Choice which have the status of skeletons
in a family closet. The 1924 Banach-Tarski paradox is a good example, see e.g. [French]: that
particular anomaly can be eliminated by replacing Zermelo’s Postulate with the so-called “Axiom of
Determinancy” (see, e.g. [Potter2, §15.7, pp. 275-280]), but other counter-intuitive conclusions then
arise.
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Fortunately Mac Lane, one of the founding fathers of category theory, realized that
in many contexts (which will include those of interest to us) one can circumvent
the known difficulties quite easily, simply by adding one more axiom67. Although
he used different terminology68, what mathematicians now seem to accept, often at
an unconscious level, is an axiomatic formulation of set theory along the following
lines69:

• In the statements of all the axioms listed above70 replace all occurrences of the
word “set” by “class”. Of course this change is only semantic: one now refers
to the empty class, to the Cartesian product of two classes; to the power class
of a class (rather than to the power set of a set); to the range of a function
f : X → Y between two classes; families of (sub)classes; and to the union of
the elements of a class. In particular, elements of classes are now classes71.

• Add to these relabelled axioms the following Axiom of the Existence of a Uni-
verse: There is a class U , the elements of which are called72 sets, such that:

(k) elements of sets are sets73; and

(`) axioms (a)-(i) and the corresponding bulleted items remain valid when
applied to the elements of U (but not to U itself), and always result in
elements of U . Specifically:

67An alternative “solution,” adopted by many, is to be aware of the problem, but to devote
minimal time worrying about it. Since the repair work can involve considerable effort, there is
ample justification for assuming this position. For example, in [Eisbd, Appendix A5, §A5.1, pp. 698]
one finds:

[The fact that there there is no set of all sets leads to] . . . difficult foundational issues.
. . . We shall take a naive approach, and simply ignore the problem.

68In fact in [M-B, Chapter XV, §1, pp. 506-8] Mac Lane and Birkhoff more-or-less employ our
terminology, but in that reference the set theory is based on the Hilbert-Bernays (HB) axioms,
which already distinguish between sets and classes. Because of this many seem to assume, when
first learning about category theory, that the HB system lies at the foundations of the subject and
justifies making the distinction. But the fact of the matter is, the ZF approach works just as well,
as one can see from [Mac2, Chapter I, §6, p. 23].

69Considerably more detail can be found in [Potter1].
70This guarantees that we are still dealing with ZF theory.
71In HB theory “sets“ refer to classes which are elements of classes. That is not our definition of

a set.
72What we call classes and sets are called sets and small sets by Mac Lane. But in the experience

of this author the terminology we use seems more common outside category theory.
73As opposed to being classes which may not be sets.
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• The Axioms of Extension and Specification hold as initially stated in
(a) and (b);

• the pair and ordered pair of any two sets is a set, as is the singleton
set of any set;

• the Cartesian product of any two sets is a set;

• the the power set of any set is a set;

• the Axiom of Replacement holds as originally stated in (f), and as a
result the range of any function between sets is a set;

• the Axiom of Unions holds as initially stated in (g);

• N is a set;

• Zermelo’s postulate holds as initially stated in (i);

• (6.2) remains valid; and

• Theorem 6.3 remains valid.

The advantage of this extension of the axioms, aside from now being able to treat
the collection of all sets as something which actually exists (if only as a class), is that
one can now approach category theory in much the same manner as one approaches
elementary set theory, suddenly freed from nagging worries about mysterious and
vague distinctions between sets and classes. Specifically:

• one can define a category C as an ordered pair (OC,MC) of classes, the first
class being the class of objects (of C), and the second being the class of mor-
phisms (of C) (or arrows [of C], depending on one’s preference), related by
various conditions (which are assumed familiar); and

• one can define a functor between two categories as a pair of functions, the first
between the objects and the second between the morphisms, subject to various
(again assumed familiar) conditions.

• Even though by definition a pair of functions, in practice a functor is most
conveniently represented by just one symbol. For example, suppose C and D
are categories and T := (t1, t2) : (OC,MC) → (OD,MC) is a functor. Then
for any objects c, c1, c2 ∈ C and any morphism f : c1 → c2 in MC one
would most likely write t1(c) as Tc, and (assuming the functor is covariant)
t2(f) : t1(c1)→ t2(c2) as Tf : Tc1 → Tc2.

A few specific consequences of our reformulation of the axiomatic set theory are
worth recording, several of these for little more reason than to convince readers that
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the axioms imply the types of results, and allow the the types of proofs thereof, that
one would hope for.

Proposition 6.4 : The class U is not a set.

Proof : If U were a set the same would hold for {x ∈ U : x /∈ x } by the Axiom of
Specification (applied to sets), and we would again be faced with the Russell paradox.

q.e.d.

Corollary 6.5 : The U-complement U \X := { y ∈ U : y /∈ X } of set X is not
a set.

Proof : Otherwise we see from the Axiom of Unions and U = X ∪ (X \U) that U
would be a set. q.e.d.

Proposition 6.6 : Suppose X is a set and Y ∈ P(X). Then Y is a set.

Equivalently: if X is a set and Y ⊂ X then Y is a set. In plain English:
Subclasses of sets are sets (and therefore subsets of the given sets).

Proof : Since P(X) is a set the same must hold for Y by (j) (with X and x
replaced by P(X) and Y ). q.e.d.

Corollary 6.7 : ∅ is a set.

Proof : Readers are assumed familiar with the elementary set-theoretic result that
∅ ⊂ X for any set X. Since Y ⊂ X ⇔ Y ∈ P(X), the result can be obtained by
choosing Y = ∅ in Proposition 6.6. q.e.d.

Intersections of classes are defined and handled in the expected way, the intersec-
tion of two classes is a class, and the intersection of two sets is a set. What about
the intersection of a set with a class?

Corollary 6.8 : The intersection of a set with a class is a set.

Proof : The intersection is a subclass of the given set. q.e.d.

Now for a more substantial result.

Proposition 6.9 : Suppose f : X → Y is a function from a set X into a class Y ,
and if f(x) is a set for each x ∈ X, then the range f(X) is a set.
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Proof : Since f is a function the statement (s, t) ∈ f is functional in the set X.
The result therefore follows from the Axiom of Replacement (in the original form
(f)). q.e.d.

Mac Lane freely admits74 that the addition of the Axiom of the Existence of a
Universe does not solve all the foundational problems posed by category theory75,
but it does allow

. . . “ordinary” Mathematics . . . [to be] carried out exclusively within U . . .

[Mac2, Chapter I, §6, p. 22],

and that is quite sufficient for our purposes.
Oddly enough, for many who work in category and/or set theory the difficulties

related to the set-theoretic foundations of category theory do not seem to be of major
concern.

It seems that no book on category theory is considered complete without
some remark on its set-theoretic foundations. The well-known set theorist
Andreas Blass gave a talk . . . on the interaction between category theory
and set theory in which he offered three set-theoretic foundations for cat-
egory theory. One was the universes of Grothendieck . . . [;] another was
systematic use of the reflection principle, which probably does provide a
complete solution to the problem; but his first suggestion, and one that he
clearly thought at least reasonable, was: None [exists].

From the preface to76 [B-W].

In essence, these practitioners seem to prefer a reworking of the foundations of math-
ematics.

. . . there has been considerable discussion of a foundation for category
theory (and for all of Mathematics) not based on set theory. . . . Lawvere
. . . [[Law1] in the references for these notes] . . . has given axioms for
the elementary (i.e. first-order) theory of the category of all sets, as an
alternative to the usual axioms on membership. [Also see [Law2]].

S. Mac Lane [Mac2, Chapter I, §6, p. 24].

74See [Mac2, Chapter I, the final paragraph of §6, p. 24].
75For example, there is no concept of the class of all classes.
76This quote was brought to the attention of this author by Hunter College student Philip Ross.
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This last quote if from the first edition of Categories for the Working Mathematician;
the paragraph was revised in the second edition:

. . . there has been considerable discussion of a foundation for category
theory (and for all of Mathematics) not based on set theory. . . . axioms
for the elementary (i.e., first-order ) theory of the category of all sets, as
an alternative to the usual axioms on menbership can be given - as an
“elementary topos” (cf. Mac Lane-Moerdijk[1992]).

S. Mac Lane [Mac3, Chapter I, §6, p. 24].

Since such approaches have yet to be widely accepted in “ordinary” Mathematics, in
these notes we will stick with Mac Lane’s universe77.

77For an in-depth discussion of sets vs. classes, which includes further references, see [Potter2,
Appendix C, pp. 312-6]
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7. The Recursion Theorem Revisited

In this section we reformulate the Recursion Theorem 5.1 and Corollary 5.2 in terms
of classes, and then offer a few applications, including (what this author would con-
sider) the missing details of the previously discussed proof of the existence of the
algebraic closure of a field78. In view of the work in §5 the reformulations can be ac-
complished by nothing more than word replacements; in particular, there is no reason
to give proofs.

Theorem 7.1 (The Recursion Theorem) : Let X be a non-empty class, let
x0 ∈ X, and let f : X → X be any function. Then there is a unique function
g : N→ X such that

(i) g(0) = x0

and is such that the diagram

(ii)

X
f−→ X

g ↑ ↑ g

N n7→n+1−→ N

commutes. Equivalently: there is a unique function g : N → X such that (i) holds
and

(iii) g(n+ 1) = f(g(n)) for all n ≥ 0.

Corollary 7.2 : Let X be a non-empty class, let x0 ∈ X, and suppose {fn : X →
X }n∈N is any family of functions. Then there is a unique function g : N→ X such
that

(i) g(0) = x0

and such that for each n ∈ N the diagram

(ii)

X
fn−→ X

g ↑ ↑ g

N m7→m+1−→ N
78See the last few paragraphs of the introduction.
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commutes. Equivalently: there is a unique function g : N → X such that (i) holds
and

(iii) g(n+ 1) = fn(g(n)) for all n ≥ 0.

Corollary 7.3 : Suppose in either of Theorem 7.1 and Corollary 7.2 that every
element of X is a set. Then the resulting collection {g(n)}n∈N is a set. In particular,
the set-theoretic union ∪n∈Ng(n) is defined, and is a set.

Proof : Apply Proposition 6.9 with f : X → Y in that statement replaced by
g : N→ X. q.e.d.

Examples 7.4 :

(a) Section 5 ends with the assertion that one should be able to back up any defi-
nition by recursion by appealing to the Recursion Theorem. Unfortunately, for
some strange reason it seems to have slipped my mind at that point that we were
not in a position to do so with the definition of the n-fold Cartesian product of
a set A given in (3.1). We now have all we need.

Let A be a non-empty set, let X be the class U of all sets, and define
f : X → X by f : S ∈ X 7→ A × S ∈ X. Then by Theorem 7.1 there is
a unique function g : N→ X such that g(0) = A and g(n+ 1) = f(g(n)) for
all n ∈ N, i.e. such that

g(n) = An for n = 1, 2, 3, . . . .

If we now define h : N → X by h(0) := {∅} and h(n) := g(n− 1) for n > 0
we uncover the sequence implict in (3.1).

(b) We claim that for any non-empty set A the collection of all n-tuples
(a1, a2, . . . , an) of elements of A, where n varies though Z+ and

(a1, a2, . . . , an) := a1 when n = 1,

is a set. Indeed, this collection coincides with the collection {h(n)}n∈N of Ex-
ample (a) after removing the set {∅} from the latter. But this latter collection
{h(n)}n∈N is a set by Corollary 7.3, and removing one specific point does not
change that status79. The claim follows.

79See the bulleted items following the statement of the Axiom of Specification in §6.
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(c) We return to the proof of the existence of the algebraic closure of an arbitrary
field outlined toward the end of the Introduction. At the heart of the argument
was a proof 80 that every non-algebraically closed field K is contained in a field
L such that every polynomial in K[x] contains a root in L. In terms of the
class X of all fields this has the following immediate consequence: for any
K ∈ X either

• K is algebraically closed, or

• the class XK of all proper extension fields L of K which contain a root
of every polynomial in K[x] is non-empty.

Write
X = Xac

∐
Xnac (disjoint union),

wherein Xac is the class of algebraically closed fields and Xmac is the class of
those which are not algebraically closed. By the Axiom of Choice there is a
function c : Xnac → X such that c(K) ∈ LK for each K ∈ Xmac, and we can
therefore define a function f : X → X by

K ∈ X 7→

{
K if K ∈ Xac

c(K) if K ∈ Xac.

Now choose any K0 ∈ X. Since the goal is to prove that K0 admits an algebraic
closure, we can assume K0 ∈ Xnac. Theorem 7.1 then gives the existence of
a function g : N → X such that g(0) = K0 and g(n + 1) = f(g(n)), i.e.
such that Kn+1 admits a root of every polynomial in Kn[x]. By Corollary 7.3
the collection {Kn}n∈N is a set, and our set-theoretic “existence of the union”
problem is now history.

(d) We claim that for any non-empty set A the collection of all n-tuples
(y1, y2, . . . , yn) of m-tuples yj = (aj1, aj2, . . . , ajmyj

), of elements of A, where

n and m vary through Z+,

(i) (y1, y2, . . . , yn) := y1 when n = 1,

and

(ii) (aj1, aj2, . . . , ajmj
) := aj1 when mj = 1,

is a set. To see this replace A in Example (b) by the set constructed from A
in that example.

80Which was perfectly acceptable to this author, and was therefore not detailed.
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(e) Let A be as in the previous example and let T be a UA type which (as a
set) satisfies ∅ 6= T ⊂ A. Then the collection of all n-tuples (y1, y2, . . . , yn) of
m-tuples yj = (aj1, aj2, . . . , ajmyj

) as in Example (d), satisfying the additional
requirements that

(i) y1 ∈ Tn−1 and aj1 ∈ Tmj−1
,

is a set. To see this consider the set of tuples of tuples defined from A in
Example (d). One then sees by means of the Axiom of Specification that those
elements of this set satisfying the conditions given in (i) form a subset, and
therefore a set.

(f) It should be clear that we can define subsets of the set of Example (e) by
adding to the conditions given in (i) of that example and again appealing to
the Axiom of Specification. In fact we will need to do just that, but we will put
our detailed justifications for using the term “set” behind us, since by now the
arguments are (or should be) becoming predictable.

40



8. Preliminaries on Free Objects

Let C := (CO, CM) and D = (DO,DM) be categories: the subscripts indicate the
respective classes of objects and morphisms. A functor T : C → D is faithful if for
every pair of distinct morphisms f1, f2 : c → c′ in CM the correponding morphisms
Tf1, T f2 : Tc → Tc′ in DM are distinct. A category C is concrete if there is a
faithful functor from C to the category S of sets and set mappings. When this is
the case the functor is called the (associated) forgetful functor (since it forgets all
the structure associated with the set, leaving nothing for a latecomer to contemplate
other than the set itself), and the image of an object is called the underlying set of
the object. The category of topological spaces (and continuous mappings) is concrete;
the underlying set of an object (X, τ) is the set X. The category of groups (and
group homomorphisms) is concrete; the underlying set of an object (G,×) is the set
G.

Let C be a concrete category with forgetful functor T : C → S, let c ∈ CO (i.e.
let c be an object of C), let X ∈ SO (i.e. let X be a set), and let ι : X → Tc be
a morphism in SM (i.e. a set-theoretic mapping from X into the underlying set of
c). The pair (c, ι) is free on X if for each object c ′ ∈ CO and each (set) mapping
h : X → Tc ′ there is a unique morphism hc ′ : c→ c ′ which renders the diagram

(8.1)

Tc
Thc ′−→ Tc ′

ι ↑
h
↗

X

commutative. When this is the case and the mapping ι is clear from context one
simply says that c is free on X. When an object c ∈ CO can be associated with
such a (not necessarily unique) pair (X, ι) one refers to c as a free object (of C).
The existence of the morphism Thc ′ of (8.1) for each h : X → Tc ′ is referred to as
the universal (mapping ) property of the free object c. The fundamental point behind
the definition of a free object is: to specify a unique morphism h : c → c ′ (which
in general would be subject to many restrictions, e.g. in the category of topological
spaces inverse images of open sets must be open; in the category of groups the group
operations must be respected) it is is enough to specify a set function h : X → Tc ′

(subject to no restrictions81). Example One: Let R be a commutative ring, let

81In other words, one is “free” to define h in any way that strikes one’s fancy (or, more to the
point, in any way that proves appropriate for solving whatever problem is at hand).
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AR be the category of R-algebras, and let X = {x1, x2, . . . , xn} be algebraically
independent over R. Then the polynomial algebra R[x] := R[x1, x2, . . . , xn] is free
on X, with the mapping ι : X → R[x] being the inclusion xj ∈ X 7→ xj ∈ R[x]: any
R-algebra homomorphism from R[x] into any R-algebra is uniquely determined by
the images of the xj, i.e. by “substitution.” Example Two: Any vector space over a
field is free on any basis. (To be precise: let V be the category of [finite-dimensional,
if the reader so desires] vector spaces and linear transformations over a field K, let
V ∈ VO, and let e be any basis of V . Then V is free on e [with the mapping
ι : e→ TV being inclusion].)

In practice it proves convenient to remember diagram (8.1) as

(8.2)

c
hc ′−→ c ′

ι ↑
h
↗

X

even though the labeling makes no sense: the actual mapping ι has image in the
set Tc, not in the overlying object c (assuming C 6= S); and h is similarly mis-
represented. Nevertheless, we will adopt this practice, the reason being that this last
diagram quickly conveys a strengthening of the fundamental property of free objects
mentioned in the previous paragraph: the mapping h 7→ hc ′ is a bijection between
set mappings of SM of the form X → Tc ′ and morphisms of CM of the form c→ c ′.

Theorem 8.3 (Uniquess of Free Objects) : Let C be a concrete category and
let X be an non-empty set. Then:

(a) any two objects of C which are free on X are isomorphic; and

(b) if two objects of C are isomorphic, and if one is free on X, then the same
holds for the other.

Since the definition of an object c ∈ C being free on a set X depends on the
set-theoretic mapping ι : X → Tc, it would seem that the same c could be free on
X in many different ways. In fact this is often the case, but is of no great concern:
choose c ′ := c and assume ι ′ 6= ι in the following proof.
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Proof :

(a) When c, c ′ ∈ CO are free on X one can construct the commutative diagram

c
hc ′−→ c ′

hc−→ c
ι

↖ ↑ ι ′
ι

↗

X

by merging (8.2) with the analogue for c ′. Since the triangle formed by the outer
boundary remains commutative when the composition hc ◦ hc ′ is replaced by the
identity morphism idc : c→ c, we see from the uniqueness condition in the definition
of a free object that hc ◦ hc ′ = idc, and a completely analogous argument gives
hc ′ ◦ hc = idc ′ .

(b) Suppose c ∈ CO is free on X and h : X → c ′ (i.e. h : X → Tc ′), where
c ′ ∈ CO. Then there is a unique morphism hc ′ as in (8.2). If p : c ′ ′ → c is
an isomophism of a second object c ′ ′ ∈ CO with c, c ′ ′ ∈ CO we can extend that
diagram to

c ′ ′
hc ′ ′−→ c

h ′c−→ c ′

h−1
c ′ ′◦ι
↖ ↑ ι

h
↗

X

The composition hc ′ ◦ hc ′ ′ : c ′ ′ → c ′ is therefore a morphism which renders the
diagram

c ′ ′
hc ′◦hc ′ ′−→ c ′

h−1
c ′ ′◦ι ↑

h
↗

X

commutative, and it remains to prove that the composition represented by the top
line is unique in this respect. To this end suppose this last diagram commutes when
hc ′ ◦ hc ′ ′ is replaced by a morphism p : c ′ ′ → c ′. Then the diagram

c
p◦h−1

c ′ ′−→ c ′

ι ↑
h

↗

X
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also commutes, uniqueness (in diagram (8.2)) gives p ◦h−1c ′ ′ = hc ′ , and p = hc ′ ◦hc ′ ′
follows.

q.e.d.
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9. Free T -Algebras

Here T is a UA type and X is a non-empty set.

A free T -algebra (on X) refers to a free object (on X) in the category AT . In
this section we prove the following result.

Theorem 9.1 : There is a free T -algebra on X.

The argument we give is based on a two-page proof found in [B-M, Chapter I, §2,
Theorem 2.2, pp. 4-6]. As we have already indicated in the Introduction, that proof,
in the opinion of this author, appeared to contain a set-theoretic gap which requires
all the preliminary work we have done to repair.

On the other hand, the basic idea behind the construction of a free T -algebra
found in that reference is quite clever, not that difficult, and is well worth sketching
as a prelude to the myriad technical details we will face.

By definition a free T -algebra on X consists of a T -algebra F together with a
set-theoretic mapping ι : X → F having the following property: for any T -algebra A
and any set-theoretic mapping h : X → A there is a unique morphism hA : F → A
rendering the diagram

(9.2)

F
hA−→ A

ι ↑
h
↗

X

commutative. The basic idea behind our construction of such an F is the following
observation.

Proposition 9.3 : Suppose F is a set with the following properties:

(a) T ⊂ F ; and

(b) if ` ∈ N, if t` ∈ T`, and if y1, y2, . . . , y` ∈ F are arbitrary when ` > 0, then

(i) (t`, y1, y2, . . . , y`) ∈ F,

where

(ii) (t`, y1, y2, . . . , y`) := t0 when ` = 0.
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Then F is given the structure of a T -algebra by assigning t = t` ∈ T` to the function

(iii) tF : (y1, y2, . . . , y`) ∈ F ` 7→ (t`, y1, y2, . . . , y`) ∈ F,

which for ` = 0 and t` = t0 ∈ T0 is understood to denote the mapping

(iv) tF : ∅ ∈ F 0 7→ t0 ∈ F

which one identifies 82 with the element t0 ∈ T0. In particular, one has

(v) tF = t when t ∈ T0.

Proof : Obvious from the definitions. q.e.d.

The construction of a set F with the properties listed in Proposition 9.3 is accom-
plished in [B-M, Chapter I, §2, Theorem 2.2, pp. 4-6] by defining F as the union of
pairwise disjoint recursively defined sets F0, F1, F2 · · · which, as one would certainly
expect, are endowed with properties compatible with the ultimate goal. Specifically,
the procedure presented there results in F being a free T -algebra, and simultane-
ously takes into account everything necessary to verify the universal mapping property
summarized by (9.2).

The first step of that procedure is to define

(9.4) F0 := T0
∐
X,

and to then define a mapping ι0 : X → F0 by

(9.5) ι0 : x ∈ X 7→ x ∈ F0.

Since the intent is to construct F overlying F0, this already solves the problem of
constructing set-theoretic mapping ι : X → F required of a free object on X: once
F has been constructed we can define ι to be the composition of ι0 and the inclusion
mapping F0 ↪→ F . This is the sense in which this initial step is compatible with the
ultimate goal.

Looking far ahead (with perhaps unjustifiable optimism, since we have only taken
the first step), suppose we are ultimately successful in constructing our free T -algebra
F , that A is a second T -algebra, that a set-theoretic function h : X → A has been
given, and that the unique morphism hA : F → A of diagram (9.2) has been
determined. Then, as can be seen from (iii) of the following result, the restriction
hA|F0 : F0 → A can be described (and therefore defined!) without reference to hA.

82As in Example 3.2(a).
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Proposition 9.6 : Suppose F is a free T -algebra on X with associated set mapping
ι : X → F , let A be any T -algebra, let h : X → A be any set mapping, and let
hA : F → A be the resulting morphism indicted in (9.2). Assume, in the notation of
the paragraph surrounding (9.4) and (9.5), that F0 ⊂ F and that ι : X → F is the
composition of ι0 with the inclusion F0 ↪→ F . Then the restriction

(i) h0 := hA|F0

must be given by

(ii) h0 :

{
t ∈ T0 7→ tA ∈ A (see (4.1)); and

x ∈ X 7→ h(x) ∈ A.

Proof : For t ∈ T0 we must have h0(tF ) = hA(tF ) = tA by (i) and (4.4), and the
top line in (ii) is then evident from (v) of Proposition 9.3. The bottom line follows
from (i), the hypothesized composition decomposition of ι, and the commutativity
of (9.2): for x ∈ X one has h0(x) = hA(x) = hA(ι(x)) = (h ◦ ι0)(x) = h(x). q.e.d.

We proceed to the second step. Continuing with the hypotheses and notations of
Proposition 9.6 define

(9.7) F1 := { (t, y1, y2, . . . , y`) : ` ∈ Z+, ` ∈ T`, and yj ∈ F0, j = 1, 2, . . . , ` }.

By means of an Axiom of Specification argument similar to that seen in Example
7.4(d), one can see that F1 must be a set83. Note that the definition of F1 depends
only on F0 := T0

∐
X; in particular, and in spite of the fact that the symbol F

occurs within the notation, the set F1 is independent of the T -algebra F appearing
in Proposition 9.6.

Proposition 9.8 : Assuming the hypotheses of Proposition 9.6 the restriction

(i) h1 := hA|F1

is given by

(ii)

{
h1(t, y1, y2, . . . , y`) = tA(hA(y1), hA(y2), . . . , hA(y`))

= tA(h0(y1), h0(y2), . . . , h0(y`))

for all (t, y1, y2, . . . , y`) ∈ F1.

83Despite the fact that the notation does not indicate an appeal that axiom.
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The important thing to note, from the final equality in (ii), is that the values of
h1 are completely determined by the values of h0. Since we have already seen that
h0 can be definined without reference to hA, the same therefore holds for h1.

Proof : Since hA : F → A is a morphism in AT we have

h1(t, y1, y2, . . . , y`) = hA(t, y1, y2, . . . , y`)

= hA(tF (y1, y2, . . . , y`)) (by (iii) of Proposition 9.3)

= tA(hA(y1), hA(y2), . . . , hA(y`)) (by (4.3))

= tA(h0(y1), h0(y2), . . . , h0(h`))

q.e.d.

The third step is slightly more involved, since we need to account for both F0 and
F1 in the definition of F2. We formulate that definition in a manner which easily
generalizes, still maintaining the hypotheses and notations of Proposition 9.6 and
still assuming (ii) of Proposition 9.3:

(9.9)

{
F2 := { (t, y1, y2, . . . , y`) : ` ∈ Z+, ` ∈ T`, yj ∈ Fij ,

j = 1, 2, . . . , `, and
∑`

j=1 ij = 1 }.

(One can again argue as in Example 7.4(d) to conclude that F2 is a set.) Note that
the `-tuples are becoming more “complex,” i.e. we can now be dealing with `-tuples
of m-tuples, whereas in F1 we were just working with `-tuples of elements single
elements of F0 = T0

∐
X. The analogue of (ii) of Proposition 9.8 for h2 := hA|F2

is easily seen to be

(9.10)

{
h2(t, y1, y2, . . . , y`) = tA(h1(y1), h1(y2), . . . , h1(y`))

for all (t, y1, y2, . . . , y`) ∈ F2.

Proceeding by induction84 we encounter “increasing complexity” in the definitions
of the Fj, i.e. tuples of tuples of · · · of tuples, all surreptitiously camouflaged by the
terse notation. Suppose n > 1, that F0, F1, · · · , Fn−1 have been defined, that each
of the restrictions hA|Fj

have been determined, and that each depends only on the
restrictions hA|Fk

for 0 ≤ k < j. Define

(9.11)

{
Fn := { (t, y1, y2, . . . , y`) : ` ∈ N, ` ∈ T`, yj ∈ Fij ,

j = 1, 2, . . . , p, and
∑p

j=1 ij = n− 1 }.
84And, of course, still maintaining the hypotheses and notations of Proposition 9.6, and still

assuming (ii) of Proposition 9.3 .
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The general version of (ii) of Proposition 9.8 for hn := hA|Fn is then evident:

(9.12)

{
hn(t, y1, y2, . . . , y`) = tA(hn−1(y1), hn−1(y2), . . . , hn−1(y`))

for all (t, y1, y2, . . . , y`) ∈ Fn.

As several of our earlier comments were intended to suggest, a good portion of
the (not very long) proof of Theorem 2.2 on pages 4-6 of [B-M] involves verifying
that for a given T -algebra A one can define functions hn : Fn → A satisfying (9.12)
without assuming the existence of the morphism hA : F → A. (The careful reader of
these notes might already be able to see how this could be done.) The authors then
define

(9.13) F := ∪∞n=0Fn

(see (iii) on page 5 of [B-M]), endow F with the structure of a T -algebra, and prove
the existence and uniqueness of hA for a given h : X → A, essentially by a minor
modification of what we have done above, thereby establishing that the T -algebra F
is free on X.

As was the case with Lang’s proof of the existence on an algebraic closure for a
field, the problem for this author with the argument in the previous paragraph is the
formation of the union in (9.13): it is simply not clear that the collection {Fn}n∈N
is a set, and if not the union does not make sense. However, in the case of Lang’s
proof we saw how to get around the problem by means of (the Recursion Theorem
in the form of) Corollary 7.3. The same result will be used to eliminate the current
difficulty.

Proof of Theorem 9.1 : The first task is to recursively define a sequence of pairwise
disjoint sets analogous to the sequence of sets85 Fn appearing in (9.11). For that
we will use Corollary 7.2, which requires defining a class86 C and a sequence of
functions fn : C → C.

Let S be any non-empty set admitting a family of pairwise disjoint subsets
{Sk}k∈N such that S =

∐
k∈N Sk. For each n ∈ N define FS,n to be the collec-

tion of all finite tuples (t, s1, s2, . . . , s`) of elements of the disjoint union T
∐
S

satisfying t ∈ T`, where:

85And to keep that analogy in mind we will denote this new sequence by {Fn}n∈N.
86C plays the role of the class X in Corollary 7.2: in the current proof X has a different

meaning.
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(i) ` can assume any value in N;

(ii) (t, s1, s2, . . . , s`) := t if ` = 0; and

(iii) sj ∈ Sij , where
∑`

j=1 ij = n− 1 if ` > 0.

One can easily see (recall Examples 7.4(e) and (f)) that each FSn is a set.
Consider the class C of all ordered pairs (S, {Sk}k∈N) as in the previous para-

graph, and to ease notation abbreviate such a pair as S, or as S =
∐m

j=0 Sj if Sk = ∅
for all k > m. For each n ∈ Z+ define a mapping fn : C → C by

(iv) fn : S 7→
∐n−1

j=1 Sj
∐
FS,n = S0

∐
S1

∐
· · ·
∐
Sn−1

∐
FS,n.

Now set

(v) F0 := T0
∐
X ∈ C.

Then by Corollary 7.2 there is a unique function g : N→ C such that

(vi) g(0) = F0,

and

(vii) g(n+ 1) = fn(g(n)) for all n ∈ N.

By Corollary 7.3 the collection {g(n)}n∈N is a family of sets.
To tie this in with our preliminary discussion of the proof set

Fn := g(n), n ∈ N,

which we note is consistent with (vi). Then from (i)-(iii) we see that for all n > 0
we have

(viii)

{
Fn :=

{
(t, y1, y2, . . . , y`) : ` ∈ Z+, t ∈ T`, yj ∈ Fij ,
j = 1, 2, . . . , p, and

∑p
j=1 ij = n− 1

}
,

and that {Fn}n∈N is a family of sets. We can therefore form the (set-theoretic) union

(ix) F := ∪n∈NFn

(again see Corollary 7.3), and the set-theoretic difficulty experienced by your author
within the oft-cited proof in [B-M] has thereby been resolved. Moreover, it then
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follows immediately from Proposition 9.3 that F can be given the structure of a
T -algebra, and this is the structure we henceforth assume.

Let ι : X → F be as in the paragraph surrounding (9.4) and (9.5), i.e. the
composition of the mapping ι0 : x ∈ X 7→ x ∈ T0

∐
X =: F0 with the inclusion

mapping F0 ↪→ F . To complete the proof we will verify that F = (F, ι) is free on
X. To this end let A be an arbitrary T -algebra and let h : X → A be an arbitrary
set-theoretic function. We must produce a T -algebra morphism hA : F → A which
renders the diagram

(x)

F
hA−→ A

ι ↑
h

↗

X

commutative, and prove that hA is unique in this respect.
To this end first note from (v) that for each z ∈ F0 there are two alternatives:

either z ∈ T0 or z ∈ X. On the other hand, when n > 0 each element z ∈ Fn is a
tuple (t, y1, y2, . . . , y`) beginning with t ∈ T`. To handle all n ∈ N simultaneously
let us agree that

(xi)
(t, y1, y2, . . . , y`) denotes either an element t ∈ T0, or

an element x ∈ X, when ` = 0.

Now fix some element87 a0 ∈ A, let X̂ be the set of functions h : F → A, and
for each n ∈ N let f̂n : X̂ → X̂ be the function which assigns to any such h the
function with value at (p + 1)-tuple (t, y1, y2, . . . , y`) ∈ F given by (keeping (xi) in
mind)

(xii)


h(t, y1, y2, . . . , y`) if (t, y1, y2, . . . , y`) ∈ Fj with j ≤ n,

tA(h(y1), h(y2), . . . , h(y`)) if (t, y1, y2, . . . , y`) ∈ Fn+1, and

a0 otherwise.

To gain a better feeling fot these constructions introduce the sets

(xiii) En := F0

∐
F1

∐
· · ·
∐
Fn, n ∈ N,

87If the T -algebra A were to admit a “zero element,” e.g. if A were a ring, we would most likely,
just for simplicity, choose a0 to be that element. However, the existence of a zero element is not
part of, nor is it implied by, the definition of a T -algebra. Moreover, if T involves many n-ary
operations it is conceivable that there might be no obvious candidate for “zero.”
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and note from (viii) that

(xiv) E0 ⊂ E1 ⊂ E2 · · · ⊂ F

holds, as well as

(xv) ∪nEn = F.

For each n > 0 one can then imagine fn(h) as a makeover of the function h
involving three steps: restricting h to En; redefining h|Fn+1 completely in terms
of values depending only on this initial restriction; and redefining h|∐

j>n+1 Fj
to be

the constant mapping with value a0 (the only reason for this final step, or some
variation thereof, is to ensure that fn(h) has the required domain to qualify as an

element of X̂). Since f̂n(h) is completely determined by the restriction f̂n(h)|En ,

one tends to think of f̂n(h) as a mapping from En into A.

Define h0 : F → A ∈ X̂ to be the function given defined in (iii) of Proposition
9.6, although with domain now extended to F by defining h0(x) := a0 if x ∈∐

n>0 Fn. Then by Corollary 7.2 there is a unique function ĝ : N→ X̂ such that

(xvi) ĝ(0) = h0 ∈ F0

and

(xvii) ĝ(n+ 1) = f̂n(ĝ(n)).

By viewing ĝ(n) as a mapping from En into A (see the end of the previous
paragraph) we see by construction that ĝ(n + 1) : En+1 → A is an extension of
ĝ(n) : En → A for each n ∈ N, hence in particular an extension of f0 : F0 → A, and
from (xiv) that

(xviii) ĝ(n+ 1)(t, y1, y2, . . . , y`) = tA(ĝ(r1)(y1), ĝ(r2)(y2), . . . , ĝ(r`)(y`))

if (t, y1, y2, . . . , y`) ∈ Fn (with the usual deference to (ii)), which by (iii) of Propo-
sition 9.3 can also be written

(xix) ĝ(n+ 1)tF (y1, y2, . . . , y`) = tAĝ(r1)(y1), ĝ(r2)(y2), . . . , ĝ(r`)(y`)).

From the extension property and (xv) we see that a function hA : F → A can be
unambiguously defined as follows: for z ∈ F pick n ∈ N such that z ∈ Fn; assign
z to ĝ(n)(z). From (xvi), (xvii) and (xix) we see that hA is a morphism in AT .
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To prove uniqueness simply note that if diagram (xi) is commutative when hA is
replaced by some other AT morphism q then from (iii) of Proposition 9.3 we must
have q|F0 = f0, and from (4.3) we must have

q(tF (t, y1, y2, . . . , y`)) = tA(q(y1), q(y2), . . . , q(y`))

must hold for any (t, y1, y2, . . . , y`) ∈ Fn. One then sees by induction that q|Fn =
ĝ(n)|Fn = hA|Fn , and q = hA follows. q.e.d.

By Theorem 8.3 any two objects of AT which are free on X must be isomorphic,
and w.l.o.g. we may therefore assume, in any context in which we are dealing with
a free object on X, that we are dealing with the free object F constructed in the
preceding proof. Since the T -algebra structure on F resulted from an application
of Proposition 9.3 (see the paragraph of that proof surrounding (ix)), and since the
structure of an induced morphism hA : F → A is uniquely determined by (9.12),
our construction has the following corollary, which summarizes in a convenient way
all the propeties of the free T -algebra we will need.

Corollary 9.14 : There is a free T -algebra F on X which contains T as a
subset, in which the associated mapping ι : X → F is inclusion, and which admits
the following two structure properties:

(i) tF = t for all t ∈ T0;

and

(ii)

{
tF (y1, y2, . . . , y`) = (t, y1, y2, . . . , y`) ∈ F

for all t ∈ T` and all (y1, y2, . . . , y`) ∈ F `,

where

(iii) (t, y1, y2, . . . , y`) := t if ` = 0.

In addition, if A is any T -algebra, and if h : X → A is any set-theoretic mapping,
the induced morphism hA : F → A (see (9.2)) is given by

(iv)

{
hA : (t, y1, y2, . . . , y`) ∈ F 7→ tA(hA(y1), hA(y2), . . . , hA(y`)) ∈ A,

for all t ∈ T` and all (y1, y2, . . . , y`) ∈ F `,
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which is understood to mean

(v) hA : t ∈ T0 7→ tA if ` = 0.

Moreover, F is the union of the family {Fn}n∈N of pairwise disjoint sets which
begins with

(vi) F0 := T0
∐
X,

is defined recursively for 0 < n ∈ N by

(vii)

{
Fn := { (t, y1, y2, . . . , y`) : ` ∈ N, ` ∈ T`, yj ∈ Fij ,

j = 1, 2, . . . , p, and
∑p

j=1 ij = n− 1 },

and is related to the morphism hA of (iv) as follows:

(viii) hA|F0 :

{
t ∈ T0 7→ tA ∈ A and

x ∈ X 7→ h(x) ∈ A;

and for n > 0 one has

(ix) hA|Fn : (t, y1, y2, . . . , y`) ∈ Fn 7→ tA(hA(y1), hA(y2), . . . , hA(yn)) ∈ A.

In particular, for each n > 0 the restriction hA|Fn is completely determined by the
prior restrictions hA|Fj

, 0 ≤ j < n.

The final assertion is evident from (iv) and (vii).
When an object F of AT is free on a set X one refers to the elements of X

as (the) T -algebra variables (of F ), or, when X is understood, simply as “the vari-
ables.” The tuples (y1, y2, . . . , y`) ∈ F ` encountered in (ii) of Corollary 9.14 are re-
ferred to as words in these variables, although when that terminology is used one gen-
erally thinks of a “string” of symbols ty1y2 · · · y` rather than a tuple (t, y1, y2, . . . , y`).
Moreover, one is apt to reposition the t, e.g. if ` = 2 and t = + one would most
likely write (+, y1, y2) as y1 + y2 than as +y1y2. Similary, if T = {+, ·} one would
most likely write (y1 + y2) · y3 in place of the 3-tuple (· , (+ , y1, y2), y3).
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10. Proposition Algebras

In this section T = {t ′, t ′ ′} is a UA type in which the operation t ′ is unary and
the operation t ′ ′ is binary. We will eventually replace the notations t ′ and t ′ ′ with
¬ and ⇒ respectively, but the initial choices are helpful for keeping in mind that we
are always dealing with sets 88.

Any object of the category AT , where T is as above, is called a proposition
algebra or, when confusion confusion might otherwise result, a proposition T -algebra.

Examples 10.1 : In working through these examples one needs to keep in mind the
italicized statement ending the paragraph containing (4.1).

(a) Let K denote the field Z/2Z and for each k ∈ Z write the coset k+ 2Z ∈ K
as89 by [k]. Then K becomes a proposition algebra by defining t ′K : K → K
by

(i) t ′K : [k] 7→ [k] + [1]

and t ′ ′K : K ×K → K by

(ii) t ′ ′K : ([k1], [k2]) 7→ [1] + [k1]([k2] + [1]) = [1] + [k1] · t ′K([k2]).

For example, t ′ ′K([1], [1]) = [1] + [1]([1] + [1]) = [1] + [1]([1 + 1]) = [1] + [1][2] =
[1] + [2] = [1 + 2] = [3] = [1].

(b) (Boolean algebras) The power set P(X) of a non-empty set X is given the
structure of a T -algebra if we define t ′P(X ) : P(X)→ P(X) by S 7→ X \S and

t ′ ′P(X) : P(X)×P(X)→ P(X) by (S1, S2) ∈ P(X)×P(X) 7→ (X \ S1) ∪ S2 ∈
P(X).

88Although it may not yet be evident, the tension in working with proposition algebras is between
what we would like to think we are dealing with, e.g. logical constructs such as ¬p (read “not p”)
and p⇒ q (read “p implies q”), and whether such real-world entities can be identified with (or, if
the reader prefers, “interpreted as”) sets in the mathematical world. If so we could deal with them
(as do model theorists) in standard mathematical fashion.

89The usual custom is to use the same letter k to denote both an element of Z and the corre-
sponding coset k+2Z of Z/2Z. This seldom causes confusion, but this author prefers not to use the
same symbol within a specific context to denote two different entities, and to always use brackets
[ ] to denote equivalence classes, no matter what the relation.
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(c) The proposition algebra P (X) of a non-empty set X is by definition the free
T -algebra the set X, and is denoted P (X). In this context the T -algebra
variables (i.e. the elements of X) are called atomic statements. In view of
Corollary 9.14 the assignments of the operations are pre-ordained (and easily
described):

(i) t ′P(X) : p ∈ P(X) 7→ (t ′, p) ∈ P(X)

and

(ii) t ′ ′P(X) : (p1, p2) ∈ P(X)× P(X) 7→ (t ′ ′, p1, p2) ∈ P(X).

Every proposition algebra A admits two induced binary operations of particular
importance90:

(10.2) t∨A : (y1, y2) ∈ A× A 7→ t ′ ′A
(
t ′A(y1), y2

)
∈ A,

and

(10.3) t∧A : (y1, y2) ∈ A× A 7→ t ′A(t∨A

(
t ′A(y1), t

′
A(y2)

)
) ∈ A

Examples 10.4 : We will only illustrate the induced operations (10.2) and (10.3)
for Examples 10.1(a) and (b). The discussion of the analogues for Examples 10.1(c)
will be delayed, but the alert reader has probably already guessed the results in that
case given the ∨ and ∧ notations we have employed.

(a) In Example 10.1(a) one sees from the calculation

t∨K([k1], [k2]) = t ′ ′K(t ′K([k1]), [k2])

= t ′ ′K([k1] + [1], [k2])

= [1] + ([k1] + [1])([k2] + [1])

= [1] + [k1][k2] + [k1] + [k2] + [1]

= [2] + [k1][k2] + [k1] + [k2]

= [k1k2] + [k1] + [k2]

that t∨K : K ×K → K is given by

(i) t∨K :


([1], [1]) 7→ [1],

([1], [0]) 7→ [1],

([0], [1]) 7→ [1], and

([0], [0]) 7→ [0].

90Read t∨A as “tee vee (sub) A” and t∧A as “tee wedge (sub) A.”
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and from

t∧K([k1], [k2]) = t ′K(t∨K
(
t ′K([k1]), t

′
K([k2])

)
= t ′K

(
t∨K([k1] + [1], [k2] + [1])

)
= t ′K

(
([k1] + [1])([k2] + [1]) + ([k1] + [1]) + ([k2] + [1])

)
= t ′K

(
[k1][k2] + ([k1] + [1]) + ([k2] + [1]) + [1]

+ ([k1] + [1]) + ([k2] + [1])
)

= t ′K
(
[k1k2] + [1] + 2([k1] + [1]) + 2([k2] + [1])

)
= t ′K

(
[k1k2] + [1]

)
= ([k1k2] + [1]) + [1]

= [k1k2],

that t∧K : K ×K → K is given by

(ii) t∧K :


([1], [1]) 7→ [1],

([1], [0]) 7→ [0],

([0], [1]) 7→ [0], and

([0], [0]) 7→ [0].

One could also express (i) and (ii) in analogy with the “group multiplication
tables” seen in introductory modern algebra courses, i.e. by

t∨K [0] [1]

[0] [0] [1]

[1] [1] [1]

Table I

and by

t∧K [0] [1]

[0] [0] [0]

[1] [0] [1]

Table II
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However, it would be more in keeping with our later work to express (i) and
(ii) by the respective tables

[k1] [k2] t∨K([k1], [k2])

[1] [1] [1]
[1] [0] [1]
[0] [1] [1]
[0] [0] [0]

Table III

and

[k1] [k2] t∧K([k1], [k2])

[1] [1] [1]
[1] [0] [0]
[0] [1] [0]
[0] [0] [0]

Table IV

(b) For Example 10.1(c) one verifies, by means of analogous elementary calcula-
tions, that t∨P(X) : P(X)× P(X)→ P(X) is given by

(i) t∨P(X) : (S1, S2) ∈ P(X)× P(X) 7→ S1 ∪ S1 ∈ P(X).

and that t∧P(X) : P(X)× P(X)→ P(X) is given by

(ii) t∧P(X) : (S1, S2) ∈ P(X)× P(X) 7→ S1 ∩ S1 ∈ P(X).

Remark 10.5 : We will be working with many arrays such as Table IV. Each has
a “labeling box” at the top, e.g.

[k1] [k2] t∧K([k1], [k2])

in Table IV, followed by several rows. When we refer to the “rows” of such a table
the labeling box will not be counted as a row. The “second row” of Table IV would
therefore refer to

[1] [0] [0]
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and the “final row” would be

[0] [0] [0]

Moreover, when we refer to the “columns” of such a table the labeling box entry which
sits at the top of the designated column will not be regarded as an entry of that column.
For example, [k2] would not be considered an entry of column two of Table IV.

Let X be a non-empty set and let Z/2Z be the proposition algebra defined in
Example 10.1(a). An AT -morphism ν : P (X) → Z/2Z is called a91 valuation on
P (X). Since there are only two arity operations involved the morphism condition
(4.3) required of a valuation is easy to write down explicitly: for t ′ one sees from (i)
of Example 10.1(a) that

(10.6) ν(t ′P (X)(p)) = t ′Z/2Z(ν(p)) = ν(p) + [1], for all p ∈ P (X),

and from (ii) of Example 10.1(a) that

ν(t ′ ′P (X)(p, q)) = t ′ ′Z/2Z(ν(p), ν(q)) = [1] + ν(p)(ν(q) + [1]),

hence that

(10.7) ν(t ′ ′P (X)(p, q)) = ν(p)ν(q) + ν(p) + [1] for all p, q ∈ P (X).

Since the image of ν consists of at most two values, the compositions implicit in
(10.6) and (10.7) are easily summarized in a form analogous to that seen in Tables
III and IV of Example 10.4(a), i.e. by

ν(p) ν(t ′P (X)(p))

[1] [0]
[0] [1]

Table V

together with

ν(p) ν(q) ν(t ′ ′P (X)(p, q))

[1] [1] [1]
[1] [0] [0]
[0] [1] [1]
[0] [0] [1]

Table VI
91Not to be confused with the valuations one encounters in number theory. Fortunately, the

context generally renders this a non-problem.

59



For example, the third row92 in Table VI records the fact that when [0] and [1] are
substituted for ν(p) and ν(q) respectively in (10.7) the result, since [0][1]+[0]+[1] =
[1], is the entry [1] which ends that line.

Again let X be any non-empty set and let P (X) be the associated proposition
algebra. The fact that P (X) is free makes it very easy to define valuations: for each
set-theoretic mapping h : X → Z/2Z there is a unique valuation νh : P (X)→ Z/2Z
which makes the diagram

(10.8)

P (X)
νh−→ Z/2Z

inc ↑
h

↗

X

commute, and all valuations on P (X) arise in this manner. Put another way: a
valuation is uniquely determined by the values of atomic statements. The calculation
of ν-values of non-atomic statements is then reduced to a mechanical process. Specif-
ically, one sees from Corollary 9.14 (with F := P (X), A = Z/2Z and hA = ν) that
F (X) can be viewed in terms of pairwise disjoint “levels” Fn, and that observation
enables one to compute any specific value of ν on a step-by-step basis by means of
tables. For example, if one has determined (or is given) the values ν(p) and ν(q) of
elements p, q ∈ P (X) then one can determine the values of t ′P (X)(p) and t ′ ′P (X)(p, q)
by referring to Tables V and VI. To simplify such procedures it is convenient to have
several additional tables at hand: those which will prove important for our purposes
are constructed in the following examples.

Examples 10.9 :

(a) We claim that the table corresponding to Table IV for the induced binary
opeation r := t∨P (X)(p, q) initially defined in (10.2) is

ν(p) ν(q) ν(t∨P (X)(p, q))

[1] [1] [1]
[1] [0] [1]
[0] [1] [1]
[0] [0] [0]

Table VII

92Which by Remark 10.5 would mean the second-to-last row.
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The third row indicates, for example, that if p and q have been assigned the
respective values [0] and [1] then the value assigned to t∨P (X)(p, q), which is at

a “higher level” than either of p and q, must be [1].

Note that Table VII results by removing the third column from the table

ν(p) ν(q) ν(t ′P (X)(p)) ν(t∨P (X)(p, q))

[1] [1] [0] [1]
[1] [0] [0] [1]
[0] [1] [1] [1]
[0] [0] [1] [0]

,

and since by (10.2) we have

t∨P (X)(p, q) := t ′ ′P (X)((t
′
P (X)(p), q),

we can keep the definition of the operation t∨P (X) in mind if we replace this last
table with

ν(p) ν(q) ν(t ′P (X)(p)) ν(t ′ ′P (X)((t
′
P (X)(p), q))

[1] [1] [0] [1]
[1] [0] [0] [1]
[0] [1] [1] [1]
[0] [0] [1] [0]

Table VIII

In fact this is precisely how is how Table VII was constructed, and we can
therefore forget about that table and concentrate on Table VIII.

The first two entries of each row of93 Table VIII comprise all the possibilities
for the pairs (ν(p), ν(q)). The third column records the value for t ′P (X)(p)

corresponding to the value ν(p) for p which appears in the first column of
the same row, and can be determined directly from Table V. (In particular,
column three of Table VIII has nothing to do with column two.) Each entry in
he fourth column is obtained from the respective entries in the third and second
columns of the same row by means of Table VI. For example, the entries from
the third and second columns in the final row of Table VIII are [1] and [0]

93Recall Remark 10.5.
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respectively, and the second row in Table V gives ν((t ′ ′P (X)(u, v)) = [0] when

ν(u) = [1] and ν(v) = [0]. The lower right entry in Table VIII must therefore
be [0].

(b) The table analogous to VII for the binary operation t∧P (X) is

ν(p) ν(q) ν(t∧P (X)(p, q))

[1] [1] [1]
[1] [0] [0]
[0] [1] [0]
[0] [0] [0]

Table IX

but the analogue of Table VIII is a bit more complicated, i.e. it is

ν(p) ν(q) ν(t ′(p)) ν(t ′(q)) ν(t∨(t ′(p), t ′(q))) ν(t ′
(
t∨(t ′(p), t ′(q)))

)
[1] [1] [0] [0] [0] [1]
[1] [0] [0] [1] [1] [0]
[0] [1] [1] [0] [1] [0]
[0] [0] [1] [1] [1] [0]

Table X

(wherein we have dropped the P (X) subscripts to avoid spacing problems).
In this instance the entries in the third and fourth columns are obtained from
those of the first and second, respectively, using Table V. The entries of the
fifth column are then obtained from those of the third and fourth using Table
VII, i.e. by replacing p and q in the labeling box of that table by t ′P (X)(p)

and t ′P (X)(q) respectively. The entries of the sixth column are then obtained
from those of the fifth using Table V.

(c) For any p ∈ P (X) the table for the element t∧P (X)(t
′
P (X)(p), p) ∈ P (X) is given

by

ν(p) ν(t∧P (X)(t
′
P (X)(p), p))

[1] [0]
[0] [0]

Table XI
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as can be seen by verifying the column entries of

ν(p) ν(t ′P (X)(p)) ν(t∧P (X)((t
′
P (X)(p), p))

[1] [0] [0]
[0] [1] [0]

starting with column two, by means of Tables V and XI.

(d) For any p ∈ P (X) the table for the element t ′P (X)

(
t∧P (X)(t

′
P (X)(p), p)

)
∈ P (X)

is given by

ν(p) ν(t ′P (X)(t
∧
P (X)(t

′
P (X)(p), p)))

[1] [1]
[0] [1]

Table XII

Here one uses Tables V and XI.

Proposition 10.10 (The Existence of Contradictions and Tautologies) : Let
X be a non-empty set and let P (X) be the free T -algebra on X. Then any element
q ∈ P (X) of the form

(i) q := t∧P (X)(r, t
′
P (X)(r)) for some r ∈ P (X)

is such that

(ii) ν(q) = [0] for all valuations ν : P (X)→ Z/2Z.

Moreover, when (ii) holds the point

(iii) p := t ′P (X)(q)

satisfies

(iv) ν(p) = [1] for all valuations ν : P (X)→ Z/2Z.

Any point q ∈ P (X) having the form given in (i) is called a contradiction (in
P (X)). Any point p ∈ P (X) having the property stated in (iv) (but not necessarily
having the form seen in (iv)) is called a tautology (in P (X)), or is said to be (logically)
valid (in P (X)). Any point q ∈ P (X) satisfying (ii) is said to be (logically) invalid.
In particular, all contradictions are logically invalid.

Proof : Immediate from Table XI of Example 10.9(c) and Table XII of Example
10.9(d). q.e.d.
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Assume the notation of Proposition 10.10 and let94 A ⊂ P (X) and q ∈ P (X).
One says that95 q is a consequence of A, or that A semantically implies q, and
writes

(10.11) A |= q,

if ν(q) = [1] for all valuations ν : P (X)→ Z/2Z such that ν(p) = [1] for all96 p ∈ A.
When A = ∅ the condition that ν(p) = [1] for all p ∈ A holds vacuously, and the
condition on q therefore becomes: ν(q) = [1] for all valuations ν : P (X) → Z/2Z.
In other words,

(10.12) ∅ |= q if and only if q is a tautology.

Suppose n ≥ 2. The concatenation t∧P (X)(p1, p2, . . . , pn) of (not necessarily dis-

tinct) elements p1, p2, . . . , pn ∈ P (X) is defined inductively97 by

(10.13) t∧P (X)(p1, p2, . . . , pn) := t∧P (x)(p1, t
∧
P (X)(p2, t

∧
P (X)(p3 · · · t∧P (X)(pn−1, pn) · · · ))).

One sees by induction and Table IX of Example 10.9(b) that for any valuation
ν : P (X)→ Z/2Z one has

(10.14) ν(t∧P (X)(p1, p2, . . . , pn)) = [1] ⇔ ν(pj) = [1] for j = 1, 2, . . . , n.

Proposition 10.15 : Suppose A ⊂ P (X) is non-empty and finite, say A =
{p1, p2, . . . , pn}, suppose q ∈ P (X), and suppose t ′ ′P (X)(t

∧
P (X)(p1, p2, . . . , pn), q) is

a tautology. Then
A |= q.

Proof : From Table VI (the second table following (10.7)) we have

94A model theorist would refer to A as a “set of formulas.”
95The definition and notation are from [B-M, Chapter II, §3, Definition 3.2, p. 31].
96In [Hamilton, Chapter 1, §1.6, Definition 1.28, p. 23] this is the definition of a valid argument

form, and the notation introduced in (10.11) is not employed in this context, although it does appear
later in connection with predicate calculus (see [Hamilton, Chapter 3, §3.4, Definition 3.24, p. 63]).
Indeed, my impression is that most authors avoid using the symbol |= until predicate calculus has
been introduced, but I found an earlier introduction very helpful to my (mis)understanding.

97From this point onward I am not going to worry about proving that my inductive definitions
can be made rigorous by means of the Recursion Theorem. I have hopefully made my point, and we
can therefore return to normal practice. Readers upset by this are invited, in each case, to supply
their own proofs.
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ν(t∧P (X)(p1, p2, . . . , pn)) ν(q) ν(t ′ ′P (X)(t
∧
P (X)(p1, p2, . . . , pn), q)

[1] [1] [1]
[1] [0] [0]
[0] [1] [1]
[0] [0] [1]

If ν(pj) = [1] for j = 1, 2, . . . , n then ν(t∧P (X)(p1, p2, . . . , pn)) = [1] by (10.14) and
we can therefore ignore the final two lines in this table. On the other hand, given
that t ′ ′P (X)(t

∧
P (X)(p1, p2, . . . , pn), q) is a tautology we see (from the final column) that

we can also ignore line two, ν(q) = [1] follows, and A |= q is thereby established.
q.e.d.
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11. A Short Course on Sentential Inference

In this section we take a short vacation from the mathematical world, returning to the
real world98 for rest and relaxation. Upon arrival a gregarious stranger suggests that
for amusement as well as edification we should learn the game of “Sentential Infer-
ence,” which on the deluxe edition box is called the “Theory of Sentential Inference.”
We are told it has applications to the dissection of legal arguments, to switching cir-
cuits, and to all sorts of other practical things. Since we are in dire need of a break
from pure mathematics we locate a store which has the game in stock and make the
purchase, only to learn that, other than a few printed pages of instructions, the box
contains nothing more than blank paper and a few pencils. We angrily demand our
money back, but are told, by an employee with a somewhat disingenuous smile, that
store policy prohibits refunds. Nor are we allowed to swap for the standard edition
and pocket the difference. (He shakes his head no while maintaining that smile.) So
we decide to accept the loss and see if we can at least enjoy the game.

The instructions state that it is played with pencil and paper99 and employs the
symbols ¬, ∧, ∨, and ⇒ (read ‘not’, ‘and’, ‘or’, and ‘implies’ respectively), known
as (logical ) connectives. (One is allowed to write these down repeatedly; after all,
this is the real world, and we are well supplied with paper and pencils which we paid
dearly for.) The symbols T and F , known as truth values, are also used, along with
parentheses, and along with additional symbols, such as A,B,C, . . . (etc.), known
as100 atomic statements. In the instructions we are told that we should think of
atomic statements as sentences conveying just one thought, e.g. “The sky is blue,”
as opposed to compound sentences such as “The sky is blue and Platonism is a
thoroughly discredited philosophy.”

Unfortunately, the game is generally played alone, and it is not clear what “win-
ning” means. But it does while away the time, and keeps one out of trouble101.

As for the rules: The first one specifies the arrangements of these symbols which
are to be regarded as ‘(valid) statements’, which one could think of as meaningful
sentences.

98This is accomplished by being “beamed up.”
99Computer apps are apparently available, but after our initial experience we decide against that

option.
100If this terminology seems vaguely familiar, see Example 10.1(c).
101On the other hand, this game is not quite what we had in mind when we applied for R&R.
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Logical Rules 11.1 - The Rules for Statement Formation : Within the theory
of sentential inference only the following qualify as ‘statements’ :

(a) an atomic statement ; or

(b) a string of symbols having one of the following forms, where A and B are
statements :

(i) (A)

(ii) ¬(A) (the negation of A )

(iii) (A) ∧ (B) (the conjunction of A and B )

(iv) (A) ∨ (B) (the disjunction of A and B )

(v) (A)⇒ (B) (the conditional of A and B ).

Nothing else is a statement.

We are told that statements constructed as in (ii)-(v) of 11.1(b) are called non-
atomic, and A in (i)-(v), as well as B in (iii)-(v), are the component parts. We are
also informed that (ii) is read as ‘not A’, (ii) as ‘A and B ’, (iv) as ‘A or B ’, and
(v) as ‘A implies B ’, or as ‘if A then B ’, or as ‘A is a sufficient condition for B ’,
or as ‘B is a necessary condition for A ’.

In addition we are told that when confusion cannot result parentheses can be
freely omitted, e.g., ¬(A) would usually appear as ¬A, and (A) ∨ (B) as A ∨ B,
etc.

Last but not least, we are told that statements of the form A ⇒ B are called
implications, and that B ⇒ A is the converse (implication ) of (the implication)
A⇒ B. The game designer was kind enough to supply us with examples102.

Examples 11.2 - Examples of Statement Formation : Let A and B be state-
ments.

(a) (¬A) is a statement ; use 11.1(ii), omitting parentheses, and then 11.1(i).

(b) ¬(¬A) is a statement ; again use 11.1(ii), but applied to ¬A rather than A.

(c) A¬ is not a statement, since it is not formed according to Rules 11.1.

(d) ¬A⇒ ¬B, i.e., (¬A)⇒ (¬B), is a statement. It is called the inverse (implica-
tion ) of the implication A⇒ B.

102One wonders if this is the case with the standard edition.
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(e) ¬B ⇒ ¬A, i.e., (¬B) ⇒ (¬A), is a statement. It is called the contrapositive
(implication ) of the implication A⇒ B.

We next encounter the rules for assigning ‘truth’ or ‘falsity’ to a statement when
the truth or falsity of the component parts has already been specified.

Logical Rules 11.3 - The Rules for Assigning Truth Values : Let S, S ′

and S ′ ′ be statements. Then one is permitted to assign a truth value T or F
to S, ¬S, S ′ ∧ S ′ ′, S ′ ∨ S ′ ′ and S ′ ⇒ S ′ ′ , e.g., to write a T or F under each,
only according to the following rules :

(a) If S is atomic either of T or F can be assigned.

(b) If truth values have been assigned to S, S ′ and S ′ ′ , then a truth value can be
assigned to ¬S, S ′ ∧ S ′ ′, S ′ ∨ S ′ ′ and S ′ ⇒ S ′ ′ only in accordance with the
following tables.

Negation
S ¬S
T F
F T

Conjunction
S ′ S ′ ′ S ′ ∧ S ′ ′

T T T
T F F
F T F
F F F

Disjunction
S ′ S ′ ′ S ′ ∨ S ′ ′

T T T
T F T
F T T
F F F

Conditional
S ′ S ′ ′ S ′ ⇒ S ′ ′

T T T
T F F
F T T
F F T

For example, the line T F F in the table for conjunction indicates that F must
be assigned to S ′ ∧ S ′ ′ if T has been assigned to S ′ and F has been assigned to
S ′ ′.

The instruction sheet suggests the following informal summary: ¬A is true only
when A is false; A ∧ B is true only when both A and B are true; A ∨ B is false
only when both A and B are false; A⇒ B is false only when A is true and B is
false.
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Bells start to jangle in our heads: except for the notation used, these tables seem
oddly familiar. The Negation table looks awfully close to, but has a much simpler
form than, Table V in the section on Proposition Algebras; the Conjunction table
looks like Table IV; the Disjunction table looks like Table III; and the Conditional
table looks like Table VI. Have we played this game before, perhaps in a different
world? This game is starting to become interesting, and we decide to continue reading
the instructions.

They go on to state that, with the possible exception of the last two lines of the
Conditional Table, the rules have been designed to conform with everyday notions
of the ‘truth’ and ‘falsity’ of statements. To motivate these final cases we are told
to think of A ⇒ B as “If A happens then B must happen”. If we agree that this
statement carries the same information as “Either B happens or else A did not
happen”, i.e., B ∨ (¬A) , then the choices in those last two lines are dictated by the
choices in the Negation and Disjunction Tables. Indeed, we are told that in Example
11.5(a) we will see that these two statements are ‘logically equivalent’.

The instructions note that, as a result of Rule 11.3(b), the assignment of a truth
value to a statement is automatic once truth values have been assigned to the atomic
parts. (Why do “valuations” and “Proposition Algebras” suddenly spring to mind?)
We are furnished with a nice example (which seems far easier to grasp than Table
X).

Example 11.4 : Consider the statement ((A ⇒ B) ∧ B) ⇒ A . Suppose T has
been assigned to A , and F to B . Then from the line T F F in the Conditional
Table we see that F must be assigned to A ⇒ B ; whence from the line F T F
in the Conjunction Table (using A ⇒ B for S ′ and B for S ′ ′ ) that F must be
assigned to (A ⇒ B) ∧ B ; whence from the line F T T in the Conditional Table
(using (A⇒ B)∧B for S ′ and A for S ′ ′ ) that T must be assigned to the complete
statement. This sequence of steps is easily summarized by means of the table

A B A⇒ B (A⇒ B) ∧B ((A⇒ B) ∧B)⇒ A

T F F F T
.

Of course there are other possible assignments of T ’s and F ’s to A and B ; a
complete summary is given next.

A B A⇒ B (A⇒ B) ∧B ((A⇒ B) ∧B)⇒ A

T T T T T
T F F F T
F T T T F
F F T F T
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As we will only have need of the first two and last columns, we abbreviate this to

A B ((A⇒ B) ∧B)⇒ A

T T T
T F T
F T F
F F T

and we call this last configuration the truth table of the statement ((A⇒ B)∧B)⇒
A .

Suddenly we encounter something we haven’t seen in Propositional Algebra, but
which we could easily formulate in that framework.

The instructions state that two statements are (logically) equivalent if their truth
tables become indistinguishable when the statements are erased, i.e., when the entries
in the upper right hand corners are covered up103.

Examples 11.5 - Examples of Equivalent Statements :

(a) A ⇒ B and B ∨ (¬A) are equivalent. Indeed, simply compare (and in the
second case verify) the following truth tables.

A B A⇒ B

T T T
T F F
F T T
F F T

A B B ∨ (¬A)

T T T
T F F
F T T
F F T

(b) A and ¬(¬A) are equivalent.

(c) A⇒ B and the contrapositive ¬B ⇒ ¬A are equivalent.

Just as abruptly we return to familiar territory. The instructions tell us that a
statement is a tautology if the right-hand column of the associated truth table consists
only of T ’s. this is clearly not the case for the statement ((A ⇒ B) ∧ B) ⇒ A
discussed above. A correct example would be (A ∧ (A ⇒ B)) ⇒ B , as can be seen
directly from the next truth table (which the instructions suggest the reader should
verify). This particular implication occurs so often it carries a name: modus ponens.

103How’s that for a rigorous mathematical definition? Remember, we are currently in the real
world!
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A B (A ∧ (A⇒ B))⇒ B

T T T
T F T
F T T
F F T

We then read: Notice that when A and B are logically equivalent statements
both A⇒ B and B ⇒ A are tautologies.

Now the terminology begins to change, but not the concept. We read that a state-
ment B is logically implied by statements A1, A2, . . . , An , or is said to be a logical
consequence of these statements, if the implication (A1 ∧ (A2 ∧ · · · ∧ (An) · · · ))⇒ B
is a tautology. For example, the truth table above shows that B is a logical conse-
quence of A and A ⇒ B . Notice that each of tow logically equivalent statements
is logically implied by the other. This is what in the mathematical world we called
“semantically implies.”

We are back in familiar territory when we read that a statement of the form
A ∧ (¬A) is called a contradiction, or is said to be inconsistent. It is noted that, in
contrast to a tautology, the right-hand column of the associated truth table contains
only F ’s.

Now we reach something really quite new.

Logical Rules 11.6 - The Rules of Sentential Inference : A (logically) (valid)
argument consists of a collection of statements, called the hypotheses or premises (of
the argument), an additional formula called the conclusion (of the argument), together
with a finite listing A,B, . . . of statements, ending with the conclusion, such that for
each statement S on the list :

(a) S is a(n) hypothesis ; or

(b) S is a logical consequence of the conjunction of some collection of prior state-
ments on the list ; or

(c) S is a tautology ; or

(d) S is logically equivalent to a prior statement S ′ on the list ; or

(e) a contradiction is a logical consequence of ¬S in conjunction with some per-
missible combination of prior statements on the list.

The conclusion of a valid argument is said to be a logical consequence of the hy-
potheses, or to be (logically) implied by the hypotheses. When some statement in an
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argument is justified by (e) the argument is said to be by contradiction, indirect, or
by reductio ad absurdum. Otherwise the argument is direct.

Example 11.7 : If A , A⇒ B , and B ⇒ C are hypotheses then

A
A⇒ B
B
B ⇒ C
C

is a valid argument with conclusion C. Indeed, A and A ⇒ B are hypotheses, B
is a logical consequence of A and A⇒ B (modus ponens), B ⇒ C is a hypothesis,
and C is a logical consequence of B and B ⇒ C (again modus ponens). The
argument is direct.

This real-world visit was beneficial far beyond expectations. We can now see
that the proposition algebra P (X) is a set-theoretically based analogue of sentential
inference, that “statements”’ in the Theory of Sentential Inference have set-theoretical
counterparts, and that the notation we have used with the proposition algebra P (X)
is terrible, the only virtue being that is reminds us that we are actually working with
sets. Our first task upon our return104 will be to change that notation.

104I.e. after being “beamed down.”
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12. Proposition Algebras Revisited

In this section T = {¬, ⇒} is the UA type which in §10 was denoted {t ′, t ′ ′}.
Specifically, the unary operation t ′ will now be denoted ¬, and the binary operation
t ′ ′ will now be denoted ⇒. Throughout X denotes a non-empty set, and P (X)
denotes the free proposition (T -)algebra on X.

The notation associated with t ′ and t ′ ′ is changed accordingly, so as to conform
with what is seen in sentential inference. Specifically, for p, q ∈ P (X):

(12.1)
(negation) t ′P (X)(p) now becomes ¬p (read “not p”)

(disjunction) t∨P (X)(p, q) now becomes p ∨ q (read “p or q”)

(conjunction) t∧P (X)(p, q) now becomes p ∧ q (read “p and q”), and

(implication) t ′ ′P (X)(p, q) now becomes p⇒ q (read “p implies q”).

The notations for other induced operations are modified in predictable ways. For
example, the definition of the concatenation of elements p1, p2, . . . , pn ∈ P (X) (see
(10.13)) now assumes the far more palatable form

(12.2) t∧P (X)(p1, p2, . . . , pn) := p1 ∧ p2 ∧ · · · ∧ pn,

whereupon Proposition 10.15 becomes

Proposition 12.3 : Suppose A ⊂ P (X) is non-empty and finite, say A =
{p1, p2, . . . , pn}, suppose q ∈ A, and suppose p1 ∧ p2 ∧ · · · ∧ pn ⇒ q is a tautol-
ogy. Then

A |= q.

When there is a need to distinguish an operation in T with the associated arity
operation on P (X) a subscript will be added to denote the latter, e.g. ∧P (X) would
denote the binary operation (p, q) ∈ (P (X))2 7→ p ∧ q ∈ P (X) corresponding to the
operation ∧ ∈ T2.

Readers are no doubt already comparing this switch in notation to a sudden cool
breeze on a hot, humid summer day. It is even better than that: it vastly simplifies
the appearance and construction of tables, particularly if we omit the ν symbol in
the top boxes and replace all occurrences of [1] and [0] by105 T (read “true”) and
F (read “false”) For example, Table VI, which appears shortly after (10.7), i.e.

105Since we are dealing with “T -algebras,” this introduces a conflict of notation. However, in
practice the meaning of T is almost always clear from context.
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ν(p) ν(q) ν(t ′ ′P (X)(p, q))

[1] [1] [1]
[1] [0] [0]
[0] [1] [1]
[0] [0] [1]

,

now becomes the table for implication106 i.e.

p q p⇒ q

T T T
T F F
F T T
F F T

,

and Table X of Example 10.9(b), i.e.

ν(p) ν(q) ν(t ′(p)) ν(t ′(q)) ν(t∨(t ′(p), t ′(q))) ν(t ′
(
t∨(t ′(p), t ′(q)))

)
[1] [1] [0] [0] [0] [1]
[1] [0] [0] [1] [1] [0]
[0] [1] [1] [0] [1] [0]
[0] [0] [1] [1] [1] [0]

,

now becomes

p q ¬p ¬q ¬p ∨ ¬q ¬(¬p ∨ ¬q)
T T F F F T
T F F T T F
F T T F T F
F F T T T F

.

As another example of how this notation simplifies matters note from the first two
rows of the table

p q p ∨ q
T T T
T F T
F T T
F F F

,

106Technically, for the “conditional.”

74



for disjunction that {p} |= p ∨ q, but from the final column that p→ p ∨ q is not a
tautology. The converse of Proposition 10.15 is therefore false.

Hopefully readers can now understand what is going on: a “mathematical world”
entity has been determined107, involving only sets, but sets which, from a mathemati-
cal viewpoint, are amenable to study just as if108 they were sentences within the “real
world” construct of Sentential Inference. In particular, even if it we totally confine
our mathematics to the mathematical world it now makes perfect sense to speak of
“sets of sentences,” or, perhaps more appropriately, “sets of propositions.”

It is fairly easy to formulate Logical Rules 11.6 in this setting, and thereby justify
speaking of a “logically valid argument” in a purely set-theoretic context. To formu-
late model theory from that perspective one has to push beyond what we have done
so as to include quantifiers. The result is called “first order logic.” Readers interested
in the that extension of our work thus far should see, e.g. [B-M, Chapters IV and V].

107Or constructed, whatever your preference.
108Or “essentially as if.” I cannot go so far as to that say the systems are “isomorphic,” because

that would imply both belong to the mathematical world.
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13. Topological Considerations

When X is a topological space and Y ⊂ X the closure of Y will be denoted cl(Y ),
and when Y = {y} is a singleton we will abbreviate cl({y}) as cl(y).

Since propositional algebra has been reduced to set theory, the tools of topology
now become available for use109. We do very little with this, only offering a few hints
as to how the ideas we have seen thus far can be tied in with algebraic and differential
algebraic geometry, and a few definitions which may help readers decipher some of
the literature.

Let X be a non-empty set equipped with a pre-order relation110 R ⊂ X × X.
Write x → y in place of (x, y) ∈ R; write x ↔ y to indicate the two conditions
x → y and y → x. The pre-order conditions are: x ↔ x (reflexivity); x → y and
y → z ⇒ x→ z (transitivity).

Examples 13.1 :

(a) Let Y be a set111 and let X := P (Y ) be the free proposition algebra on Y ,
i.e. the free T -algebra on Y , where T = {¬, ⇒}. Then a pre-order relation on
X is defined by declaring that p→ q if p |= q, where p |= q is being used as
an abbreviation for {p} |= q. With less formality: p→ q if q is true whenever
p is true112. Reflexivity and transitivity are obvious.

(b) Let R be a commutative ring with unity, let X := Spec(R) be the collection
of all prime ideals of R, and for p, q ∈ X let p→ q mean p ⊂ q.

(c) Let R = (R, δ) be a commutative differential113 ring, i.e. a commutative ring
R with unity together with a derivation δ : R → R. Call an ideal i ⊂ R
a differential ideal if i is closed under the derivation, i.e. if r ∈ i ⇒ δr ∈ i,
and let X := diffSpec(R) denote the collection of differential prime ideals114.

109On the other hand, the fact that so many arrows are in use suggests that we might look at
things categorically. There is, however, a limit to the scope of these notes.
110The definition is recalled in the next two sentences.
111To conform with previous notation we should use X, but in this section X is reserved for

topological spaces.
112Note how we have suddenly lapsed into the sort of language a model theorist would use. What
p → q “really” means is that ν(q) = [1] for all valuations ν : P (Y ) → Z/2Z such that ν(p) = [1].
We say “with less formality” since there are no such valuations when p is a contradiction.
113I was feeling guilty about mentioning derivation only once thus far in these notes (see Example

3.2(d)). After all, this talk is being prepared for a differential algebra seminar!
114That is, the prime ideals which are also differential ideals.
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For p, q ∈ X let p → q mean p ⊂ q. (In other words, restrict the relation of
Example (b) to diffSpec(R).)

For each p ∈ X let

(13.2) D(p) := { q ∈ X : p 6→ q }.

Note that p /∈ D(p). The pre-order topology on X is the topology generated by these
sets; a neighborhood basis is provided by the collection of finite intersections of sets of
the form D(p). For each p ∈ X let V (p) denote the (closed) complement of D(p),
i.e.,

(13.3) V (p) := { q ∈ X : p→ q }.

Note that

(13.4) p ∈ V (p).

The pre-order topology in Example 13.1(b) is called the Zariski topology; that in
Example 13.1(c) is the Kolchin topology.

Examples 13.5 :

(a) Let X = P (Y ) be as in Example 13.1(a) and let p ∈ Y . Then

D(p) consists of all those q ∈ X such that p 6→ q, i.e. all those q
such that for some valuation ν = ν(q) : X → Z/2Z one has

ν(p) = T and ν(q) = F.

and

V (p) consists of all those q ∈ X such that p → q, i.e. all those q
such that for all valuations ν : X → Z/2Z one has

ν(q) = T if ν(p) = T.

(b) Suppose R is a commutative ring with unity and the Zariski topology is as-
sumed on X := Spec(R). Then for any prime ideal p ∈ X the collection D(p)
is the set of prime ideals which do not contain p and V (p) is the collection of
prime ideals which do contain p.
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(c) Suppose R = (R, δ) is a commutative differential ring and the Zariski topology
is assumed on X := diffSpec(R). Then for any differential prime ideal p ∈ X
the collection D(p) is the set of differential prime ideals which do not contain
p and V (p) is the collection of differential prime ideals which do contain p.

Proposition 13.6 : Let X be a non-empty set with a pre-order → and assume X
has been endowed with the pre-order topology. Then for any p, q ∈ X the following
statements hold:

(a) V (p) = cl(p), i.e. V (p) is the closure of the point p.

(b) p→ q if and only if V (q) ⊂ V (p);

(c) p↔ q if and only if V (p) = V (q).

In classical geometry the closure of a point was referred to as the locus of the
point. One still encounters this terminology in algebraic and differential algebraic
geometry.

Proof :

(a) The closure cl(p) is certainly contained in V (p), and if the result is false
there is a point q ∈ V (p)\cl(p) (necessarily) contained in an open set U having
empty intersection with cl(p). It follows from the neighborhood basis comments that
there is a finite collection r1, . . . , rn ∈ X such that q ∈ ∩nj=1D(rj) ⊂ U , and since
p /∈ U at least one rj =: r is such that p /∈ D(r). But p /∈ D(r) ⇒ r → p and
q ∈ V (p) ⇒ p → q. Transitivity then guarantees r → q, thereby contradicting
q ∈ D(r).

(b) One has

p→ q ⇔ q ∈ V (p)

⇔ q ∈ cl(p) (by (a))

⇔ cl(q) ⊂ cl(p) (by the minimal property of closures)

⇔ V (q) ⊂ V (p) (again by (a)).

(c) Immediate from (b).

q.e.d.
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Combining Proposition 13.6 with (13.2) and (13.3) we see that for p, q ∈ X we
have both

(13.7) q ∈ D(p) ⇔ p 6→ q ⇔ q ∈ X \ cl(p)

and

(13.8) q ∈ V (p) ⇔ p→ q ⇔ q ∈ cl(p).

Let X be any topological space.

• A point x ∈ X is closed, or is a closed point, if cl(x) = {x}.

• A point x is (a) generic (point ) (of ) X if cl(x) = X.

• Any point y ∈ cl(x) is a specialization of x, and to indicate this one writes115

x→ y (read: “x specializes to y”).

• A specialization y of x is a generic specialization (of x) if y → x, and
when then is the case we write x↔ y (read: “x generically specializes to y”).
Note that x↔ y is an equivalence relation; this is a useful property of generic
specializations which is not shared by specializations.

• A specialization y of x is a non-generic specialization (of x) if y 6→ x. The
set of all (if any) non-generic specializations of x is denoted NGSx.

• The point x is constrained if NGSx is a closed set.

• An element x ∈ X is isolated if cl(x) is minimal (w.r.t. inclusion) among all
closed subsets of X of the form116 cl(y).

• A subset A ⊂ X is locally closed if A = U ∩ C, where U ⊂ X is open and
C ⊂ X is closed.

• A subset A ⊂ X is constructible if it can be expressed as the finite disjoint
union of locally closed sets117.

115The use of the symbol → does not imply that the pre-order topology is being assumed, but
that possibility is also not excluded.
116One is reminded of the following result for commutative rings with identity: an element a of

the ring is irreducible if and only if the principal ideal (a) is maximal among all proper principal
ideals of the ring. See, e.g., [Hun, Theorem 4.3(ii), p. 136].
117We take this definition from [Hart, Chapter II, Exercise 3.18, p. 94].
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• X is a Stone space if it is a compact, Hausdorff, and admits a neighborhood
basis consisting of “clopen” sets, i.e. sets which are both open and closed118.

Examples 13.9 :

(a) Let X be a set and endow the associated proposition algebra P (X) with the
pre-order topology. Then the closure of any tautology is the collection of all
tautologies in P (X).

Let p ∈ P (X) be a tautology. If q ∈ P (X) is not a tautology there
is a valuation ν such that ν(q) = F , whereas ν(p) = T , and p |= q
is therefore false. On the other hand, p |= q is obviously true when
q is a tautology.

(b) Let P (X) (and the topology on P (X)) be as in (a). Then then each logically
invalid statement is generic.

If p ∈ P (X) is logically invalid and q ∈ P (X) the implication p⇒ q
is true regardless of the truth value of q, hence p |= q, and q ∈ cl(p)
therefore holds.

(c) Let R be a commutative integral domain with unity and endow Spec(R) with
the Zariski topology. Then the zero ideal (0) is generic in Spec(R). (One needs
the integral domain hypothesis to guarantee that (0) ∈ Spec(R), i.e. that (0)
is a prime ideal.)

Proposition 13.10 : Let X be a non-empty set with a pre-order → and assume
X has been endowed with the pre-order topology. Then for any p, q ∈ X the following
statements are equivalent:

(a) p is isolated;

(b) p→ q ⇒ V (p) = V (q); and

(c) p→ q ⇒ p↔ q.

Condition (c) is my interpretation of Kolchin’s definition of “isolated” [Kol, p. 386].

118The definition is from [Roth, Chapter 5, §6, p. 62].
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Proof :
(a) ⇒ (b) : For any q ∈ X we have

p→ q ⇔ V (q) ⊂ V (p) (by Proposition 13.6(b))

⇒ V (p) = V (q) (by the minimality of V (p)).

(b) ⇒ (c) : By Proposition 13.6(c).

(c) ⇒ (a) : Suppose q ∈ X is such that cl(q) ⊂ cl(p), which by Proposition
13.6(a) is equivalent to V (q) ⊂ V (p). The equality cl(q) = cl(p) needed to establish
(a) is then seen from

V (q) ⊂ V (p) ⇔ p→ q (by Proposition 13.6(b))

⇒ p↔ q (by (c))

⇔ V (p) = V (q) (by Proposition 13.6(c))

⇔ cl(p) = cl(q) (by Proposition 13.6(a)).

q.e.d.

Recall that a pre-order → on a set X is a partial order relation if for p, q ∈ X
one has p↔ q if and only if p = q.

Corollary 13.11 : When the relation → in Proposition 13.10 is a partial order
relation and p ∈ X the following statements are equivalent:

(a) p is isolated; and

(b) p is a closed point.

For example, the maximal ideals are the isolated points of Spec(R) for any com-
mutative ring R with unity.

Note from the bulleted definitions that

(13.12) cl(x) = GSx ∪NGSx (disjoint union).

Two easy consequences to keep in mind are

Proposition 13.13 : A point x ∈ X is constrained if and only if GSx ⊂ X is
locally closed.

and

Proposition 13.14 : Let x ∈ X. Then an open subset of X contains x if and
only if it contains GSx.

81



14. Closure Operations

Let X be a non-empty set with a pre-order relation →. In [B-M, Chapter I, §3,
Lemma 3.9, p. 14]119, a mapping κ : X → X is called a closure operation if the
following three conditions are satisfied for any x, y ∈ X:

I. x→ κ(x);

II. κ(κ(x)) = κ(x); and

III. A→ B ⇒ κ(A)→ κ(B).

When κ : X → X is such a mapping and x ∈ X we call κ(x) the closure of x, and
an element x ∈ X satisfying x = κ(x) is said to be120 closed.

Examples 14.1 :

(a) Let R be a commutative ring with unity, let X := Spec(R), and let →
be inclusion. Then the mapping sending a prime ideal p ∈ X to its radical√
p ∈ X is a closure operation.

(b) Let Y be a topological space and let X be the power set of Y with inclusion
as the pre-order. Then the mapping sending A ∈ P(A) to cl(A) is a closure
operation.

(c) Examples of closure operations arise in proposition algebras, but we have not
covered enough background to explain them121. See [B-M, Chapter II, §3,
Lemma 3.9, p. 14 and §4, Lemma 4.4, pp. 15-6].

119In fact this reference only considers the case in which X is a power set and the pre-order relation
is inclusion.
120One must be careful with this terminology since it is defined without reference to a topology.
121Nor do we have any intention of doing so.
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Proposition 14.2 : Suppose κ : X → X is a closure operation on a set X with a
partial order relation →, and suppose x, y ∈ X. Then the following results hold.

(a) If x→ y, y → κ(x) and y is closed then y = κ(x).

(b) Suppose (x, y) 7→ x∨ y is a binary operation on X such that for all x, y ∈ X
one has

(i) x→ x ∨ y and y → x ∨ y,

(ii) x ∨ y → κ(x) ∨ κ(y),

and

(iii) x ∨ y → z whenver z ∈ X is closed and x→ z and y → z.

Then

(iv) κ(x ∨ y) = κ(κ(x) ∨ κ(y)) for all x, y ∈ X.

Proof :

(a) This is seen from the chain of implications

x→ y → κ(x) ⇒ κ(x)→ κ(y)→ κ(κ(x)) (by III)

⇒ κ(x)→ κ(y)→ κ(x) (by II)

⇒ κ(x)→ y → κ(x) (because y is closed)

⇒ y = κ(x).

(b) In this case we see from (III) that

x→ x ∨ y ⇒ κ(x)→ κ(x ∨ y)

and that
y → x ∨ y ⇒ κ(y)→ κ(x ∨ y).

Since κ(x ∨ y) is closed it follows from (i) and (ii) that

κ(x) ∨ κ(y)→ κ(x ∨ y),

whereas from (iii) we have
x ∨ y ⊂ κ(x) ∨ κ(y).
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This gives
x ∨ y ⊂ κ(x) ∨ κ(y)→ κ(x ∨ y)

whereupon (iv) is seen to follow from (a).

q.e.d.

Closure operations also arise in topology, e.g. see [Kelly, Chapter I, p. 43], but only
in the context of Example 14.1(b), and the definition in that case is not equivalent to
the one we have given. Instead one assumes the existence of a mapping κ : P(Y )→
P(Y ) such that for all subsets A,B ⊂ Y :

I. A ⊂ κ(A); (as before)

II. κ(κ(A)) = κ(A); (as before)

IV. κ(A ∪B) = κ(A) ∪ κ(B) ; and

V. κ(∅) = ∅.

One then proves that these conditions are necessary and sufficient for the collection
{κ(A)}A∈P(Y ) to constitute the closed sets of a topology122 on X. Note that IV is
fairly close123 to (iv) of Proposition 14.2, but there seems no obvious generalization
of V (although integral domains come to mind if one is working with Spec(R) and
one thinks of ∅ as representing the zero ideal).

122See the reference to [Kelly] given above, where the definition and result are attributed to Kura-
towski.
123But no cigar.
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Notes and Comments

§6. Our discussion of the distinction between sets and classes is a bit more formal
than most mathematicians would require in practice. For a brief but very clear
presentation at a less formal level I recommend [Roth, Chapter 7, §7.4, pp. 90-5].

§11. The presentation of this material owes a great deal to [Su].

§12. “Order topologies” on linearly ordered spaces are standard (see, e.g. [Kelly,
Chapter I, Exercise I, pp. 57-8], and I am confident that the pre-order topology
has also been throughly studied, although perhaps under a different name. The
idea of using that topology in connection with differential algebra arose from
conversations with Jerry Kovacic and Peter Landesman, and some of the results
stated here about this topology appear in [Landes].

§13. I found [Bour, Chapter II, §4, no1-no3, pp. 94-104] a nice, compact (and, as one
would expect, complete) source of information about the Zariski topology.
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