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Conventions.

F is a ∆-�eld, and AF = F fy1, . . . , yng y1, . . . , yn ∆-indeterminates.
When no ambiguity results, we will omit the pre�x ∆-. All rings are
∆-Q-algebras. All homomorphisms are di¤erential. Unless otherwise
stated, �eld = ∆-�eld , extension �eld = extension ∆-�eld, homomorphism
= ∆-homomorphism.
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Universal di¤erential �elds.

G := extension �eld of F .

De�nition
Let η = (η1, . . . , ηn) 2 Gn. The de�ning ideal p of η over F is the set of
all polynomials P 2 AF such that P (η) = 0.

p is a prime ∆-ideal.
Say η is generic for p.

I(η) := p.
F fηg t

F
AF/p,

the residue class ring. The isomorphism maps yi + p to ηi .
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De�nition
An extension �eld S of F is semiuniversal over F if whenever G is �nitely
∆-generated over F , 9 an F -isomorphism from G into U .

So, every �nitely ∆-generated extension �eld of F can be embedded over
F in U .
Theorem
S semiuniversal over F =) 8n, every prime ∆-ideal p in AF has a
generic zero in Sn.

Proof.
The quotient �eld of the residue class ring F fy1, . . . , yng = AF/p is
�nitely ∆-generated over F .
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De�nition
An extension �eld U of F is universal over F if U is semiuniversal over
every �nitely ∆-generated extension �eld of F in U .

If U is universal over Q, it is called a universal di¤erential �eld.

Theorem
U universal over F =) 8 n, and 8G �nitely ∆-generated over F , every
prime ∆-ideal in G fy1, . . . , yng has a generic zero in U n.

Corollary
Let U be a universal ∆-�eld. If F is any sub�eld of U that is �nitely
∆-generated over the prime �eld Q, then, U is universal over F .
Therefore, every prime ∆-ideal in F fy1, . . . , yng has a generic zero in U n.
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Specializations.

R := ∆-F -algebra, and an integral domain.

De�nition
Let η = (η1, . . . , ηn) 2 Rn and let ς = (ς1, . . . , ςn) 2 Gn. η specializes
to ς over F if 9 a ∆-F -homomorphism

ϕ : F fηg �! F fςg , ηi 7�! ςi , i = 1, . . . , n

Let I (η) = p, and I (ς) = q.

p and q are prime.

η specializes to ς over F () p � q.
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De�nition
ς is a generic specialization of η over F if

1 η specializes to ς over F and
2 The above homomorphism

ϕ : F fηg �! F fςg , ηi 7�! ςi , i = 1, . . . , n

is an isomorphism.

The specialization η �! ς is generic () η �! ς and ς �! η.

() p = q() η and
ς are generic for the same prime ∆-ideal.

() 9 a ∆-F -isomorphism
from the �eld F hηi onto F hςi, ηi 7�! ςi , i = 1, . . . , n.
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The Lefschetz-Seidenberg Principle.
.

If F is �nitely ∆-generated over Q, then:
x1, . . . , xm := complex variables.
Ω := connected open region of Cm .
M (Ω) := the �eld of functions meromorphic in Ω.
∆.acts onM (Ω). δi acts as ∂xi .
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1 9 connected open region Ω of Cm and a ∆-isomorphism from F into
M (Ω).

2 G �nitely ∆-generated over F =) 9 a connected open region
Ω0 � Ω, and a ∆-F -isomorphism from G intoM (Ω0).
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More generally: Spose F =M (Ω) , ∆ = f∂x1 , . . . , ∂xmg, 9 a universal
�eld extension U of F . Elements η 2 F are meromorphic functions
η (x1, . . . , xm). In general, elements of U can be thought of as generalized
meromorphic functions.
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From Part I,

Example

∆ = fδ1, δ2g , Let F = C (t, x) , G =M(Dx �Dt ), Dx = right half
plane of C, Dt = CnZ�0, and δ1 = ∂x , δ2 = ∂t .
γ =

R x
0 s

t�1e�sds 2 F . I (γ) is the prime ∆-ideal

p =:
p �

∂2xy �
t � 1� x

x
∂xy , ∂xy∂2t ∂xy � (∂t∂xy)

2
�

: ∂xy

in C (x , t) fyg. This is a correction from earlier lectures. For a discussion
of the meromorphicity of the incomplete gamma in the region described,
see Frank Olver, Asymptotics and Special Functions, 1997.
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We can rank the derivatives of y by order. Note that the highest order
derivative of y in Q = ∂xy∂2t ∂xy � (∂t∂xy)

2 is θy = ∂2t ∂xy . It is called
the leader of Q. The partial derivative ∂Q

∂(θy ) is called the separant SQ of
Q. The leader of L with respect to this ranking by order is 1.

p =

�
P 2 F fyg j SQP 2

p �
∂2xy �

t � 1� x
x

∂xy , ∂xy∂2t ∂xy � (∂t∂xy)
2
�
.
�

If ς is a zero of p, then SQ (ς) = 0 if and only if ς is a ∂x -constant.
Let U be a universal extension of G. Then, the prime ∆-ideal p in
Q (x , t) fyghas the generic zero γ (x , t) in G � U . Any generalized
meromorphic function η in U with de�ning ∆-ideal p is equivalent to the
incomplete Gamma function.
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De�nition
A family (ηi )i2I of elements of an extension �eld G of F is ∆-algebraically
dependent over F if the family (θηi )i2I is algebraically dependent over F .

De�nition
G/F is pure ∆-transcendental over F if it is generated over F by a
∆-algebraically independent family. G∆ = F∆ (Rosenlicht).

De�nition
9 a family (ηi )i2I of elements of G, called a ∆-transcendence basis, such
that F0 = F



(ηi )i2I

�
is pure ∆-transcendental over F and G is

∆-algebraic over F0. All ∆-transcendence bases have the same cardinality
� the ∆-transcendence degree of G/F .

Phyllis Joan Cassidy City College of CUNY () The Kolchin Topology November 2, 2007 13 / 35



A universal extension �eld U of F is HUGE. Every �nitely ∆-generated
extension �eld of F can be embedded in U . So, 8n, the ∆-polynomial
ring F fy1, . . . , yng can be embedded in U . So, the ∆-transcendence
degree of U over Q is in�nite. Also, its constant �eld K has in�nite
transcendence degree over the �eld of constants of F and is algebraically
closed. It is a universal �eld in the sense of Weil. U is the analogue in
di¤erential algebra of Weil�s universal �elds.
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The Kolchin topology on U n

More precisely, we are de�ning the Kolchin F -topology.
AF := F fy1, . . . , yng. In this section, we will consider only nonempty
subsets S of AF .

De�nition
Let S � AF . V (S) = fη 2 U n j P(η) = 0, 8P 2 Sg.

V (S) = V ([S ]).
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Theorem
1 V (0) = U n; V (1) = ∅.
2 Let (Si )i2I be a family of subsets of AF . Then,

V

 [
i2I
Si

!
= V

 
∑
i2I
[Si ]

!
=
\
i2I
V (Si ).

3 If S and T are subsets of AF , with S � T, then

V (S) � V (T ).

4 If S � AF , then, V (S) = V
p
[S ].

5 If a and b are ∆-ideals of AF , then

V (a\ b) = V (ab) = V (a)[V (b).
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Proof.
The �rst statement follows from the de�nition. The second follows from
the fact that [

S
i2I Si ] = ∑i2I [Si ]. The third statement follows from the

de�nition, and implies that V (S) � V (
p
[S ]). Now, let F 2

p
[S ].

Then, for some positive integer k, F k 2 [S ]. Therefore, F k vanishes on
V (S), whence F vanishes on V (S). Therefore, V (S) � V (

p
[S ]). We

know that ab is a ∆-ideal, and that
p
(a\ b) =

p
a\pb = p(ab)..

Therefore,
V (a\ b) = V (

p
(a\ b)) = V (

p
a \pb)) = V (

p
(ab) =V (ab) by the

fourth statement.
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De�nitions
We say that a subset V � U n is Kolchin closed (or, simply, closed) if there
is a subset S of AF with V = V (S). The Kolchin closed subsets of U n
are the closed sets of a topology called the Kolchin topology. V = V (S)
is also called a ∆-variety.

Notes:

1 The Zariski topology on U n is coarser than the Kolchin topology. For
example, all proper Zariski closed subsets of U are �nite. There are
in�nitely many proper Kolchin closed subsets.

2 If X � U n, X is a topological space in the induced Kolchin topology.
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De�nition
A subspace X of a topological space is reducible if X is the union of two
proper closed subsets. Otherwise X is irreducible.

If X � U n, denote the closure of X by X .
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Lemma
Let X be a topological space.

1 X is irreducible if and only if every nonempty open subset U of X is
dense.

2 X is irreducible if and only if two nonempty open subsets have
nonempty intersection.

3 If Y is an irreducible subset of X , then Y is irreducible.
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Proof.
1. Suppose U is a nonempty open subset of X , and U is not dense.
Then, X1 = U is a proper closed subset of X . Let X2 = X n U. Then,
X2 is a proper closed subset of X . X = X1 [ X2 is reducible. Suppose
X = X1 [ X2 , where X1 and X2 are two proper closed subsets. Then,
U = X1 n (X1 \ X2) 6= ∅. X n U = X2. Therefore, U is open in X , and
is not dense.
2. Suppose X is irreducible. Let U1 and U2 be nonempty open subsets of
X . U1 \U2 is open. Spose U1 \U2 = ∅. Then,
X = X n (U1 \U2) = (X n U1) [ (X n U2). If X n U1 = ∅, X = U1. So,
the intersection cant be empty. Similarly, X nU2 6= ∅. So, U1 \U2 6= ∅.
Suppose X is reducible. X = X1 [ X2, where X1 and X2 are proper closed
subsets. Let U1 = X1 n X2, and U2 = X2 n X1. Then, U1 and U2 are
open in X and U1 \U2 = ∅.
3. Spose Y is reducible. There exist two proper closed subsets Y1, Y2 of
Y such that Y = Y1 [ Y2. Since Y is dense in Y , Y \ Y1 and Y \ Y2
are proper closed subsets of Y , and Y = (Y \ Y1) [ (Y \ Y2).
Therefore, Y is reducible.
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De�nition
Let X � U n. Set I (X ) = fP 2 AF j P (η) = 0 8η 2 Xg. If
X = fηg, I (η) := I (X ).

Theorem
Let X � U n.

1 I (X ) is a radical ∆-ideal.
2 X = V (I (X )).
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Proof.
The �rst statement is obvious. By de�nition, there is a subset S of AF
such that X = V (S). Clearly, S � I (X ). Therefore,
X = V (S) � V (I (X )) � X . Since V (I (X )) is closed, V (I (X )) �
X .

If V is closed, I (V ) is called the de�ning ∆-ideal of V .
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Corollary
Let p be a prime ∆-ideal in AF , and let η be a generic zero for p in U n.
Let X = fηg. Then, X = V (p).

X is called the locus of η.
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Example

Note that for �xed t, γ = γ (x , t) =
R x
0 s

t�1e�sds is analytic in Dx =
right half plane of the x-plane. It is multi-valued on Cn0. For �xed x , it
is analytic on C nZ�0, with simple poles at the non-positive integers. Let

p =:
p �

∂2xy �
t � 1� x

x
∂xy , ∂xy∂2t ∂xy � (∂t∂xy)

2
�

: ∂xy ,

in F = C(t, (ect )c2C (x). Let U be a universal extension of
G =M (Dx �Dt ). Let δ1 = ∂x , δ2 = ∂t ., with generic zero γ (x , t) in
G � U .
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The locus of γ is very interesting.

γ (x , t) =
Z x

0
st�1e�sds.

∂xγ = x t�1e�x .
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Note that ∂xγ 6= 0. So, I call the di¤erential polynomials

L = L (y) = ∂2xy �
t � 1� x

x
∂xy ,

Q = Q(y) = ∂xy∂2t ∂xy � (∂t∂xy)
2 .

the de�ning di¤erential polynomials of γ. V (L) is the vector space over
U ∂x with basis (1,γ).
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L = L (y) = ∂2xy �
t � 1� x

x
∂xy ,

Q = Q(y) = ∂xy∂2t ∂xy � (∂t∂xy)
2 .

Let

ς = c1 + c2γ 2 V (L) . ci 2 U ∂x . ∂x ς = c2∂xγ = c2x t�1e�x .

∂x ς = 0() c2 = 0() ς = c1, ci 2 U ∂x .
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Spose c2 6= 0. Then

Q (ς) = 0, ∂t

�
∂tc2
c2

�
= 0.
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ς = c1 + c2γ 2 V (p)() c2 = 0 or c2 6= 0 and ∂t

�
∂tc2
c2

�
= 0.

The nonzero coe¢ cients c2 satisfying this logarithmic equation form a
subgroup of the multiplicative group G of Gm

�
U ∂x
�
. Thus, although

V (p) is not a subspace over the �eld of constants of ∂x it does have the
superposition principle:

(c1 + c2γ)� (d1 + d2γ) = (c1 + d1) + (c2d2)γ.
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The open subset de�ned by the condition c2 6= 0, is a torsor under a
di¤erential algebraic group relative to the universal ∂x -�eld U ∂x . It is the
group

G = Ga

�
U ∂x
�
oG ,

where Ga
�
U ∂x
�
is the additive group of U ∂x .
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Constrained families.

In this section, we do not assume that ∆-�elds are contained in U .
Every ∆-�eld G has a proper ∆-algebraic extension �eld. Let x be
transcendental over G. On the polynomial ring G [x ] de�ne δx = 0
8δ 2 ∆. G (x) is a proper ∆-algebraic extension �eld of G. A universal
∆-�eld is not ∆-algebraically closed. The property of being ∆-algebraic
over G is replaced by the stronger property of being �constrained over G.�
(Shelah, 1972, Kolchin, 1974)
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De�nition
Let G be a ∆-�eld, and H an extension �eld of G. AG := G fy1, . . . , yng.
η 2 Hn is constrained over G if there exists C 2 AG such that C (η) 6= 0,
and C (ς) = 0 for every non-generic specialization ς of η.

C is called a constraint for η. η is said to be C-constrained over G.
C /2 p = IG (η) and C 2 q for all prime ∆-ideals in AG properly
containing p.
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During the discussion, Jerry Kovacic pointed out that Kolchin had de�ned
constrained families before 1972. Jerry pointed out that Kolchin might
well have gotten the idea from Picard-Vessiot theory. A Picard-Vessiot
extension is generated by a fundamental system of solutions of a
homogeneous linear ordinary di¤erential equation with coe¢ cients in a
base �eld F . This fundamental system has constraint the Wronskian
determinant.
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Kolchin writes in�Constrained Extensions of Di¤erential Fields� (1974)�
that the model theorist Lenore Blum (1968) �proved that every ordinary
di¤erential �eld of characteristic 0 has what she called a �di¤erential
closure�(or prime �di¤erentially closed extension�), that is, a �di¤erentially
closed �extension that can be embedded in every di¤erentially closed
extension.� Kolchin showed in the 1974 paper that what he called the
�constrained closure�of a di¤erential �eld and Blum�s di¤erential closure
were the same, thus providing a concrete realization of di¤erential
closures. He used techniques developed by Shelah in his 1972 paper,
�Uniqueness and characterization of prime models over sets for totally
transcendental �rst order theories.� It is interesting to note that the
concept of constrained family was explored by Emile Picard in t. 3 of his
Traité d�Analyse, (1896), where he credits the idea to Jules Drach.
Picard�s approach to di¤erential Galois theory di¤ered markedly from that
of Vessiot.
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	Affine Differential algebraic geometry in the spirit of Kolchin.

