## Differential Algebraic Geometry, Part I

Phyllis Joan Cassidy

City College of CUNY

Fall 2007

### **Abstract**

- Differential algebraic geometry: A new geometry.
- Founded on: Commutative differential algebra (J. F. Ritt, 1930).
- Differential algebraic varieties: Solution sets of algebraic differential equations.
- Model: Algebraic geometry.
- Geometric points for Ritt: n-tuples of functions meromorphic in a region of  $\mathbb{C}^m$ .
- Aim: Unify and clarify the 19th century theory of algebraic differential equations.
- Ritt's Focus: Algorithms, similar to Buchberger's in Gröbner basis theory – designed to decide ideal membership; simplify differentiation-elimination.

- Differential algebraic group theory: Group objects in this new geometry.
- Galois groups in a generalized differential Galois theory: Fundamental matrices in Picard-Vessiot theory depend on parameters.
- Central in Buium-Pillay-Hrushovski approach to Diophantine problems over function fields.
- Symmetry groups of systems of algebraic differential equations.

- Ellis R. Kolchin: Ritt's geometry with a Weil approach.
- Kolchin topology: Adaptation of the Zariski topology.
- Geometric points: n-tuples with coordinates in a differential field.
- Kolchin axiomatic treatment abstract differential algebraic varieties Emphasis –specializations of generic points.
- Jerry Kovacic's differential schemes: Framework— Grothendieck theory of schemes.

We begin: The Ritt-Kolchin theory of affine differential algebraic geometry. Time permitting: Kovacic's differential schemes.

# Commutative differential algebra

All rings contain the field Q of rational numbers, and are associative, commutative, with unit 1. The 0 ring is the only ring for which 1=0.

### **Definition**

Let  $\Theta$  be the free commutative monoid on the set  $\Delta = \{\delta_1, \ldots, \delta_m\}$  of derivation operators. The elements of the monoid  $\Theta$  are called derivative operators. The derivative operator

$$\theta = \delta_1^{i_1} \dots \delta_m^{i_m}$$

has order  $r = i_1 + \cdots + i_m$ . Denote by  $\Theta(r)$  the set of all  $\theta \in \Theta$  whose order is  $\leq r$ .

### **Definitions**

A ring  $\mathcal{R}$  is a  $\Delta$ -ring if there is a map from  $\Delta$  into the multiplicative monoid End  $(\mathcal{R}, +)$ , with the additional conditions that for  $\delta, \delta' \in \Delta$ ,

$$\delta\delta' = \delta'\delta$$
,

and

$$\delta\left(ab\right) = a\delta b + b\delta a$$
,  $a, b \in \mathcal{R}$ ,  $\delta \in \Delta$ .

### Definition

 $\Delta$ -subrings and extension rings are defined in such a way that the actions of  $\Delta$  are compatible. We refer to a  $\Delta$ -extension ring of a  $\Delta$ -ring  $\mathcal R$  as a  $\Delta$ -R-algebra.

### **Definition**

The set  $\mathcal{R}^{\Delta}$  of  $c \in \mathcal{R}$  with  $\delta c = 0$ ,  $\delta \in \Delta$ , is a  $\Delta$ -subring of  $\mathcal{R}$  called the ring of constants of  $\Delta$ . If  $\mathcal{R}$  is a  $\Delta$ -field,  $\mathcal{R}^{\Delta}$  is a  $\Delta$ -subfield.

The action of  $\Delta$  on a  $\Delta$ -ring  $\mathcal R$  extends uniquely to a homomorphism from  $\Theta$  into the multiplicative monoid End  $(\mathcal R,+)$ . This homomorphism maps  $\Delta$  into Der  $(\mathcal R)$ .

- $\begin{array}{ll} \bullet & 1 \in \mathcal{R}^{\Delta}. \quad \text{For, if } \delta \in \Delta, \\ \delta & (1) = \delta & (1.1) = 1 \cdot \delta & (1) + \delta & (1) \cdot 1 = \delta & (1) + \delta & (1). \quad \text{Thus,} \\ \delta & (1) = 0. \end{array}$
- ② If  $a \in \mathcal{R}$  is invertible, then  $\forall \delta \in \Delta$

$$0 = \delta(1) = \delta(a \cdot a^{-1}) = a\delta(a^{-1}) + \delta(a)a^{-1}.$$

$$\delta(a^{-1}) = -\frac{\delta(a)}{a^2}.$$

$$\delta\left(\frac{b}{a}\right) = \delta\left(b \cdot \frac{1}{a}\right) = b\delta\left(\frac{1}{a}\right) + \delta(b)\frac{1}{a} = -\frac{b\delta(a)}{a^2} + \frac{\delta(b)}{a}$$

So, we have the quotient rule

$$\delta\left(\frac{b}{a}\right) = \frac{a\delta\left(b\right) - b\delta\left(a\right)}{a^2}.$$

If a  $\Delta$ -ring  $\mathcal{R}$  is an integral domain, its  $\Delta$ -ring structure extends uniquely to the quotient field of  $\mathcal{R}$ .

### **Definition**

Let  $z=(z_1,\ldots,z_n)$  be a family of elements of a  $\Delta$ - $\mathcal{R}$ -algebra. The  $\Delta$ - $\mathcal{R}$ -algebra

$$\mathcal{R}\left\{z
ight\} = \mathcal{R}\left[\Theta z
ight] = \underset{\longrightarrow}{\lim} \mathcal{R}\left[\theta z
ight]_{ ext{ord }\theta \leq r.}$$

It is said to be  $\Delta$ -finitely generated by z. If  $z_1, \ldots, z_n$  lie in a  $\Delta$ -extension field of a  $\Delta$ -field  $\mathcal{F}$ , the  $\Delta$ - $\mathcal{F}$ -extension

$$\mathcal{F}\left\langle z
ight
angle =\mathcal{F}\left(\Theta z
ight) = arprojlim \mathcal{F}\left( heta z
ight)_{\mathsf{ord}} _{ heta \leq r}$$
 .

It is said to be  $\Delta$ -finitely generated by z.

## Example

Let 
$$\mathcal{F}=\mathbb{C}\left(x,t
ight)$$
 ,  $\Delta=\left\{\partial_{x},\partial_{t}
ight\}$  . Let 
$$\mathcal{G}=\mathcal{F}\left\langle x^{t-1}\mathrm{e}^{-x}\right\rangle$$
 ,

where we have chosen a  $\Delta$ - extension field of meromorphic functions, containing  $x^{t-1}e^{-x}$ .

$$x^{t-1}e^{-x} = e^{(t-1)\log x - x}$$

$$\begin{array}{lcl} \partial_x \left( x^{t-1} \mathrm{e}^{-x} \right) & = & x^{t-1} \mathrm{e}^{-x} \left( \frac{t-1-x}{x} \right) . \\ \\ \partial_t \left( x^{t-1} \mathrm{e}^{-x} \right) & = & x^{t-1} \mathrm{e}^{-x} \log x . \end{array}$$

$$\mathcal{G} = \mathbb{C} \left( x, t \right) \left( x^{t-1} \mathrm{e}^{-x}, \log x \right) .$$

Let

$$\mathcal{H}=\mathcal{F}\left\langle \gamma
ight
angle$$
 ,  $\gamma=\int_{0}^{x}s^{t-1}e^{-s}ds$  ,

where we have chosen an appropriate  $\Delta$ -extension field of  $\mathcal{F}$ .

$$\partial_x \gamma = x^{t-1} e^{-x}.$$

$$\partial_t \gamma = \int_0^x (\log s) s^{t-1} e^{-s} ds.$$

$$\mathcal{H} = \mathbb{C}(x, t) \left( x^{t-1} e^{-x}, \log x \right) \left( \gamma, \partial_t \gamma, \partial_t^2 \gamma, \ldots \right).$$

The "special function"  $\gamma=\gamma\left(x,t\right)$  is called the *(lower) incomplete gamma function*, and is prominent in statistics and physics. The family  $\left(\gamma,\partial_{t}\gamma,\partial_{t}^{2}\gamma,...\right)$  is algebraically independent over  $\mathcal{G}$  (Hölder 1887 (complete gamma), Johnson, Rubel, Reinhart 1995 incomplete gamma).

# The differential polynomial algebra

#### Theorem

Let  $\mathcal{R}$  be a  $\Delta$ -ring. Let

$$(y_{i\theta})_{1\leq i\leq n,\theta\in\Theta}.$$

be a family of indeterminates over  $\mathcal{R}$ . There is a unique structure of  $\Delta$ -ring on the polynomial ring  $\mathcal{S}=\mathcal{R}\left[(y_{i\theta})_{1\leq i\leq n,\theta\in\Theta}\right]$  extending the  $\Delta$ -ring structure on  $\mathcal{R}$  and satisfying the condition that for every  $\delta\in\Delta$ , and pair  $(i,\theta)$ 

$$\delta y_{i\theta} = y_{i,\delta\theta}$$
.

Note: By definition,  $y_{i,\theta\theta'} = y_{i,\theta'\theta}$ .

### Example

$$\mathcal{R}=\mathbb{Z}\left[x,t\right]$$
,  $\Delta=\left\{\partial_{x}\partial_{t}\right\}$ ,  $n=1$ .  $\mathcal{S}=\mathbb{Z}\left[x,t\right]\left[y,y_{x},y_{t},y_{xx},y_{xt},y_{tt},...\right]$ .  $P=xy^{3}+xt^{2}yy_{x}^{3}y_{t}^{29}$ . Set  $\delta=\partial_{x}$ . Extend  $\delta$  to  $\mathcal{S}$ . Want:

$$\partial_x y = y_x, 
\partial_x y_x = y_{xx}, 
\partial_x y_t = y_{xt}.$$

The proof will be broken up into lemmas.

### Lemma

There is a unique derivation  $\nabla$  on  $\mathcal S$  such that  $\nabla\mid_{\mathcal R}=\delta$ , and

$$\nabla y_{i\theta} = 0$$

for every pair  $(i, \theta)$ .

#### Proof.

Let  $\delta \in \Delta$ . For  $P \in \mathcal{S}$ , let  $P^{\delta}$  be the polynomial obtained by differentiating the coefficients of P.

Let  $\mathfrak{M}$  be the monomial basis of  $\mathcal{S}$ . Let

$$P = \sum_{M \in \mathfrak{M}} a_M M$$
,  $a_M \in \mathcal{R}$ ,  $\forall M \in \mathfrak{M}$ ,  $a_M = 0$ ,  $a \forall M$ .

$$\nabla P = P^{\delta} = \sum_{M \in \mathfrak{M}} (\delta \mathsf{a}_M) M.$$

abla is a derivation on  ${\mathcal S}$  with the desired properties.



### Example

$$\mathcal{R} = \mathbb{Z}\left[x, t\right], \Delta = \left\{\partial_x \partial_t\right\}, n = 1. \quad \mathcal{S} = \mathbb{Z}\left[x, t\right]\left[y, y_x, y_t, y_{xx}, y_{xt}, y_{tt}, ...\right].$$

$$P = xy^3 + xt^2yy_x^3y_t^{29}. \quad \text{Set } \delta = \partial_x$$

 $\nabla P = y^3 + t^2 y y_x^3 y_t^{29}.$ 

### Lemma

There is a unique derivation D on  $\mathcal S$  such that  $D\mid_{\mathcal R}=0$  and

$$Dy_{i\theta}=y_{i,\delta\theta}.$$

### Proof.

Define

$$DP = \sum_{1 \le i \le n, \theta \in \Theta} \frac{\partial P}{\partial y_{i\theta}} y_{i,\delta\theta}$$
$$Dy_{i\theta} = y_{i,\delta\theta}.$$

D is a derivation on  $\mathcal S$  with the desired properties.



### Example

$$\mathcal{R} = \mathbb{Z}[x, t]$$
,  $\Delta = \{\partial_x \partial_t\}$ ,  $n = 1$ .  $\mathcal{S} = \mathbb{Z}[x, t][y, y_x, y_t, y_{xx}, y_{xt}, y_{tt}, ...]$ .  $P = xy^3 + xt^2yy_x^3y_t^{29}$ . Set  $\delta = \partial_x$ 

$$DP = \frac{\partial P}{\partial y} y_{x} + \frac{\partial P}{\partial y_{x}} y_{xx} + \frac{\partial P}{\partial y_{t}} y_{xt}$$

$$= 3xy^{2} y_{x} + xt^{2} y_{x}^{3} y_{t}^{29} + 3xt^{2} yy_{x}^{2} y_{t}^{29} + 29xt^{2} yy_{x}^{3} y_{t}^{28}.$$

#### Lemma

For  $\delta \in \Delta$ , define the extension of  $\delta$  to  $\mathcal{S} = \mathcal{R}\left[(y_{i\theta})_{1 \leq i \leq n, \theta \in \Theta}\right]$  to be the derivation

$$\delta = \nabla + D$$
.

This definition extends the action of  $\Delta$  from the coefficient ring to the polynomial algebra.

### Proof.

By abuse of language, write

$$D = \sum_{1 \leq i \leq n, \theta \in \Theta} \frac{\partial}{\partial y_{i\theta}} y_{i,\delta\theta},$$

lf

$$P = \sum_{M \in \mathfrak{M}} a_M M.$$

$$\delta P = \sum_{M \in \mathfrak{M}} (\delta a_M) M + \sum_{i,\theta} \frac{\partial P}{\partial y_{i\theta}} y_{i,\delta\theta}.$$

Let 
$$\delta' = \nabla + D'$$
, where  $D' = \sum_{M \in \mathfrak{M}} y_{i,\delta'\theta} rac{\partial}{\partial y_{i\theta}}$ .

$$[\delta, \delta']$$
  $|_{R} = 0.$ 

$$\left[\delta,\delta'\right]\left(y_{i\theta}\right)=D(y_{i,\delta'\theta})-D'\left(y_{i,\delta\theta}\right)=y_{i,\delta'\delta\theta}-y_{i,\delta\delta'\theta}=0.\quad \left[\delta,\delta'\right]=0.$$



# Example: The Heat equation

$$\Delta = \{\partial_x, \partial_t\}$$

$$H = \partial_x^2 y - \partial_t y.$$

card  $\Delta = 2$ 

#### Definition

Let  $\mathcal{P}=\mathcal{R}\left\{y\right\}$  be the differential polynomial algebra. Let  $F\in\mathcal{P}$ . If  $F\in\mathcal{R}$ , we say the *order of* F is -1, If  $F\notin\mathcal{R}$ , then the *order of* F is the highest order derivative  $\theta y_{j}$  dividing a monomial of F.

The order of H is 2.

#### Definition

Let  $\mathcal{R}$  be a  $\Delta$ -ring. A family  $z=(z_1,\ldots,z_n)$  of a  $\Delta$ - $\mathcal{R}$ -algebra is  $\Delta$ -algebraically dependent over  $\mathcal{R}$  if the family  $\Theta z$  is algebraically dependent over  $\mathcal{R}$ .

The single element z is called  $\Delta$ -algebraic over  $\mathcal{R}$  if the family whose only element is z is  $\Delta$ -algebraically dependent over  $\mathcal{F}$ .

Let  $\Delta = \{\partial_x, \partial_t\}$ . The incomplete gamma function

$$\gamma = \int_0^x s^{t-1} e^{-s} ds$$

is  $\partial_t$ -algebraically independent ( $\partial_t$ -transcendentally transcendental) over both  $\mathcal{F}=\mathbb{C}(x,t)$  and  $\mathcal{G}=\mathbb{C}\left(x,t,x^{t-1}e^{-x},\log x\right)$ .  $\gamma$  is  $\partial_x$ -algebraic over  $\mathcal{F}$ . It is a solution of the parametric linear homogeneous differential equation

$$\partial_x^2 y - \frac{t - 1 - x}{x} \partial_x y = 0,$$

Defining differential equations of the incomplete gamma function:

$$\partial_x^2 y - \frac{t - 1 - x}{x} \partial_x y = 0,$$
  
$$\partial_x y \partial_t^2 \partial_x y - (\partial_t \partial_x y)^2 = 0.$$

Note that the family  $(x^{t-1}e^{-x}, \log x)$  is algebraically independent over  $\mathcal{F}$ , but each of the elements is  $\Delta$ -algebraically dependent over  $\mathcal{F}$ .

### Differential ideals

What do we mean by "all differential consequences of a system

$$P_i = 0 \quad (i \in I)$$

of differential polynomial equations?" (Drach, Picard)

(a) What do we mean by the defining differential equations of  $\gamma$ ? (Drach, Picard)

Ritt's first answer to the first question: Consider the ideal in the differential polynomial ring generated by the  $P_i$  and all their derivatives.

#### Definition

An ideal  $\alpha$  of a  $\Delta$ -ring  $\mathcal{R}$  is a  $\Delta$ -ideal if it is stable under  $\Delta$ :

$$a \in \mathfrak{a} \Longrightarrow \delta \mathfrak{a} \in \mathfrak{a}, \quad \delta \in \Delta.$$

### Definition

Let  $\mathcal{R}$  be a  $\Delta$ -ring.

- **1**  $\mathfrak{I}(\mathcal{R})$  is the set of all  $\Delta$ -ideals of  $\mathcal{R}$ .
- $\mathfrak{P}(\mathcal{R})$  is the set of all radical  $\Delta$ -ideals of  $\mathcal{R}$ .
- $\mathfrak{P}(\mathcal{R})$  is the set of all prime  $\Delta$ -ideals of  $\mathcal{R}$ .

$$\mathfrak{P}(\mathcal{R})\subset\mathfrak{R}(\mathcal{R})\subset\mathfrak{I}(\mathcal{R})$$

When we put a topology on  $\mathfrak{P}(\mathcal{R})$ , we will call it diffspec  $(\mathcal{R})$ .

### Example

$$\mathcal{R}=\mathbb{Q}[x]$$
,  $\delta=rac{d}{dx}$ . Let  $\mathfrak{p}\in\mathfrak{P}\left(\mathcal{R}
ight)$ ,  $\mathfrak{p}
eq(0)$ .

$$\mathfrak{p} = (P), P$$
 irreducible.

Spose 
$$\frac{dP}{dx} \neq 0$$
.

$$\operatorname{deg} \frac{dP}{dx} < \operatorname{deg} P, \text{ and } P \mid \frac{dP}{dx}.$$

Thus,  $P \in \mathbb{Q} \rightarrow \leftarrow$ . Therefore, diffspec  $\mathbb{Q}[x] = \text{diffspec } \mathbb{Q}(x)$ .

### Some arithmetic of differential ideals

Let  $\mathcal{R}$  be a  $\Delta$ -ring.

#### Lemma

Let  $(\mathfrak{a}_i)_{i\in I}$  be a family of elements of  $\mathfrak{I}(\mathcal{R})$ .

- $\bullet \quad \sum_{i\in I} \mathfrak{a}_i \in \mathfrak{I}(\mathcal{R}).$
- **1** If  $\forall i \ \alpha_i$  is radical, then,  $\bigcap_{i \in I} \alpha_i$  is radical.

### Lemma

Let  $\mathcal{R}$  be a  $\Delta$ -ring, and let  $\mathfrak{a}$  and  $\mathfrak{b}$  be in  $\mathfrak{I}(\mathcal{R})$ .

- $\bullet$   $\mathfrak{ab} \in \mathfrak{I}(\mathcal{R}).$
- $\mathfrak{d} \cap \mathfrak{b} \in \mathfrak{I}(\mathcal{R}), \text{ and } \mathfrak{ab} \subset \mathfrak{a} \cap \mathfrak{b}.$

# Homomorphisms of differential rings

### **Definition**

Let  $\mathcal R$  and  $\mathcal S$  be  $\Delta$ -rings. A homomorphism

$$\varphi:\mathcal{R}\longrightarrow S$$

is a  $\Delta$ -homomorphism if

$$\varphi \circ \delta = \delta \circ \varphi$$
,  $\delta \in \Delta$ .

If  $\mathcal R$  and  $\mathcal S$  are  $\Delta$ - $\mathcal R_0$ -algebras, we call  $\varphi$  a  $\Delta$ - $\mathcal R_0$ -homomorphism if  $\varphi\mid_{\mathcal R_0}=$  id.

### **Definition**

Let  $\mathcal{R}$  and  $\mathcal{S}$  be  $\Delta$ -rings, and let  $\varphi : \mathcal{R} \longrightarrow \mathcal{S}$  be a  $\Delta$ -homomorphism.

are defined by the same formula  $\mathfrak{b} \longmapsto \varphi^{-1}(\mathfrak{b})$ .

Note that  $\ker \varphi \in \mathfrak{I}(\mathcal{R})$ .  $\varphi(\mathcal{R})$  is a  $\Delta$ -subring of  $\mathcal{S}$ .

#### Lemma

Let  $\mathcal{R}$  and  $\mathcal{S}$  be  $\Delta$ -rings, and let  $\varphi : \mathcal{R} \longrightarrow \mathcal{S}$  be a surjective  $\Delta$ -homomorphism.

- **1**  $\ker \varphi \in \mathfrak{P}(\mathcal{R}) \Longleftrightarrow \mathcal{S}$  is an integral domain.
- **2** ker  $\varphi \in \mathfrak{R}(\mathcal{R}) \iff \mathcal{S}$  is reduced (no nonzero nilpotent elements).
- **③**  $^{i}\varphi$  maps  $\Im\left(\mathcal{S}\right)$  bijectively onto the set of  $\Delta$ -ideals of  $\mathcal{R}$  containing  $\ker\varphi$ .
- $r \varphi$  maps  $\Re(S)$  bijectively onto the set of radical  $\Delta$ -ideals of  $\mathcal R$  containing ker  $\varphi$ .
- $^p \varphi$  maps  $\mathfrak{P}(\mathcal{S})$  bijectively onto the set of prime  $\Delta$ -ideals of  $\mathcal{R}$  containing ker  $\varphi$ .

In the last three statements, the maps are inclusion preserving and their inverses send  $\mathfrak{a}$  to  $\varphi(\mathfrak{a})$ .

#### Lemma

Let  $\mathfrak a$  be  $\Delta$ -ideal in a  $\Delta$ -ring  $\mathcal R$ . Then  $\mathcal R/\mathfrak a$  has a unique structure of  $\Delta$ -ring such that the quotient homomorphism  $\pi:\mathcal R\longrightarrow\mathcal S$  is a  $\Delta$ -homomorphism.

### Proof.

For  $\delta \in \Delta$  and  $x \in \mathcal{R}$ , set  $\overline{x} = x + \mathfrak{a}$ , and define  $\delta \overline{x} = \delta x$ . Let  $y \in \mathcal{R}$ . Spose  $\overline{x} = \overline{y}$ .

$$x - y \in \mathfrak{a}.$$

$$\delta(x - y) = \delta x - \delta y \in \mathfrak{a}.$$

$$\delta \overline{x} = \delta \overline{y}.$$

So, the action of  $\Delta$  on  $\mathcal{R}/\mathfrak{a}$  is well-defined. The sum and product rules follow easily.

### Corollary

Let  $\mathfrak{a}$  be  $\Delta$ -ideal in a  $\Delta$ -ring  $\mathcal{R}$ . Let  $\pi$  be the quotient homomorphism.

- ①  ${}^i\pi$  maps  $\Im\left(\mathcal{R}/\mathfrak{a}\right)$  bijectively onto the set of  $\Delta$ -ideals of  $\mathcal R$  containing  $\mathfrak a.$
- $\mathbf{e}^{i}\pi \text{ maps } \mathfrak{R}(\mathcal{R}/\mathfrak{a}) \text{ bijectively onto the set of radical } \Delta\text{-ideals of } \mathcal{R}$ containing  $\mathfrak{a}$ .
- **3**  $\pi$  maps  $\mathfrak{P}(\mathcal{R}/\mathfrak{a})$  bijectively onto the set of prime  $\Delta$ -ideals of  $\mathcal{R}$  containing  $\mathfrak{a}$ .

### Differential ideal bases

### Definition

Let  $\mathcal{R}$  be a  $\Delta$ -ring and  $\mathfrak{a}$  be a  $\Delta$ -ideal of  $\mathcal{R}$ . The  $\Delta$ -ideal  $\mathfrak{a}$  is generated by a subset S if the ideal  $\mathfrak{a}$  is generated by  $\Theta S$ .

We denote it by [S]. Call S a  $(\Delta$ -ideal) basis of  $\mathfrak{a}$ . [S] is the smallest  $\Delta$ -ideal containing S.

**Question** (Drach, Picard): Is every system of differential polynomial equations equivalent to a finite system?

If  $\mathcal R$  is a ring finitely generated over a field, every ideal of  $\mathcal R$  is finitely generated. So, the answer is yes for polynomial equations.

### Example

Let  $\mathcal{R}=\mathcal{F}\left\{y\right\}$ ,  $\mathcal{F}$  a  $\Delta$ -field,  $\Delta=\left\{\delta\right\}$ , y a  $\Delta$ -indeterminate over  $\mathcal{F}$ . Write  $y',y'',\ldots,y^{(i)},\ldots$ 

$$\mathfrak{i} = \left[ yy', y'y'', \dots, y^{(i)}y^{(i+1)}, \dots \right]$$

has no finite  $\Delta$ -ideal basis (Ritt, 1930 Also, see Kovacic-Churchill, Notes KSDA).

### Radicals redux

Let  $\mathcal R$  be a  $\Delta$ -ring. Let  $\mathfrak a$  be a  $\Delta$ -ideal of  $\mathcal R$ . The intersection of the family of radical  $\Delta$ -ideals of  $\mathcal R$  containing  $\mathfrak a$  is a radical  $\Delta$ -ideal.

So, there is a smallest radical  $\Delta$ -ideal of  $\mathcal R$  containing  $\mathfrak a.$ 

The radical  $\sqrt{\mathfrak{a}}$  is the set of  $a \in \mathcal{R}$  such that there is a positive integer n with  $a^n \in \mathfrak{a}$ . It is an ideal of  $\mathcal{R}$ , and is the smallest radical ideal of  $\mathcal{R}$  containing  $\mathfrak{a}$ . Is it a  $\Delta$ -ideal? Conjecture: Yes.

### Example

Let 
$$\mathcal{R} = \mathbb{Z}\left[x\right]$$
,  $\delta = \frac{d}{dx}$ .  
Let  $\mathfrak{a} = (2, x^2)$ .  $\mathfrak{a}$  is a  $\delta$ -ideal of  $\mathcal{R}$ . Let  $\mathcal{S} = \mathcal{R}/\mathfrak{a}$ .  $\overline{x} \in \checkmark[0]$ .  $\delta \overline{x} = 1$   $\notin \checkmark[0]$ .

Is this a counterexample to the conjecture? No. Our  $\Delta$ -rings are Ritt algebras.

#### Theorem

Let  $\mathcal R$  be a  $\Delta$ -ring (Ritt algebra), and let  $\mathfrak a$  be a  $\Delta$ -ideal of  $\mathcal R$ . Then, the radical of  $\mathfrak a$  is a  $\Delta$ -ideal of  $\mathcal R$ .

If  $\mathfrak{a}=[S]$ , call  $\mathfrak{r}=\checkmark\mathfrak{a}$  the radical  $\Delta$ -ideal generated by S. S is also called a (radical  $\Delta$ -ideal) basis for the radical  $\Delta$ -ideal  $\mathfrak{r}$ .

### Proof.

Let  $a \in \mathcal{A}$   $\alpha$ . Let  $n \in \mathbb{Z}_{>0}$  be such that  $a^n \in \alpha$ . Claim: For any  $\delta \in \Delta$ ,  $k = 0, \ldots, n$ ,

$$a^{n-k} (\delta a)^{2k} \in \mathfrak{a}.$$

By hypothesis, the case k=0 is true. Let  $0 \le k \le n-1$ . Assume true for k. Differentiate.

$$(n-k) a^{n-k-1} (\delta a)^{2k+1} + 2ka^{n-k} (\delta a)^{2k-1} (\delta^2 a) \in \mathfrak{a}$$

by the induction hypothesis.

$$\delta a[(n-k) a^{n-k-1} (\delta a)^{2k+1} + 2ka^{n-k} (\delta a)^{2k-1} (\delta^2 a)] \in \mathfrak{a}$$

$$a^{n-k-1} \left(\delta a\right)^{2k+2} \in \mathfrak{a}.$$

by the induction hypothesis, and, since  $\mathcal{R}$  is a Ritt algebra. So, the claim is true for k+1. Set k=n.

### The Ritt basis theorem

#### **Theorem**

Let  $\mathcal{F}$  be a  $\Delta$ -field, and  $\mathcal{R} = \mathcal{F}\{z_1, \ldots, z_n\}$  be a finitely  $\Delta$ -generated  $\Delta$ - $\mathcal{F}$ -algebra. Then, every radical  $\Delta$ -ideal has a finite (radical  $\Delta$ -ideal) basis.

Set  $\mathcal{R}=\mathcal{F}\left\{y_1,\ldots,y_n\right\}$ ,  $y_1,\ldots,y_n$   $\Delta$ -indeterminates. Let  $\Sigma$  be any subset of  $\mathcal{R}$ . The radical  $\Delta$ -ideal  $\mathfrak{r}=\sqrt{[\Sigma]}$  has a finite basis. There is a finite subset  $F_1,\ldots,F_r$  of  $\mathfrak{r}$  such that  $\mathfrak{r}=\sqrt{[F_1,\ldots,F_r]}$ . The radical  $\Delta$ -ideal  $\mathfrak{r}=\sqrt{[\Sigma]}$  is Ritt's final interpretation of "all differential consequences of the system

$$F = 0$$
,  $F \in \Sigma$ ."

The basis theorem is his answer to Drach-Picard: Is every system of differential polynomial equations equivalent to a finite system? The solution space of the system defined by  $\Sigma$  is also defined by

$$F_1 = 0, \ldots, F_r = 0.$$

## Zeros of differential polynomials and ideals

Let  $\mathcal{R}$  be a  $\Delta$ -ring and  $y=(y_1,\ldots,y_n)$  be a family of  $\Delta$ -indeterminates over  $\mathcal{R}$ . Let  $\mathcal{S}=\mathcal{R}\{y\}$ .

$$S_r = \mathcal{R} \left[ \theta y \right]_{\theta \in \Theta(r)}$$
.

Let  $z=(z_1,\ldots,z_n)\in\mathcal{R}^n$ . Then,  $z\leftrightarrow(z,\delta_1z,\ldots,\delta_mz,\ldots,\theta z,\ldots)$ . On each polynomial ring  $\mathcal{S}_r$  we have the substitution homomorphism

$$S_r \longrightarrow \mathcal{R}$$
,  $(\theta y) \longmapsto (\theta z)$ ,  $\theta \in \Theta$ .

This defines a  $\Delta$ - $\mathcal{R}$ -homomorphism  $\sigma_z$  from  $\mathcal{S}$  into  $\mathcal{R}$ , called the  $\Delta$ -substitution homomorphism. For  $P \in \mathcal{S}$ , write P(z) for  $\sigma(P)(z)$ , and call it the value of P at z.  $\ker \sigma_z$  is a  $\Delta$ -ideal of  $\mathcal{S}$ , called the defining  $\Delta$ -ideal of z.

### Example

Let  $\Delta = \{\partial_x, \partial_t\}$ ,  $\mathcal F$  the  $\Delta$ -field of functions meromorphic in  $\mathbb D_x \times \mathbb D_t$ , where  $\mathbb D_x$  is the right half plane of  $\mathbb C$ ,  $\mathbb D_t = \mathbb C \backslash \mathbb Z_{\leq 0}$ . Let  $\gamma = \int_0^x s^{t-1} e^{-s} ds \in \mathcal F$ . The defining  $\Delta$ -ideal of  $\gamma$  in  $\mathcal F \{y\}$  is the prime  $\Delta$ -ideal

$$\mathfrak{p} = \left[ \partial_x^2 y - \frac{t - 1 - x}{x} \partial_x y, \partial_x y \partial_t^2 \partial_x y - (\partial_t \partial_x y)^2 \right].$$

#### Definition

Let  $\mathcal{R}$  be a  $\Delta$ -ring,  $y=(y_1,\ldots,y_n)$  a family of  $\Delta$ -indeterminates over  $\mathcal{R}$ ,  $\mathcal{S}=\mathcal{R}\left\{y\right\}$ . Let  $\Sigma$  be a subset of  $\mathcal{S}$ . The zero set of  $\Sigma$  is the set

$$Z = \{z \in \mathcal{R}^n : P(z) = 0, \quad P \in \Sigma\}$$
.

## Example

Set

$$\Sigma = \left\{ \partial_{x}^{2}y - rac{t-1-x}{x}\partial_{x}y, \partial_{x}y\partial_{t}^{2}\partial_{x}y - (\partial_{t}\partial_{x}y)^{2} 
ight\},$$

 $\mathcal F$  as above. Determine  $Z\subset \mathcal F$ . The zero set of  $L=\partial_x^2y-\frac{t-1-x}{x}\partial_xy$  is

$$egin{array}{lll} V &=& \left\{c_0(t)+c_1(t)\gamma
ight\}, \ \gamma &=& \int_0^x s^{t-1}e^{-s}ds \in \mathcal{F} \end{array}$$

Let

$$z = c_0(t) + c_1(t)\gamma.$$

Then,  $\partial_x z=0$  if and only if  $c_1(t)=0$ . So, spose  $c_1(t)\neq 0$ . Then, z is a zero of the second polynomial

$$\partial_x y \partial_t^2 \partial_x y - (\partial_t \partial_x y)^2$$

if and only if

$$egin{aligned} \partial_t \left( \ell \partial_t \partial_x z 
ight) &= 0, \quad \ell \partial_t \partial_x z = rac{\partial_t \partial_x z}{\partial_x z}. \ \partial_x z &= c_1(t) \partial_x \gamma = c_1(t) x^{t-1} e^{-x}. \ \ell \partial_t \partial_x z &= \ell \partial_t c_1(t) + \ell \partial_t (x^{t-1} e^{-x}) \ &= \ell \partial_t c_1(t) + \log x \ \partial_t \left( \ell \partial_t \partial_x z 
ight) &= \partial_t \ell \partial_t c_1(t). \end{aligned}$$

$$Z = \mathcal{F}^{\partial_x} \cdot 1 \cup (\mathcal{F}^{\partial_x} \cdot 1 + G \cdot \gamma),$$

where G is the subgroup of the multiplicative group of  $\mathcal{F}^{\partial_x}$  satisfying the differential equation

$$\partial_t\left(rac{\partial_t y}{y}
ight)=0.$$
  $G\gamma=k_1e^{k_2t}\int_0^x s^{t-1}e^{-s}ds,\quad k_1,k_2\in\mathbb{C}.$ 

G is a differential algebraic group.