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Abstract

Di¤erential algebraic geometry: A new geometry.

Founded on: Commutative di¤erential algebra (J. F. Ritt, 1930).

Di¤erential algebraic varieties: Solution sets of algebraic di¤erential
equations.

Model: Algebraic geometry.

Geometric points for Ritt: n-tuples of functions meromorphic in a
region of Cm .

Aim: Unify and clarify the 19th century theory of algebraic
di¤erential equations.

Ritt�s Focus: Algorithms, similar to Buchberger�s in Gröbner basis
theory �designed to decide ideal membership; simplify
di¤erentiation-elimination.
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Di¤erential algebraic group theory: Group objects in this new
geometry.

Galois groups in a generalized di¤erential Galois theory: Fundamental
matrices in Picard-Vessiot theory depend on parameters.

Central in Buium-Pillay-Hrushovski approach to Diophantine problems
over function �elds.

Symmetry groups of systems of algebraic di¤erential equations.
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Ellis R. Kolchin: Ritt�s geometry with a Weil approach.

Kolchin topology: Adaptation of the Zariski topology.

Geometric points: n-tuples with coordinates in a di¤erential �eld.

Kolchin axiomatic treatment �abstract di¤erential algebraic varieties
Emphasis �specializations of generic points.

Jerry Kovacic�s di¤erential schemes: Framework�Grothendieck
theory of schemes.

We begin: The Ritt-Kolchin theory of a¢ ne di¤erential algebraic
geometry. Time permitting: Kovacic�s di¤erential schemes.
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Commutative di¤erential algebra

All rings contain the �eld Q of rational numbers, and are associative,
commutative, with unit 1. The 0 ring is the only ring for which 1 = 0.

De�nition
Let Θ be the free commutative monoid on the set ∆ = fδ1, . . . , δmg of
derivation operators. The elements of the monoid Θ are called derivative
operators. The derivative operator

θ = δi11 . . . δimm

has order r = i1 + � � �+ im . Denote by Θ (r) the set of all θ 2 Θ whose
order is � r .
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De�nitions
A ring R is a ∆-ring if there is a map from ∆ into the multiplicative
monoid End (R,+), with the additional conditions that for δ, δ0 2 ∆,

δδ0 = δ0δ,

and
δ (ab) = aδb+ bδa, a, b 2 R, δ 2 ∆.
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De�nition
∆-subrings and extension rings are de�ned in such a way that the actions
of ∆ are compatible. We refer to a ∆-extension ring of a ∆-ring R as a
∆-R-algebra.

De�nition

The set R∆ of c 2 R with δc = 0 , δ 2 ∆, is a ∆-subring of R called the
ring of constants of ∆. If R is a ∆-�eld, R∆ is a ∆-sub�eld.

The action of ∆ on a ∆-ring R extends uniquely to a homomorphism from
Θ into the multiplicative monoid End (R,+). This homomorphism maps
∆ into Der (R).
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1 1 2 R∆. For, if δ 2 ∆,
δ (1) = δ (1.1) = 1 � δ (1) + δ (1) � 1 = δ (1) + δ (1). Thus,
δ(1) = 0.

2 If a 2 R is invertible, then 8δ 2 ∆

0 = δ (1) = δ
�
a � a�1

�
= aδ

�
a�1

�
+ δ (a) a�1.

δ
�
a�1

�
= �δ (a)

a2
.

δ

�
b
a

�
= δ

�
b � 1
a

�
= bδ

�
1
a

�
+ δ (b)

1
a
= �bδ (a)

a2
+

δ (b)
a

So, we have the quotient rule

δ

�
b
a

�
=
aδ (b)� bδ (a)

a2
.

If a ∆-ring R is an integral domain, its ∆-ring structure extends
uniquely to the quotient �eld of R.
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De�nition
Let z = (z1, . . . , zn) be a family of elements of a ∆-R-algebra. The
∆-R-algebra

Rfzg = R [Θz ] = lim
�!
R [θz ]ord θ�r .

It is said to be ∆-�nitely generated by z . If z1, . . . , zn lie in a ∆-extension
�eld of a ∆-�eld F , the ∆-F -extension

F hzi = F (Θz) = lim
�!
F (θz)ord θ�r .

It is said to be ∆-�nitely generated by z .
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Example

Let F =C (x , t) , ∆ = f∂x , ∂tg . Let

G = F


x t�1e�x

�
,

where we have chosen a ∆- extension �eld of meromorphic functions,
containing x t�1e�x .

x t�1e�x = e(t�1) log x�x

∂x
�
x t�1e�x

�
= x t�1e�x

�
t � 1� x

x

�
.

∂t
�
x t�1e�x

�
= x t�1e�x log x .

G =C (x , t)
�
x t�1e�x , log x

�
.
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Let
H = F hγi , γ =

Z x

0
st�1e�sds,

where we have chosen an appropriate ∆-extension �eld of F .

∂xγ = x t�1e�x .

∂tγ =
Z x

0
(log s)st�1e�sds.

H =C (x , t)
�
x t�1e�x , log x

� �
γ, ∂tγ, ∂

2
tγ, ...

�
.

The �special function" γ = γ (x , t) is called the (lower) incomplete
gamma function, and is prominent in statistics and physics. The family�
γ, ∂tγ, ∂

2
tγ, ...

�
is algebraically independent over G (Hölder 1887

(complete gamma), Johnson, Rubel, Reinhart 1995 incomplete gamma).
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The di¤erential polynomial algebra

Theorem
Let R be a ∆-ring. Let

(yiθ)1�i�n,θ2Θ.

be a family of indeterminates over R. There is a unique structure of
∆-ring on the polynomial ring S = R [(yiθ)1�i�n,θ2Θ] extending the
∆-ring structure on R and satisfying the condition that for every δ 2 ∆,
and pair (i , θ)

δyiθ = yi ,δθ.

Note: By de�nition, yi ,θθ0 = yi ,θ0θ.
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Example

R = Z [x , t] ,∆ = f∂x∂tg , n = 1. S = Z [x , t] [y , yx , yt , yxx , yxt , ytt , ...] .
P = xy3 + xt2yy3x y

29
t . Set δ = ∂x . Extend δ to S .

Want:

∂xy = yx ,

∂xyx = yxx ,

∂xyt = yxt .

The proof will be broken up into lemmas.
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Lemma
There is a unique derivation r on S such that r jR= δ, and

ryiθ = 0

for every pair (i , θ).
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Proof.

Let δ 2 ∆. For P 2 S , let Pδ be the polynomial obtained by
di¤erentiating the coe¢ cients of P.
Let M be the monomial basis of S . Let

P = ∑
M2M

aMM, aM 2 R, 8M 2M, aM = 0, a8M.

rP = Pδ = ∑
M2M

(δaM )M.

r is a derivation on S with the desired properties.
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Example

R = Z [x , t] ,∆ = f∂x∂tg , n = 1. S = Z [x , t] [y , yx , yt , yxx , yxt , ytt , ...] .
P = xy3 + xt2yy3x y

29
t . Set δ = ∂x

rP = y3 + t2yy3x y29t .
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Lemma
There is a unique derivation D on S such that D jR= 0 and

Dyiθ = yi ,δθ.
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Proof.
De�ne

DP = ∑
1�i�n,θ2Θ

∂P
∂yiθ

yi ,δθ

Dyiθ = yi ,δθ.

D is a derivation on S with the desired properties.
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Example

R = Z [x , t] ,∆ = f∂x∂tg , n = 1. S = Z [x , t] [y , yx , yt , yxx , yxt , ytt , ...] .
P = xy3 + xt2yy3x y

29
t . Set δ = ∂x

DP =
∂P
∂y
yx +

∂P
∂yx

yxx +
∂P
∂yt
yxt

= 3xy2yx + xt2y3x y
29
t + 3xt2yy2x y

29
t + 29xt2yy3x y

28
t .
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Lemma

For δ 2 ∆, de�ne the extension of δ to S = R
�
(yiθ)1�i�n,θ2Θ

�
to be the

derivation
δ = r+D.

This de�nition extends the action of ∆ from the coe¢ cient ring to the
polynomial algebra.

Phyllis Joan Cassidy (Institute) Di¤erential Algebraic Geometry, Part I Fall 2007 20 / 46



Proof.
By abuse of language, write

D = ∑
1�i�n,θ2Θ

∂

∂yiθ
yi ,δθ,

If
P = ∑

M2M
aMM.

δP = ∑
M2M

(δaM )M +∑
i ,θ

∂P
∂yiθ

yi ,δθ.

Let δ0 = r+D 0, where D 0 = ∑M2M yi ,δ0θ
∂

∂yiθ
.�

δ, δ0
�
jR= 0.�

δ, δ0
�
(yiθ) = D(yi ,δ0θ)�D 0 (yi ,δθ) = yi ,δ0δθ � yi ,δδ0θ = 0.

�
δ, δ0

�
= 0.
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Example: The Heat equation

∆ = f∂x , ∂tg
H = ∂2xy � ∂ty .

card ∆ = 2

De�nition
Let P = Rfyg be the di¤erential polynomial algebra. Let F 2 P . If
F 2 R, we say the order of F is �1, If F /2 R, then the order of F is the
highest order derivative θyj dividing a monomial of F .

The order of H is 2.
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De�nition
Let R be a ∆-ring. A family z = (z1, . . . , zn) of a ∆-R-algebra is
∆-algebraically dependent over R if the family Θz is algebraically
dependent over R.

The single element z is called ∆-algebraic over R if the family whose only
element is z is ∆-algebraically dependent over F .
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Let ∆ = f∂x , ∂tg. The incomplete gamma function

γ =
Z x

0
st�1e�sds

is ∂t -algebraically independent (∂t -transcendentally transcendental) over
both F = C(x , t) and G = C

�
x , t, x t�1e�x , log x

�
.

γ is ∂x -algebraic over F . It is a solution of the parametric linear
homogeneous di¤erential equation

∂2xy �
t � 1� x

x
∂xy = 0,
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De�ning di¤erential equations of the incomplete gamma function:

∂2xy �
t � 1� x

x
∂xy = 0,

∂xy∂2t ∂xy � (∂t∂xy)
2 = 0.

Note that the family (x t�1e�x , log x) is algebraically independent over F ,
but each of the elements is ∆-algebraically dependent over F .
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Di¤erential ideals

1 What do we mean by �all di¤erential consequences of a system

Pi = 0 (i 2 I )

of di¤erential polynomial equations?" (Drach, Picard)
2 What do we mean by the de�ning di¤erential equations of γ? (Drach,
Picard)

Ritt�s �rst answer to the �rst question: Consider the ideal in the
di¤erential polynomial ring generated by the Pi and all their derivatives.

De�nition
An ideal a of a ∆-ring R is a ∆-ideal if it is stable under ∆:

a 2 a =) δa 2 a, δ 2 ∆.
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De�nition
Let R be a ∆-ring.

1 I(R) is the set of all ∆-ideals of R.
2 R(R) is the set of all radical ∆-ideals of R.
3 P(R) is the set of all prime ∆-ideals of R.

P(R) � R(R) � I(R)
When we put a topology on P (R), we will call it di¤spec (R).
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Example

R = Q[x ], δ = d
dx . Let p 2 P (R), p 6= (0).

p = (P),P irreducible.

Spose dP
dx 6= 0.

deg
dP
dx
< degP, and P j dP

dx
.

Thus, P 2 Q ��. Therefore, di¤spec Q [x ] = di¤spec Q (x).
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Some arithmetic of di¤erential ideals

Let R be a ∆-ring.

Lemma
Let (ai )i2I be a family of elements of I(R).

1 ∑i2I ai 2 I(R).
2
T
i2I ai 2 I (R).

3 If 8i ai is radical, then,
T
i2I ai is radical.
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Lemma
Let R be a ∆-ring, and let a and b be in I (R).

1 ab 2 I (R).
2 a\ b 2 I (R), and ab � a\ b.
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Homomorphisms of di¤erential rings

De�nition
Let R and S be ∆-rings. A homomorphism

ϕ : R �! S

is a ∆-homomorphism if

ϕ � δ = δ � φ, δ 2 ∆.

If R and S are ∆-R0-algebras, we call ϕ a ∆-R0-homomorphism if
ϕ jR0= id.
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De�nition
Let R and S be ∆-rings, and let ϕ : R �! S be a ∆-homomorphism.

1 i ϕ : I (S) �! I (R),
2 r ϕ : R (S) �! R (R),
3 pϕ : P (S) �! P (R)

are de�ned by the same formula b 7�! ϕ�1(b).

Note that ker ϕ 2 I (R). ϕ (R) is a ∆-subring of S .
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Lemma
Let R and S be ∆-rings, and let ϕ : R �! S be a surjective
∆-homomorphism.

1 ker ϕ 2 P (R)() S is an integral domain.
2 ker ϕ 2 R (R)() S is reduced (no nonzero nilpotent elements).
3 i ϕ maps I (S) bijectively onto the set of ∆-ideals of R containing
ker ϕ.

4 r ϕ maps R (S) bijectively onto the set of radical ∆-ideals of R
containing ker ϕ.

5 pϕ maps P (S) bijectively onto the set of prime ∆-ideals of R
containing ker ϕ.

In the last three statements, the maps are inclusion preserving and their
inverses send a to ϕ (a).
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Lemma
Let a be ∆-ideal in a ∆-ring R. Then R/a has a unique structure of
∆-ring such that the quotient homomorphism π : R �! S is a
∆-homomorphism.

Proof.

For δ 2 ∆ and x 2 R, set x = x + a, and de�ne δx = δx . Let y 2 R.
Spose x = y .

x � y 2 a.

δ (x � y) = δx � δy 2 a.
δx = δy .

So, the action of ∆ on R/a is well-de�ned. The sum and product rules
follow easily.
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Corollary
Let a be ∆-ideal in a ∆-ring R. Let π be the quotient homomorphism.

1 iπ maps I (R/a) bijectively onto the set of ∆-ideals of R containing
a.

2 iπ maps R (R/a) bijectively onto the set of radical ∆-ideals of R
containing a.

3 iπ maps P (R/a) bijectively onto the set of prime ∆-ideals of R
containing a.
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Di¤erential ideal bases

De�nition
Let R be a ∆-ring and a be a ∆-ideal of R. The ∆-ideal a is generated
by a subset S if the ideal a is generated by ΘS .

We denote it by [S ]. Call S a (∆-ideal) basis of a. [S ] is the smallest
∆-ideal containing S .
Question (Drach, Picard): Is every system of di¤erential polynomial
equations equivalent to a �nite system?
If R is a ring �nitely generated over a �eld, every ideal of R is �nitely
generated. So, the answer is yes for polynomial equations.

Phyllis Joan Cassidy (Institute) Di¤erential Algebraic Geometry, Part I Fall 2007 36 / 46



Example
Let R = F fyg ,F a ∆-�eld, ∆ = fδg, y a ∆-indeterminate over F .
Write y 0, y 00, . . . , y (i ), ....

i =
h
yy 0, y 0y 00, . . . , y (i )y (i+1), . . .

i
has no �nite ∆-ideal basis (Ritt, 1930 Also, see Kovacic-Churchill, Notes
KSDA).
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Radicals redux

Let R be a ∆-ring. Let a be a ∆-ideal of R.The intersection of the family
of radical ∆-ideals of R containing a is a radical ∆-ideal.
So, there is a smallest radical ∆-ideal of R containing a.
The radical Xa is the set of a 2 R such that there is a positive integer n
with an 2 a. It is an ideal of R, and is the smallest radical ideal of R
containing a. Is it a ∆-ideal? Conjecture: Yes.

Example

Let R = Z [x ] , δ = d
dx .

Let a = (2, x2). a is a δ-ideal of R. Let S = R/a. x 2 X[0]. δx = 1
/2 X [0].

Is this a counterexample to the conjecture? No. Our ∆-rings are Ritt
algebras.
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Theorem
Let R be a ∆-ring (Ritt algebra), and let a be a ∆-ideal of R. Then, the
radical of a is a ∆-ideal of R.

If a = [S ], call r = Xa the radical ∆-ideal generated by S . S is also called
a (radical ∆-ideal) basis for the radical ∆-ideal r.
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Proof.
Let a 2 Xa. Let n 2 Z>0 be such that an 2 a. Claim: For any δ 2 ∆,
k = 0, . . . , n,

an�k (δa)2k 2 a.
By hypothesis, the case k = 0 is true. Let 0 � k � n� 1. Assume true
for k. Di¤erentiate.

(n� k) an�k�1 (δa)2k+1 + 2kan�k (δa)2k�1
�
δ2a
�
2 a

by the induction hypothesis.

δa[(n� k) an�k�1 (δa)2k+1 + 2kan�k (δa)2k�1
�
δ2a
�
] 2 a

an�k�1 (δa)2k+2 2 a.
by the induction hypothesis, and, since R is a Ritt algebra. So, the claim
is true for k + 1. Set k = n.
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The Ritt basis theorem

Theorem
Let F be a ∆-�eld, and R = F fz1, . . . , zng be a �nitely ∆-generated
∆-F -algebra. Then, every radical ∆-ideal has a �nite (radical ∆-ideal)
basis.

Set R = F fy1, . . . , yng , y1, . . . , yn ∆-indeterminates. Let Σ be any
subset of R. The radical ∆-ideal r = X [Σ] has a �nite basis. There is a
�nite subset F1, . . . ,Fr of r such that r = X [F1, . . . ,Fr ]. The radical
∆-ideal r = X [Σ] is Ritt�s �nal interpretation of �all di¤erential
consequences of the system

F = 0, F 2 Σ."

The basis theorem is his answer to Drach-Picard: Is every system of
di¤erential polynomial equations equivalent to a �nite system?
The solution space of the system de�ned by Σ is also de�ned by

F1 = 0. . . . ,Fr = 0.
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Zeros of di¤erential polynomials and ideals

Let R be a ∆-ring and y = (y1, . . . , yn) be a family of ∆-indeterminates
over R. Let S = Rfyg.

Sr = R [θy ]θ2Θ(r ) .

Let z = (z1, . . . , zn) 2 Rn. Then, z $ (z , δ1z , . . . , δmz , . . . , θz , ...). On
each polynomial ring Sr we have the substitution homomorphism

Sr �! R, (θy) 7�! (θz) , θ 2 Θ.

This de�nes a ∆-R-homomorphism σz from S into R, called the
∆ -substitution homomorphism. For P 2 S , write P(z) for σ (P) (z), and
call it the value of P at z . ker σz is a ∆-ideal of S , called the de�ning
∆-ideal of z .
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Example
Let ∆ = f∂x , ∂tg , F the ∆-�eld of functions meromorphic in Dx �Dt ,
where Dx is the right half plane of C, Dt = CnZ�0. Let
γ =

R x
0 s

t�1e�sds 2 F . The de�ning ∆-ideal of γ in F fyg is the prime
∆-ideal

p =

�
∂2xy �

t � 1� x
x

∂xy , ∂xy∂2t ∂xy � (∂t∂xy)
2
�
.

De�nition
Let R be a ∆-ring, y = (y1, . . . , yn) a family of ∆-indeterminates over R,
S = Rfyg. Let Σ be a subset of S . The zero set of Σ is the set

Z = fz 2 Rn : P(z) = 0, P 2 Σg .
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Example

Set

Σ =
�

∂2xy �
t � 1� x

x
∂xy , ∂xy∂2t ∂xy � (∂t∂xy)

2
�
,

F as above. . Determine Z � F . The zero set of L = ∂2xy � t�1�x
x ∂xy

is

V = fc0(t) + c1(t)γg ,

γ =
Z x

0
st�1e�sds 2 F
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Let
z = c0(t) + c1(t)γ.

Then, ∂x z = 0 if and only if c1(t) = 0. So, spose c1 (t) 6= 0. Then, z is
a zero of the second polynomial

∂xy∂2t ∂xy � (∂t∂xy)
2

if and only if

∂t (`∂t∂x z) = 0, `∂t∂x z =
∂t∂x z
∂x z

.

∂x z = c1(t)∂xγ = c1(t)x t�1e�x .

`∂t∂x z = `∂tc1 (t) + `∂t (x t�1e�x )

= `∂tc1 (t) + log x

∂t (`∂t∂x z) = ∂t`∂tc1 (t) .
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Z = F ∂x � 1[ (F ∂x � 1+ G � γ),

where G is the subgroup of the multiplicative group of F ∂x satisfying the
di¤erential equation

∂t

�
∂ty
y

�
= 0.

Gγ = k1ek2t
Z x

0
st�1e�sds, k1, k2 2 C.

G is a di¤erential algebraic group.
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