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Abstract

o Differential algebraic geometry: A new geometry.
e Founded on: Commutative differential algebra (J. F. Ritt, 1930).

o Differential algebraic varieties: Solution sets of algebraic differential
equations.

@ Model: Algebraic geometry.

e Geometric points for Ritt: n-tuples of functions meromorphic in a
region of C™.

@ Aim: Unify and clarify the 19th century theory of algebraic
differential equations.

@ Ritt's Focus: Algorithms, similar to Buchberger's in Grobner basis

theory — designed to decide ideal membership; simplify
differentiation-elimination.
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o Differential algebraic group theory: Group objects in this new
geometry.
o Galois groups in a generalized differential Galois theory: Fundamental

matrices in Picard-Vessiot theory depend on parameters.

o Central in Buium-Pillay-Hrushovski approach to Diophantine problems
over function fields.

Symmetry groups of systems of algebraic differential equations.
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Ellis R. Kolchin: Ritt's geometry with a Weil approach.
Kolchin topology: Adaptation of the Zariski topology.

Geometric points: n-tuples with coordinates in a differential field.

Kolchin axiomatic treatment — abstract differential algebraic varieties
Emphasis —specializations of generic points.

o Jerry Kovacic's differential schemes: Framework— Grothendieck
theory of schemes.

We begin: The Ritt-Kolchin theory of affine differential algebraic
geometry. Time permitting: Kovacic's differential schemes.
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Commutative differential algebra

All rings contain the field Q of rational numbers, and are associative,
commutative, with unit 1. The 0 ring is the only ring for which 1 = 0.

Definition

Let © be the free commutative monoid on the set A = {41,...,0m} of
derivation operators. The elements of the monoid ® are called derivative
operators. The derivative operator

6 =00

has order r = iy + - - - + i,. Denote by © (r) the set of all # € ® whose
order is < r.
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Definitions
A ring R is a A-ring if there is a map from A into the multiplicative
monoid End (R, +), with the additional conditions that for 4,6" € A,

58" = 48'6,

and

0 (ab) = adb+ bda, a,beR, €A
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Definition

A-subrings and extension rings are defined in such a way that the actions
of A are compatible. We refer to a A-extension ring of a A-ring R as a
A-R-algebra.

| A

Definition
The set R® of c € R with dc =0, 6 € A, is a A-subring of R called the
ring of constants of A. If R is a A-field, R? is a A-subfield.

v

The action of A on a A-ring R extends uniquely to a homomorphism from
® into the multiplicative monoid End (R, +). This homomorphism maps
A into Der (R).

Phyllis Joan Cassidy (Institute) Differential Algebraic Geometry, Part | Fall 2007 7/ 46



Q@ 1€ RA For ifé6 €A,
0(1)=6(11)=1-0(1)+0(1)-1=6(1)+6(1). Thus,
5(1) =0.

Q If a € R is invertible, then Vé € A

0 = 06(1)=6(a-at)=as(a')+6(a)a .

s = 22
) = o)l oot e

So, we have the quotient rule

5<b> aé(b)—bé(a).

22

If a A-ring R is an integral domain, its A-ring structure extends
uniquely to the quotient field of R.
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Definition

Let z = (z1,...,2,) be a family of elements of a A-R-algebra. The
A-R-algebra
R {Z} =R [®Z] = limR [Gz]ord 0<r.

It is said to be A-finitely generated by z. If z, ..., z, lie in a A-extension
field of a A-field F, the A-F-extension

'7:<Z> :f<®2) = “_)mf(ez)ord 0<r -

It is said to be A-finitely generated by z.
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Let F =C (x,t), A ={0,0+}. Let
G=F(x"te™),

where we have chosen a A- extension field of meromorphic functions,
containing xf~le™*.

t—1 _—x

sile=x — e(t—l)logx—x

Ox (x"Te™) = x'Tle™* <t —i- X) .

X

0t (xtflefx) = x'le *logx.
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Let
H=F(y), v= /
where we have chosen an appropriate A-extension field of F.

Oy = xt e,

at'y:/ (logs)st~te 5ds.
0

H =C (x,t) (x'" e ™, log x) (7,097,077, ...) .

The “special function" v =  (x, t) is called the (lower) incomplete
gamma function, and is prominent in statistics and physics. The family
('y, 0+, afy, ) is algebraically independent over G (Holder 1887
(complete gamma), Johnson, Rubel, Reinhart 1995 incomplete gamma).
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The differential polynomial algebra

Theorem
Let R be a A-ring. Let
(Yie)1<i<n,oco-

be a family of indeterminates over R. There is a unique structure of
A-ring on the polynomial ring S = R [(yis)1<i<neco| extending the
A-ring structure on R and satisfying the condition that for every § € A,
and pair (i,0)

OYio = Yis6-

Note: By definition, y; g0 = ¥; g
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Example

R=Z[x,t], A={0x0:} , n=1. S=2ZI[x t][y,¥x, Yt: Yoxs Yxts Ytts -] -
P = xy3 + xt?yy2y?°. Set § =9,. Extend §to S.

Want:
axy = Yx
ax}’x = Yxx»
ax)’t =  Yxt-

The proof will be broken up into lemmas.

Phyllis Joan Cassidy (Institute) Differential Algebraic Geometry, Part | Fall 2007 13/



There is a unique derivation V on S such that V |g= 5, and

Vyisg =0

for every pair (i,0).
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Proof.

Let 5 € A. For P € S, let P° be the polynomial obtained by
differentiating the coefficients of P.
Let 9t be the monomial basis of S. Let

P:ZaMI\/I, ay €ER, YMeM, ay=0avVM.

MeM
Mem
V is a derivation on S with the desired properties. []
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R=Z[x,t], A={0x0:} , n=1. S=2ZI[x t][y,¥x, Yt: Yoxs Yxts Ytts -] -
P = xy3 + xt?yy2y?°. Set § = 9,
VP =y + Pyylyi®.
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There is a unique derivation D on S such that D |g= 0 and

Dyio = yi s6-
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Define
JoP
DP = Y 5y i
1<i<ngec@ 9Yio
Dyios = yize.
D is a derivation on S with the desired properties. []
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Example

R=Z[x,t], A={0x0:} , n=1. S =2ZI[x t][y,¥x, Yt: Yox: Yxts Yets -] -
P = xy3 + xt?yy3y?9. Set § = 9y

P oP P
DP = — X S Yxx 5 Yx
oy " oy Ty

2 2 2 2 2.2 2 2
= 3xy2y + xt2y2yE0 + 3xtyy 2y + 20xt?yy 2.
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Lemma

For & € A, define the extension of § to S = R [(Vig)1<j<pgeco) to be the
derivation o

6=V +D.

This definition extends the action of A from the coefficient ring to the
polynomial algebra.
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Proof.

By abuse of language, write

0
D= 2 af)’i,&(%
1<i<n,0c® V10

P = Z aMI\/l.
MeMm

oP
P = Z (53/\/])/\/’—{-287)/,"(59.
Mem ig 9Yie

Let 6’ = V + D', where D' = ¥ pjcon yi,é/Ga)%'

[6.6] |r=0.

6,6"] (vie) = D(y;56) — D' (viso) = ¥i 550 — Yisso = 0. [6.6'] =0.

Phyllis Joan Cassidy (Institute) Differential Algebraic Geometry, Part | Fall 2007

21/ 46



Example: The Heat equation

A == {ax,at}
H =02y —d.y.

card A =2

Definition

Let P = R {y} be the differential polynomial algebra. Let F € P. If
F € R, we say the order of F is —1, If F ¢ R, then the order of F is the
highest order derivative 0y; dividing a monomial of F.

The order of H is 2.

Phyllis Joan Cassidy (Institute) Differential Algebraic Geometry, Part | Fall 2007 22 / 46



Definition

Let R be a A-ring. A family z = (z1,...,z,) of a A-R-algebra is
A-algebraically dependent over R if the family @z is algebraically
dependent over R.

The single element z is called A-algebraic over R if the family whose only
element is z is A-algebraically dependent over F.
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Let A = {04, 0:}. The incomplete gamma function
X
v = / sl Sds
0

is d;-algebraically independent (9¢-transcendentally transcendental) over
both F = C(x,t) and G =C (x, t,xt7le™x, Iogx).

7 is dx-algebraic over F. It is a solution of the parametric linear
homogeneous differential equation

W~ ———0xy =0,
X
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Defining differential equations of the incomplete gamma function:

t—1—
ai}/—fxax}/ = 0

dxyd2dxy — (3:0xy)° = 0.

Note that the family (x~1e™, log x) is algebraically independent over JF,
but each of the elements is A-algebraically dependent over F.
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Differential ideals

@ What do we mean by “all differential consequences of a system
Pi=0 (i€l

of differential polynomial equations?" (Drach, Picard)
@ What do we mean by the defining differential equations of 4?7 (Drach,
Picard)

Ritt’s first answer to the first question: Consider the ideal in the
differential polynomial ring generated by the P; and all their derivatives.

Definition
An ideal a of a A-ring R is a A-ideal if it is stable under A:

aca—daca O€A.
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Definition
Let R be a A-ring.
@ J(R) is the set of all A-ideals of R.

QR
o3P

R) is the set of all radical A-ideals of R.
R) is the set of all prime A-ideals of R.

—~

B(R) CR(R) CI(R)

When we put a topology on B (R), we will call it diffspec (R).

Fall 2007
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Example
R=Q[x, 0=4. Letpe P(R) p#(0).
p = (P), P irreducible.

Spose z—f # 0.

P =
degd— < deg P, and P | d—
dx dx

Thus, P € Q — «=. Therefore, diffspec Q [x] = diffspec Q (x).
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Some arithmetic of differential ideals

Let R be a A-ring.

Let (a;);c; be a family of elements of 3(R).

Q Yic/ai € I(R).
(2 ) ﬂiél a; € j(R)
@ IfVi a; is radical, then, ;¢ a; is radical.
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Let R be a A-ring, and let a and b be in T (R).

Q@ abcJT(R).
Q@ anbeJ(R), andab C anb.
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Homomorphisms of differential rings

Definition
Let R and S be A-rings. A homomorphism

p:R—S
is a A-homomorphism if
pod=00¢, J€EA.

If R and S are A-Rp-algebras, we call ¢ a A-Ro-homomorphism if
() ‘ROZ id.
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Definition
Let R and S be A-rings, and let ¢ : R — S be a A-homomorphism.

Q@ 'p:3(S) —I(R),
Q@ "¢:R(S) — R(R),
Q P9 :P(S) — B(R)

are defined by the same formula b — ¢~1(b).

Note that ker ¢ € J(R). ¢ (R) is a A-subring of S.

Phyllis Joan Cassidy (Institute) Differential Algebraic Geometry, Part | Fall 2007 32 / 46



Lemma

Let R and S be A-rings, and let ¢ : R — S be a surjective
A-homomorphism.

Q kerp € P(R) <= S is an integral domain.

@ kerg € R (R) <= S is reduced (no nonzero nilpotent elements).

© '@ maps J (S) bijectively onto the set of A-ideals of R containing
ker ¢.

Q "¢ maps R (S) bijectively onto the set of radical A-ideals of R
containing ker @.

Q@ P¢ maps P (S) bijectively onto the set of prime A-ideals of R
containing ker ¢.

In the last three statements, the maps are inclusion preserving and their
inverses send a to ¢ (a).

Phyllis Joan Cassidy (Institute) Differential Algebraic Geometry, Part | Fall 2007 33 / 46



Lemma

Let a be A-ideal in a A-ring R. Then R /a has a unique structure of
A-ring such that the quotient homomorphism 7w: R — S is a
A-homomorphism.

Proof.

For 6 € A and x € R, set X = x + a, and define 6x = éx. Let y € R.
Spose X =Y.

| A\

X—y € a
d(x—y) = ox—Jdye€a.
ox = Jdy.

So, the action of A on R/a is well-defined. The sum and product rules
follow easily. O

v
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Corollary

Let a be A-ideal in a A-ring R. Let 7t be the quotient homomorphism.
© 7t maps J(R/a) bijectively onto the set of A-ideals of R containing
a.

Q 71 maps R (R /a) bijectively onto the set of radical A-ideals of R
containing a.

© 7t maps P (R /a) bijectively onto the set of prime A-ideals of R
containing a.
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Differential ideal bases

Definition

Let R be a A-ring and a be a A-ideal of R. The A-ideal a is generated
by a subset S if the ideal a is generated by ®S.

We denote it by [S]. Call S a (A-ideal) basis of a. [S] is the smallest
A-ideal containing S.

Question (Drach, Picard): Is every system of differential polynomial
equations equivalent to a finite system?

If R is a ring finitely generated over a field, every ideal of R is finitely
generated. So, the answer is yes for polynomial equations.
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Example

Let R = F{y},F a A-field, A = {4}, y a A-indeterminate over F.
Write v/, y" ... ,y(i),

i = [yy/,y/y//, o ’y(i)y(i—i-l), 3 }

has no finite A-ideal basis (Ritt, 1930 Also, see Kovacic-Churchill, Notes
KSDA).
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Radicals redux

Let R be a A-ring. Let a be a A-ideal of R.The intersection of the family
of radical A-ideals of R containing a is a radical A-ideal.

So, there is a smallest radical A-ideal of R containing a.

The radical v'a is the set of a € R such that there is a positive integer n
with a” € a. It is an ideal of ‘R, and is the smallest radical ideal of R
containing a. Is it a A-ideal? Conjecture: Yes.

Lt R=2Z[x],0=2.
Let a = (2,x2). aisa d-ideal of R. Let S=R/a. x€V[0]. dx=1
¢ v [0].

Is this a counterexample to the conjecture? No. Our A-rings are Ritt
algebras.
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Let R be a A-ring (Ritt algebra), and let a be a A-ideal of R. Then, the
radical of a is a A-ideal of R.

If a =[S], call v = V'a the radical A-ideal generated by S. S is also called
a (radical A-ideal) basis for the radical A-ideal t.
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Proof.
Let a € via. Let n € Z-g be such that 3" € a. Claim: For any é € A,

a"k (6a)* € a.

By hypothesis, the case k = 0 is true. Let 0 < k < n—1. Assume true
for k. Differentiate.

(n _ k) anfkfl (53)2k+1 _’_2kanfk (53)2/{—1 (523) ca
by the induction hypothesis.

dal(n— k) a" 71 (6a)* T 4 2ka"k (82)* ! (8%a)] € a

an—k—l ((53)2k+2 € a

by the induction hypothesis, and, since R is a Ritt algebra. So, the claim
is true for k +1. Set k = n. ]

v

Phyllis Joan Cassidy (Institute) Differential Algebraic Geometry, Part | Fall 2007 40 / 46



The Ritt basis theorem

Let F be a A-field, and R = F {z,...,z,} be a finitely A-generated
A-F-algebra. Then, every radical A-ideal has a finite (radical A-ideal)
basis.

Set R=F{yi,---.¥n} ¥1,--.,¥n A-indeterminates. Let X be any
subset of R. The radical A-ideal v = v [X] has a finite basis. There is a
finite subset Fy,..., F, of v such that v = v [F1,..., F;]. The radical
A-ideal v = v/ [X] is Ritt's final interpretation of “all differential
consequences of the system

F=0 Fex”

The basis theorem is his answer to Drach-Picard: Is every system of
differential polynomial equations equivalent to a finite system?
The solution space of the system defined by 2. is also defined by

FL=0....,F, =0.
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Zeros of differential polynomials and ideals

Let R be a A-ring and y = ()1, ..., yn) be a family of A-indeterminates
over R. Let S =R {y}.

Sr =R [0ylpco(r -

Let z=(z1,...,2,) € R". Then, z < (z,612,...,0mz,...,0z,...). On
each polynomial ring S, we have the substitution homomorphism

S — R, (8y)— (0z),0€0O.

This defines a A-R-homomorphism ¢, from S into R, called the

A -substitution homomorphism. For P € S, write P(z) for ¢ (P) (z), and
call it the value of P at z. kero, is a A-ideal of S, called the defining
A-ideal of z.
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Example
Let A = {0x,0:}, F the A-field of functions meromorphic in D, x D, ,
where D, is the right half plane of C, D; = C\Z<(. Let

v = fox st™le=5ds € F. The defining A-ideal of « in F {y} is the prime
A-ideal

t—1—x
faxy, axyaﬁaxy — (Btaxy)ﬂ :

p= [3§y —

Definition

Let R be a A-ring, y = (y1,...,¥n) a family of A-indeterminates over R,
S =TR{y}. Let X be asubset of S. The zero set of X is the set

Z={zeR":P(z)=0, PeZX}.
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Set .
Y= {aiy TR e,y — (ataxyf} ,
X

F as above. . Determine Z C F. The zero set of L = 92y — =129,y
is

V= A{olt) +alt)r},

X
= / st leSds e F
0
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Let
z = Co(t) =+ C1(t>’)/.

Then, 0,z =0 if and only if c;(t) = 0. So, spose ¢; (t) # 0. Then, z is

a zero of the second polynomial
05y 9705y — (3:dxy)”
if and only if

ataXZ
0,z

8t (ﬁataxz) = 0, Eataxz =

0,z = c1(t)0xy = cr(t)xLe ™.

00105z = (o:c (t)+ 00 (xtte™)
= (0:c1 (t) + logx

at (EataXZ) = atﬁatq (t) .
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Z=F% 1U(F* 1+G-9),

where G is the subgroup of the multiplicative group of Fo satisfying the

differential equation
y

Gy = klesz/ stle~5ds, ki, ky € C.
0

G is a differential algebraic group.
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