Differential Algebraic Geometry, Part I Phyllis Joan Cassidy City College of CUNY Fall 2007 ### **Abstract** - Differential algebraic geometry: A new geometry. - Founded on: Commutative differential algebra (J. F. Ritt, 1930). - Differential algebraic varieties: Solution sets of algebraic differential equations. - Model: Algebraic geometry. - Geometric points for Ritt: n-tuples of functions meromorphic in a region of \mathbb{C}^m . - Aim: Unify and clarify the 19th century theory of algebraic differential equations. - Ritt's Focus: Algorithms, similar to Buchberger's in Gröbner basis theory – designed to decide ideal membership; simplify differentiation-elimination. - Differential algebraic group theory: Group objects in this new geometry. - Galois groups in a generalized differential Galois theory: Fundamental matrices in Picard-Vessiot theory depend on parameters. - Central in Buium-Pillay-Hrushovski approach to Diophantine problems over function fields. - Symmetry groups of systems of algebraic differential equations. - Ellis R. Kolchin: Ritt's geometry with a Weil approach. - Kolchin topology: Adaptation of the Zariski topology. - Geometric points: n-tuples with coordinates in a differential field. - Kolchin axiomatic treatment abstract differential algebraic varieties Emphasis –specializations of generic points. - Jerry Kovacic's differential schemes: Framework— Grothendieck theory of schemes. We begin: The Ritt-Kolchin theory of affine differential algebraic geometry. Time permitting: Kovacic's differential schemes. # Commutative differential algebra All rings contain the field Q of rational numbers, and are associative, commutative, with unit 1. The 0 ring is the only ring for which 1=0. ### **Definition** Let Θ be the free commutative monoid on the set $\Delta = \{\delta_1, \ldots, \delta_m\}$ of derivation operators. The elements of the monoid Θ are called derivative operators. The derivative operator $$\theta = \delta_1^{i_1} \dots \delta_m^{i_m}$$ has order $r = i_1 + \cdots + i_m$. Denote by $\Theta(r)$ the set of all $\theta \in \Theta$ whose order is $\leq r$. ### **Definitions** A ring \mathcal{R} is a Δ -ring if there is a map from Δ into the multiplicative monoid End $(\mathcal{R}, +)$, with the additional conditions that for $\delta, \delta' \in \Delta$, $$\delta\delta' = \delta'\delta$$, and $$\delta\left(ab\right) = a\delta b + b\delta a$$, $a, b \in \mathcal{R}$, $\delta \in \Delta$. ### Definition Δ -subrings and extension rings are defined in such a way that the actions of Δ are compatible. We refer to a Δ -extension ring of a Δ -ring $\mathcal R$ as a Δ -R-algebra. ### **Definition** The set \mathcal{R}^{Δ} of $c \in \mathcal{R}$ with $\delta c = 0$, $\delta \in \Delta$, is a Δ -subring of \mathcal{R} called the ring of constants of Δ . If \mathcal{R} is a Δ -field, \mathcal{R}^{Δ} is a Δ -subfield. The action of Δ on a Δ -ring $\mathcal R$ extends uniquely to a homomorphism from Θ into the multiplicative monoid End $(\mathcal R,+)$. This homomorphism maps Δ into Der $(\mathcal R)$. - $\begin{array}{ll} \bullet & 1 \in \mathcal{R}^{\Delta}. \quad \text{For, if } \delta \in \Delta, \\ \delta & (1) = \delta & (1.1) = 1 \cdot \delta & (1) + \delta & (1) \cdot 1 = \delta & (1) + \delta & (1). \quad \text{Thus,} \\ \delta & (1) = 0. \end{array}$ - ② If $a \in \mathcal{R}$ is invertible, then $\forall \delta \in \Delta$ $$0 = \delta(1) = \delta(a \cdot a^{-1}) = a\delta(a^{-1}) + \delta(a)a^{-1}.$$ $$\delta(a^{-1}) = -\frac{\delta(a)}{a^2}.$$ $$\delta\left(\frac{b}{a}\right) = \delta\left(b \cdot \frac{1}{a}\right) = b\delta\left(\frac{1}{a}\right) + \delta(b)\frac{1}{a} = -\frac{b\delta(a)}{a^2} + \frac{\delta(b)}{a}$$ So, we have the quotient rule $$\delta\left(\frac{b}{a}\right) = \frac{a\delta\left(b\right) - b\delta\left(a\right)}{a^2}.$$ If a Δ -ring \mathcal{R} is an integral domain, its Δ -ring structure extends uniquely to the quotient field of \mathcal{R} . ### **Definition** Let $z=(z_1,\ldots,z_n)$ be a family of elements of a Δ - \mathcal{R} -algebra. The Δ - \mathcal{R} -algebra $$\mathcal{R}\left\{z ight\} = \mathcal{R}\left[\Theta z ight] = \underset{\longrightarrow}{\lim} \mathcal{R}\left[\theta z ight]_{ ext{ord }\theta \leq r.}$$ It is said to be Δ -finitely generated by z. If z_1, \ldots, z_n lie in a Δ -extension field of a Δ -field \mathcal{F} , the Δ - \mathcal{F} -extension $$\mathcal{F}\left\langle z ight angle =\mathcal{F}\left(\Theta z ight) = arprojlim \mathcal{F}\left(heta z ight)_{\mathsf{ord}} _{ heta \leq r}$$. It is said to be Δ -finitely generated by z. ## Example Let $$\mathcal{F}=\mathbb{C}\left(x,t ight)$$, $\Delta=\left\{\partial_{x},\partial_{t} ight\}$. Let $$\mathcal{G}=\mathcal{F}\left\langle x^{t-1}\mathrm{e}^{-x}\right\rangle$$, where we have chosen a Δ - extension field of meromorphic functions, containing $x^{t-1}e^{-x}$. $$x^{t-1}e^{-x} = e^{(t-1)\log x - x}$$ $$\begin{array}{lcl} \partial_x \left(x^{t-1} \mathrm{e}^{-x} \right) & = & x^{t-1} \mathrm{e}^{-x} \left(\frac{t-1-x}{x} \right) . \\ \\ \partial_t \left(x^{t-1} \mathrm{e}^{-x} \right) & = & x^{t-1} \mathrm{e}^{-x} \log x . \end{array}$$ $$\mathcal{G} = \mathbb{C} \left(x, t \right) \left(x^{t-1} \mathrm{e}^{-x}, \log x \right) .$$ Let $$\mathcal{H}=\mathcal{F}\left\langle \gamma ight angle$$, $\gamma=\int_{0}^{x}s^{t-1}e^{-s}ds$, where we have chosen an appropriate Δ -extension field of \mathcal{F} . $$\partial_x \gamma = x^{t-1} e^{-x}.$$ $$\partial_t \gamma = \int_0^x (\log s) s^{t-1} e^{-s} ds.$$ $$\mathcal{H} = \mathbb{C}(x, t) \left(x^{t-1} e^{-x}, \log x \right) \left(\gamma, \partial_t \gamma, \partial_t^2 \gamma, \ldots \right).$$ The "special function" $\gamma=\gamma\left(x,t\right)$ is called the *(lower) incomplete gamma function*, and is prominent in statistics and physics. The family $\left(\gamma,\partial_{t}\gamma,\partial_{t}^{2}\gamma,...\right)$ is algebraically independent over \mathcal{G} (Hölder 1887 (complete gamma), Johnson, Rubel, Reinhart 1995 incomplete gamma). # The differential polynomial algebra #### Theorem Let \mathcal{R} be a Δ -ring. Let $$(y_{i\theta})_{1\leq i\leq n,\theta\in\Theta}.$$ be a family of indeterminates over \mathcal{R} . There is a unique structure of Δ -ring on the polynomial ring $\mathcal{S}=\mathcal{R}\left[(y_{i\theta})_{1\leq i\leq n,\theta\in\Theta}\right]$ extending the Δ -ring structure on \mathcal{R} and satisfying the condition that for every $\delta\in\Delta$, and pair (i,θ) $$\delta y_{i\theta} = y_{i,\delta\theta}$$. Note: By definition, $y_{i,\theta\theta'} = y_{i,\theta'\theta}$. ### Example $$\mathcal{R}=\mathbb{Z}\left[x,t\right]$$, $\Delta=\left\{\partial_{x}\partial_{t}\right\}$, $n=1$. $\mathcal{S}=\mathbb{Z}\left[x,t\right]\left[y,y_{x},y_{t},y_{xx},y_{xt},y_{tt},...\right]$. $P=xy^{3}+xt^{2}yy_{x}^{3}y_{t}^{29}$. Set $\delta=\partial_{x}$. Extend δ to \mathcal{S} . Want: $$\partial_x y = y_x, \partial_x y_x = y_{xx}, \partial_x y_t = y_{xt}.$$ The proof will be broken up into lemmas. ### Lemma There is a unique derivation ∇ on $\mathcal S$ such that $\nabla\mid_{\mathcal R}=\delta$, and $$\nabla y_{i\theta} = 0$$ for every pair (i, θ) . #### Proof. Let $\delta \in \Delta$. For $P \in \mathcal{S}$, let P^{δ} be the polynomial obtained by differentiating the coefficients of P. Let \mathfrak{M} be the monomial basis of \mathcal{S} . Let $$P = \sum_{M \in \mathfrak{M}} a_M M$$, $a_M \in \mathcal{R}$, $\forall M \in \mathfrak{M}$, $a_M = 0$, $a \forall M$. $$\nabla P = P^{\delta} = \sum_{M \in \mathfrak{M}} (\delta \mathsf{a}_M) M.$$ abla is a derivation on ${\mathcal S}$ with the desired properties. ### Example $$\mathcal{R} = \mathbb{Z}\left[x, t\right], \Delta = \left\{\partial_x \partial_t\right\}, n = 1. \quad \mathcal{S} = \mathbb{Z}\left[x, t\right]\left[y, y_x, y_t, y_{xx}, y_{xt}, y_{tt}, ...\right].$$ $$P = xy^3 + xt^2yy_x^3y_t^{29}. \quad \text{Set } \delta = \partial_x$$ $\nabla P = y^3 + t^2 y y_x^3 y_t^{29}.$ ### Lemma There is a unique derivation D on $\mathcal S$ such that $D\mid_{\mathcal R}=0$ and $$Dy_{i\theta}=y_{i,\delta\theta}.$$ ### Proof. Define $$DP = \sum_{1 \le i \le n, \theta \in \Theta} \frac{\partial P}{\partial y_{i\theta}} y_{i,\delta\theta}$$ $$Dy_{i\theta} = y_{i,\delta\theta}.$$ D is a derivation on $\mathcal S$ with the desired properties. ### Example $$\mathcal{R} = \mathbb{Z}[x, t]$$, $\Delta = \{\partial_x \partial_t\}$, $n = 1$. $\mathcal{S} = \mathbb{Z}[x, t][y, y_x, y_t, y_{xx}, y_{xt}, y_{tt}, ...]$. $P = xy^3 + xt^2yy_x^3y_t^{29}$. Set $\delta = \partial_x$ $$DP = \frac{\partial P}{\partial y} y_{x} + \frac{\partial P}{\partial y_{x}} y_{xx} + \frac{\partial P}{\partial y_{t}} y_{xt}$$ $$= 3xy^{2} y_{x} + xt^{2} y_{x}^{3} y_{t}^{29} + 3xt^{2} yy_{x}^{2} y_{t}^{29} + 29xt^{2} yy_{x}^{3} y_{t}^{28}.$$ #### Lemma For $\delta \in \Delta$, define the extension of δ to $\mathcal{S} = \mathcal{R}\left[(y_{i\theta})_{1 \leq i \leq n, \theta \in \Theta}\right]$ to be the derivation $$\delta = \nabla + D$$. This definition extends the action of Δ from the coefficient ring to the polynomial algebra. ### Proof. By abuse of language, write $$D = \sum_{1 \leq i \leq n, \theta \in \Theta} \frac{\partial}{\partial y_{i\theta}} y_{i,\delta\theta},$$ lf $$P = \sum_{M \in \mathfrak{M}} a_M M.$$ $$\delta P = \sum_{M \in \mathfrak{M}} (\delta a_M) M + \sum_{i,\theta} \frac{\partial P}{\partial y_{i\theta}} y_{i,\delta\theta}.$$ Let $$\delta' = \nabla + D'$$, where $D' = \sum_{M \in \mathfrak{M}} y_{i,\delta'\theta} rac{\partial}{\partial y_{i\theta}}$. $$[\delta, \delta']$$ $|_{R} = 0.$ $$\left[\delta,\delta'\right]\left(y_{i\theta}\right)=D(y_{i,\delta'\theta})-D'\left(y_{i,\delta\theta}\right)=y_{i,\delta'\delta\theta}-y_{i,\delta\delta'\theta}=0.\quad \left[\delta,\delta'\right]=0.$$ # Example: The Heat equation $$\Delta = \{\partial_x, \partial_t\}$$ $$H = \partial_x^2 y - \partial_t y.$$ card $\Delta = 2$ #### Definition Let $\mathcal{P}=\mathcal{R}\left\{y\right\}$ be the differential polynomial algebra. Let $F\in\mathcal{P}$. If $F\in\mathcal{R}$, we say the *order of* F is -1, If $F\notin\mathcal{R}$, then the *order of* F is the highest order derivative θy_{j} dividing a monomial of F. The order of H is 2. #### Definition Let \mathcal{R} be a Δ -ring. A family $z=(z_1,\ldots,z_n)$ of a Δ - \mathcal{R} -algebra is Δ -algebraically dependent over \mathcal{R} if the family Θz is algebraically dependent over \mathcal{R} . The single element z is called Δ -algebraic over \mathcal{R} if the family whose only element is z is Δ -algebraically dependent over \mathcal{F} . Let $\Delta = \{\partial_x, \partial_t\}$. The incomplete gamma function $$\gamma = \int_0^x s^{t-1} e^{-s} ds$$ is ∂_t -algebraically independent (∂_t -transcendentally transcendental) over both $\mathcal{F}=\mathbb{C}(x,t)$ and $\mathcal{G}=\mathbb{C}\left(x,t,x^{t-1}e^{-x},\log x\right)$. γ is ∂_x -algebraic over \mathcal{F} . It is a solution of the parametric linear homogeneous differential equation $$\partial_x^2 y - \frac{t - 1 - x}{x} \partial_x y = 0,$$ Defining differential equations of the incomplete gamma function: $$\partial_x^2 y - \frac{t - 1 - x}{x} \partial_x y = 0,$$ $$\partial_x y \partial_t^2 \partial_x y - (\partial_t \partial_x y)^2 = 0.$$ Note that the family $(x^{t-1}e^{-x}, \log x)$ is algebraically independent over \mathcal{F} , but each of the elements is Δ -algebraically dependent over \mathcal{F} . ### Differential ideals What do we mean by "all differential consequences of a system $$P_i = 0 \quad (i \in I)$$ of differential polynomial equations?" (Drach, Picard) (a) What do we mean by the defining differential equations of γ ? (Drach, Picard) Ritt's first answer to the first question: Consider the ideal in the differential polynomial ring generated by the P_i and all their derivatives. #### Definition An ideal α of a Δ -ring \mathcal{R} is a Δ -ideal if it is stable under Δ : $$a \in \mathfrak{a} \Longrightarrow \delta \mathfrak{a} \in \mathfrak{a}, \quad \delta \in \Delta.$$ ### Definition Let \mathcal{R} be a Δ -ring. - **1** $\mathfrak{I}(\mathcal{R})$ is the set of all Δ -ideals of \mathcal{R} . - $\mathfrak{P}(\mathcal{R})$ is the set of all radical Δ -ideals of \mathcal{R} . - $\mathfrak{P}(\mathcal{R})$ is the set of all prime Δ -ideals of \mathcal{R} . $$\mathfrak{P}(\mathcal{R})\subset\mathfrak{R}(\mathcal{R})\subset\mathfrak{I}(\mathcal{R})$$ When we put a topology on $\mathfrak{P}(\mathcal{R})$, we will call it diffspec (\mathcal{R}) . ### Example $$\mathcal{R}=\mathbb{Q}[x]$$, $\delta= rac{d}{dx}$. Let $\mathfrak{p}\in\mathfrak{P}\left(\mathcal{R} ight)$, $\mathfrak{p} eq(0)$. $$\mathfrak{p} = (P), P$$ irreducible. Spose $$\frac{dP}{dx} \neq 0$$. $$\operatorname{deg} \frac{dP}{dx} < \operatorname{deg} P, \text{ and } P \mid \frac{dP}{dx}.$$ Thus, $P \in \mathbb{Q} \rightarrow \leftarrow$. Therefore, diffspec $\mathbb{Q}[x] = \text{diffspec } \mathbb{Q}(x)$. ### Some arithmetic of differential ideals Let \mathcal{R} be a Δ -ring. #### Lemma Let $(\mathfrak{a}_i)_{i\in I}$ be a family of elements of $\mathfrak{I}(\mathcal{R})$. - $\bullet \quad \sum_{i\in I} \mathfrak{a}_i \in \mathfrak{I}(\mathcal{R}).$ - **1** If $\forall i \ \alpha_i$ is radical, then, $\bigcap_{i \in I} \alpha_i$ is radical. ### Lemma Let \mathcal{R} be a Δ -ring, and let \mathfrak{a} and \mathfrak{b} be in $\mathfrak{I}(\mathcal{R})$. - \bullet $\mathfrak{ab} \in \mathfrak{I}(\mathcal{R}).$ - $\mathfrak{d} \cap \mathfrak{b} \in \mathfrak{I}(\mathcal{R}), \text{ and } \mathfrak{ab} \subset \mathfrak{a} \cap \mathfrak{b}.$ # Homomorphisms of differential rings ### **Definition** Let $\mathcal R$ and $\mathcal S$ be Δ -rings. A homomorphism $$\varphi:\mathcal{R}\longrightarrow S$$ is a Δ -homomorphism if $$\varphi \circ \delta = \delta \circ \varphi$$, $\delta \in \Delta$. If $\mathcal R$ and $\mathcal S$ are Δ - $\mathcal R_0$ -algebras, we call φ a Δ - $\mathcal R_0$ -homomorphism if $\varphi\mid_{\mathcal R_0}=$ id. ### **Definition** Let \mathcal{R} and \mathcal{S} be Δ -rings, and let $\varphi : \mathcal{R} \longrightarrow \mathcal{S}$ be a Δ -homomorphism. are defined by the same formula $\mathfrak{b} \longmapsto \varphi^{-1}(\mathfrak{b})$. Note that $\ker \varphi \in \mathfrak{I}(\mathcal{R})$. $\varphi(\mathcal{R})$ is a Δ -subring of \mathcal{S} . #### Lemma Let \mathcal{R} and \mathcal{S} be Δ -rings, and let $\varphi : \mathcal{R} \longrightarrow \mathcal{S}$ be a surjective Δ -homomorphism. - **1** $\ker \varphi \in \mathfrak{P}(\mathcal{R}) \Longleftrightarrow \mathcal{S}$ is an integral domain. - **2** ker $\varphi \in \mathfrak{R}(\mathcal{R}) \iff \mathcal{S}$ is reduced (no nonzero nilpotent elements). - **③** $^{i}\varphi$ maps $\Im\left(\mathcal{S}\right)$ bijectively onto the set of Δ -ideals of \mathcal{R} containing $\ker\varphi$. - $r \varphi$ maps $\Re(S)$ bijectively onto the set of radical Δ -ideals of $\mathcal R$ containing ker φ . - $^p \varphi$ maps $\mathfrak{P}(\mathcal{S})$ bijectively onto the set of prime Δ -ideals of \mathcal{R} containing ker φ . In the last three statements, the maps are inclusion preserving and their inverses send \mathfrak{a} to $\varphi(\mathfrak{a})$. #### Lemma Let $\mathfrak a$ be Δ -ideal in a Δ -ring $\mathcal R$. Then $\mathcal R/\mathfrak a$ has a unique structure of Δ -ring such that the quotient homomorphism $\pi:\mathcal R\longrightarrow\mathcal S$ is a Δ -homomorphism. ### Proof. For $\delta \in \Delta$ and $x \in \mathcal{R}$, set $\overline{x} = x + \mathfrak{a}$, and define $\delta \overline{x} = \delta x$. Let $y \in \mathcal{R}$. Spose $\overline{x} = \overline{y}$. $$x - y \in \mathfrak{a}.$$ $$\delta(x - y) = \delta x - \delta y \in \mathfrak{a}.$$ $$\delta \overline{x} = \delta \overline{y}.$$ So, the action of Δ on \mathcal{R}/\mathfrak{a} is well-defined. The sum and product rules follow easily. ### Corollary Let \mathfrak{a} be Δ -ideal in a Δ -ring \mathcal{R} . Let π be the quotient homomorphism. - ① ${}^i\pi$ maps $\Im\left(\mathcal{R}/\mathfrak{a}\right)$ bijectively onto the set of Δ -ideals of $\mathcal R$ containing $\mathfrak a.$ - $\mathbf{e}^{i}\pi \text{ maps } \mathfrak{R}(\mathcal{R}/\mathfrak{a}) \text{ bijectively onto the set of radical } \Delta\text{-ideals of } \mathcal{R}$ containing \mathfrak{a} . - **3** π maps $\mathfrak{P}(\mathcal{R}/\mathfrak{a})$ bijectively onto the set of prime Δ -ideals of \mathcal{R} containing \mathfrak{a} . ### Differential ideal bases ### Definition Let \mathcal{R} be a Δ -ring and \mathfrak{a} be a Δ -ideal of \mathcal{R} . The Δ -ideal \mathfrak{a} is generated by a subset S if the ideal \mathfrak{a} is generated by ΘS . We denote it by [S]. Call S a $(\Delta$ -ideal) basis of \mathfrak{a} . [S] is the smallest Δ -ideal containing S. **Question** (Drach, Picard): Is every system of differential polynomial equations equivalent to a finite system? If $\mathcal R$ is a ring finitely generated over a field, every ideal of $\mathcal R$ is finitely generated. So, the answer is yes for polynomial equations. ### Example Let $\mathcal{R}=\mathcal{F}\left\{y\right\}$, \mathcal{F} a Δ -field, $\Delta=\left\{\delta\right\}$, y a Δ -indeterminate over \mathcal{F} . Write $y',y'',\ldots,y^{(i)},\ldots$ $$\mathfrak{i} = \left[yy', y'y'', \dots, y^{(i)}y^{(i+1)}, \dots \right]$$ has no finite Δ -ideal basis (Ritt, 1930 Also, see Kovacic-Churchill, Notes KSDA). ### Radicals redux Let $\mathcal R$ be a Δ -ring. Let $\mathfrak a$ be a Δ -ideal of $\mathcal R$. The intersection of the family of radical Δ -ideals of $\mathcal R$ containing $\mathfrak a$ is a radical Δ -ideal. So, there is a smallest radical Δ -ideal of $\mathcal R$ containing $\mathfrak a.$ The radical $\sqrt{\mathfrak{a}}$ is the set of $a \in \mathcal{R}$ such that there is a positive integer n with $a^n \in \mathfrak{a}$. It is an ideal of \mathcal{R} , and is the smallest radical ideal of \mathcal{R} containing \mathfrak{a} . Is it a Δ -ideal? Conjecture: Yes. ### Example Let $$\mathcal{R} = \mathbb{Z}\left[x\right]$$, $\delta = \frac{d}{dx}$. Let $\mathfrak{a} = (2, x^2)$. \mathfrak{a} is a δ -ideal of \mathcal{R} . Let $\mathcal{S} = \mathcal{R}/\mathfrak{a}$. $\overline{x} \in \checkmark[0]$. $\delta \overline{x} = 1$ $\notin \checkmark[0]$. Is this a counterexample to the conjecture? No. Our Δ -rings are Ritt algebras. #### Theorem Let $\mathcal R$ be a Δ -ring (Ritt algebra), and let $\mathfrak a$ be a Δ -ideal of $\mathcal R$. Then, the radical of $\mathfrak a$ is a Δ -ideal of $\mathcal R$. If $\mathfrak{a}=[S]$, call $\mathfrak{r}=\checkmark\mathfrak{a}$ the radical Δ -ideal generated by S. S is also called a (radical Δ -ideal) basis for the radical Δ -ideal \mathfrak{r} . ### Proof. Let $a \in \mathcal{A}$ α . Let $n \in \mathbb{Z}_{>0}$ be such that $a^n \in \alpha$. Claim: For any $\delta \in \Delta$, $k = 0, \ldots, n$, $$a^{n-k} (\delta a)^{2k} \in \mathfrak{a}.$$ By hypothesis, the case k=0 is true. Let $0 \le k \le n-1$. Assume true for k. Differentiate. $$(n-k) a^{n-k-1} (\delta a)^{2k+1} + 2ka^{n-k} (\delta a)^{2k-1} (\delta^2 a) \in \mathfrak{a}$$ by the induction hypothesis. $$\delta a[(n-k) a^{n-k-1} (\delta a)^{2k+1} + 2ka^{n-k} (\delta a)^{2k-1} (\delta^2 a)] \in \mathfrak{a}$$ $$a^{n-k-1} \left(\delta a\right)^{2k+2} \in \mathfrak{a}.$$ by the induction hypothesis, and, since \mathcal{R} is a Ritt algebra. So, the claim is true for k+1. Set k=n. ### The Ritt basis theorem #### **Theorem** Let \mathcal{F} be a Δ -field, and $\mathcal{R} = \mathcal{F}\{z_1, \ldots, z_n\}$ be a finitely Δ -generated Δ - \mathcal{F} -algebra. Then, every radical Δ -ideal has a finite (radical Δ -ideal) basis. Set $\mathcal{R}=\mathcal{F}\left\{y_1,\ldots,y_n\right\}$, y_1,\ldots,y_n Δ -indeterminates. Let Σ be any subset of \mathcal{R} . The radical Δ -ideal $\mathfrak{r}=\sqrt{[\Sigma]}$ has a finite basis. There is a finite subset F_1,\ldots,F_r of \mathfrak{r} such that $\mathfrak{r}=\sqrt{[F_1,\ldots,F_r]}$. The radical Δ -ideal $\mathfrak{r}=\sqrt{[\Sigma]}$ is Ritt's final interpretation of "all differential consequences of the system $$F = 0$$, $F \in \Sigma$." The basis theorem is his answer to Drach-Picard: Is every system of differential polynomial equations equivalent to a finite system? The solution space of the system defined by Σ is also defined by $$F_1 = 0, \ldots, F_r = 0.$$ ## Zeros of differential polynomials and ideals Let \mathcal{R} be a Δ -ring and $y=(y_1,\ldots,y_n)$ be a family of Δ -indeterminates over \mathcal{R} . Let $\mathcal{S}=\mathcal{R}\{y\}$. $$S_r = \mathcal{R} \left[\theta y \right]_{\theta \in \Theta(r)}$$. Let $z=(z_1,\ldots,z_n)\in\mathcal{R}^n$. Then, $z\leftrightarrow(z,\delta_1z,\ldots,\delta_mz,\ldots,\theta z,\ldots)$. On each polynomial ring \mathcal{S}_r we have the substitution homomorphism $$S_r \longrightarrow \mathcal{R}$$, $(\theta y) \longmapsto (\theta z)$, $\theta \in \Theta$. This defines a Δ - \mathcal{R} -homomorphism σ_z from \mathcal{S} into \mathcal{R} , called the Δ -substitution homomorphism. For $P \in \mathcal{S}$, write P(z) for $\sigma(P)(z)$, and call it the value of P at z. $\ker \sigma_z$ is a Δ -ideal of \mathcal{S} , called the defining Δ -ideal of z. ### Example Let $\Delta = \{\partial_x, \partial_t\}$, $\mathcal F$ the Δ -field of functions meromorphic in $\mathbb D_x \times \mathbb D_t$, where $\mathbb D_x$ is the right half plane of $\mathbb C$, $\mathbb D_t = \mathbb C \backslash \mathbb Z_{\leq 0}$. Let $\gamma = \int_0^x s^{t-1} e^{-s} ds \in \mathcal F$. The defining Δ -ideal of γ in $\mathcal F \{y\}$ is the prime Δ -ideal $$\mathfrak{p} = \left[\partial_x^2 y - \frac{t - 1 - x}{x} \partial_x y, \partial_x y \partial_t^2 \partial_x y - (\partial_t \partial_x y)^2 \right].$$ #### Definition Let \mathcal{R} be a Δ -ring, $y=(y_1,\ldots,y_n)$ a family of Δ -indeterminates over \mathcal{R} , $\mathcal{S}=\mathcal{R}\left\{y\right\}$. Let Σ be a subset of \mathcal{S} . The zero set of Σ is the set $$Z = \{z \in \mathcal{R}^n : P(z) = 0, \quad P \in \Sigma\}$$. ## Example Set $$\Sigma = \left\{ \partial_{x}^{2}y - rac{t-1-x}{x}\partial_{x}y, \partial_{x}y\partial_{t}^{2}\partial_{x}y - (\partial_{t}\partial_{x}y)^{2} ight\},$$ $\mathcal F$ as above. Determine $Z\subset \mathcal F$. The zero set of $L=\partial_x^2y-\frac{t-1-x}{x}\partial_xy$ is $$egin{array}{lll} V &=& \left\{c_0(t)+c_1(t)\gamma ight\}, \ \gamma &=& \int_0^x s^{t-1}e^{-s}ds \in \mathcal{F} \end{array}$$ Let $$z = c_0(t) + c_1(t)\gamma.$$ Then, $\partial_x z=0$ if and only if $c_1(t)=0$. So, spose $c_1(t)\neq 0$. Then, z is a zero of the second polynomial $$\partial_x y \partial_t^2 \partial_x y - (\partial_t \partial_x y)^2$$ if and only if $$egin{aligned} \partial_t \left(\ell \partial_t \partial_x z ight) &= 0, \quad \ell \partial_t \partial_x z = rac{\partial_t \partial_x z}{\partial_x z}. \ \partial_x z &= c_1(t) \partial_x \gamma = c_1(t) x^{t-1} e^{-x}. \ \ell \partial_t \partial_x z &= \ell \partial_t c_1(t) + \ell \partial_t (x^{t-1} e^{-x}) \ &= \ell \partial_t c_1(t) + \log x \ \partial_t \left(\ell \partial_t \partial_x z ight) &= \partial_t \ell \partial_t c_1(t). \end{aligned}$$ $$Z = \mathcal{F}^{\partial_x} \cdot 1 \cup (\mathcal{F}^{\partial_x} \cdot 1 + G \cdot \gamma),$$ where G is the subgroup of the multiplicative group of \mathcal{F}^{∂_x} satisfying the differential equation $$\partial_t\left(rac{\partial_t y}{y} ight)=0.$$ $G\gamma=k_1e^{k_2t}\int_0^x s^{t-1}e^{-s}ds,\quad k_1,k_2\in\mathbb{C}.$ G is a differential algebraic group.