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Abstract

o Consider the walks in the quarter plane starting from (0, 0)
with steps in a fixed set

D C {(—7\7t/7—)7\7lﬁ ‘/}

e Example with possible directions

D C {<—7T7 — \"7'1'7 L/}
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Abstract

e Let fp ; x equals the number of walks in N2 starting from
(0,0) ending at (i, ) in k steps in D.

« Generating series: Fp(X,y,t) := > fpjxx'y/tx.

ij.k

o Classification problem: when Fp(x, y, t) is algebraic,
holonomic, differentially algebraic?

e Today, we are able to classify in which cases Fp is
algebraic (resp. holonomic).

— O. Bernardi, A. Bostan, M. Bousquet-Mélou, F. Chyzak, G. Fayole, M. van Hoeij, R. lasnogorodski, M.

Kauers, I. Kurkova, V. Malyshev, M. Mishna, K. Raschel, B. Salvy...

o Letf e C((x)). We say that f is differentially algebraic if
dne N, P € C(x)[Xo, - .., Xpn] such that

P(f,f,....fM)=0.

o Otherwise we say that f is differentially transcendent. oo



@ Classification of the walks
@ Elliptic functions
@ Transcendence of the generating functions

@ Algebraic cases
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The kernel of the walk

Identify directions in D by (i,j),i,j € {—1,0,1}.
Consider o
S’D(X7.y) = Z le/a
(i,))eD

and the kernel of the walk is

Kp(x,y,t) :=xy(1 —tSp(x,y)).

Example

D= {e,1,\) = {(=1,0),(0,1), (1, —1)}.
Sp(x,y) =x"+y+xy",
Kp(x,y,t) = xy — t(y + xy* + x).
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The functional equation of the walk

The generating series Fp(x, y,t) and the kernel Kp(x, y, t)
satisfy the following equation

KD(X7y7 t)FD(Xay’ t) =
Xy — KD(X7O7 t)FD(X707 t) - KD(OJ’, t)FD(an7 t)
+KD(0,0, t)FD(0,0, t).
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Group of the walk

Fix t ¢ Q. Consider the algebraic curve
Et = {(va) € ]P1 (C)2|KD(Xay7 t) = 0}

Consider the involutions

L = Et — Et
Z(i1)eri>
X — X, =
(x.¥) ( ’yZ(iJ)eDXl
lp = Et — Et
2(71‘ y!
X = | =Ry ).
(%, ) (XZ<1,,>eDyf’y

We attach to D the group of the walk

Gt = <L1 N Lg).
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Reduction to an elliptic case

Over the 28 possible walks, only 79 need to be studied.
o Vi, #Gt < oo for 23 walks.

— A. Bostan, M. Bousquet-Mélou, M. Kauers, M. Mishna
e Jt, #G; = oo for 56 walks.

e E; has genus zero for 5 walks.
e E; has genus one for 51 walks.

— |. Kurkova, K. Raschel

From now we fix t ¢ Q such that #G; = oo and assume that E;
has genus one.

E; is an elliptic curve
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Theorem (D-H-R-S 2017)

In 42 cases, x — Fp(x,0,t),y — Fp(0,y,t) are diff. tr.
In9 cases, x — Fp(x,0,t),y — Fp(0,y,t) are diff. alg.
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Elliptic functions

Mer(E;) = meromorphic function on E;.
Jwqt € iR50,ws t € Ry, such that

Mer(Er) = {f(w) € Mer(C)|f(w) = flwtwir) = Flwtwar)}-

We define the Weierstrass function:
1 1

@)= 24 3
(W) = — _ .
w? p.qe72\(0,0) (w+ pwit+ quz)?  (Pwi,t + Quz,r)?

Mer(Et) = C(pt(w), Owprt(w))-
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Analytic continuation
Proposition (Kurkova, Raschel)

The series x — Fp(x,0,t), y — Fp(0,y,t) admit multivalued
meromorphic continuation on the elliptic curve E;.

o Let Fy p(w) (resp. F, p(w)) be the meromorphic
continuation of Fp(x,0,t) (resp. Fp(0,y,t)), we will see as
meromorphic functions on C.

e Jexplicit f € C(X) (resp. g € C(X),ws: € R-p) such that
x = f(pi(w)) (resp. y = g(pi(w — w3 1/2)))-

Theorem (Kurkova, Raschel)

The function I-'X7D(w) (resp. I:'yp(w) ) Is not holonomic.

Lemma

o Fp(x,0,1) is diff. tr. & Fyp(w) is diff. tr.
o Fp(0,y,1t) is diff tr. & F, p(w) is diff. tr.
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Functional equation evaluated on E;

The meromorphic continuation satisfy

F(Fen(@)) = Funle) +y(-) (x(w + 5 ~ ¥(@)
T(Fyo(w)) = Fyolw) +x()y(-w) = y(w)),
where 7 := h(w) — h(w + ws 1)

These are two difference equations and we may use difference
Galois theory.
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Some consequences of difference Galois theory
Let b := x(w)(y(—w) — y(w)).

Proposition (D-H-R-S 2017)

The function Fyﬂ) is diff. alg. iff there exist an integer n > 0,
Co,---,Cn_1 € C and h € Mer(E;) such that

02(b) + Cn19L 1 (b) + -+ + €10.(b) + cob = 7(h) —

Corollary

Fyp is diff. alg. < F,p is diff. alg.

Corollary

Assume that b has a pole wy € C, such that, for all 0 # k € Z,
7K(wo) not a pole of b. Then, Fy p is diff. tr.
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Poles of b

We now see b as a function P{(C)? O E; — P¢(C). The set of
poles of b is contained in

{(007 ad )v (007 a2)7 (61 ) OO), (627 OO), (51 » M )7 (627 72)}'

Poles of x(w) Poles of y(w)  Poles of y(-w)

Lemma

* In the poles of x, a1, oz are roots of 3.4 jyep ¥/

* Inthe poles of y, 31, B2 are roots of 3_; 1)ep X1,
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The base field

Lemma

LetQ(t) c L c C field ext. Let P € E;. Then

P e Py(L)? = 7(P) € P{(L)? & 11(P) € P1(L)? < 15(P) € P1(L)2.
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Theorem (D-H-R-S 2017)

Assume that {a1, a2, 81, B2} N (C\ Q(t)) # @. Then, Fxp, Fyp
are differentially transcendent.
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Sketch of proof in the case ~#

e The poles of b are {(oco, £i), (+i, 00), (i, £it + t)}.
e Involution o € Gal(Q(i, t)|Q(f)). ThenooT =To00.

Let P,Q € E;. We say that P ~ Q if 3k € Z such that
™*(P) = Q.

Lemma

(OO,i) '7(’ (OO, _i)'

Assume that 7¥(c0,1) = (00, —i). We have 7%(co, —i) = (o0, 1)
and 72 (00, 1) = (00, 1). No fixed point by = implies k = 0.
Contradiction. O
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Sketch of proof in the case ~#

e The poles of b are {(oco, i), (i, 00), (£i, it + t)}.
e Involution o € Gal(Q(i, t)|Q(f)). ThenooT =To00.

Let P, Q € E;. We say that P ~ Q if 3k € Z such that
*(P) = Q.

Lemma

(00,1) # {(00, —i), (i, 00), (i, %it + 1)}
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Triple pole case (~, , ¢ D)

e (00, 00) double pole of x.
e (00, 00) simple pole of y.
e (00, 00) only triple pole of b.

Corollary

Assume that 7, 5 ¢ D. Then, Fyp, F,p are diff. tr.
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e (00, 00) simple pole of x, resp y.
e (00, *) simple pole of x, resp. y(—w).
e (00, 00), (00, ) are only double poles of b.

Lemma

If (00, 00) ~ (00, %), then Ik € Z, j € {1,2} s.t.

Ljo 7%(00, 00) = 7%(00, 0).

Corollary

Assume thatDe{;&' N NN %} Then, Fyp, Fy.p

are diff. tr.
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A symmetric case: i~

There are 3 simple poles: (0, 0), (0,0), and (0, —1).

Lemma

If(aaﬁ) ~ (B?a)’ a,B Py (@(t))’ then 3’7 € Py (Q(t))! S.t.

Kp(v,7,t) =0.

Corollary

The series Fy p, F,p are diff. tr.
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Algebraic cases

bRk & & &
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Orbit of the poles, case 4

Polar divisor of b

+(00,0)
—1

o0)
i

(=1 57
+ )

7-Orbit of one of
the poles of b

(=1, #7)
T
(0, 00)
T
(00, 0)
b7
(0,0)
T
(_1 ) OO)

In 8 cases, every poles of b are on the same orbit
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A criteria of algebraicity

Proposition (D-H-R-S 2017)

The function ,:;y,’D is diff. alg. iff for all poles wqy of b, we have
that

S
i=1

is analytic atwg where wg + Nywsyt, .. .,w + Nswa t are the poles
of b that belong to wqy + Zws ;.
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Uni-orbit, simple pole case

b € Mer(E;) = sum of residues of b is zero.

Corollary

Assume that D € {<_Iz‘ 4" %} Then, every poles of b are on

the same orbit and are simple. Consequently, F Ds Fy p are
diff. alg.
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Uni-orbit, double pole case

Itb =37 sy, thenb = y (D
, lnen —_—
>k 0)* >k (w +wo)*

Sketch of proof.

We use b(—w) = —b(w).

Corollary

Assume that D € { b 8 & b R&} Then, every poles

of b are on the same orbit and are at most double.
Consequently, Fy D Fy p are diff. alg.
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(_1 ) OO)

Walk W
Polar divisor of b (—1, 557), [a] T (oo, —1),[-q]
[Residue] +(0,0),[~a] +(—1,00), 0]
7-Orbit of the poles | (-1, 57) (00, —1)
T T
(0, 00) * (0,0)
b7 T
(c0,0) (—1,00)
Walk
Polar divisor of b (-1, 55), [o] +(00, —1),[—0]
[Residue] +(—1,00), [a] +(00,0), [—a]
7-Orbit of the poles | (-1, 7%) (00, —1)
T T
(0,00) * (o0, 0)
T
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Conclusion and perspectives

¢ Mix of algebra and analysis allows us to treat every cases.

e In the differentially algebraic cases, explicit computation of
the telescoper should lead to the expression of the
differential equations.

¢ We now should be able to treat the genus zero case.
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