On the nature of the generating series of walks in the quarter plane

Thomas Dreyfus ¹
Joint work with Charlotte Hardouin ²
and Julien Roques ³
and Michael Singer ⁴

¹University Lyon 1, France

²University Toulouse 3, France

³University Grenoble 1, France

⁴North Carolina State University, USA

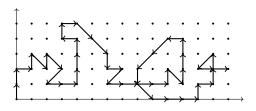
Abstract

 Consider the walks in the quarter plane starting from (0,0) with steps in a fixed set

$$\mathcal{D} \subset \{ , \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow, \swarrow \}.$$

Example with possible directions

$$\mathcal{D} \subset \{ \leftarrow, \uparrow, \rightarrow, \searrow, \downarrow, \checkmark \}.$$



Abstract

- Let $f_{\mathcal{D},i,j,k}$ equals the number of walks in \mathbb{N}^2 starting from (0,0) ending at (i,j) in k steps in $\underline{\mathcal{D}}$.
- Generating series: $F_{\mathcal{D}}(x,y,t) := \sum_{i,j,k} f_{\mathcal{D},i,j,k} x^i y^j t^k$.
- Classification problem: when $F_{\mathcal{D}}(x, y, t)$ is algebraic, holonomic, differentially algebraic?
- Today, we are able to classify in which cases F_D is algebraic (resp. holonomic).
 - → O. Bernardi, A. Bostan, M. Bousquet-Mélou, F. Chyzak, G. Fayole, M. van Hoeij, R. lasnogorodski, M.

Kauers, I. Kurkova, V. Malyshev, M. Mishna, K. Raschel, B. Salvy...

Definition

• Let $f \in \mathbb{C}((x))$. We say that f is differentially algebraic if $\exists n \in \mathbb{N}, P \in \mathbb{C}(x)[X_0, \dots, X_n]$ such that

$$P(f,f',\ldots,f^{(n)})=0.$$

Otherwise we say that f is differentially transcendent.

1 Classification of the walks

- 2 Elliptic functions
- 3 Transcendence of the generating functions
- 4 Algebraic cases

The kernel of the walk

Identify directions in \mathcal{D} by $(i,j), i,j \in \{-1,0,1\}$. Consider

$$S_{\mathcal{D}}(x,y) = \sum_{(i,j)\in\mathcal{D}} x^i y^j,$$

and the kernel of the walk is

$$\mathcal{K}_{\mathcal{D}}(x,y,t) := xy(1-t\mathcal{S}_{\mathcal{D}}(x,y)).$$

Example

$$\mathcal{D} = \{\leftarrow, \uparrow, \searrow\} = \{(-1,0), (0,1), (1,-1)\}.$$

$$S_{\mathcal{D}}(x,y) = x^{-1} + y + xy^{-1},$$

$$K_{\mathcal{D}}(x,y,t) := xy - t(y + xy^2 + x^2).$$

The functional equation of the walk

The generating series $F_D(x, y, t)$ and the kernel $K_D(x, y, t)$ satisfy the following equation

$$K_{\mathcal{D}}(x, y, t)F_{\mathcal{D}}(x, y, t) = xy - K_{\mathcal{D}}(x, 0, t)F_{\mathcal{D}}(x, 0, t) - K_{\mathcal{D}}(0, y, t)F_{\mathcal{D}}(0, y, t) + K_{\mathcal{D}}(0, 0, t)F_{\mathcal{D}}(0, 0, t).$$

Group of the walk

Fix $t \notin \overline{\mathbb{Q}}$. Consider the algebraic curve

$$E_t := \{(x,y) \in \mathbb{P}_1(\mathbb{C})^2 | K_{\mathcal{D}}(x,y,t) = 0\}.$$

Consider the involutions

$$\begin{array}{ccccc} \iota_1 & := & E_t & \to & E_t \\ & & (x,y) & \mapsto & \left(x,\frac{\sum_{(i,-1)\in\mathcal{D}}x^i}{y\sum_{(i,1)\in\mathcal{D}}x^i}\right) \\ \iota_2 & := & E_t & \to & E_t \\ & & (x,y) & \mapsto & \left(\frac{\sum_{(-1,j)\in\mathcal{D}}y^j}{x\sum_{(1,j)\in\mathcal{D}}y^j},y\right). \end{array}$$

We attach to \mathcal{D} the group of the walk

$$G_t := \langle \iota_1, \iota_2 \rangle.$$

Reduction to an elliptic case

Over the 2⁸ possible walks, only 79 need to be studied.

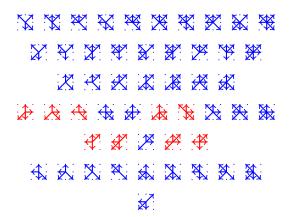
- $\forall t, \#G_t < \infty$ for 23 walks.
- → A. Bostan, M. Bousquet-Mélou, M. Kauers, M. Mishna
- $\exists t, \#G_t = \infty$ for 56 walks.
 - E_t has genus zero for 5 walks.
 - E_t has genus one for 51 walks.

 \rightarrow I. Kurkova, K. Raschel

From now we fix $t \notin \overline{\mathbb{Q}}$ such that $\#G_t = \infty$ and assume that E_t has genus one.

 E_t is an elliptic curve

Main result



Theorem (D-H-R-S 2017)

In 42 cases, $x \mapsto F_{\mathcal{D}}(x, 0, t), y \mapsto F_{\mathcal{D}}(0, y, t)$ are diff. tr. In 9 cases, $x \mapsto F_{\mathcal{D}}(x, 0, t), y \mapsto F_{\mathcal{D}}(0, y, t)$ are diff. alg.

Elliptic functions

- $\mathcal{M}er(E_t)$ = meromorphic function on E_t .
- $\exists \omega_{1,t} \in i\mathbb{R}_{>0}, \omega_{2,t} \in \mathbb{R}_{>0}$, such that

$$\mathcal{M}\textit{er}(\textit{E}_t) = \{\textit{f}(\omega) \in \mathcal{M}\textit{er}(\mathbb{C}) | \textit{f}(\omega) = \textit{f}(\omega + \omega_{1,t}) = \textit{f}(\omega + \omega_{2,t})\}.$$

We define the Weierstrass function:

$$\wp_t(\omega) = \frac{1}{\omega^2} + \sum_{p,q \in \mathbb{Z}^2 \setminus (0,0)} \frac{1}{(\omega + p\omega_{1,t} + q\omega_{2,t})^2} - \frac{1}{(p\omega_{1,t} + q\omega_{2,t})^2}.$$

• $\mathcal{M}er(E_t) = \mathbb{C}(\wp_t(\omega), \partial_\omega \wp_t(\omega)).$

Analytic continuation

Proposition (Kurkova, Raschel)

The series $x \mapsto F_{\mathcal{D}}(x, 0, t)$, $y \mapsto F_{\mathcal{D}}(0, y, t)$ admit multivalued meromorphic continuation on the elliptic curve E_t .

- Let $F_{x,\mathcal{D}}(\omega)$ (resp. $F_{y,\mathcal{D}}(\omega)$) be the meromorphic continuation of $F_{\mathcal{D}}(x,0,t)$ (resp. $F_{\mathcal{D}}(0,y,t)$), we will see as meromorphic functions on \mathbb{C} .
- \exists explicit $f \in \mathbb{C}(X)$ (resp. $g \in \mathbb{C}(X), \omega_{3,t} \in \mathbb{R}_{>0}$) such that $x = f(\wp_t(\omega))$ (resp. $y = g(\wp_t(\omega \omega_{3,t}/2))$).

Theorem (Kurkova, Raschel)

The function $\widetilde{F}_{x,\mathcal{D}}(\omega)$ (resp. $\widetilde{F}_{y,\mathcal{D}}(\omega)$) is not holonomic.

Lemma

- $F_{\mathcal{D}}(x,0,t)$ is diff. $tr. \Leftrightarrow \widetilde{F}_{x,\mathcal{D}}(\omega)$ is diff. tr.
- $F_{\mathcal{D}}(0, y, t)$ is diff. $tr. \Leftrightarrow \widetilde{F}_{v,\mathcal{D}}(\omega)$ is diff. tr.

Functional equation evaluated on E_t

The meromorphic continuation satisfy

$$\begin{split} \tau\left(\widetilde{F}_{x,\mathcal{D}}(\omega)\right) &= \quad \widetilde{F}_{x,\mathcal{D}}(\omega) \quad + y(-\omega)\left(x(\omega+\omega_{3,t})-x(\omega)\right), \\ \tau\left(\widetilde{F}_{y,\mathcal{D}}(\omega)\right) &= \quad \widetilde{F}_{y,\mathcal{D}}(\omega) \quad + x(\omega)(y(-\omega)-y(\omega)), \end{split}$$

where $\tau := h(\omega) \mapsto h(\omega + \omega_{3,t})$.

These are two difference equations and we may use difference Galois theory.

Some consequences of difference Galois theory

Let
$$b := x(\omega)(y(-\omega) - y(\omega))$$
.

Proposition (D-H-R-S 2017)

The function $\widetilde{F}_{y,\mathcal{D}}$ is diff. alg. iff there exist an integer $n \geq 0$, $c_0, \ldots, c_{n-1} \in \mathbb{C}$ and $h \in \mathcal{M}er(E_t)$ such that

$$\partial_{\omega}^{n}(b)+c_{n-1}\partial_{\omega}^{n-1}(b)+\cdots+c_{1}\partial_{\omega}(b)+c_{0}b=\tau(h)-h.$$

Corollary

 $\widetilde{F}_{x,\mathcal{D}}$ is diff. alg. $\Leftrightarrow \widetilde{F}_{y,\mathcal{D}}$ is diff. alg.

Corollary

Assume that b has a pole $\omega_0 \in \mathbb{C}$, such that, for all $0 \neq k \in \mathbb{Z}$, $\tau^k(\omega_0)$ not a pole of b. Then, $\widetilde{F}_{y,\mathcal{D}}$ is diff. tr.

Poles of b

We now see b as a function $\mathbb{P}_1(\mathbb{C})^2 \supset E_t \to \mathbb{P}_1(\mathbb{C})$. The set of poles of b is contained in

$$\{\underbrace{(\infty,\alpha_1),(\infty,\alpha_2)}_{\text{Poles of }x(\omega)},\underbrace{(\beta_1,\infty),(\beta_2,\infty)}_{\text{Poles of }y(\omega)},\underbrace{(\beta_1,\gamma_1),(\beta_2,\gamma_2)}_{\text{Poles of }y(-\omega)}\}.$$

Lemma

- In the poles of x, α_1, α_2 are roots of $\sum_{(1,j)\in\mathcal{D}} y^{j+1}$.
- In the poles of y, β_1 , β_2 are roots of $\sum_{(i,1)\in\mathcal{D}} x^{i+1}$.

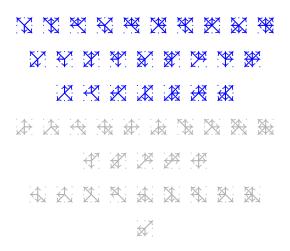
The base field

Lemma

Let $\mathbb{Q}(t) \subset L \subset \mathbb{C}$ field ext. Let $P \in E_t$. Then

$$P \in \mathbb{P}_1(L)^2 \Leftrightarrow \tau(P) \in \mathbb{P}_1(L)^2 \Leftrightarrow \iota_1(P) \in \mathbb{P}_1(L)^2 \Leftrightarrow \iota_2(P) \in \mathbb{P}_1(L)^2.$$

Generic case



Theorem (D-H-R-S 2017)

Assume that $\{\alpha_1, \alpha_2, \beta_1, \beta_2\} \cap (\mathbb{C} \setminus \mathbb{Q}(t)) \neq \emptyset$. Then, $\widetilde{F}_{x,\mathcal{D}}, \widetilde{F}_{y,\mathcal{D}}$ are differentially transcendent.

Sketch of proof in the case 🔀

- The poles of *b* are $\{(\infty, \pm i), (\pm i, \infty), (\pm i, \pm it + t)\}$.
- Involution $\sigma \in Gal(\mathbb{Q}(i,t)|\mathbb{Q}(t))$. Then $\sigma \circ \tau = \tau \circ \sigma$.

Definition

Let $P, Q \in E_t$. We say that $P \sim Q$ if $\exists k \in \mathbb{Z}$ such that $\tau^k(P) = Q$.

Lemma

$$(\infty,i) \not\sim (\infty,-i)$$
.

Proof.

Assume that $\tau^k(\infty, i) = (\infty, -i)$. We have $\tau^k(\infty, -i) = (\infty, i)$ and $\tau^{2k}(\infty, i) = (\infty, i)$. No fixed point by τ implies k = 0. Contradiction.

Sketch of proof in the case $\sqrt{}$

- The poles of b are $\{(\infty, \pm i), (\pm i, \infty), (\pm i, \pm it + t)\}$.
- Involution $\sigma \in Gal(\mathbb{Q}(i,t)|\mathbb{Q}(t))$. Then $\sigma \circ \tau = \tau \circ \sigma$.

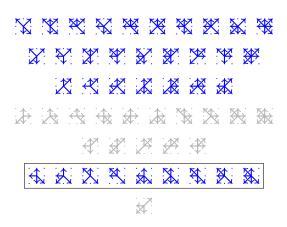
Definition

Let $P, Q \in E_t$. We say that $P \sim Q$ if $\exists k \in \mathbb{Z}$ such that $\tau^k(P) = Q$.

Lemma

$$(\infty,i) \not\sim \{(\infty,-i),(\pm i,\infty),(\pm i,\pm it+t)\}.$$

Triple pole case $(\nearrow, \rightarrow \notin \mathcal{D})$



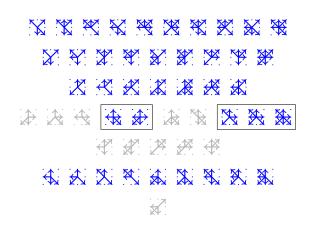
Triple pole case $(\nearrow, \ne \mathcal{D})$

- (∞, ∞) double pole of x.
- (∞, ∞) simple pole of y.
- (∞, ∞) only triple pole of b.

Corollary

Assume that \nearrow , \Rightarrow \notin \mathcal{D} . Then, $\widetilde{F}_{x,\mathcal{D}}$, $\widetilde{F}_{y,\mathcal{D}}$ are diff. tr.

Double pole case ($\nearrow \notin \mathcal{D}$)



Double pole case ($\nearrow \notin \mathcal{D}$)

- (∞, ∞) simple pole of x, resp y.
- (∞, \star) simple pole of x, resp. $y(-\omega)$.
- (∞, ∞) , (∞, \star) are only double poles of b.

Lemma

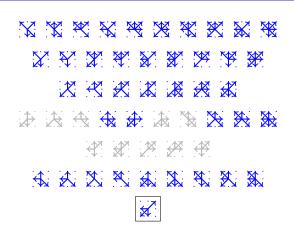
If
$$(\infty, \infty) \sim (\infty, \star)$$
, then $\exists k \in \mathbb{Z}, j \in \{1, 2\}$ s.t.

$$\iota_j \circ \tau^k(\infty, \infty) = \tau^k(\infty, \infty).$$

Corollary

Assume that $\mathcal{D} \in \left\{ \bigoplus_{x \in \mathcal{D}} \bigotimes_{x \in \mathcal{D}} \right\}$. Then, $\widetilde{F}_{x,\mathcal{D}}$, $\widetilde{F}_{y,\mathcal{D}}$ are diff. tr.

A symmetric case: 📈



A symmetric case: 🔀

There are 3 simple poles: $(\infty, 0)$, $(0, \infty)$, and (0, -1).

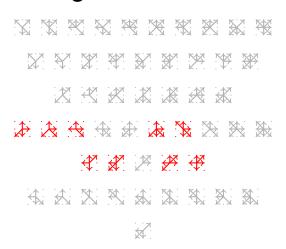
Lemma

If
$$(\alpha, \beta) \sim (\beta, \alpha)$$
, $\alpha, \beta \in \mathbb{P}_1(\mathbb{Q}(t))$, then $\exists \gamma \in \mathbb{P}_1(\mathbb{Q}(t))$, s.t.
$$\mathcal{K}_{\mathcal{D}}(\gamma, \gamma, t) = 0.$$

Corollary

The series $\widetilde{F}_{x,\mathcal{D}}$, $\widetilde{F}_{y,\mathcal{D}}$ are diff. tr.

Algebraic cases



Orbit of the poles, case 🚁

Polar divisor of <i>b</i>	$(-1, \frac{t}{t+1}) + (\infty, 0) + (-1, \infty)$
au-Orbit of one of the poles of b	$(-1, \frac{t}{t+1})$ $\downarrow \tau$ $(0, \infty)$ $\downarrow \tau$ $(\infty, 0)$ $\downarrow \tau$ $(0, 0)$ $\downarrow \tau$ $(-1, \infty)$

In 8 cases, every poles of b are on the same orbit

A criteria of algebraicity

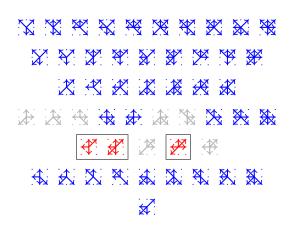
Proposition (D-H-R-S 2017)

The function $\widetilde{F}_{y,\mathcal{D}}$ is diff. alg. iff for all poles ω_0 of b, we have that

$$h(\omega) = \sum_{i=1}^{s} b(\omega + n_i \omega_{3,t})$$

is analytic at ω_0 where $\omega_0 + n_1\omega_{3,t}, \dots, \omega + n_s\omega_{3,t}$ are the poles of b that belong to $\omega_0 + \mathbb{Z}\omega_{3,t}$.

Uni-orbit, simple pole case



Uni-orbit, simple pole case

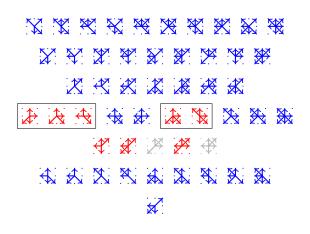
Lemma

 $b \in \mathcal{M}er(E_t) \Longrightarrow sum \ of \ residues \ of \ b \ is \ zero.$

Corollary

Assume that $\mathcal{D} \in \left\{ \begin{array}{c} & \\ \\ \\ \\ \end{array} \right\}$. Then, every poles of b are on the same orbit and are simple. Consequently, $\widetilde{F}_{x,\mathcal{D}}$, $\widetilde{F}_{y,\mathcal{D}}$ are diff. alg.

Uni-orbit, double pole case



Uni-orbit, double pole case

Lemma

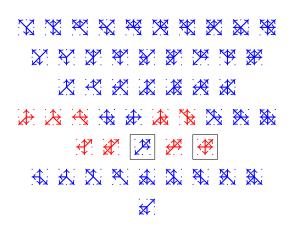
If
$$b = \sum_{\ell \geq k} \frac{c_\ell}{(\omega - \omega_0)^\ell}$$
, then $b = \sum_{\ell \geq k} \frac{(-1)^{\ell+1} c_\ell}{(\omega + \omega_0)^\ell}$.

Sketch of proof.

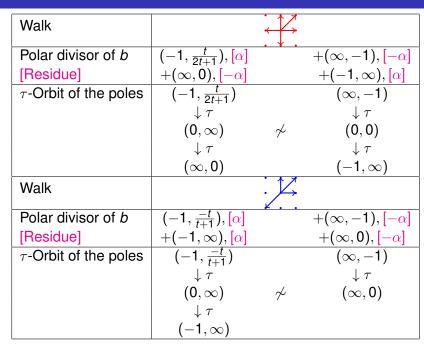
We use $b(-\omega) = -b(\omega)$.

Corollary

Bi-orbit case



Bi-orbit case



Conclusion and perspectives

- Mix of algebra and analysis allows us to treat every cases.
- In the differentially algebraic cases, explicit computation of the telescoper should lead to the expression of the differential equations.
- We now should be able to treat the genus zero case.