Differential and Difference Chow Form, Sparse Resultant, and Toric Variety

Xiao-Shan Gao

Academy of Mathematics and Systems Science Chinese Academy of Sciences

Outline

- Background
- Sparse Differential Resultant
- Differential Chow Form
- Difference Binomial and Toric Variety

Sparse Differential Resultant for Laurent Differential Polynomials

Sylvester Resultant

Two polynomials:
$$f = a_1 x^1 + a_{l-1} x^{l-1} + \dots + a_1 x + a_0$$

 $g = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0.$

Property: Res $(f,g) = 0 \iff f(x) = g(x) = 0$ has common solutions J.J. Sylvester, Phil Trans of Royal Soc of London, 407-548, 1883.

A Brief History of Resultant

Algebraic Resultant

- Sylvester (1883) resultant for two polynomials (n = 1)
- Macaulay (1902) multivariate resultant
- Gelfand & Sturmfels (1994) sparse resultant

A Brief History of Resultant

Algebraic Resultant

- Sylvester (1883) resultant for two polynomials (n = 1)
- Macaulay (1902) multivariate resultant
- Gelfand & Sturmfels (1994) sparse resultant

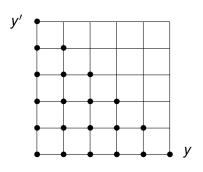
Differential Resultant

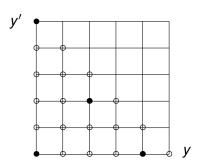
- Ritt (1932): Differential resultant for n = 1.
- Ferro (1997): Diff-Res as Macaulay resultant. **Not complete**.
- Zwillinger (1998): Handbook of Differential Equations.

No rigorous definition for differential multi-variate resultant No study of differential sparse resultant

Sparse Differential Polynomials

Sparse Differential Polynomials: with fixed monomials
 Most differential polynomials in practice are sparse





Dense Diff Polynomials
$$f = \sum_{i+j \le 5} *y^i(y')^j$$

Sparse Diff Polynomials
$$f = * + *y^4 + *y'^5 + *y^2y'^2$$

Notations

Ordinary differential field: (\mathcal{F}, δ) , e.g. $(\mathbf{Q}(x), \frac{d}{dx})$

Diff Indeterminates: $\mathbb{Y} = \{y_1, \dots, y_n\}.$

Notation: $y_i^{(k)} = \delta^k y_i$.

Laurent Diff Monomial: $M = \prod_{k=1}^n \prod_{l=0}^o (y_k^{(l)})^{d_{kl}}$ with $d_{kl} \in \mathbb{Z}$;

Laurent Diff Poly: $f = \sum_{k=1}^{m} a_k M_k$, M_k Laurent diff monomials.

Support of f: $A = \{M_1, \ldots, M_m\}$.

Laurent Diff Poly Ring: $\mathcal{F}\{\mathbb{Y}^{\pm}\}$.

Example. Laurent Differential Polynomial

$$\mathbb{P} = y_1 + y_1' y_2 \quad \Leftrightarrow \quad \mathbb{P} = 1 + y_1^{-1} y_1' y_2$$

Intersection Theorem is not true in diff case:

$$\dim(V\cap W)\geq \dim(V)+\dim(W)-n$$

Intersection Theorem is not true in diff case:

$$\dim(V\cap W)\geq \dim(V)+\dim(W)-n$$

Theorem

 $\mathcal{I} \subset \mathcal{F}\{\mathbb{Y}\}$: a prime diff ideal with dimension d > 0 and order h. f: a generic diff poly of order s with \mathbf{u}_f the set of its coefficients.

Then $\mathcal{I}_1 = [\mathcal{I}, f]$ is a prime diff ideal in $\mathcal{F}\langle \mathbf{u}_f \rangle \{ \mathbb{Y} \}$ with dimension d-1 and order h+s.

Intersection Theorem is not true in diff case:

$$\dim(V\cap W)\geq \dim(V)+\dim(W)-n$$

Theorem

 $\mathcal{I} \subset \mathcal{F}\{\mathbb{Y}\}$: a prime diff ideal with dimension d > 0 and order h. f: a generic diff poly of order s with \mathbf{u}_f the set of its coefficients.

Then $\mathcal{I}_1 = [\mathcal{I}, f]$ is a prime diff ideal in $\mathcal{F}(\mathbf{u}_f)\{\mathbb{Y}\}$ with dimension d-1and order h + s.

Dimension Conjecture (Ritt, 1950): $\dim[f_1,\ldots,f_r] > n-r$.

Intersection Theorem is not true in diff case:

$$\dim(V\cap W)\geq \dim(V)+\dim(W)-n$$

Theorem

 $\mathcal{I} \subset \mathcal{F}\{\mathbb{Y}\}$: a prime diff ideal with dimension d>0 and order h. f: a generic diff poly of order s with \mathbf{u}_f the set of its coefficients.

Then $\mathcal{I}_1 = [\mathcal{I}, f]$ is a prime diff ideal in $\mathcal{F}\langle \mathbf{u}_f \rangle \{\mathbb{Y}\}$ with dimension d-1 and order h+s.

Dimension Conjecture (Ritt, 1950): $\dim[f_1, \ldots, f_r] \ge n - r$.

Theorem (Generic Dimension Theorem)

 $f_1, \ldots, f_r (r \leq n)$: generic diff polynomials. Then

 $[f_1, \ldots, f_r]$: a prime diff ideal of dimension n-r and order $\sum_i \operatorname{ord}(f_i)$.

Sparse Differential Resultant

Generic Sparse Differential Polynomials:

$$\mathcal{A}_i = \{M_{i0}, M_{i1}, \dots, M_{il_i}\} (i = 0, \dots, n)$$
: Monomial sets $\mathbb{P}_i = \sum_{j=0}^{l_i} u_{ij} M_{ij}$ and $\mathbf{u}_i = \{u_{i1}, \dots, u_{il_i}\}$. $[\mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_n] \subset \mathbf{Q}\{\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_n, \mathbb{Y}, \mathbb{Y}^{-1}\}$

Sparse Differential Resultant

Generic Sparse Differential Polynomials:

$$\mathcal{A}_i = \{M_{i0}, M_{i1}, \dots, M_{il_i}\} (i = 0, \dots, n)$$
: Monomial sets $\mathbb{P}_i = \sum_{j=0}^{l_i} u_{ij} M_{ij}$ and $\mathbf{u}_i = \{u_{i1}, \dots, u_{il_i}\}$. $[\mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_n] \subset \mathbf{Q}\{\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_n, \mathbb{Y}, \mathbb{Y}^{-1}\}$

• Sparse Differential Resultant Exists, if the eliminant ideal:

$$[\mathbb{P}_0,\ldots,\mathbb{P}_n]\cap \mathbf{Q}\{\mathbf{u}_0,\mathbf{u}_1,\ldots,\mathbf{u}_n\}=\mathbf{sat}(\mathbf{R}(\mathbf{u}_0,\ldots,\mathbf{u}_n))$$
 is of codimension 1

Definition

R: Sparse Differential Resultant of $\mathbb{P}_0, \dots, \mathbb{P}_n$ or A_0, \dots, A_n .

Sparse Differential Resultant

Generic Sparse Differential Polynomials:

$$\begin{split} \mathcal{A}_i &= \{ \textit{M}_{i0}, \textit{M}_{i1}, \dots, \textit{M}_{il_i} \} \, (i = 0, \dots, n) \text{: Monomial sets} \\ \mathbb{P}_i &= \sum_{j=0}^{l_i} \textit{u}_{ij} \textit{M}_{ij} \quad \text{and } \mathbf{u}_i = \{ \textit{u}_{i1}, \dots, \textit{u}_{il_i} \}. \\ [\mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_n] \subset \mathbf{Q} \{ \mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_n, \mathbb{Y}, \mathbb{Y}^{-1} \} \end{split}$$

• Sparse Differential Resultant Exists, if the eliminant ideal:

$$[\mathbb{P}_0,\ldots,\mathbb{P}_n]\cap \mathbf{Q}\{\mathbf{u}_0,\mathbf{u}_1,\ldots,\mathbf{u}_n\}=\mathbf{sat}(\mathbf{R}(\mathbf{u}_0,\ldots,\mathbf{u}_n))$$
 is of codimension 1

 $\Leftrightarrow \mathbb{P}_i$ are Laurent differentially essential:

There exist
$$k_i$$
 ($i=0,\ldots,n$) with $1 \le k_i \le l_i$ such that d.tr.deg $\mathbf{Q} \langle \frac{M_{0k_0}}{M_{00}}, \frac{M_{1k_1}}{M_{10}}, \ldots, \frac{M_{nk_n}}{M_{n0}} \rangle / \mathbf{Q} = n$.

Definition

R: Sparse Differential Resultant of $\mathbb{P}_0, \dots, \mathbb{P}_n$ or A_0, \dots, A_n .

Examples

Example

$$n = 2$$
,

$$\mathbb{P}_i = u_{i0}y_1'' + u_{i1}y_1''' + u_{i2}y_2''' \ (i = 0, 1, 2).$$

d.tr.deg $\mathbf{Q} \langle \frac{y_1'''}{y_1''}, \frac{y_2'''}{y_1''} \rangle / \mathbf{Q} = 2 \implies \mathbb{P}_i$ form a diff essential system.

The sparse differential resultant is

$$\mathbf{R} = \left| \begin{array}{ccc} u_{00} & u_{01} & u_{02} \\ u_{10} & u_{11} & u_{12} \\ u_{20} & u_{21} & u_{22} \end{array} \right|.$$

Criterion for Existence of Sparse Resultant

$$\mathbb{P}_{i} = \sum_{j=0}^{l_{i}} u_{ij} M_{ij} (i = 0, ..., n).$$

• $M_{ij}/M_{i0} = \prod_{k=1}^{n} \prod_{l=0}^{s_i} (y_k^{(l)})^{d_{ijkl}}$. $d_{ijk} = \sum_{l=0}^{s_i} d_{ijkl} x_k^l \in \mathbf{Q}[x_k]$. Symbolic Support Vector of M_{ij}/M_{i0} : $\beta_{ij} = (d_{ij1}, \dots, d_{ijn})$

Criterion for Existence of Sparse Resultant

$$\mathbb{P}_i = \sum_{j=0}^{l_i} u_{ij} M_{ij} (i = 0, \ldots, n).$$

- $M_{ij}/M_{i0} = \prod_{k=1}^{n} \prod_{l=0}^{s_i} (y_k^{(l)})^{d_{ijkl}}.$ $d_{ijk} = \sum_{l=0}^{s_i} d_{ijkl} x_k^l \in \mathbf{Q}[x_k].$ Symbolic Support Vector of M_{ij}/M_{i0} : $\beta_{ij} = (d_{ij1}, \dots, d_{ijn})$
- Symbolic Support Vector of \mathbb{P}_i : $\beta_i = \sum_{j=0}^{l_i} u_{ij}\beta_{ij} = (d_{i1}, \dots, d_{in}).$
- Symbolic Support Matrix of $\mathbb{P}_0, \dots, \mathbb{P}_n$:

$$\mathbf{M}_{\mathbb{P}} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} d_{01} & d_{02} & \dots & d_{0n} \\ d_{11} & d_{12} & \dots & d_{1n} \\ & & \ddots & \\ d_{n1} & d_{n2} & \dots & d_{nn} \end{pmatrix}$$

Criterion for Existence of Sparse Resultant

$$\mathbb{P}_i = \sum_{j=0}^{l_i} u_{ij} M_{ij} (i = 0, \dots, n).$$

- $M_{ij}/M_{i0} = \prod_{k=1}^{n} \prod_{l=0}^{s_i} (y_k^{(l)})^{d_{ijkl}}.$ $d_{ijk} = \sum_{l=0}^{s_i} d_{ijkl} x_k^l \in \mathbf{Q}[x_k].$ Symbolic Support Vector of M_{ij}/M_{i0} : $\beta_{ij} = (d_{ij1}, \dots, d_{ijn})$
- Symbolic Support Vector of \mathbb{P}_i : $\beta_i = \sum_{i=0}^{l_i} u_{ij} \beta_{ij} = (d_{i1}, \dots, d_{in})$.
- Symbolic Support Matrix of $\mathbb{P}_0, \dots, \mathbb{P}_n$:

$$\mathbf{M}_{\mathbb{P}} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} d_{01} & d_{02} & \dots & d_{0n} \\ d_{11} & d_{12} & \dots & d_{1n} \\ & & \ddots & \\ d_{n1} & d_{n2} & \dots & d_{nn} \end{pmatrix}$$

Theorem (Like Linear Algebra!)

Sparse resultant exists for $\mathbb{P}_i \iff \operatorname{rk}(\mathbf{M}_{\mathbb{P}}) = n$.

Properties of Sparse Differential Resultant

Necessary Condition for ∃ of Non-poly Solutions

Lemma

 $(\mathbb{P}_i, \mathbf{u}_i)$ specializes to $(\overline{\mathbb{P}}_i, \mathbf{v}_i)$ by setting $\mathbf{u}_i = \mathbf{v}_i \in \mathcal{F}$.

If $\overline{\mathbb{P}}_0 = \cdots = \overline{\mathbb{P}}_n = 0$ has a non-poly solution,

then $\mathbf{R}(\mathbf{v}_0, ..., \mathbf{v}_n) = 0$.

Necessary Condition for ∃ of Non-poly Solutions

Lemma

 $(\mathbb{P}_i, \mathbf{u}_i)$ specializes to $(\overline{\mathbb{P}}_i, \mathbf{v}_i)$ by setting $\mathbf{u}_i = \mathbf{v}_i \in \mathcal{F}$.

If $\overline{\mathbb{P}}_0 = \cdots = \overline{\mathbb{P}}_n = 0$ has a non-poly solution,

then $\mathbf{R}(\mathbf{v}_0, ..., \mathbf{v}_n) = 0$.

Example (Why Non-Polynomial solution?)

 $\mathcal{F} = \mathbf{Q}(x)$, differential operator: $\frac{\partial}{\partial x}$

$$\mathbb{P}_{i} = u_{i0}y_{1}'' + u_{i1}y_{1}''' + u_{i2}y_{2}''' \ (i = 0, 1, 2).$$

The sparse differential resultant $\mathbf{R} = \begin{vmatrix} u_{00} & u_{01} & u_{02} \\ u_{10} & u_{11} & u_{12} \\ u_{20} & u_{21} & u_{22} \end{vmatrix} \neq 0.$

Let
$$a_1 = x + 1$$
, $a_2 = x^2 + x + 1$.

Then
$$a_1'' = a_2''' = 0$$
. (a_1, a_2) : a solution of $\mathbb{P}_0 = \mathbb{P}_1 = \mathbb{P}_2 = 0$

• $A_i = (\mathcal{M}_{i0}, \dots, \mathcal{M}_{il_i})$: Differential Monomials

- $A_i = (\mathcal{M}_{i0}, \dots, \mathcal{M}_{il_i})$: Differential Monomials
- $\mathcal{L}(A_i) = \{F_i = \sum_{j=0}^{l_i} c_i M_{ij}\}$: all diff polys with support A_i .

- $A_i = (\mathcal{M}_{i0}, \dots, \mathcal{M}_{il_i})$: Differential Monomials
- $\mathcal{L}(A_i) = \{F_i = \sum_{j=0}^{l_i} c_i M_{ij}\}$: all diff polys with support A_i .
- $\mathcal{Z}_0(\mathcal{A}_0,\ldots,\mathcal{A}_n)$: set of F_i having a common **non-poly solution**.
- $\overline{\mathcal{Z}_0(\mathcal{A}_0,\ldots,\mathcal{A}_n)}$: Kolchin diff closure of $\mathcal{Z}_0(\mathcal{A}_0,\ldots,\mathcal{A}_n)$.

- $A_i = (\mathcal{M}_{i0}, \dots, \mathcal{M}_{il_i})$: Differential Monomials
- $\mathcal{L}(A_i) = \{F_i = \sum_{j=0}^{l_i} c_i M_{ij}\}$: all diff polys with support A_i .
- $\mathcal{Z}_0(\mathcal{A}_0,\ldots,\mathcal{A}_n)$: set of F_i having a common **non-poly solution**.
- $\overline{\mathcal{Z}_0(\mathcal{A}_0,\ldots,\mathcal{A}_n)}$: Kolchin diff closure of $\mathcal{Z}_0(\mathcal{A}_0,\ldots,\mathcal{A}_n)$.

Theorem

$$\overline{\mathcal{Z}_0(\mathcal{A}_0,\ldots,\mathcal{A}_n)}=\mathbb{V}\big(\mathsf{sat}(\mathrm{Res}_{\mathcal{A}_0,\ldots,\mathcal{A}_n})\big).$$

On a Kolchin open set of $\mathbb{V}(\mathbf{sat}(\operatorname{Res}_{A_0,\ldots,A_n}))$,

$$F_0 = \cdots = F_n = 0$$
 have non-poly solutions $\Leftrightarrow \operatorname{Res}_{F_0, \dots, F_n} = 0$.

Order and Differential homogeneity

```
\mathbb{G} = \{g_1, \dots, g_n\}: differential polynomials.

Jacobi Number: \operatorname{Jac}(\mathbb{G}) = \max_{\sigma} \sum_{i=1}^{n} \operatorname{ord}(g_i, y_{\sigma}(i)), where \sigma is a permutation of \{1, \dots, n\}.
```

Order and Differential homogeneity

```
\mathbb{G} = \{g_1, \dots, g_n\}: differential polynomials.

Jacobi Number: \operatorname{Jac}(\mathbb{G}) = \max_{\sigma} \sum_{i=1}^{n} \operatorname{ord}(g_i, y_{\sigma}(i)), where \sigma is a permutation of \{1, \dots, n\}.
```

Order and Differential homogeneity

- $\delta \text{Res}(\mathbf{u}_0, \dots, \mathbf{u}_n)$ is differentially homogeneous in each \mathbf{u}_i and is of order $\mathbf{h}_i = \mathbf{s} \mathbf{s}_i$ in \mathbf{u}_i $(i = 0, \dots, n)$ where $\mathbf{s} = \sum_{l=0}^n \mathbf{s}_l$.
- S- δ Res $(\mathbf{u}_0, \dots, \mathbf{u}_n)$ is differentially homogeneous in each \mathbf{u}_i and is of order $h_i \leq J_i = \operatorname{Jac}(\mathbb{P}_{\hat{i}})$ in \mathbf{u}_i , where $\mathbb{P}_{\hat{i}} = \{\mathbb{P}_0, \dots, \mathbb{P}_n\} \setminus \{\mathbb{P}_i\}$.

• Algebraic Resultant: $\operatorname{Res}(A(x),B(x))=c\prod_{\eta,B(\eta)=0}A(\eta).$

- Algebraic Resultant: $\operatorname{Res}(A(x), B(x)) = c \prod_{\eta, B(\eta) = 0} A(\eta)$.
- Differential Resultant:

$$\delta \mathsf{Res}(\mathbf{u}_0, \dots, \mathbf{u}_n) = A(\mathbf{u}_0, \dots, \mathbf{u}_n) \prod_{\tau=1}^{t_0} \mathbb{P}_{\mathbf{0}}(\eta_{\tau \mathbf{1}}, \dots, \eta_{\tau \mathbf{n}})^{(\mathbf{h}_{\mathbf{0}})}.$$
 And $(\eta_{\tau \mathbf{1}}, \dots, \eta_{\tau \mathbf{n}})$ are generic points of $[\mathbb{P}_1, \dots, \mathbb{P}_n]$.

- Algebraic Resultant: $\operatorname{Res}(A(x), B(x)) = c \prod_{\eta, B(\eta) = 0} A(\eta)$.
- Differential Resultant:

$$\delta \mathsf{Res}(\mathsf{u}_0, \dots, \mathsf{u}_n) = A(\mathsf{u}_0, \dots, \mathsf{u}_n) \prod_{\tau=1}^{t_0} \mathbb{P}_{\mathbf{0}}(\eta_{\tau 1}, \dots, \eta_{\tau n})^{(\mathsf{h}_0)}.$$
 And $(\eta_{\tau 1}, \dots, \eta_{\tau n})$ are generic points of $[\mathbb{P}_1, \dots, \mathbb{P}_n]$.

• Sparse Differential Resultant:

$$S-\delta \text{Res}(\mathbf{u}_0,\ldots,\mathbf{u}_n) = A \prod_{\tau=1}^{t_0} (u_{00} + \sum_{k=1}^{t_0} u_{0k} \xi_{\tau k})^{(h_0)}.$$

- Algebraic Resultant: $\operatorname{Res}(A(x), B(x)) = c \prod_{\eta, B(\eta) = 0} A(\eta)$.
- Differential Resultant:

$$\delta \mathsf{Res}(\mathsf{u}_0, \dots, \mathsf{u}_n) = A(\mathsf{u}_0, \dots, \mathsf{u}_n) \prod_{\tau=1}^{t_0} \mathbb{P}_{\mathbf{0}}(\eta_{\tau 1}, \dots, \eta_{\tau n})^{(\mathsf{h}_0)}.$$
 And $(\eta_{\tau 1}, \dots, \eta_{\tau n})$ are generic points of $[\mathbb{P}_1, \dots, \mathbb{P}_n]$.

• Sparse Differential Resultant:

$$S-\delta \text{Res}(\mathbf{u}_0,\ldots,\mathbf{u}_n) = A \prod_{\tau=1}^{t_0} (u_{00} + \sum_{k=1}^{t_0} u_{0k} \xi_{\tau k})^{(h_0)}.$$

When 1) Any *n* of the A_i diff independent and

2)
$$\mathbf{e}_j \in \operatorname{Span}_{\mathbb{Z}} \{ \alpha_{ij} - \alpha_{i0} \},$$

the result can be strengthened:

$$S-\delta \text{Res}(\mathbf{u}_0,\ldots,\mathbf{u}_n) = A \prod_{\tau=1}^{t_0} \left(\frac{\mathbb{P}_0(\eta_{\tau 1},\ldots,\eta_{\tau n})}{\mathbf{M}_{00}(\eta_{\tau 1},\ldots,\eta_{\tau n})} \right)^{(\mathbf{h}_0)}.$$

And $\eta_{\tau} = (\eta_{\tau 1}, \dots, \eta_{\tau n})$ are generic points of $[\mathbb{P}_0^N, \dots, \mathbb{P}_n^N]$: m.

• Sylvester Resultant: $Res(A(x), B(x)) = c \prod_{\eta, B(\eta)=0} A(\eta)$.

- Sylvester Resultant: $Res(A(x), B(x)) = c \prod_{\eta, B(\eta)=0} A(\eta)$.
- Differential Resultant:

$$\delta \text{Res}(\mathbf{u}_0, \dots, \mathbf{u}_n) = A(\mathbf{u}_0, \dots, \mathbf{u}_n) \prod_{\tau=1}^{t_0} \mathbb{P}_{\mathbf{0}}(\eta_{\tau \mathbf{1}}, \dots, \eta_{\tau \mathbf{n}})^{(\mathbf{h}_{\mathbf{0}})}.$$

And $(\eta_{\tau 1}, \dots, \eta_{\tau n})$ are generic points of $[\mathbb{P}_1, \dots, \mathbb{P}_n].$

- Sylvester Resultant: $Res(A(x), B(x)) = c \prod_{\eta, B(\eta)=0} A(\eta)$.
- Differential Resultant:

$$\delta \text{Res}(\mathbf{u}_0, \dots, \mathbf{u}_n) = A(\mathbf{u}_0, \dots, \mathbf{u}_n) \prod_{\tau=1}^{t_0} \mathbb{P}_{\mathbf{0}}(\eta_{\tau \mathbf{1}}, \dots, \eta_{\tau \mathbf{n}})^{(\mathbf{h}_{\mathbf{0}})}.$$

And $(\eta_{\tau \mathbf{1}}, \dots, \eta_{\tau n})$ are generic points of $[\mathbb{P}_1, \dots, \mathbb{P}_n].$

Sylvester Resultant:

$$Res(A(x),B(x)) = A(x)T(x) + B(x)W(x),$$
 where $deg(T) < deg(B), deg(W) < deg(A).$

- Sylvester Resultant: Res $(A(x), B(x)) = c \prod_{\eta, B(\eta) = 0} A(\eta)$.
- Differential Resultant:

$$\delta \text{Res}(\mathbf{u}_0, \dots, \mathbf{u}_n) = A(\mathbf{u}_0, \dots, \mathbf{u}_n) \prod_{\tau=1}^{t_0} \mathbb{P}_{\mathbf{0}}(\eta_{\tau \mathbf{1}}, \dots, \eta_{\tau \mathbf{n}})^{(\mathbf{h}_{\mathbf{0}})}.$$
And $(\eta_{\tau \mathbf{1}}, \dots, \eta_{\tau n})$ are generic points of $[\mathbb{P}_1, \dots, \mathbb{P}_n]$.

Sylvester Resultant:

$$Res(A(x),B(x)) = A(x)T(x) + B(x)W(x),$$
 where $\mbox{deg}(\mathcal{T}) < \mbox{deg}(\mathcal{B}),\mbox{deg}(\mathcal{W}) < \mbox{deg}(\mathcal{A}).$

Differential Resultant:

$$\delta \mathbf{Res}(\mathbf{u}_0,\dots,\mathbf{u}_n) = \sum_{i=0}^n \sum_{j=0}^{s-s_i} h_{ij} \mathbb{P}_i^{(j)}$$
 where $s_i = \mathbf{ord}(\mathbb{P}_i)$ and $s = s_0 + \dots + s_n$, and $\mathbf{deg}(G_{ij}\mathbb{P}_i^{(j)}) \leq (m+1)\mathbf{deg}(R) \leq (m+1)^{ns+n+2}$.

Degree Bound of Sparse Differential Resultant

Laurent Diff Essential System: \mathbb{P}_i , ord(\mathbb{P}_i) = s_i and deg(\mathbb{P}_i) = m_i .

R : the sparse resultant of $\mathbb{P}_0, \dots, \mathbb{P}_n$.

Degree Bound of Sparse Differential Resultant

Laurent Diff Essential System: \mathbb{P}_i , ord(\mathbb{P}_i) = s_i and deg(\mathbb{P}_i) = m_i .

R : the sparse resultant of $\mathbb{P}_0, \dots, \mathbb{P}_n$.

Theorem (Degree Bounds)

1 $deg(\mathbf{R}) \leq \prod_{i=0}^{n} (m_i + 1)^{h_i + 1} \leq (m+1)^{ns+n+1}$, where $m = \max_i \{m_i\}$.

Degree Bound of Sparse Differential Resultant

Laurent Diff Essential System: \mathbb{P}_i , ord(\mathbb{P}_i) = s_i and deg(\mathbb{P}_i) = m_i .

R : the sparse resultant of $\mathbb{P}_0, \dots, \mathbb{P}_n$.

Theorem (Degree Bounds)

- **1** $deg(\mathbf{R}) \leq \prod_{i=0}^{n} (m_i + 1)^{h_i + 1} \leq (m+1)^{ns+n+1}$, where $m = \max_i \{m_i\}$.
- $\mathbf{R} = \sum_{i=0}^{n} \sum_{j=0}^{s-s_i} h_{ij} \mathbb{P}_i^{(j)}$ $\deg(G_{ij} \mathbb{P}_i^{(j)}) \leq (m+1) \deg(R) \leq (m+1)^{ns+n+2}.$

BKK Degree Bound for Differential Resultant

Theorem

 \mathbb{P}_i (i = 0, ..., n): generic diff polynomials in \mathbb{Y} with order s_i , coefficient set \mathbf{u}_i , and $s = \sum_{i=0}^n s_i$. Then

$$\text{deg}(\textbf{R},\textbf{u}_i) \leq \textstyle \sum_{k=0}^{s-s_i} \mathcal{M}\big((\mathcal{Q}_{jl})_{j \neq i, 0 \leq l \leq s-s_i}, \mathcal{Q}_{i0}, \ldots, \mathcal{Q}_{i,k-1}, \mathcal{Q}_{i,k+1}, \ldots, \mathcal{Q}_{i,s-s_i}\big).$$

 Q_{jl} : Newton polytope of $\mathbb{P}_j^{(l)}$ as a polynomial in $y_1^{[s]}, \ldots, y_n^{[s]}$. $\mathcal{M}(Q_1, \ldots, Q_n)$: Mixed volume of Q_1, \ldots, Q_n .

BKK Degree Bound for Differential Resultant

Theorem

 \mathbb{P}_i (i = 0, ..., n): generic diff polynomials in \mathbb{Y} with order s_i , coefficient set \mathbf{u}_i , and $s = \sum_{i=0}^n s_i$. Then

$$\text{deg}(\mathbf{R},\mathbf{u}_i) \leq \sum_{k=0}^{s-s_i} \mathcal{M}\big((\mathcal{Q}_{jl})_{j\neq i,0 \leq l \leq s-s_j}, \mathcal{Q}_{i0}, \dots, \mathcal{Q}_{i,k-1}, \mathcal{Q}_{i,k+1}, \dots, \mathcal{Q}_{i,s-s_i}\big).$$

 \mathcal{Q}_{jl} : Newton polytope of $\mathbb{P}_{j}^{(l)}$ as a polynomial in $y_{1}^{[s]}, \ldots, y_{n}^{[s]}$. $\mathcal{M}(\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{n})$: Mixed volume of $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{n}$.

Example

$$\mathbb{P}_0 = u_{00} + u_{01}y + u_{02}y' + u_{03}y^2 + u_{04}yy' + u_{05}(y')^2$$

$$\mathbb{P}_1 = u_{10} + u_{11}y + u_{12}y' + u_{13}y^2 + u_{14}yy' + u_{15}(y')^2$$

Bézout-type degree bound: $deg(R) \le (2+1)^4 = 81$.

BKK-type degree bound: $deg(R) \le 20$.

An Algorithm for Sparse Differential Resultant

Outline of the Algorithm. Knowing order and degree bounds, we compute sparse diff resultant by solving linear equations. Precisely,

An Algorithm for Sparse Differential Resultant

Outline of the Algorithm. Knowing order and degree bounds, we compute sparse diff resultant by solving linear equations. Precisely,

- Search for $\mathbf{R}(\mathbf{u}_0, \dots, \mathbf{u}_n)$ with order $h_i = 0, \dots, s s_i$ and with degree from $D = 1, \dots, \prod_{i=0}^n (m_i + 1)^{h_i + 1}$.
- ② With fixed h_i and D, computing coefficients of \mathbf{R} and G_{ik} by solving linear equations raising from

$$\mathbf{R}(\mathbf{u}_0,\ldots,\mathbf{u}_n)=\sum_{i=0}^n\sum_{k=0}^{h_i}h_{ik}\mathbb{P}_i^{(k)}.$$

An Algorithm for Sparse Differential Resultant

Outline of the Algorithm. Knowing order and degree bounds, we compute sparse diff resultant by solving linear equations. Precisely,

- Search for $\mathbf{R}(\mathbf{u}_0, \dots, \mathbf{u}_n)$ with order $h_i = 0, \dots, s s_i$ and with degree from $D = 1, \dots, \prod_{i=0}^n (m_i + 1)^{h_i + 1}$.
- With fixed h_i and D, computing coefficients of **R** and G_{ik} by solving linear equations raising from

$$\mathbf{R}(\mathbf{u}_0,\ldots,\mathbf{u}_n) = \sum_{i=0}^{n} \sum_{k=0}^{h_i} h_{ik} \mathbb{P}_i^{(k)}.$$

Theorem (Computing Complexity)

 $O(m^{O(nls^2)})$ **Q**-arithmetic operations.

n: number of variables; s: order of system; l: size of sparse system

Difference Sparse Resultant

Comparison with differential sparse resultant:

companion min amoronia oparos recaltant:		
	Difference Case	Differential Case
Definition	$\operatorname{sat}(\mathbf{R}, R_1, \dots, R_m)$	sat(R)
	Problem: $m = 0$?	
Criterion	$\mathbf{M}_{\mathbb{P}} \in \mathbb{Z}[\mathbf{x}]^{(n+1) \times n}$	$\mathbf{M}_{\mathbb{P}} \in \mathbb{Z}[\mathbf{u}_{ij}, \mathbf{X}_1, \dots, \mathbf{X}_n]^{(n+1) \times n}$
Matrix	$\mathbf{R} = \det(\mathbf{M})/\det(\mathbf{M}_0)$?
∃ solutions	Necessary non-zero sols	Nec and Suff non-poly sol
	$\overline{\mathcal{Z}_0} = \mathbb{V}(sat(R, R_1, \dots, R_m))$	$\overline{\mathcal{Z}_0} = \mathbb{V}(sat(R))$
Homogeneity	Transformally homogenous	Differentially homogenous
	$f(\lambda \mathbb{Y}) = M(\lambda)f(\mathbb{Y})$	$f(\lambda \mathbb{Y}) = \lambda^m f(\mathbb{Y})$
Degree	Dense: "=" BKK number	Dense: BKK bound
	Sparse: Bezout Type bound	Sparse: Bezout Type bound
Order	Sparse: Jacobi bound	The same
	Dense: $s - s_i$	The same

Differential Chow Form

Example: Plücker Coordinates

Using coordinates to represent algebraic variety

Example: Plücker Coordinates

Using coordinates to represent algebraic variety

Lines in P(3):

• Line **L** :=
$$\begin{cases} a_0x_0 + a_1x_1 + a_2x_2 + a_3x_3 = 0 \\ b_0x_0 + b_1x_1 + b_2x_2 + b_3x_3 = 0 \end{cases}$$
 \Leftrightarrow (one to one correspondence)

Plücker Coordinates:
$$p^{ij} = \begin{vmatrix} a_i & a_j \\ b_i & b_j \end{vmatrix}$$
, $i, j = 0, 1, 2, 3$

Example: Plücker Coordinates

Using coordinates to represent algebraic variety

Lines in P(3):

• Line **L** :=
$$\begin{cases} a_0x_0 + a_1x_1 + a_2x_2 + a_3x_3 = 0 \\ b_0x_0 + b_1x_1 + b_2x_2 + b_3x_3 = 0 \end{cases}$$
 \Leftrightarrow (one to one correspondence)

Plücker Coordinates:
$$p^{ij} = \begin{vmatrix} a_i & a_j \\ b_i & b_j \end{vmatrix}, i, j = 0, 1, 2, 3$$

• Plücker coordinate $C = (p^{01}, p^{02}, p^{03}, p^{23}, p^{31}, p^{12}) \in \mathbf{P}(5)$

C represents a line in P(3)

 \longleftrightarrow

C is on hypersurface $p^{23}p^{01} + p^{31}p^{02} + p^{12}p^{03} = 0$.

Using coordinates to represent algebraic variety:

• Lines in P(3): Plücker Coordinates

$$\{\text{Line } \mathbf{L} \subset \mathbf{P}(3)\} \longleftrightarrow \text{hypersurface } p^{23}p^{01} + p^{31}p^{02} + p^{12}p^{03} = 0.$$

Using coordinates to represent algebraic variety:

• Lines in P(3): Plücker Coordinates

$$\{\text{Line } \textbf{L} \subset \textbf{P}(3)\} \longleftrightarrow \text{hypersurface } p^{23}p^{01}+p^{31}p^{02}+p^{12}p^{03}=0.$$

• Subspace of d-dim in P(n): Grassmann Coordinates

$$\{S_d \subset \mathbf{P}(n)\} \longleftrightarrow$$
 Grassmann Variety

Using coordinates to represent algebraic variety:

- Lines in P(3): Plücker Coordinates {Line $\mathbf{L} \subset \mathbf{P}(3)$ } \longleftrightarrow hypersurface $p^{23}p^{01} + p^{31}p^{02} + p^{12}p^{03} = 0$.
- Subspace of d-dim in $\mathbf{P}(n)$: Grassmann Coordinates $\{S_d \subset \mathbf{P}(n)\} \longleftrightarrow$ Grassmann Variety
- Algebraic Variety in P(n): Chow Coordinates
 {(r,d)− cycles} ← Chow Variety

Using coordinates to represent algebraic variety:

- Lines in P(3): Plücker Coordinates {Line L \subset P(3)} \longleftrightarrow hypersurface $p^{23}p^{01} + p^{31}p^{02} + p^{12}p^{03} = 0$.
- Subspace of d-dim in $\mathbf{P}(n)$: Grassmann Coordinates $\{S_d \subset \mathbf{P}(n)\} \longleftrightarrow$ Grassmann Variety
- Algebraic Variety in P(n): Chow Coordinates
 {(r,d)− cycles} ←→ Chow Variety
- Differential Analog?

Definition of Differential Chow Form

 $\mathcal{I} \subset \mathcal{F}\{\mathbb{Y}\}$: prime differential ideal of dimension d.

d+1 Generic Differential Primes:

$$\mathbb{P}_i = u_{i0} + u_{i1}y_1 + \cdots + u_{in}y_n (i = 0, \dots, d).$$

 $\mathbf{u}_i = (u_{i0}, \dots, u_{in}):$ coefficient set of \mathbb{P}_i

Definition of Differential Chow Form

 $\mathcal{I} \subset \mathcal{F}\{Y\}$: prime differential ideal of dimension d.

d+1 Generic Differential Primes:

$$\mathbb{P}_{i} = u_{i0} + u_{i1}y_{1} + \cdots + u_{in}y_{n} (i = 0, \dots, d).$$

 $\mathbf{u}_{i} = (u_{i0}, \dots, u_{in}):$ coefficient set of \mathbb{P}_{i}

Theorem

By intersecting \mathcal{I} with the d+1 primes, the eliminant ideal

$$[\mathcal{I}, \mathbb{P}_0, \dots, \mathbb{P}_d] \cap \mathcal{F}\{\textbf{u}_0, \textbf{u}_1, \dots, \textbf{u}_d\} = \text{sat}(\textit{F}(\textbf{u}_0, \textbf{u}_1, \dots, \textbf{u}_d))$$

is a prime ideal of co-dimension one.

Differential Chow form of \mathcal{I} or $\mathbb{V}(\mathcal{I})$:

$$F(\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_d) = f(\mathbf{u}; u_{00}, \dots, u_{d0})$$

Order of Differential Chow Form

Chow form of \mathcal{I} : $F(\mathbf{u}_0, \mathbf{u}_1, ..., \mathbf{u}_d) = f(\mathbf{u}; u_{00}, u_{10}, ..., u_{d0})$

Property of Chow form.

- $F(\ldots, \mathbf{u}_{\sigma}, \ldots, \mathbf{u}_{\rho}, \ldots) = (-1)^{r_{\sigma\rho}} F(\ldots, \mathbf{u}_{\rho}, \ldots, \mathbf{u}_{\sigma}, \ldots).$
- $\operatorname{ord}(F, u_{00}) \neq 0$, $\operatorname{ord}(F, u_{00}) = \operatorname{ord}(F, u_{ij})$ if u_{ij} occurs in F

Order of Differential Chow Form

Chow form of \mathcal{I} : $F(\mathbf{u}_0, \mathbf{u}_1, ..., \mathbf{u}_d) = f(\mathbf{u}; u_{00}, u_{10}, ..., u_{d0})$

Property of Chow form.

- $F(\ldots,\mathbf{u}_{\sigma},\ldots,\mathbf{u}_{\rho},\ldots)=(-1)^{r_{\sigma\rho}}F(\ldots,\mathbf{u}_{\rho},\ldots,\mathbf{u}_{\sigma},\ldots).$
- ord $(F, u_{00}) \neq 0$, ord $(F, u_{00}) =$ ord (F, u_{ij}) if u_{ij} occurs in F

Order of Chow form: $ord(F) = ord(f, u_{00})$.

Order of Differential Chow Form

Chow form of \mathcal{I} : $F(\mathbf{u}_0, \mathbf{u}_1, ..., \mathbf{u}_d) = f(\mathbf{u}; u_{00}, u_{10}, ..., u_{d0})$

Property of Chow form.

- $F(\ldots,\mathbf{u}_{\sigma},\ldots,\mathbf{u}_{\rho},\ldots)=(-1)^{r_{\sigma\rho}}F(\ldots,\mathbf{u}_{\rho},\ldots,\mathbf{u}_{\sigma},\ldots).$
- ord $(F, u_{00}) \neq 0$, ord $(F, u_{00}) =$ ord (F, u_{ij}) if u_{ij} occurs in F

Order of Chow form: $ord(F) = ord(f, u_{00})$.

Theorem (Order of Chow Form)

$$\operatorname{ord}(F) = \operatorname{ord}(\mathcal{I}).$$

Degree of Differential Chow Form

Differentially homogenous diff poly of degree *m*:

$$p(ty_0, ty_1 \ldots, ty_n) = t^m p(y_0, y_1, \ldots, y_n)$$

Theorem

 $F(\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_d)$: differential Chow form of V.

Then $F(\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_d)$ is differentially homogenous of degree r in each set \mathbf{u}_i and F is of total degree (d+1)r.

Definition (Differential degree)

r as above is defined to be the **differential degree** of \mathcal{I} , which is an invariant of \mathcal{I} under invertible linear transformations.

Factorization of Differential Chow Form

V: a diff irreducible variety of dimension *d* and order *h*.

 $F(\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_d)$: the differential Chow form of V.

Theorem $(F(\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_d))$ can be uniquely factored)

$$F(\mathbf{u}_{0}, \mathbf{u}_{1}, \dots, \mathbf{u}_{d}) = A(\mathbf{u}_{0}, \mathbf{u}_{1}, \dots, \mathbf{u}_{d}) \prod_{\tau=1}^{g} (u_{00} + \sum_{\rho=1}^{n} \mathbf{u}_{0\rho} \xi_{\tau\rho})^{(h)}$$

$$= A(\mathbf{u}_{0}, \mathbf{u}_{1}, \dots, \mathbf{u}_{d}) \prod_{\tau=1}^{g} \mathbb{P}_{0}(\xi_{\tau 1}, \dots, \xi_{\tau n})^{(h)}$$

where $g = \deg(F, u_{00}^{(h)})$ and $\xi_{\tau\rho}$ are in an extension field of \mathcal{F} .

And the points $(\xi_{\tau 1}, \dots, \xi_{\tau n})$ $(\tau = 1, \dots, g)$ are generic points of the variety V.

Leading Differential Degree

Differential primes:

$$\mathbb{P}_i := u_{i0} + u_{i1}y_1 + \cdots + u_{in}y_n (i = 1, \dots, d),$$

Algebraic primes:

$${}^{a}\mathbb{P}_{0} := u_{00} + u_{01}y_{1} + \dots + u_{0n}y_{n},$$

$${}^{a}\mathbb{P}_{0}^{(s)} := u_{00}^{(s)} + \sum_{j=1}^{n} \sum_{k=0}^{s} \binom{s}{k} u_{0j}^{(k)} y_{j}^{(s-k)} (s = 1, 2, \dots)$$

Theorem

 $(\xi_{\tau 1}, \dots, \xi_{\tau n})$ $(\tau = 1, \dots, g)$ are the only elements of V which lie on $\mathbb{P}_1, \dots, \mathbb{P}_d$ as well as on ${}^a\mathbb{P}_0, {}^a\mathbb{P}_0', \dots, {}^a\mathbb{P}_0^{(h-1)}$.

Definition

Number g is defined to be the leading diff degree of V or I.

A diff variety V has index(n, d, h, g, m) if $V \subset \mathcal{E}^n$ has invariants: dim d, order h, leading diff degree g, and diff degree m.

A diff variety V has index(n, d, h, g, m) if $V \subset \mathcal{E}^n$ has invariants: dim d, order h, leading diff degree g, and diff degree m.

Diff Cycle: $V = \sum_{i} s_i V_i$, V_i irreducible of index (d, h, g, m)

- Chow Form of $\mathbf{V}: \prod_i F_i^{s_i}, F_i$ Chow form of V_i
- Index of $\mathbf{V}: (d, h, \sum_i s_i g_i, \sum_i s_i m_i)$

A diff variety V has index(n, d, h, g, m) if $V \subset \mathcal{E}^n$ has invariants: dim d, order h, leading diff degree g, and diff degree m.

Diff Cycle: $\mathbf{V} = \sum_{i} s_{i} V_{i}$, V_{i} irreducible of index (d, h, g, m)

- Chow Form of $\mathbf{V}: \prod_i F_i^{s_i}, F_i$ Chow form of V_i
- Index of $\mathbf{V}: (d, h, \sum_i s_i g_i, \sum_i s_i m_i)$

Definition

A diff variety $\mathbb V$ is a **Chow Variety** if $(\bar a_i) \in \mathbb V$

- $\Leftrightarrow \overline{F}$ with coef (\overline{a}_i) : Chow form with index (n, d, h, g, m).
- \Leftrightarrow V: diff cycle of index (n, d, h, g, m).

A diff variety V has index(n, d, h, g, m) if $V \subset \mathcal{E}^n$ has invariants: dim d, order h, leading diff degree g, and diff degree m.

Diff Cycle: $\mathbf{V} = \sum_{i} s_{i} V_{i}$, V_{i} irreducible of index (d, h, g, m)

- Chow Form of $\mathbf{V}: \prod_i F_i^{s_i}, F_i$ Chow form of V_i
- Index of $\mathbf{V}: (d, h, \sum_i s_i g_i, \sum_i s_i m_i)$

Definition

A diff variety $\mathbb V$ is a **Chow Variety** if $(\bar a_i) \in \mathbb V$

- $\Leftrightarrow \bar{F}$ with coef (\bar{a}_i) : Chow form with index (n, d, h, g, m).
- \Leftrightarrow V: diff cycle of index (n, d, h, g, m).

Chow Coordinate of $V:(\bar{a}_i)$

In affine case, Chow Variety is a constructible set.

Theorem (Gao-Li-Yuan, 2013)

In the case g = 1, the differential Chow variety exists.

Difficulty for the general case: Eliminating both differential and algebraic variables.

Theorem (Gao-Li-Yuan, 2013)

In the case g = 1, the differential Chow variety exists.

Difficulty for the general case: Eliminating both differential and algebraic variables.

Theorem (Freitag-Li-Scanlon, 2015)

The differential Chow variety exists.

Key Ideas: Use prolongation admissible varieties and prolongation sequences to reduce the construction to the algebraic case. Definability in *ACF* and *DCF*₀ is also used.

• $A = \{M_0, \dots, M_l\}$: a set of diff monomials

- $A = \{M_0, \dots, M_l\}$: a set of diff monomials
- Consider the map

$$\begin{array}{ccc}
\phi_{\mathcal{A}}: (\mathcal{E}^{\wedge})^{n} & \longrightarrow & \mathbf{P}(I) \\
\eta & & (M_{0}(\eta), M_{1}(\eta), \dots, M_{I}(\eta))
\end{array}$$

- $A = \{M_0, \dots, M_l\}$: a set of diff monomials
- Consider the map

$$\begin{array}{ccc}
\phi_{\mathcal{A}}: (\mathcal{E}^{\wedge})^{n} & \longrightarrow & \mathbf{P}(I) \\
\eta & & (M_{0}(\eta), M_{1}(\eta), \dots, M_{I}(\eta))
\end{array}$$

Definition

The image of ϕ_A is called the **differential toric variety w.r.t.** A, denoted by X_A . X_A is an irreducible projective diff variety.

- $A = \{M_0, \dots, M_l\}$: a set of diff monomials
- Consider the map

$$\begin{array}{ccc}
\phi_{\mathcal{A}}: (\mathcal{E}^{\wedge})^{n} & \longrightarrow & \mathbf{P}(I) \\
\eta & & (M_{0}(\eta), M_{1}(\eta), \dots, M_{I}(\eta))
\end{array}$$

Definition

The image of ϕ_A is called the **differential toric variety w.r.t.** A, denoted by X_A . X_A is an irreducible projective diff variety.

Theorem

Res_A: Sparse differential resultant of $\mathbb{P}_i = \sum_j u_{ij} M_j$, i = 0, ..., n is the differential Chow form of X_A .

Differential Toric Variety: An Example

Example

Let n = 1 and a set of monomials $A = \{y_1, y_1', y_1^2\}$.

Toric Variety: all possible values of a set of monomials A

$$X_{\mathcal{A}} = \{(y_1, y_1', y_1^2) \mid y_1 \in \mathcal{E}\}$$

Defining equations of the toric variety

$$X_{\mathcal{A}} = \text{Zero}(\text{sat}(z_1 z_2 - (z_0 z_2' - z_0' z_2))).$$

The sparse differential resultant $\operatorname{Res}_{\mathcal{A}}$ is equal to the differential Chow form of $X_{\mathcal{A}}$.

Differential Toric Variety: An Example

Example

Let n = 1 and a set of monomials $A = \{y_1, y_1', y_1^2\}$.

Toric Variety: all possible values of a set of monomials A

$$X_{\mathcal{A}} = \{(y_1, y_1', y_1^2) \mid y_1 \in \mathcal{E}\}$$

Defining equations of the toric variety

$$X_{\mathcal{A}} = \text{Zero}(\text{sat}(z_1 z_2 - (z_0 z_2' - z_0' z_2))).$$

The sparse differential resultant $\operatorname{Res}_{\mathcal{A}}$ is equal to the differential Chow form of $X_{\mathcal{A}}$.

The defining ideal of a diff toric variety is not binomial!

Binomial σ -ideal and Toric σ -variety

Notations

In this talk, **difference field** (\mathcal{F}, σ) : $\sigma : \mathcal{F} \Rightarrow \mathcal{F}$ is a field automorphism. \mathcal{F} is also assumed to be algebraically closed.

Example: $\overline{\mathbf{Q}(x)}$: $\sigma(x) = x + 1$.

Notations

In this talk, **difference field** (\mathcal{F}, σ) : $\sigma : \mathcal{F} \Rightarrow \mathcal{F}$ is a field automorphism. \mathcal{F} is also assumed to be algebraically closed.

Example: $\overline{\mathbf{Q}(x)}$: $\sigma(x) = x + 1$.

σ-Exponent: For $p = \sum_{i=0}^{s} c_i x^i \in \mathbb{Z}[x]$, denote $a^p = \prod_{i=0}^{s} (\sigma^i a)^{c_i}$. Example: $a^{3x^2-1} = (\sigma^2(a))^3/a$

Notations

In this talk, **difference field** (\mathcal{F}, σ) : $\sigma : \mathcal{F} \Rightarrow \mathcal{F}$ is a field automorphism. \mathcal{F} is also assumed to be algebraically closed.

Example: $\overline{\mathbf{Q}(x)}$: $\sigma(x) = x + 1$.

σ-Exponent: For
$$p = \sum_{i=0}^{s} c_i x^i \in \mathbb{Z}[x]$$
, denote $a^p = \prod_{i=0}^{s} (\sigma^i a)^{c_i}$. Example: $a^{3x^2-1} = (\sigma^2(a))^3/a$

$$\mathbb{Y} = \{y_1, \dots, y_n\}$$
: σ -indeterminates

σ -monomial with support f:

$$\mathbb{Y}^{\mathbf{f}} = \prod_{i=1}^{n} y_i^{f_i}$$
 where $\mathbf{f} = (f_1, \dots, f_n)^{\tau} \in \mathbb{N}[x]^n$
 $\mathcal{F}\{\mathbb{Y}\}: \sigma$ -polynomial ring

$\mathbb{Z}[x]$ Lattice

 $\mathbb{Z}[x]$ Lattice: $\mathbb{Z}[x]$ module in $\mathbb{Z}[x]^n$

Two kinds of representations:

Generators: $L = \operatorname{Span}_{\mathbb{Z}[x]}\{\mathbf{f}_1, \dots, \mathbf{f}_s\} = (\mathbf{f}_1, \dots, \mathbf{f}_s), \, \mathbf{f}_i \in \mathbb{Z}[x]^n$ Matrix representation: $F = [\mathbf{f}_1, \dots, \mathbf{f}_s]_{n \times s}$

Rank of L: rk(F)

Binomial σ -ideal

 σ -binomial: $f = a \mathbb{Y}^{\mathbf{a}} + b \mathbb{Y}^{\mathbf{b}}$, $\mathbf{a}, \mathbf{b} \in \mathbb{N}[x]^n$, $a, b \in \mathcal{F}$.

Normal Form: $f = a \mathbb{Y}^{g}(\mathbb{Y}^{f^{+}} - c \mathbb{Y}^{f^{-}}),$

 $\mathbf{f} \in \mathbb{Z}[x]^n$ and $\mathbf{f} = \mathbf{a} - \mathbf{b} = \mathbf{f}^+ - \mathbf{f}^-$ for $\mathbf{f}^+, \mathbf{f}^- \in \mathbb{N}[x]^n$.

Binomial σ -ideal

$$\sigma$$
-binomial: $f = a \mathbb{Y}^{\mathbf{a}} + b \mathbb{Y}^{\mathbf{b}}$, $\mathbf{a}, \mathbf{b} \in \mathbb{N}[x]^n$, $a, b \in \mathcal{F}$.

Normal Form:
$$f = a \mathbb{Y}^{\mathbf{g}} (\mathbb{Y}^{\mathbf{f}^+} - c \mathbb{Y}^{\mathbf{f}^-}),$$

 $\mathbf{f} \in \mathbb{Z}[x]^n \text{ and } \mathbf{f} = \mathbf{a} - \mathbf{b} = \mathbf{f}^+ - \mathbf{f}^- \text{ for } \mathbf{f}^+, \mathbf{f}^- \in \mathbb{N}[x]^n.$

Normal binomial σ -ideal \mathcal{I} :

- \mathcal{I} is generated by σ -binomials
- $Mp \in \mathcal{I} \Rightarrow p \in \mathcal{I}$, M: σ -monomial

Binomial σ -ideal

 σ -binomial: $f = a \mathbb{Y}^{\mathbf{a}} + b \mathbb{Y}^{\mathbf{b}}$, $\mathbf{a}, \mathbf{b} \in \mathbb{N}[x]^n$, $a, b \in \mathcal{F}$.

Normal Form: $f = a \mathbb{Y}^{\mathbf{g}} (\mathbb{Y}^{\mathbf{f}^+} - c \mathbb{Y}^{\mathbf{f}^-}),$ $\mathbf{f} \in \mathbb{Z}[x]^n \text{ and } \mathbf{f} = \mathbf{a} - \mathbf{b} = \mathbf{f}^+ - \mathbf{f}^- \text{ for } \mathbf{f}^+, \mathbf{f}^- \in \mathbb{N}[x]^n.$

Normal binomial σ -ideal \mathcal{I} :

- \mathcal{I} is generated by σ -binomials
- $Mp \in \mathcal{I} \Rightarrow p \in \mathcal{I}$, M: σ -monomial

Partial Character: A homomorphism from a $\mathbb{Z}[x]$ lattice L_{ρ} to the multiplicative group \mathcal{F}^* satisfying $\rho(x\mathbf{f}) = \sigma(\rho(\mathbf{f}))$.

Lemma

 \mathcal{I} is a normal binomial σ -ideal \Leftrightarrow

 $\mathcal{I} = \mathcal{I}(\rho) = \{\mathbb{Y}^{\mathbf{f}^+} - \rho(\mathbf{f})\mathbb{Y}^{\mathbf{f}^-} \mid \mathbf{f} \in L_{\rho}\}$ for a partial character ρ .

Criteria for Normal LB*σ*-ideal

Definition

A $\mathbb{Z}[x]$ lattice L in $\mathbb{Z}[x]^n$ is called

- \mathbb{Z} -saturated if, for $a \in \mathbb{Z}$ and $\mathbf{f} \in \mathbb{Z}[x]^n$, $a\mathbf{f} \in L$ implies $\mathbf{f} \in L$.
- *x*-saturated if, for $f \in \mathbb{Z}[x]^n$, $xf \in L$ implies $f \in L$.
- *M*-saturated if, for $\mathbf{f} \in \mathbb{Z}[x]^n$ and $m \in \mathbb{N}$, $m\mathbf{f} \in L \Rightarrow (x o_m)\mathbf{f} \in L$.

Criteria for Normal LB*σ*-ideal

Definition

A $\mathbb{Z}[x]$ lattice L in $\mathbb{Z}[x]^n$ is called

- \mathbb{Z} -saturated if, for $a \in \mathbb{Z}$ and $\mathbf{f} \in \mathbb{Z}[x]^n$, $a\mathbf{f} \in L$ implies $\mathbf{f} \in L$.
- *x*-saturated if, for $f \in \mathbb{Z}[x]^n$, $xf \in L$ implies $f \in L$.
- *M*-saturated if, for $\mathbf{f} \in \mathbb{Z}[x]^n$ and $m \in \mathbb{N}$, $m\mathbf{f} \in L \Rightarrow (x o_m)\mathbf{f} \in L$.

Theorem

Let ρ be a partial character over $\mathbb{Z}[x]^n$.

- L_{ρ} is \mathbb{Z} -saturated $\Leftrightarrow \mathcal{I}(\rho)$ is prime
- L_{ρ} is x-saturated $\Leftrightarrow \mathcal{I}(\rho)$ is reflexive
- If $\langle \mathcal{I}(\rho) \rangle : \mathbb{M} \neq [1]$, then L_{ρ} is M-saturated $\Leftrightarrow \mathcal{I}(\rho)$ is well-mixed
- If $\{\mathcal{I}(\rho)\}: \mathbb{M} \neq [1]$, then L_{ρ} is x-M-saturated $\Leftrightarrow \mathcal{I}(\rho)$ is perfect

Toric σ -variety

```
For \alpha = \{\alpha_1, \dots, \alpha_n\}, \ \alpha_i \in \mathbb{Z}[x]^m, i = 1, \dots, n

Define a map \phi_{\alpha} : (\mathbb{A}^*)^m \mapsto (\mathbb{A}^*)^n:

\mathcal{T} = (t_1, \dots, t_m) \mapsto \mathcal{T}^{\alpha} = (\mathcal{T}^{\alpha_1}, \dots, \mathcal{T}^{\alpha_n}).
```

Toric σ -variety

For
$$\alpha = \{\alpha_1, \dots, \alpha_n\}, \ \alpha_i \in \mathbb{Z}[x]^m, i = 1, \dots, n$$

Define a map $\phi_{\alpha} : (\mathbb{A}^*)^m \mapsto (\mathbb{A}^*)^n$:
 $\mathcal{T} = (t_1, \dots, t_m) \mapsto \mathcal{T}^{\alpha} = (\mathcal{T}^{\alpha_1}, \dots, \mathcal{T}^{\alpha_n}).$

Toric Variety X_{α}: the Cohn closure of $\phi_{\alpha}((\mathcal{C}^*)^m)$ in $(\mathbb{A})^n$.

- Toric Variety: σ -variety parameterized by σ -monomials.
- \mathbf{X}_{α} is an irreducible σ -variety of dim $\mathrm{rk}(A)$, where $A = [\alpha_1, \dots, \alpha_n]_{m \times n}$

Toric σ -variety

For
$$\alpha = \{\alpha_1, \dots, \alpha_n\}, \ \alpha_i \in \mathbb{Z}[x]^m, i = 1, \dots, n$$

Define a map $\phi_{\alpha} : (\mathbb{A}^*)^m \mapsto (\mathbb{A}^*)^n$:
 $\mathcal{T} = (t_1, \dots, t_m) \mapsto \mathcal{T}^{\alpha} = (\mathcal{T}^{\alpha_1}, \dots, \mathcal{T}^{\alpha_n}).$

Toric Variety X_{α}: the Cohn closure of $\phi_{\alpha}((\mathcal{C}^*)^m)$ in $(\mathbb{A})^n$.

- Toric Variety: σ -variety parameterized by σ -monomials.
- \mathbf{X}_{α} is an irreducible σ -variety of dim $\mathrm{rk}(A)$, where $A = [\alpha_1, \dots, \alpha_n]_{m \times n}$

Example

The support: $\alpha = \{[1, 1]^{\tau}, [x, x]^{\tau}, [0, 1]^{\tau}\}.$

The σ -monomial: $(t_1t_2, t_1^xt_2^x, t_2)$.

The map: $y_1 = t_1 t_2, y_2 = t_1^x t_2^x, y_3 = t_2$

Toric σ -variety: $\mathbf{X}_{\infty}: y_1^X - y_2 = 0$. Note that y_3 is free.

Toric $\mathbb{Z}[x]$ **Lattice** L: $pf \in L \Rightarrow f \in L$ $(p \in \mathbb{Z}[x] \text{ and } f \in \mathbb{Z}[x]^n)$

Toric $\mathbb{Z}[x]$ **Lattice** L: $p\mathbf{f} \in L \Rightarrow \mathbf{f} \in L \quad (p \in \mathbb{Z}[x] \text{ and } \mathbf{f} \in \mathbb{Z}[x]^n)$

Toric σ -ideal: $\mathcal{I}^+(L) = [\mathbb{Y}^{\mathbf{f}^+} - \mathbb{Y}^{\mathbf{f}^-} | \mathbf{f} \in L]$, where L is a toric $\mathbb{Z}[x]$ lattice.

• $I^+(L)$ is reflexive and prime σ -ideal of dimension $\mathrm{rk}(L)$.

Toric $\mathbb{Z}[x]$ **Lattice** L: $p\mathbf{f} \in L \Rightarrow \mathbf{f} \in L \quad (p \in \mathbb{Z}[x] \text{ and } \mathbf{f} \in \mathbb{Z}[x]^n)$

Toric σ -ideal: $\mathcal{I}^+(L) = [\mathbb{Y}^{\mathbf{f}^+} - \mathbb{Y}^{\mathbf{f}^-} | \mathbf{f} \in L]$, where L is a toric $\mathbb{Z}[x]$ lattice.

• $I^+(L)$ is reflexive and prime σ -ideal of dimension $\operatorname{rk}(L)$.

Theorem 1

A σ -variety V is toric iff $\mathbb{I}(V)$ is a toric σ -ideal.

Toric $\mathbb{Z}[x]$ **Lattice** L: $p\mathbf{f} \in L \Rightarrow \mathbf{f} \in L \quad (p \in \mathbb{Z}[x] \text{ and } \mathbf{f} \in \mathbb{Z}[x]^n)$

Toric σ -ideal: $\mathcal{I}^+(L) = [\mathbb{Y}^{\mathbf{f}^+} - \mathbb{Y}^{\mathbf{f}^-} | \mathbf{f} \in L]$, where L is a toric $\mathbb{Z}[x]$ lattice.

• $I^+(L)$ is reflexive and prime σ -ideal of dimension $\mathrm{rk}(L)$.

Theorem

A σ -variety V is toric iff $\mathbb{I}(V)$ is a toric σ -ideal.

Example (Reflexive prime but not toric)

Let
$$L = ([1 - x, x - 1]^{\tau}).$$

Since
$$[1 - x, x - 1] = (x - 1) \cdot [1, -1]$$
, *L* is not $\mathbb{Z}[x]$ toric.

The σ -ideal $\mathbf{I}^+(L) = [y_1^{x^i}y_2^{x^j} - y_1^{x^j}y_2^{x^i}; 0 \le i \le j \in \mathbb{N}]$ is reflexive prime but not toric.

Conversion between $V = \mathbf{X}_{\alpha}$ and $\mathbb{I}(V) = \mathbf{I}^{+}(\rho_{L})$

(1) Implicitization:

Given
$$\mathbf{X}_{\alpha}$$
 ($\alpha = (\alpha_1, \dots, \alpha_n)$) $\Rightarrow \mathbb{I}(V) \subset \mathcal{F}\{\mathbb{Y}\}$
 $A = [\alpha_1, \dots, \alpha_n]_{m \times n}$
 $K_A = \ker(A) = (\mathbf{f}_1, \dots \mathbf{f}_s)$: a toric $\mathbb{Z}[x]$ lattice; Gröbner basis
 $\mathbb{I}(\mathbf{X}_{\alpha}) = \mathbf{I}^+(K_A) = \mathbf{sat}(\mathbb{Y}^{\mathbf{f}_1^+} - \mathbb{Y}^{\mathbf{f}_1^-}, \dots, \mathbb{Y}^{\mathbf{f}_s^+} - \mathbb{Y}^{\mathbf{f}_s^-})$

Conversion between $V = \mathbf{X}_{\alpha}$ and $\mathbb{I}(V) = \mathbf{I}^{+}(\rho_{L})$

(1) Implicitization:

Given
$$\mathbf{X}_{\alpha}$$
 ($\alpha = (\alpha_1, \dots, \alpha_n)$) $\Rightarrow \mathbb{I}(V) \subset \mathcal{F}\{\mathbb{Y}\}$
 $A = [\alpha_1, \dots, \alpha_n]_{m \times n}$
 $\mathcal{K}_A = \ker(A) = (\mathbf{f}_1, \dots \mathbf{f}_s)$: a toric $\mathbb{Z}[x]$ lattice; Gröbner basis
 $\mathbb{I}(\mathbf{X}_{\alpha}) = \mathbf{I}^+(\mathcal{K}_A) = \mathbf{sat}(\mathbb{Y}^{\mathbf{f}_1^+} - \mathbb{Y}^{\mathbf{f}_1^-}, \dots, \mathbb{Y}^{\mathbf{f}_s^+} - \mathbb{Y}^{\mathbf{f}_s^-})$

(2) Parametrization:

Given
$$\mathcal{I} = \mathbf{sat}(\mathbb{Y}^{\mathbf{f}_1^+} - \mathbb{Y}^{\mathbf{f}_1^-}, \dots, \mathbb{Y}^{\mathbf{f}_s^+} - \mathbb{Y}^{\mathbf{f}_s^-}) \Rightarrow \mathbf{X}_{\alpha} = \mathbb{V}(\mathbf{I})$$
 $L_{\rho} = (\mathbf{f}_1, \dots, \mathbf{f}_s)$
 $F = [\mathbf{f}_1, \dots, \mathbf{f}_s]_{n \times s} \in \mathbb{Z}[x]^{n \times s}$
 $K_F = \{X \in \mathbb{Z}[x]^n \mid \mathbf{F}^{\tau}X = 0\}$ is a free $\mathbb{Z}[x]$ module.
 K_F has a basis $\{\mathbf{h}_1, \dots, \mathbf{h}_{n-r}\}$
 $H = [\mathbf{h}_1, \dots, \mathbf{h}_{n-r}]_{n \times (n-r)}$
 $\alpha = \{\alpha_1, \dots, \alpha_n\} \in \mathbb{Z}[x]^{n-r}$ the rows of H .
If L_{ρ} is a toric $\mathbb{Z}[x]$ lattice, then $\mathbf{X}_{\alpha} = \mathbb{V}(\mathbf{I})$

Coordinate Ring of Toric σ -variety

Affine $\mathbb{N}[x]$ module:

$$\beta = \{\beta_1, \dots, \beta_s\} \subset \mathbb{Z}[x]^m
M = \mathbb{N}[x](\beta) = \{\sum_{i=1}^s a_i \beta_i \mid a_i \in \mathbb{N}[x]\} \subset \mathbb{Z}[x]^m.$$

Affine σ -algebra

$$\mathcal{F}\{M\} = \{ \sum_{\mathbf{f} \in M} a_{\mathbf{f}} \mathcal{T}^{\mathbf{f}} \mid a_{\mathbf{f}} \in \mathcal{F}, a_{\beta} \neq 0 \text{ for finitely many } \beta \}.$$

Coordinate Ring of Toric σ -variety

Affine $\mathbb{N}[x]$ **module**:

$$\beta = \{\beta_1, \dots, \beta_s\} \subset \mathbb{Z}[x]^m
M = \mathbb{N}[x](\beta) = \{\sum_{i=1}^s a_i \beta_i \mid a_i \in \mathbb{N}[x]\} \subset \mathbb{Z}[x]^m.$$

Affine σ -algebra

$$\mathcal{F}\{M\} = \{ \sum_{\mathbf{f} \in M} a_{\mathbf{f}} \mathcal{T}^{\mathbf{f}} \mid a_{\mathbf{f}} \in \mathcal{F}, a_{\beta} \neq 0 \text{ for finitely many } \beta \}.$$

Theorem. X is a toric σ -variety

- $\Leftrightarrow X \cong \operatorname{Spec}^{\sigma}(\mathbf{Q}\{M\})$ for an affine $\mathbb{N}[x]$ module M.
- \Leftrightarrow the coordinate ring of X is $\mathbb{Q}\{M\}$.

Toric σ -variety in terms of group action

```
The map \phi_{\alpha}: (\mathbb{A}^*)^m \longrightarrow (\mathbb{A}^*)^n:

Quasi \sigma-torus: T_{\alpha} = \phi_{\alpha}((\mathbb{A}^*)^m)
```

In the algebraic case, T_{α} (the torus) is a variety: $T_{\alpha} = \mathbf{X}_{\alpha} \cap (\mathbb{C}^*)^m$ This is not valid in the difference case.

Toric σ -variety in terms of group action

```
The map \phi_{\alpha}: (\mathbb{A}^*)^m \longrightarrow (\mathbb{A}^*)^n:

Quasi \sigma-torus: T_{\alpha} = \phi_{\alpha}((\mathbb{A}^*)^m)
```

In the algebraic case, T_{α} (the torus) is a variety: $T_{\alpha} = \mathbf{X}_{\alpha} \cap (\mathbb{C}^*)^m$ This is not valid in the difference case.

- σ -torus: a σ -variety isomorphic to the Cohn *-closure of T_{α} in (\mathbb{A}^*)ⁿ.
 - (1) T^* is a σ -variety which is open in \mathbf{X}_{α} .
 - (2) A σ -torus is group under componentwise product.

Toric σ -variety in terms of group action

```
The map \phi_{\alpha}: (\mathbb{A}^*)^m \longrightarrow (\mathbb{A}^*)^n:

Quasi \sigma-torus: T_{\alpha} = \phi_{\alpha}((\mathbb{A}^*)^m)
```

In the algebraic case, T_{α} (the torus) is a variety: $T_{\alpha} = \mathbf{X}_{\alpha} \cap (\mathbb{C}^*)^m$. This is not valid in the difference case.

- σ -torus: a σ -variety isomorphic to the Cohn *-closure of T_{α} in (\mathbb{A}^*)ⁿ.
 - (1) T^* is a σ -variety which is open in \mathbf{X}_{α} .
 - (2) A σ -torus is group under componentwise product.

Theorem (Toric σ -variety in terms of group action)

A σ -variety X is toric iff X contains a σ -torus T^* as an open subset and with a group action of T^* on X extending the natural group action of T^* on itself.

Summary

- Sparse differential/difference resultant is defined and properties similar to that of the Sylvester resultant are given.
 A single exponential algorithm to compute the sparse differential resultant is given.
- Differential/difference Chow Form is defined and its basic properties are established.
- Difference binomial ideals and difference toric varieties are introduced, which connects the difference Chow form and difference sparse resultant.

Thanks!

Summary

- W. Li, C.M. Yuan, X.S. Gao. Sparse Differential Resultant for Laurent Differential Polynomials. Found of Comput Math, 15(2), 451-517, 2015.
- W. Li, C.M. Yuan, X.S. Gao. Sparse Difference Resultant. *Journal of Symbolic Computation*, 68, 169-203, 2015.
- X.S. Gao, W. Li, C.M. Yuan. Intersection Theory in Differential Algebraic Geometry: Generic Intersections and the Differential Chow Form. *Trans. of Amer. Math. Soc.*, 365(9), 4575-4632, 2013.
- W. Li and Y.H. Li. Difference Chow form *Journal of Algebra*, 428(15), 67-90, 2015.
- X.S. Gao, Z. Huang, C.M. Yuan. Binomial Difference Ideal and Toric Difference Variety. arXiv:1404.7580, 2015.