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@ Background
@ Sparse Differential Resultant
@ Differential Chow Form

@ Difference Binomial and Toric Variety
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Sparse Differential Resultant for
Laurent Differential Polynomials
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Sylvester Resultant

Two polynomials: f=ax'+a_1x~"+-- -+ a;x+ a
g =bmX™+ by x4+ 4+ byx + by.

a a- 4a-2 - ap
4 a1 a-z - ap
Res(f, g) = a a-1 -2 -+ Qo
’ bm bmf1 bmfz t bO
bm bm—1 bm—2 to bO
bm bm—1 bm—2 e bO

Property: Res(f,g) = 0 <= f(x) = g(x) = 0 has common solutions
J.J. Sylvester, Phil Trans of Royal Soc of London, 407-548, 1883.
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A Brief History of Resultant

Algebraic Resultant
@ Sylvester (1883) resultant for two polynomials (n = 1)

@ Macaulay (1902) multivariate resultant
@ Gelfand & Sturmfels (1994) sparse resultant
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A Brief History of Resultant

Algebraic Resultant
@ Sylvester (1883) resultant for two polynomials (n = 1)

@ Macaulay (1902) multivariate resultant
@ Gelfand & Sturmfels (1994) sparse resultant

Differential Resultant
@ Ritt (1932): Differential resultant for n = 1.
@ Ferro (1997): Diff-Res as Macaulay resultant. Not complete.
@ Zwillinger (1998): Handbook of Differential Equations.

No rigorous definition for differential multi-variate resultant
No study of differential sparse resultant
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Sparse Differential Polynomials

@ Sparse Differential Polynomials: with fixed monomials
Most differential polynomials in practice are sparse

Y Y
y o Yy
Dense Diff Polynomials Sparse Diff Polynomials
f:ZH_j§5*y’(y’)l f=x4xy* + xy® 4 xy2y”?
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Ordinary differential field: (F,5), e.g. (Q(x), %)
Diff Indeterminates: Y = {y1,...,yn}.
Notation: y*) = 5ky;.

I
Laurent Diff Monomial: M = [[}_, Hfzo(y,gl))dk' with dy € Z;

Laurent Diff Poly: f = Y} , axM, M Laurent diff monomials.
Support of f: A= {My,...,Mpy}.
Laurent Diff Poly Ring: 7{Y*}.

Example. Laurent Differential Polynomial

P=yi+yiyo & P=1+y"yy
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Differential Dimension Conjecture in Generic Case

Intersection Theorem is not true in diff case:
dim(Vn W) >dim(V) +dim(W) —n

Xiao-Shan Gao (AMSS, CAS) 2015. 10. 2 8/48



Differential Dimension Conjecture in Generic Case
Intersection Theorem is not true in diff case:

dim(V N W) > dim(V) + dim(W) — n

Z c F{Y}: a prime diff ideal with dimension d > 0 and order h.
f: a generic diff poly of order s with uy the set of its coefficients.

Then Iy = [Z, f] is a prime diff ideal in F(us){Y} with dimension d — 1
and order h + s.
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Differential Dimension Conjecture in Generic Case

Intersection Theorem is not true in diff case:
dim(Vn W) >dim(V) +dim(W) —n

Z c F{Y}: a prime diff ideal with dimension d > 0 and order h.
f: a generic diff poly of order s with uy the set of its coefficients.

Then Iy = [Z, f] is a prime diff ideal in F(us){Y} with dimension d — 1
and order h + s.

Dimension Conjecture (Ritt, 1950): dim(fy,..., ;] > n—r.
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Differential Dimension Conjecture in Generic Case

Intersection Theorem is not true in diff case:
dim(Vn W) >dim(V) +dim(W) —n

Z c F{Y}: a prime diff ideal with dimension d > 0 and order h.
f: a generic diff poly of order s with uy the set of its coefficients.

Then Iy = [Z, f] is a prime diff ideal in F(us){Y} with dimension d — 1
and order h + s.

Dimension Conjecture (Ritt, 1950): dim(fy,..., ;] > n—r.

Theorem (Generic Dimension Theorem)

fi,...., f:(r < n): generic diff polynomials. Then
Ify, ..., f]: a prime diff ideal of dimension n — r and order )", ord(f;).
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Sparse Differential Resultant

@ Generic Sparse Differential Polynomials:
Aj = {Mjo, Mj1,...,M;} (i =0,...,n): Monomial sets
P = Z/I':O U,'jM,'j and U, = {U,'1 Sy U,'/I.}.
[Po,P1,...,Pp] € Q{ug,uq,...,up Y, Y}
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Sparse Differential Resultant

@ Generic Sparse Differential Polynomials:
Aj = {Mjo, Mj1,...,M;} (i =0,...,n): Monomial sets
P = Z/I':O U,'jM,'j and U, = {U,'1 Sy U,'/I.}.
[Po, Py, ...,Py] € Q{ug, uy,...,u, Y, Y1}
@ Sparse Differential Resultant Exists, if the eliminant ideal:

[Po,...,Ps] N Q{ug, uy,...,u,} = sat(R(ug,...,up))
is of codimension 1

Definition

R: Sparse Differential Resultant of Py, ..., P, or Ay, ..., An.
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Sparse Differential Resultant

@ Generic Sparse Differential Polynomials:
Aj = {Mjo, Mj1,...,M;} (i =0,...,n): Monomial sets
P; = Z/'-’:O uM; and u; = {ujq, ..., Uy}
[Po, Py, ...,Py] € Q{ug, uy,...,u, Y, Y1}
@ Sparse Differential Resultant Exists, if the eliminant ideal:
[Po,...,Ps] N Q{ug, uy,...,u,} = sat(R(ug,...,up))
is of codimension 1
< P; are Laurent differentially essential:
There exist ki (i =0, ...,n) with 1 < k; < [; such that

Mok, Mik Mk
dirdeg Q{2 7 ts - 7 2)/Q =n.

Definition

R: Sparse Differential Resultant of Py, ..., P, or Ay, ..., An.
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Examples

Example
n=2,
P; = Uiy + upnyy" + upys’ (i =0,1,2).

d.tr.deg Q<y1,, : }}',2,, )/Q =2 = P, form a diff essential system.

The sparse differential resultant is
Upo Upt Up2

R=|uo U1 U2
Uzo U2q U2z
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Criterion for Existence of Sparse Resultant
Pi=Y1 uiM;(i=0,....n).

© My/Mio = TTh_s TI7o(vi) . dij = 70 dlax), € Qlxl.
Symbolic Support Vector of M;/Mjy: 5 = (dj1, - - ., djjn)
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Criterion for Existence of Sparse Resultant
Pi=Y1 uiM;(i=0,....n).

© My/Mio = TTh_s TI7o(vi) . dij = 70 dlax), € Qlxl.
Symbolic Support Vector of M;/Mjy: 5 = (dj1, - - ., djjn)

i
@ Symbolic Support Vector of P;: 3; = > u;iBj; = (di, .. ., din)-
j=0

@ Symbolic Support Matrix of Py, ..., Py:

Bo dot doo ... don

d d oo d
M, — 5-1 _ 11 di2 . in
Bn dn1 dn2 . dnn
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Criterion for Existence of Sparse Resultant

Pi=Y1 uiM;(i=0,....n).

© My/Mio = TTh_s TI7o(vi) . dij = 70 dlax), € Qlxl.
Symbolic Support Vector of M;/Mjy: 5 = (dj1, - - ., djjn)

i
@ Symbolic Support Vector of P;: 3; = > u;iBj; = (di, .. ., din)-
j=0

@ Symbolic Support Matrix of Py, ..., Py:

Bo dot doo ... don

d d oo d
M, — 5-1 _ 11 di2 . in
Bn dn1 dn2 . dnn

Theorem (Like Linear Algebral)
Sparse resultant exists for P; <= rk(Mp) = n.
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Properties of
Sparse Differential Resultant
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Necessary Condition for 3 of Non-poly Solutions

(P;, u;) specializes to (P;,v;) by settingu; = v; € F.
IfPy = --- =P, = 0 has a non-poly solution,
then R(vo,...,vp) = 0.
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Necessary Condition for 3 of Non-poly Solutions

Lemma

(P;, u;) specializes to (P;,v;) by settingu; = v; € F.
IfPy = --- =P, = 0 has a non-poly solution,
then R(vg,...,v,) = 0.

.

Example (Why Non-Polynomial solution?)
F = Q(x), differential operator: &
P; = ujoyy + upy{" + upyy' (i =0,1,2).

Upo Uo1 Uo2
Uip U1 U2 | #0.
Ug U2y U2z

The sparse differential resultant R =

Leta; =x+1,a =x°+x+1.
Then & = &’ = 0. (a1, a2): a solution of Py =Py =P, =0

N
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Conditions for Existence of Non-poly Solutions

® A; = (Mj,..., M) : Differential Monomials
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Conditions for Existence of Non-poly Solutions

® A; = (Mj,..., M) : Differential Monomials
® L(A)={Fi= Zj'-":o ciMj}: all diff polys with support A;.
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Conditions for Existence of Non-poly Solutions

® A; = (Mj,..., M) : Differential Monomials

® L(A)={Fi= Zj'-":o ciMj}: all diff polys with support A;.

@ Zy(Ao,...,Ap): setof F; having a common non-poly solution.
@ Zy(Ao,...,An): Kolchin diff closure of Zy(Ay,...,.An).
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Conditions for Existence of Non-poly Solutions

® A; = (Mj,..., M) : Differential Monomials

® L(A)={Fi= Zf:o ciMj}: all diff polys with support A;.

@ Zy(Ao,...,Ap): setof F; having a common non-poly solution.
@ Zy(Ao,...,An): Kolchin diff closure of Zy(Ay,...,.An).

Zo(Ao, ..., An) = V(sat(Res4,,... 4,))-

-----

.....
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Order and Differential homogeneity

G =1{91,...,09n}: differential polynomials.
Jacobi Number: Jac(G) = max, > i, ord(g;, Yo (1)),
where o is a permutation of {1,..., n}.
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Order and Differential homogeneity

G =1{91,...,09n}: differential polynomials.
Jacobi Number: Jac(G) = max, > i, ord(g;, Yo (1)),
where o is a permutation of {1,..., n}.

Order and Differential homogeneity

o JRes(uo,...,u,) is differentially homogeneous in each u; and is
oforder hj =s —s;jinu; (i=0,...,n) where s =3 s/.

e S-6Res(uo,...,Uu,) is differentially homogeneous in each u; and
is of order h; < J; = Jac(P;) in u;, where P; = {Po, ... ,Pa}\{Pi}.
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Poisson-Type Product Formula

@ Algebraic Resultant: Res(A(x), B(x)) = ¢[1,, ;=0 A1)
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Poisson-Type Product Formula

@ Algebraic Resultant: Res(A(x), B(x)) = ¢[1,, ;=0 A1)

@ Differential Resultant:
SRes(ug, ..., up) = A(Ug, ..., Un) [T, Po(7r1, - - ., 7rn) 0.

And (91, ..., n:n) are generic points of [Py, ..., Pp].
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Poisson-Type Product Formula

@ Algebraic Resultant: Res(A(x), B(x)) = ¢[1,, ;=0 A1)

@ Differential Resultant:
SRes(ug, ..., up) = A(Ug, ..., Un) [T, Po(7r1, - - ., 7rn) 0.
And (91, ..., n:n) are generic points of [Py, ..., Pp].

@ Sparse Differential Resultant:
I
S-0Res(up, ..., un) = AT, (oo + 30y tow&rk) (.
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Poisson-Type Product Formula

@ Algebraic Resultant: Res(A(x), B(x)) = ¢[1,, ;=0 A1)

@ Differential Resultant:
SRes(ug, ..., up) = A(Ug, ..., Un) [T, Po(7r1, - - ., 7rn) 0.
And (91, ..., n:n) are generic points of [Py, ..., Pp].

@ Sparse Differential Resultant:
S-oRes(Up, ..., up) = AT2_, (oo + Sp_ tiokérk) )
When 1) Any n of the 4; diff independent and
2) ej € Spang{aj — ajo},
the result can be strengthened:

S-6Res(ug, ... ,u,) = AH (Ponﬂiﬂ%n))(ho)‘

Moo(s_4,....11n)

And n; = (9+1,...,70:n) are generic points of [IP’S’, ., PN m.
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Poisson-Type Product Formula

@ Sylvester Resultant: Res(A(x), B(x)) = ¢ ][, p(;)=0 A(n)-
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Poisson-Type Product Formula

@ Sylvester Resultant: Res(A(x), B(x)) = ¢ ][, p(;)=0 A(n)-

@ Differential Resultant:
SRes(up,...,u,) = A(ug, ..., up) H£9:1 Po(11, . - - s 1-n)M0).
And (71, . .. ,7.n) are generic points of [Py, ..., Py].
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Poisson-Type Product Formula

@ Sylvester Resultant: Res(A(x), B(x)) = ¢ ][, p(;)=0 A(n)-

@ Differential Resultant:
SRes(ug, ..., up) = A(Ug, ..., Up) [T, Po (71, - - ., 7rn)M0).

And (1,1, ...,n:n) are generic points of [Py,...,Py].
@ Sylvester Resultant:

Res(A(x), B(x)) = A(x)T(x) + B(x)W(x),
where deg(T) < deg(B),deg(W) < deg(A).
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Poisson-Type Product Formula

@ Sylvester Resultant: Res(A(x), B(x ))chan) _o A(n).

@ Differential Resultant:
SRes(ug, ..., up) = A(Ug, ..., Up) [T, Po (71, - - ., 7rn)M0).
And (71, . .. ,7.n) are generic points of [Py, ..., Py].

@ Sylvester Resultant:

Res(A(x), B(x)) = A(x)T(x) + B(x)W(x),
where deg(T) < deg(B),deg(W) < deg(A).

@ Differential Resultant:
SRes(Up,....up) = X1 37 hyPY)
where s; = ord(P;) and s = 5o + - - - + S, and
deg(G;PY) < (m+ 1)deg(R) < (m+ 1)ns+n+2,
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Degree Bound of Sparse Differential Resultant

Laurent Diff Essential System: P;, ord(PP;) = s; and deg(PP;) = m;.
R : the sparse resultant of Py, ..., Py.
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Degree Bound of Sparse Differential Resultant

Laurent Diff Essential System: P;, ord(PP;) = s; and deg(PP;) = m;.
R : the sparse resultant of Py, ..., Pp.
Theorem (Degree Bounds)

@ deg(R) < [[7o(m; + 1)1 < (m+ 1)+ where
m = max;{m;}.

Xiao-Shan Gao (AMSS, CAS)
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Degree Bound of Sparse Differential Resultant

Laurent Diff Essential System: P;, ord(PP;) = s; and deg(PP;) = m;.
R : the sparse resultant of Py, ..., Pp.

Theorem (Degree Bounds)

@ deg(R) < [[7o(m; + 1)1 < (m+ 1)+ where
m = max;{m;}.

e R= Z/ OZS ¥ hI/PU
deg(GyP}) < (m+ 1)deg(R) < (m+ 1)"t"2.
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BKK Degree Bound for Differential Resultant

Theorem

P; (i =0,...,n): generic diff polynomials in Y with order s;, coefficient
setu;, ands= Y[ ,s;. Then

deg(R,u;) < > g M((Qi)jzio<i<s—ss Qios - - -+ Qik—1, Qiksts-- - Qis—s;)-

Q;i: Newton polytope of ]P’j(.' ) as a polynomial in yI*', .. ., yll.
M(Qy,...,Qn): Mixed volume of Qy, ..., Qp.

Xiao-Shan Gao (AMSS, CAS) 2015. 10. 2 19/48



BKK Degree Bound for Differential Resultant

Theorem

P; (i =0,...,n): generic diff polynomials in Y with order s;, coefficient
setu;, ands= Y[ ,s;. Then

deg(R,u;) < > g M((Qp)jzio<i<s—s Qios - - - » Qik—1, Likrts---» Lis—s,)-

Q;: Newton polytope of ]P’/(-' ) as a polynomial in y, ...y},
M(Q1,...,9n): Mixed volume of Q1, ..., Qp.

Example

| A\,

Po = Ugo + Up1Y + Uozy’ + Uosy? + Uoayy' + Uos(y')?
Py = Uo + U1ty + U2y + Uiay® + Urayy' + Uss(y')?
Bézout-type degree bound: deg(R) < (2 + 1)* = 81.
BKK-type degree bound: deg(R) < 20.
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An Algorithm for Sparse Differential Resultant

Outline of the Algorithm. Knowing order and degree bounds, we
compute sparse diff resultant by solving linear equations. Precisely,
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An Algorithm for Sparse Differential Resultant

Outline of the Algorithm. Knowing order and degree bounds, we
compute sparse diff resultant by solving linear equations. Precisely,

@ Search for R(uo, ..., up)
with order h; =0,...,s— s; and
with degree from D =1,... [[7o(m; + 1)h+1.

@ With fixed h; and D, computing coefficients of R and G by solving
linear equations raising from

R(ug,...,up) = 27:0 ZZ’:O hikP/(k)'
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An Algorithm for Sparse Differential Resultant

Outline of the Algorithm. Knowing order and degree bounds, we
compute sparse diff resultant by solving linear equations. Precisely,

@ Search for R(uo, ..., up)
with order h; =0,...,s— s; and
with degree from D =1,... [[7o(m; + 1)h+1.

@ With fixed h; and D, computing coefficients of R and G by solving
linear equations raising from

R(ug,...,up) = Z/n:o ZZ’:O hikP/(k)'

Theorem (Computing Complexity)

O(mO("'s)y Q-arithmetic operations.

n: number of variables; s: order of system; |: size of sparse system
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Difference Sparse Resultant

Comparison with differential sparse resultant:

Difference Case Differential Case
Definition sat(R, Ry,...,Rny) sat(R)
Problem: m = 07?
Criterion M; c Z[x]("+Dxn Me € Z[uj, X1, . .., Xp](TFDX7
Matrix R = det(M)/ det(Mp) ?
3 solutions Necessary non-zero sols Nec and Suff non-poly sol
Zfo = V(Sat(R, Ry IRRRE) Rm)) ?0 = V(Sat(R))
Homogeneity | Transformally homogenous | Differentially homogenous
f(AY) = M(N)F(Y) f(AY) = ATf(Y)
Degree Dense: “=" BKK number Dense: BKK bound
Sparse: Bezout Type bound | Sparse: Bezout Type bound
Order Sparse: Jacobi bound The same
Dense: s — s; The same
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Differential Chow Form
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Example: Plucker Coordinates

Using coordinates to represent algebraic variety
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Example: Plucker Coordinates

Using coordinates to represent algebraic variety

Lines in P(3):
. L doXo + a1 Xy + asxo + azxs =0
® LinelL:= { boXo + b1x1 + baX2 + b3xz =0
< (one to one correspondence)
Pliicker Coordinates: p/ = Z’ Z’ i,j=0,1,2,3
i b
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Example: Plucker Coordinates

Using coordinates to represent algebraic variety

Lines in P(3):
. L doXg + a1 Xy + axo + azxz =0
® LinelL:= { boXo + b1x1 + baX2 + b3xz =0
< (one to one correspondence)
Pliicker Coordinates: p/ = Z’ Z’ i,j=0,1,2,3
i b

@ Pliicker coordinate C = (p°', p%2, p%3, p?3, P31, p'2) € P(5)
C represents a line in P(3)
<

C is on hypersurface p?3p°! + p31p% + p'2p%3 = 0.
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Background: Chow Form

Using coordinates to represent algebraic variety:

@ Lines in P(3): Plicker Coordinates
{Line L c P(3)} +— hypersurface p?3p°! 4 p3'p%2 + p'2p% = 0.
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Background: Chow Form

Using coordinates to represent algebraic variety:
@ Lines in P(3): Plicker Coordinates

{Line L c P(3)} +— hypersurface p?3p°! 4 p3'p%2 + p'2p% = 0.

@ Subspace of d-dimin P(n): Grassmann Coordinates
{Sq € P(n)} +— Grassmann Variety
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Background: Chow Form

Using coordinates to represent algebraic variety:
@ Lines in P(3): Plicker Coordinates

{Line L c P(3)} +— hypersurface p?3p°! 4 p3'p%2 + p'2p% = 0.

@ Subspace of d-dimin P(n): Grassmann Coordinates
{Sq € P(n)} +— Grassmann Variety

@ Algebraic Variety in P(n): Chow Coordinates
{(r,d)— cycles} «+— Chow Variety
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Background: Chow Form

Using coordinates to represent algebraic variety:

@ Lines in P(3): Plicker Coordinates
{Line L c P(3)} +— hypersurface p?3p°! 4 p3'p%2 + p'2p% = 0.

@ Subspace of d-dimin P(n): Grassmann Coordinates
{Sq € P(n)} +— Grassmann Variety

@ Algebraic Variety in P(n): Chow Coordinates
{(r,d)— cycles} «+— Chow Variety

@ Differential Analog?
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Definition of Differential Chow Form

T c F{Y}: prime differential ideal of dimension d.

d + 1 Generic Differential Primes:
Pi = ujo + Uity1 + - + Uinyn (i = 0,.... d).
u; = (U, . - ., Ujp): coefficient set of P;
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Definition of Differential Chow Form

T c F{Y}: prime differential ideal of dimension d.

d + 1 Generic Differential Primes:
Pi = ujo + Uity1 + - + Uinyn (i = 0,.... d).
u; = (U, . - ., Ujp): coefficient set of P;

By intersecting Z with the d + 1 primes, the eliminant ideal

[Z,Py,...,Pq] N F{ug,ui,...,ug} = sat(F(up,us,...,uy))

is a prime ideal of co-dimension one.

Differential Chow form of Z or V(Z):

F(uo,uy,...,ug) = f(u; Uoo, - - -, Ugo)
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Order of Differential Chow Form

Chow form of Z: F(up, uy,...,uy) = f(u; Ugo, U1o, - - -, Ugo)
Property of Chow form.
o F(...,ug,... U, ...)
. ord(F Uoo) # 0, ord(

=(=1)F(...,Up,...,Ugs,...).
F, ugo) = ord(F, uy) if u; occurs in F
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Order of Differential Chow Form

Chow form of Z: F(up, uy,...,uy) = f(u; ugo, Uio,
Property of Chow form.

o F(...,Ug,... U, ) =(=1)"F(...,Up, ... Ug,...).
e ord(F, ugo) # 0, ord(F, upo) = ord(F, uy) if u; occurs in F

...,Udo)

Order of Chow form: ord(F) = ord(f, ug).
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Order of Differential Chow Form

Chow form of Z: F(up, uy,...,uy) = f(u; Ugo, U1o, - - -, Ugo)
Property of Chow form.

o F(...,Ug,... U, ) =(=1)"F(...,Up, ... Ug,...).
e ord(F, ugo) # 0, ord(F, upo) = ord(F, uy) if u; occurs in F

Order of Chow form: ord(F) = ord(f, ug).

Theorem (Order of Chow Form)
ord(F) = ord(Z).
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Degree of Differential Chow Form

Differentially homogenous diff poly of degree m:
p(tyo, tyr ..., tyn) = t"P(Yo, Y1, - - -, ¥n)

F(uo,uy,...,uy): differential Chow form of V.

Then F(ug,uy,. .., uy) is differentially homogenous of degree r in each
setu; and F is of total degree (d + 1)r.

Definition (Differential degree)

r as above is defined to be the differential degree of Z, which is an
invariant of Z under invertible linear transformations.
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Factorization of Differential Chow Form

V: a diff irreducible variety of dimension d and order h.

F(up,uyq,...,uy): the differential Chow form of V.
Theorem (F(up, uy,...,uy) can be uniquely factored)
g
F(ug,uq,...,ug) = A(ug,uy,...,Ug HUoo-l-ZUop&p)
=1 p=1
g
= A(u07u17"'7 H §T1 "757‘!7)(/7)

where g = deg(F, u(()g)) and &, are in an extension field of F.

And the points (&1, . ..,&n) (T =1,...,9) are generic points of the
variety V.

v
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Leading Differential Degree

Differential primes:
Pj = Ujp + Uppyr + -+ Upyn (i =1,...,d),

Algebraic primes:
aP? )— Uoo + Uotys + -+ UOnYn, .
S S—
a]P) UOO +Z/ 12/{ 0()U0jy/ (321,27)

(&r1,---,&mn) (T =1,...,9) are the only elements of V which lie on
Py,...,Py as well as on 3Py 2Py, . .. ,aIP’gh_”.

Definition
Number g is defined to be the leading diff degree of V or |
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Differential Chow variety

A diff variety V has index (n,d, h,g, m) if V. C £" has
invariants: dim d, order h, leading diff degree g, and diff degree m.
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Differential Chow variety

A diff variety V has index (n,d, h,g, m) if V. C £" has
invariants: dim d, order h, leading diff degree g, and diff degree m.
Diff Cycle: V=), s;V;, V; irreducible of index (d, h, g, m)

e Chow Form of V : [[; F;*, F; Chow form of V;

e Index of V: (d, h,>;sig9i,>_; sim;i)
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Differential Chow variety

A diff variety V has index (n,d, h,g, m) if V. C £" has
invariants: dim d, order h, leading diff degree g, and diff degree m.
Diff Cycle: V=), s;V;, V; irreducible of index (d, h, g, m)

e Chow Form of V : [[; F;*, F; Chow form of V;

e Index of V: (d, h,>;sig9i,>_; sim;i)

Definition

A diff variety V is a Chow Variety if (&) € V
< F with coef (&;): Chow form with index (n, d, h, g, m).
< V: diff cycle of index (n, d, h, g, m).
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Differential Chow variety

A diff variety V has index (n,d, h,g, m) if V. C £" has
invariants: dim d, order h, leading diff degree g, and diff degree m.
Diff Cycle: V=), s;V;, V; irreducible of index (d, h, g, m)

e Chow Form of V : [[; F;*, F; Chow form of V;

e Index of V: (d, h,>;sig9i,>_; sim;i)

Definition

A diff variety V is a Chow Variety if (&) € V
< F with coef (&;): Chow form with index (n, d, h, g, m).
< V: diff cycle of index (n, d, h, g, m).

Chow Coordinate of V: (&)

In affine case, Chow Variety is a constructible set.
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Differential Chow variety

Theorem (Gao-Li-Yuan, 2013)

In the case g = 1, the differential Chow variety exists.

Difficulty for the general case: Eliminating both differential and
algebraic variables.
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Differential Chow variety

Theorem (Gao-Li-Yuan, 2013)

In the case g = 1, the differential Chow variety exists.

Difficulty for the general case: Eliminating both differential and
algebraic variables.

Theorem (Freitag-Li-Scanlon, 2015)
The differential Chow variety exists.

Key Ideas: Use prolongation admissible varieties and prolongation
sequences to reduce the construction to the algebraic case.
Definability in ACF and DCFy is also used.
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Differential Toric Variety
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Differential Toric Variety

o A={My,...,M}: aset of diff monomials
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Differential Toric Variety

o A={My,...,M}: aset of diff monomials
@ Consider the map

pa: (€M) — P(/)
n (MO(U)7M1(77)77M/(77))
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Differential Toric Variety

o A={My,...,M}: aset of diff monomials

@ Consider the map

pa: (€M) — P(/)
n (MO(U)7M1(77)77M/(77))

Definition
The image of ¢ 4 is called the differential toric variety w.r.t. A,
denoted by X4. X4 is an irreducible projective diff variety.
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Differential Toric Variety

o A={My,...,M}: aset of diff monomials

@ Consider the map

da: (EMN) — P(
n (Mo(n), Mi(n), ..., Mi(n))

Definition
The image of ¢ 4 is called the differential toric variety w.r.t. A,
denoted by X 4. X4 is an irreducible projective diff variety.

Res 4. Sparse differential resultant of P; = Zj uiM;, i =0,...,nis the
differential Chow form of X 4.
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Differential Toric Variety: An Example

Example
Let n = 1 and a set of monomials A = {y1,y!,y?}.

Toric Variety: all possible values of a set of monomials .4
Xa={nyi.¥9) v €€}

Defining equations of the toric variety
X4 = Zero(sat(z12o — (2025 — Z)22))).

The sparse differential resultant Res 4 is equal to the differential Chow
form of X4.
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Differential Toric Variety: An Example

Example
Let n = 1 and a set of monomials A = {y1,y!,y?}.

Toric Variety: all possible values of a set of monomials .4
Xa={nyi.¥9) v €€}

Defining equations of the toric variety
X4 = Zero(sat(z12o — (2025 — Z)22))).

The sparse differential resultant Res 4 is equal to the differential Chow
form of X4.

The defining ideal of a diff toric variety is not binomial!
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Binomial o-ideal and Toric o-variety
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In this talk, difference field (F,0): o : F = F is a field automorphism.
F is also assumed to be algebraically closed.
Example: Q(x) : o(x) = x + 1.
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In this talk, difference field (F,0): o : F = F is a field automorphism.
F is also assumed to be algebraically closed.
Example: Q(x) : o(x) = x + 1.

o-Exponent: For p = 37  ¢;x' € Z[x], denote & = [[}_,(c'a)%.
Example: &°~1 = (02(a))?/a

Xiao-Shan Gao (AMSS, CAS) 2015. 10. 2 36/48



In this talk, difference field (F,0): o : F = F is a field automorphism.
F is also assumed to be algebraically closed.
Example: Q(x) : o(x) = x + 1.
o-Exponent: For p = 37  ¢;x' € Z[x], denote & = [[}_,(c'a)%.
Example: &°~1 = (02(a))?/a

Y = {y1,...,¥n}: o-indeterminates

c-monomial with support f:
Y =17, y" wheref=(f,...,f,)" € N[x]"
F{Y}: o-polynomial ring
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Z|x] Lattice: Z[x] module in Z[x]"

Two kinds of representations:
Generators: L = Spany{f1,....fs} = (f1,....fs), fi € Z[x]"
Matrix representation: F = [f,... fs],xs

Rank of L: rk(F)
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Binomial o-ideal

o-binomial: f = a¥2 + bY®, a,b € N[x]", a,b € F.
Normal Form: f = ay9(v"" — cvf),
feZx]"andf=a—b=f" —f forf* f~ e N[x]".
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Binomial o-ideal

o-binomial: f = a¥2 + bY®, a,b € N[x]", a,b € F.
Normal Form: f = ay9(v"" — cvf),
feZx]"andf=a—b=f" —f forf* f~ e N[x]".

Normal binomial o-ideal Z:
e 7 is generated by o-binomials
e MpecZ= pecZ, M: s-monomial
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Binomial o-ideal

o-binomial: f = a¥2 + bY®, a,b € N[x]", a,b € F.

Normal Form: f = ay9(v"" — cvf),
feZx]"andf=a—b=f" —f forf* f~ e N[x]".

Normal binomial s-ideal Z:

e 7 is generated by o-binomials
e MpecZ= pecZ, M: s-monomial

Partial Character: A homomorphism from a Z|[x] lattice L, to the
multiplicative group F* satisfying p(xf) = o(p(f)).

T is a normal binomial o-ideal <

T =1I(p) = {Y" — p())Y' |f e L,} for a partial character p.
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Criteria for Normal LBo-ideal

Definition

A Z[x] lattice L in Z[x]" is called
@ Z-saturated if, for a € Z and f € Z[x]", af € L implies f € L.
@ x-saturated if, for f € Z[x]", xf € Limplies f € L.
@ M-saturated if, for f € Z[x]"and me N, mf € L = (x — op)f € L.
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Criteria for Normal LBo-ideal

A Z[x] lattice L in Z[x]" is called
@ Z-saturated if, for a € Z and f € Z[x]", af € L implies f € L.
@ x-saturated if, for f € Z[x]", xf € Limplies f € L.
@ M-saturated if, forf € Z[x]"and me N, mf € L = (x — op)f € L.

v

Let p be a partial character over Z[x]".

@ L, is Z-saturated < Z(p) is prime

@ L, is x-saturated < I(p) is reflexive

@ If(Z(p)) : M # [1], then L, is M-saturated < Z(p) is well-mixed
@ If{Z(p)} : M # [1], then L, is x-M-saturated < Z(p) is perfect
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For ={at,...,an}, o €Z[X]™i=1,...,n
Defineamap ¢ : (A*)™ = (A%)":
T=(t,....tn) =T = (T,..., 7).
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For ={at,...,an}, o €Z[X]™i=1,...,n
Defineamap ¢ : (A*)™ = (A%)":
T=(t,....tn) =T = (T,..., 7).

Toric Variety X : the Cohn closure of ¢ ((C*)™) in (A)".

@ Toric Variety: o-variety parameterized by o-monomials.

@ X is anirreducible o-variety of dim rk(A), where
A: [Oé‘],...,Ckn]mxn
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For ={at,...,an}, o €Z[X]™i=1,...,n
Defineamap ¢ : (A*)™ = (A%)":
T=(t,....tn) =T = (T,..., 7).

Toric Variety X : the Cohn closure of ¢ ((C*)™) in (A)".

@ Toric Variety: o-variety parameterized by o-monomials.

@ X is anirreducible o-variety of dim rk(A), where
A: [Oé‘],...,Ckn]mxn

The support: = {[1,1]", [x, x]",[0,1]"}.
The o-monomial: (tit, tt5, f).
The map: y1 = tib, Yo = 1, y3 = b

Toric o-variety: X : y{ — y» =0. Note that y; is free.

Xiao-Shan Gao (AMSS, CAS) 2015. 10. 2 40/48



Toric o-ideal

Toric Z[x] Lattice L: pfc L=fc L (p <€ Z[x] and f € Z[x]")
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Toric o-ideal

Toric Z[x] Lattice L: pfc L=fc L (p <€ Z[x] and f € Z[x]")

Toric o-ideal: (L) = [Y"" — Y' |f € L], where L is a toric Z[x] lattice.
e I (L) is reflexive and prime o-ideal of dimension rk(L).
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Toric o-ideal

Toric Z[x] Lattice L: pfc L=fc L (p <€ Z[x] and f € Z[x]")

Toric o-ideal: (L) = [Y"" — Y' |f € L], where L is a toric Z[x] lattice.
e I (L) is reflexive and prime o-ideal of dimension rk(L).

A o-variety V is toric iff 1(V) is a toric o-ideal.
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Toric o-ideal

Toric Z[x] Lattice L: pfc L=fc L (p <€ Z[x] and f € Z[x]")
Toric o-ideal: (L) = [Y" — Y' |f € L], where L is a toric Z[x] lattice.
e I (L) is reflexive and prime o-ideal of dimension rk(L).

A o-variety V is toric iff 1(V) is a toric o-ideal.

Example (Reflexive prime but not toric)

Let L= ([1 —x,x—1]7).

Since [1 —x,x —1] =(x —1)-[1,—1], L is not Z[x] toric.

The o-ideal IT(L) = [y{‘iygi — y{(’ygi; 0 < i <j e N]is reflexive prime
but not toric.
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Conversion between V = X and I(V) = 1" (p,)

(1) Implicitization:
GivenX (= (a1,...,an)) = I(V) C F{Y}

A= [a17-~-,04n]m><n
Ka = ker(A) = (f4,...fs): a toric Z[x] lattice; Grobner basis
I(X,) = IT(Ka) = sat(Yh —yf ... ¥l —Y%)
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Conversion between V = X and I(V) = I"(p,)

(1) Implicitization:
GivenX (= (a1,...,an)) = I(V) C F{Y}

A= [a17-~-,04n]m><n
Ka = ker(A) = (f4,...fs): a toric Z[x] lattice; Grobner basis
I(X,) = IT(Ka) = sat(Yh —yf ... ¥l —Y%)

(2) Parametrization:
Given T = sat(YH — Yf ... Yf —¥l) = X =v(I)
L,=(f,....fs)
F=1f,....fs]nxs € Z[x]"*®
Kr = {X € Z[x]" | F" X = 0} is a free Z[x] module.
KF has a basis {h1,...,h,_/}
H = [h1 Y hnfr]nx(n—r)
={a1,...,an} € Z[x]"" the rows of H.
If L, is a toric Z[x] lattice, then X = V(I)
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Coordinate Ring of Toric o-variety

Affine N[x] module:

={B1,...,Bs} CZ[X]"
M =N[x]( )= {32, aB;| a € N[x]} C Z[x]™.

Affine o-algebra

F{M} = > aT"| as € F, a5 # 0 for finitely many 5}.
tem
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Coordinate Ring of Toric o-variety

Affine N[x] module:

={B1,...,Bs} CZ[X]"
M =N[x]( )= {32, aB;| a € N[x]} C Z[x]™.

Affine o-algebra
F{M} = > aT"| as € F, a5 # 0 for finitely many 5}.
tem

Theorem. X is a toric o-variety
< X = Spec’ (Q{M}) for an affine N[x] module M.
< the coordinate ring of X is Q{M}.
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Toric o-variety in terms of group action

The map ¢ : (A*)™ — (A*)™:
Quasi o-torus: T = ¢ ((A*)™)

In the algebraic case, T (the torus) is a variety: T =X N (C*)™
This is not valid in the difference case.
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Toric o-variety in terms of group action

The map ¢ : (A*)™ — (A*)™:
Quasi o-torus: T = ¢ ((A*)™)

In the algebraic case, T (the torus) is a variety: T =X N (C*)™
This is not valid in the difference case.

o-torus: a o-variety isomorphic to the Cohn *-closure of T in (A*)".
(1) T* is a o-variety which is openin X .

(2) A o-torus is group under componentwise product.
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Toric o-variety in terms of group action

The map ¢ : (A*)™ — (A*)™:
Quasi o-torus: T = ¢ ((A*)™)

In the algebraic case, T (the torus) is a variety: T =X N (C*)™
This is not valid in the difference case.

o-torus: a o-variety isomorphic to the Cohn *-closure of T in (A*)".
(1) T* is a o-variety which is openin X .
(2) A o-torus is group under componentwise product.

Theorem (Toric o-variety in terms of group action)

A o-variety X is toric iff X contains a o-torus T* as an open subset and

with a group action of T* on X extending the natural group action of T*
on itself.
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@ Sparse differential/difference resultant is defined and
properties similar to that of the Sylvester resultant are given.

A single exponential algorithm to compute the sparse differential
resultant is given.

o Differential/difference Chow Form is defined and its basic
properties are established.

@ Difference binomial ideals and difference toric varieties are
introduced, which connects the difference Chow form and
difference sparse resultant.
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Thanks !
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