
Integro-differential Algebras of Combinatorial species

Xing Gao

Lanzhou University in China, Rutgers University-Newark

(Joint work with L. Guo, M. Rosenkranz and S. Zhang)

Kolchin Seminar in Differential Algebra

September 12, 2015

1



Outline

◮ The definition and some operators on (plane) species
◮ Integro-differential algebra
◮ Integro-differential algebra of plane species
◮ The definition and some operators on linear species
◮ Integro-differential algebra of linear species

2



An example

◮ Let U be a finite set. Denote by G[U] the set of all simple connected
graphs g = (γ,U) (i.e., undirected graphs without loops or multiple
edges) on U, where γ is the edge set.

◮ Each bijection σ : U → V induces a function (bijection)
G[σ] : G[U] → G[V ]. Then G is called the graph species.

◮ For example, let U = {1,2,3} and V = {a,b, c}.
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The definition of species

◮ The concept of structure is fundamental, recurring in all branches of
mathematics, as well as in computer science.

◮ Informally, a species is a class of finite structures on arbitrary finite
sets which is closed under arbitrary “relabellings” along bijections.

◮ Formally, A (plane) species of structures is a rule F which
1. produces, for each finite set U, a finite set F [U],
2. produces, for each bijection σ : U → V , a function F [σ] : F [U] → F [V ].

The functions F [σ] should further satisfy the following functorial
properties:

(i) for all bijections σ : U → V and τ : V → W ,

F [σ ◦ τ ] = F [σ] ◦ F [τ ]. (1)

(ii) for the identity map idU : U → U,

F [idU ] = idF [U]. (2)
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The definition of structure

◮ (A. Joyal 1981) In categorial terms, a species is a functor from the
category of finite sets to the category of finite sets, where the
morphisms are bijections.

◮ The following is a drawing of an F -structure, where the block dots
represent the elements in the underlying set U and the circular arc
labeled F represent the F -structure.

F
For

◮ An element s ∈ F [U] is called an F -structure on U.
◮ The function F [σ] is called the transport of F -structures along σ.
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Some examples

◮ Let U be a finite set. In each of the following cases, the transport of
structures F [σ] is obvious.

◮ The empty species, denoted by 0, defined by 0[U] = ∅ for all U.
◮ The species 1, characteristic of the empty set, defined by

1[U] :=

{

{U} if U = ∅,
∅ otherwise.

◮ The species En with n ≥ 1, characteristic of sets of cardinality n,
defined by

En[U] :=

{

{U} if |U| = n,
∅ otherwise.

In particular, write X := E1, characteristic of singletons.
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Some examples

◮ The set species E , defined by E [U] := {U}. For each finite set U,
there is a unique E -structure, namely the set U itself.

◮ The tree species α, defined by

α[U] = {all trees on U}.

◮ The cyclic species C, defined by

C[U] = {all oriented cycles on U}.

◮ The linear order species L, defined by

L[U] = {all linear orders on U}.

◮ The permutation species S, defined by

S[U] = {all permutations on U}.
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The combinatorial equality of species

◮ In categorical terms, an isomorphism of species is an invertible
natural transformation of functors.

◮ Let F and G be two species of structures. An isomorphism of F to G
is a family of bijections ϕU : F [U] → G[U] which satisfies the
following naturality condition: For any bijection σ : U → V between
two finite sets, the following diagram commutes:

F [U]
ϕU

//

F [σ]
��

G[U]

G[σ]
��

F [V ]
ϕV

// G[V ]

◮ Two isomorphic species essentially possess the ”same”
combinatorial properties. Henceforth they will be considered as
equal in the combinatorial algebra developed in the following.

◮ Thus we write F = G to indicate that F and G are isomorphic.
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The sum operator

◮ Let F and G be two species of structures. The species F + G, called
the sum of F and G, is defined as follows:

◮ For any finite set U, one has

(F + G)[U] := F [U] + G[U], (disjoint union).

◮ The transport along a bijection σ : U → V is carried out by setting, for
any (F + G)-structure s on U, one has

(F + G)[σ](s) :=
{

F [σ](s) if s ∈ F [U],
G[σ](s) if s ∈ G[U].
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The illustration of the sum operator

◮ A (F + G)-structure can be represented as:

F+G F Gor
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A remark of the sum

◮ It is possible that F [U] ∩ G[U] 6= ∅. For example, let F be the graph
species and G be the tree species.

◮ If F [U] ∩ G[U] 6= ∅, then F [U] + G[U] is still the disjoint union. To
obtain this, we must at first form distinct copies of the sets F [U] and
G[U]. A standard way of distinguishing the F -structures from the
G-structures is to replace the set F [U] by the isomorphic set
F [U]× {1} and G[U] by G[U]× {2}, and to set

(F + G)[U] := (F [U]× {1}) ⊔ (G[U]× {2}).
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Some properties of the sum operator

◮ Recall (F + G)[U] = F [U] + G[U].
◮ The operation of sum is commutative and associative, up to

isomorphism, that is,

F + G = G + H and (F + G) + H = F + (G + H).

◮ The empty species 0 is a neutral element for the operation of sum:

F + 0 = 0 + F = F

for all species F .
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Extend the sum operator to summable familiy

◮ A family (Fi)i∈I of species is said to be summable if for each finite set
U, Fi [U] = ∅ except for finitely many indices i ∈ I. The sum of a
summable family (Fi)i∈I is denoted by

∑

i∈I Fi .
◮ For example, the family (En)n≥0 is summable. Recall En is the

species characteristic of sets of cardinality n with n ≥ 0:

En[U] :=

{

{U} if |U| = n,
∅ otherwise.

◮ E = E0 + E1 + E2 + · · · , where E is the set species: Let U be a finite
set U and suppose |U| = n. Then we have E [U] = {U} and

(E0 + E1 + E2 + · · · )[U]

=E0[U] + E1[U] + E2[U] + · · ·+ En[U] + · · · = En[U] = {U}.
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Extend the sum operator to summable familiy

◮ In general, for any species F , we have

F = F0 + F1 + F2 + · · · ,

where Fn is the species F restricted to cardinality n, n ≥ 0. More
precisely,

Fn[U] =

{

F [U], if |U| = n,
∅, otherwise.
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The product operator

◮ Let F and G be two species of structures. The product of F and G,
denote by F · G or FG, is defined as follows:

◮ For any finite set U

(FG)[U] :=
∑

U1+U2=U

F [U1]× G[U2], (cartisian product of sets)

where the disjoint sum being taken over all pairs (U1,U2) forming a
decomposition of U.

◮ The transport (FG)[σ] along a bijection σ : U → V is natural. More
precisely, for each (FG)-structure s = (f ,g) on U,

(FG)[σ](s) := (F [σ1](f ),G[σ2](g)), (3)

where σ1 := σ|U1
and σ2 := σ|U2

are the restriction of σ on U1 and
U2, respectively.
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The transport of the product operator

◮ In a pictorial fashion, any FG-structure can be represented as:

F G

◮ Informally, an (FG)-structure is an ordered pair formed by an
F -structure and a G-structure over complementary disjoint subsets.
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An example of the product operator

◮ Let S be the permutation species and Der be the derangement
species(the permutation without fixed points). Then S = E · Der.

=
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Some properties of the product operator

◮ The product of species is associative and commutative up to
isomorphism:

F · G = G · F and (F · G) · H = F · (G · H).

◮ The product admits the species 1 as neutral element, and the
species 0 as absorbing element, i.e.,

1F = F1 = F and 0F = F0 = 0.

◮ The operator of product distributes over the operation of sum, that is,

F (G + H) = FG + FH.

◮ So the set of species is a semi-ring under the operations of sum and
product.
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The operator of substitution

◮ The substitution of G in F , denoted by F ◦ G or F (G), is a little bit
complicated. Intuitively, an F (G)-structure is an F -assembly of
disjoint G-structures:

( )F G F

G

G

G

=
F

G

G

G

=
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An example of the operator of substitution

◮ Note that F ◦ X = F (X ) = F for any species F . Recall X := E1 is the
species characteristic of singletons:

X [U] :=

{

{U} if |U| = 1,
∅ otherwise.

F

X

X

X

=
F

X

X

X

=
( )F X

X

X

X

X
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The derivative operator
◮ Let F = F (X ) be a species of structures. The species F ′ (also

denoted by dF or d
dX F (X )) called the derivative of F , is defined as

follows:
◮ An F ′-structure on U is an F -structure on U∗ := U ∪ {∗}, where ∗ is a

element chosen outside of U. In other words, for any finite set U ,
one sets

F ′[U] := F [U∗], where U∗ := U + {∗}.

F

*

F'

◮ The point ∗ is different from the points in the set U. We can image ∗
as a virtual point and elements in U as real points.
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The derivative operator

◮ The transport along a bijection σ : U → V is carried out by setting, for
any F ′-structure s on U,

F ′[σ](s) := F [σ∗](s),

where σ∗ : U + {∗} → V + {∗} is the canonical extension of σ
obtained by setting

σ∗(u) := σ(u) if u ∈ U and σ∗(∗) := ∗.

◮ Up to isomorphism, the derivation of species satisfies additivity and
Leibniz rule, i.e.,

(F + G)′ = F ′ + G′ and (FG)′ = F ′G + FG′.

◮ The operator d is called the combinatorial differential operator.
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Examples of the derivative operator

◮ We decompose the process of derivation F ′[U] to the following three
steps:

1. Add the point ∗ to the set U, that is, U∗ = U ∪ {∗};
2. Form the structures F [U∗]. In this step, take the point ∗ as a real point

temporarily;
3. Take out the point ∗ from the structures in F [U∗], because the point ∗

is indeed a virtual point.

◮ (En)
′ = En−1 for any n ≥ 1. For example, E ′

4 = E3:
for any finite set U with |U| 6= 3, we have
E ′

4[U] = E4[U∗] = ∅ = E3[U], and for U with |U| = 3, we have

=
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Examples of the derivative operator
◮ We decompose the process of derivation F ′[U] to the following three

steps:
1. Add the point ∗ to the set U, that is, U∗ = U ∪ {∗};
2. Form the structures F [U∗]. In this step, take the point ∗ as a real point

temporarily;
3. Take out the point ∗ from the structures in F [U∗], because the point ∗

is indeed a virtual point.
◮ (Cn)

′ = Ln−1 = X n−1 for any n ≥ 3, where Cn is the n-cycle species
(i.e. the cylce species C restrict to cardinality n) and Ln−1 is the
(n − 1)-linear order species (i.e. the linear species L restrict to
cardinality n − 1).

◮ For example, (C4)
′ = L3: for any finite set U with |U| 6= 3, we have

C′
4[U] = C4[U∗] = ∅ = L3[U], and for U with |U| = 3, we have

=
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Examples of the derivative operator

◮ L′ = L2:

=

25



Combinatorial differential constant

◮ A combinatorial differential constant is a species K = K (X ) such that
K ′(X ) = 0.

◮ There are plenty of “non constant” combinatorial differential
constants. For example, K = K (X ) := 3 + X 5 − 5C5, as

K ′(X ) = (3 + X 5 − 5C5)
′ = 0 + 5X 4 − 5X 4 = 0,

where C5 is the 5-cycle species.
◮ Another example of combinatorial differential constant is

K = K (X ) := X 2 − 2E2, as

K ′ = (X 2 − 2E2)
′ = 2X − 2E1 = 2X − 2X = 0.

◮ Question: Characterize the combinatorial differential constant.
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The virtual species

◮ To introduce the concept of the integral operator, we need the
subtraction of species, that is, the concept of virtual species.

◮ The situation is analogous to the case of semi-ring N of natural
numbers for which the subtraction is not everywhere defined.

◮ More precisely, a virtual species is an element of the quotient

Virt := Spec × Spec/ ∼,

where ∼ is defined by

(F ,G) ∼ (H,K ) ⇔ F + K = G + H.

Write
F − G := the class of of (F ,G) according to ∼ .

◮ We have the semi-ring embedding: Species →֒ Virtual Species via
F 7→ F − 0.
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The Joyal integral operator

◮ For a virtual species Φ, write Φ(n) := dn(Φ) for the n-th derivation of
Φ.

◮ Theorem(A. Joyal 1985) Every virtual species Φ = Φ(X ) has an
integral JE (Φ(X )) such that JE (Φ(0)) = 0 defined by,

JE (Φ(X )) := JE (Φ) := E1Φ− E2Φ
′ + E3Φ

(2) + · · ·

◮ Proof. Want: (JE (Φ))
′ = Φ. Differentiate term by term to obtain

“telescopic” cancellation:

(JE (Φ))
′ = (E1Φ)

′ − (E2Φ
′)′ + (E3Φ

′′)′ + · · ·

= Φ+ E1Φ
′ − E1Φ

′ − E2Φ
(2) + E2Φ

(2) + E3Φ
(3) + · · ·

= Φ

◮ Call JE the Joyal integral operator.
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Combinatorial differential tower

◮ To introduce other kind of integrals of virtual species, we need the
concept of combinatorial differential tower.

◮ A combinatorial differential tower is a species T = T (X ) such that
T ′(X ) = T (X ) and T (0) = 1.

◮ There are plenty of combinatorial differential towers. For example,

E(X ) = 1 + X + E2(X ) + · · ·+ En(X ) + · · ·

eX = 1 +
X
1!

+
X 2

2!
+ · · · +

X n

n!
+ · · ·

◮ Every combinatorial differential tower T = T0 + T1 + · · · + Tn + · · · is
characterized by T0 = 1 and T ′

n = Tn−1 for n ≥ 1.
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Variant of Joyal integral

◮ Theorem Let T = T0 + T1 + · · ·+ Tn + · · · be any given
combinatorial differential tower. Then every integral J of a virtual
species Φ = Φ(X ) can be written in the form

J(Φ) := J(Φ(X )) := K (X ) + JT (Φ(X )),

where K (X ) is a combinatorial differential constant and

JT (Φ(X ))

:=T1(X )Φ(X )− T2(X )Φ′(X ) + · · ·+ (−1)n−1Tn(X )Φ(n−1)(X ) + · · ·

◮ If taking T = E , then JT is precisely the Joyal integral.
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Integro-differential algebra

◮ A (commutative) integro-differential algebra of weight λ is a
differential k-algebra (R,D) of weight λ together with a linear
operator Π: R → R satisfying the section axiom D ◦ Π = idR and the
hybrid/differential Rota-Baxter axiom

Π(D(x)Π(y)) = xΠ(y) − Π(xy) − λΠ(D(x)y), x , y ∈ R.

◮ The hybrid Rota-Baxter axiom implies the Rota-Baxter axiom: Let
x = Π(x̃). Then D(x) = D(Π(x̃))) = x̃ and the above Equation
becomes

Π(x̃Π(y)) = Π(x̃)Π(y) − Π(Π(x̃)y) − λΠ(x̃y)

⇔Π(x̃)Π(y) = Π(x̃Π(y)) + Π(Π(x̃)y) + λΠ(x̃y)

which is the Rota-Baxter axiom.
◮ Every integro-differential algebra of weight λ is a Rota-Baxter

algebra of weight λ.
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Equivalent conditions

◮ Let (R,D) be a differential algebra of weight λ with a linear operator
Π on R such that D ◦ Π = idR . Denote J = Π ◦ D, called the
initialization, and E = idR − J, called the evaluation. Then the
following statements are equivalent:

1. (R,D,Π) is an integro-differential algebra;
2. E(xy) = E(x)E(y) for all x , y ∈ R;
3. J(x)J(y) + J(xy) = J(x)y + xJ(y), ∀x , y ∈ R
4. ker E = imJ is an ideal;
5. J(xJ(y)) = xJ(y) for all x , y ∈ R;
6. J(xΠ(y)) = xΠ(y) for all x , y ∈ R;
7. xΠ(y) = Π(D(x)Π(y)) + Π(xy) + λΠ(D(x)y) for all x , y ∈ R;
8. (R,D,Π) is a differential Rota-Baxter algebra and

Π(E(x)y) = E(x)Π(y) for all x , y ∈ R;
9. (R,D,Π) is a differential Rota-Baxter algebra and

J(E(x)J(y)) = E(x)J(y) for all x , y ∈ R.

◮ We will focus on 2: E(xy) = E(x)E(y). and 3:
J(x)J(y) + J(xy) = J(x)y + xJ(y), ∀x , y ∈ R.

32



Integro-differential algebra of virtual species
◮ Let Φ = Φ(X ) be a virtual species and J be an arbitrary integral on

virtual species given by

J(Φ) := J(Φ(X )) := K (X ) + JT (Φ(X )),

where K (X ) is a combinatorial differential constant and

JT (Φ(X ))

:=T1(X )Φ(X )− T2(X )Φ′(X ) + · · ·+ (−1)n−1Tn(X )Φ(n−1)(X ) + · · ·

◮ Theorem (Gao-Guo-Rosenkranz-Zhang) The virtual species with the
derivative d and integral J is a commutative integro-differential
Z-algebra of weight 0 if and only if K (X ) = 0.

◮ Corollay (Gao-Guo-Rosenkranz-Zhang) The virtual species with the
derivative d and the Joyal integral JE is a commutative
integro-differential Z-algebra of weight 0.

◮ Corollary (Gao-Guo-Rosenkranz-Zhang) The set of species with the
Joyal integral JE is a Rota-Baxter Z-algebra of weight 0.
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Applications of Int-diff algebras
◮ The integro-differential algebra can be used to solve initial problems

and boundary problems. For example:
◮ Theorem (Rosenkranz et. al.) Let (R,D,Π) be an ordinary

integro-differential algebra. Given a regular differential operator
T = Dn + cn−1Dn−1 + · · ·+ c0 ∈ R[D] and a regular fundamental
system u1, · · · ,un ∈ R, the canonical initial value problem

Tu = f
u(0) = u′(0) = · · · = u(n−1)(0) = 0

has the unique solution u = Gf , where

G =
n

∑

i=1

uiΠa−1ai

is the Green operator, a = det W (u1, · · · ,un) and ai is the
determinant of the matrix Wi obtained form W by replacing the i-th
column by the n-th unit vector.
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Applications of Int-diff algebras

◮ Another application, having the integro-differential Z-algebra S of
virtual species, we can also form the integro-differential polynomials
(say in one variable) with coefficients in S. This will give an exact
algebraic meaning to nonlinear combinatorial differential equations,
including initial conditions.

◮ For the concept of integro-differential polynomial, we refer to

References: M. Rosenkranz, G. Regensburger, L. Tec, and
B. Buchberger, Symbolic analysis for boundary problems: From
rewriting to parametrized Gröbner bases. In U. Langer and P. Paule
(eds.), Numerical and Symbolic Scientific Computing: Progress and
Prospects, Springer Vienna, 2012, 273–331.
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The definition of linear species
◮ The linear species is defined on totally ordered set.
◮ A totally ordered set is a pair ℓ = (U,≤), where U is a finite set and

≤ is a total order relation on U.
◮ The smallest element of a nonempty totally ordered set ℓ is denoted

by mℓ, that is,
mℓ := min{x | x ∈ ℓ}.

◮ Let ℓ = (U,≤) be a totally ordered set. For subsets U1, · · · ,Uk of U
such that U1 + · · ·+ Uk = U, we write

ℓ1 + · · · + ℓk = ℓ

if ℓi := ℓ|Ui
is the restriction of ℓ to Ui , for i = 1, · · · , k .

◮ Between two ordered sets ℓ1 and ℓ2, an increasing function
f : ℓ1 → ℓ2 is function such that, for u and v in ℓ1,

u <ℓ1 v ⇒ f (u) <ℓ2 f (v).
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The definition of linear species

◮ A L-species is a rule F which
1. to each totally ordered set ℓ, associates a finite (weighted) set F [ℓ],
2. to each increasing bijection σ : ℓ1 → ℓ2, associates a function

(morphism of weighted sets) F [σ] : F [ℓ1] → F [ℓ2]; these functions F [σ]
must satisfy the following functoriality properties:

F [idℓ] = idF [ℓ], F [σ ◦ τ ] = F [σ] ◦ F [τ ]. (4)

◮ In category terms, an L-species is a functor L → E, where L denote
the category of totally ordered sets and increasing bijections and E,
that of finite sets and bijections.
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Some operators on linear species

◮ Let F ,G be two linear species and ℓ = (U, <) a totally ordered set.
Define (In each case, the transport of structures is defined in the
obvious way)

1. the sum, F + G:

(F + G)[ℓ] := F [ℓ] + G[ℓ], (the disjoint union);

2. the product, FG:

(FG)[ℓ] :=
∑

ℓ1+ℓ2=ℓ

F [ℓ1]× G[ℓ2];

3. the derivation, ∂(F ):
∂(F )[ℓ] := F [1 +O ℓ];

where 1 +O ℓ is the totally ordered set obtained by adding a new
minimum element 1 to ℓ.
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The integral operator

◮ 4. the integral, Π(F ):

Π(F )[ℓ] :=

{

∅ if U = ∅,
F [ℓ \ mℓ] otherwise.

The following figure illustrates graphically the Π(F )-structure, where
min = min ℓ.

F
min

◮ Note that the minimum element min ℓ of the underlying total order set
ℓ of a Π(F )-structure does not appear in the corresponding
F -structure.
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Integro-diff algebra of linear virtual species

◮ Theorem (Gao-Guo-Rosenkranz-Zhang) The set of virtual linear
species with the derivative ∂ and integral Π is an integro-differential
Z-algebra of weight 0.

◮ Corollary (Gao-Guo-Rosenkranz-Zhang) The set of virtual linear
species with the integral Π is a Rota-Baxter Z-algebra of weight 0.
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◮ References:
*Bergeron F., Labelle G. and Leroux P., Combinatorial species and
tree-like structures, in: Encyclopedia of Mathematics and Its
Applications, vol. 67, Cambridge U. Press (1998).

◮ Thank You!
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