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An example

» Let U be a finite set. Denote by G[U] the set of all simple connected
graphs g = (v, U) (i.e., undirected graphs without loops or multiple
edges) on U, where ~ is the edge set.

» Each bijection ¢ : U — V induces a function (bijection)
Glo] : §[U] — S[V]. Then § is called the graph species.

» For example, letU ={1,2,3} andV = {a,b,c}.
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The definition of species

The concept of structure is fundamental, recurring in all branches of
mathematics, as well as in computer science.

Informally, a species is a class of finite structures on arbitrary finite
sets which is closed under arbitrary “relabellings” along bijections.
Formally, A (plane) species of structures is a rule F which

1. produces, for each finite set U, a finite set F[U],
2. produces, for each bijection ¢ : U — V, a function F[o] : F[U] — F[V].

The functions F[o] should further satisfy the following functorial
properties:

(i) for all bijectionso:U -V and7:V - W,
Floo7] =F[o] o F[r]. Q)
(i) for the identity mapidy : U — U,

Flidy] = idequ;. )



The definition of structure

» (A. Joyal 1981) In categorial terms, a species is a functor from the
category of finite sets to the category of finite sets, where the
morphisms are bijections.

» The following is a drawing of an F-structure, where the block dots
represent the elements in the underlying set U and the circular arc
labeled F represent the F-structure.

F
F or

» Anelements € F[U] is called an F-structure on U.
» The function F[o] is called the transport of F -structures along o.



Some examples

Let U be a finite set. In each of the following cases, the transport of
structures F[o] is obvious.

The empty species, denoted by 0, defined by O[U] = () for all U.
The species 1, characteristic of the empty set, defined by

[ {u} fu=0,
Ul = { 0  otherwise.

The species E,, with n > 1, characteristic of sets of cardinality n,

defined by T
U if U] =n,
EnlU] = { #  otherwise.

In particular, write X := E1, characteristic of singletons.
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Some examples

The set species E, defined by E[U] := {U}. For each finite set U,
there is a unique E-structure, namely the set U itself.

The tree species «, defined by
aU] = {all treeson U}.
The cyclic species C, defined by
C[U] = {all oriented cycles on U}.
The linear order species L, defined by
L[U] = {all linear orders on U }.
The permutation species §, defined by

S[U] = {all permutations on U }.
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The combinatorial equality of species

In categorical terms, an isomorphism of species is an invertible
natural transformation of functors.

Let F and G be two species of structures. An isomorphism of F to G
is a family of bijections ¢y : F[U] — G[U] which satisfies the
following naturality condition: For any bijection ¢ : U — V between
two finite sets, the following diagram commutes:

F[U] -~ GU]
F[U]l G[U]l
FIV] -2~ GV]

Two isomorphic species essentially possess the "same”
combinatorial properties. Henceforth they will be considered as
equal in the combinatorial algebra developed in the following.

Thus we write F = G to indicate that F and G are isomorphic.
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The sum operator

» Let F and G be two species of structures. The species F + G, called
the sum of F and G, is defined as follows:

» For any finite set U, one has
(F +G)[U] :=F[U] 4+ G[U], (disjoint union).

» The transport along a bijection o : U — V is carried out by setting, for
any (F + G)-structure s on U, one has

- Flo]l(s) ifs e F[U],
(F +G)[o](s) == { Glo](s) ifs e G[U].



The illustration of the sum operator

» A (F + G)-structure can be represented as:

F+G — F
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A remark of the sum

» Itis possible that F[U] N G[U] # 0. For example, let F be the graph
species and G be the tree species.

» If FIU] N G[U] # 0, then F[U] + G[U] is still the disjoint union. To
obtain this, we must at first form distinct copies of the sets F[U] and
G[U]. A standard way of distinguishing the F-structures from the
G-structures is to replace the set F[U] by the isomorphic set
F[U] x {1} and G[U] by G[U] x {2}, and to set

(F +G)[U] == (F[U] x {1}) U (G[U] x {2}).
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Some properties of the sum operator

» Recall (F + G)[U] = F[U] + G[U].
» The operation of sum is commutative and associative, up to
isomorphism, that is,

F+G=G+Hand(F+G)+H=F+(G+H).
» The empty species 0 is a neutral element for the operation of sum:
F+0=0+F=F

for all species F.
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Extend the sum operator to summable familiy

» A family (F;)i¢ of species is said to be summable if for each finite set
U, Fi[U] = 0 except for finitely many indices i € I. The sum of a
summable family (F;)i¢ is denoted by ;. F;.

» For example, the family (En)n>0 is summable. Recall E, is the
species characteristic of sets of cardinality n with n > O:

0 otherwise.

» E=Eyg+E;+E>+---, where E is the set species: Let U be a finite
set U and suppose |U| = n. Then we have E[U] = {U} and

(Eo+E1+Ex+---)[U]
=Ep[U] + E1[U] + Ex[U] + - - - + Exq[U] + - - - = Ex[U] = {U}.
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Extend the sum operator to summable familiy

» In general, for any species F, we have
F :F0+F1+F2+"' R

where F, is the species F restricted to cardinality n, n > 0. More
precisely,

_[FU], iU =n,
FalU] = { #,  otherwise.
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The product operator

Let F and G be two species of structures. The product of F and G,
denote by F - G or FG, is defined as follows:

For any finite set U

(FG)[U] := Z F[U1] x G[Uz], (cartisian product of sets)
Ui4+Ur=U

where the disjoint sum being taken over all pairs (U, U,) forming a
decomposition of U.

The transport (FG)[c] along a bijection ¢ : U — V is natural. More
precisely, for each (FG)-structure s = (f,g) on U,

(FG)Iol(s) := (Floa](f), Gloz](9)), (3)

where o1 := 0|y, and o, := 0|y, are the restriction of ¢ on U; and
U,, respectively.
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The transport of the product operator

» In a pictorial fashion, any FG-structure can be represented as:

» Informally, an (FG)-structure is an ordered pair formed by an
F-structure and a G-structure over complementary disjoint subsets.
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An example of the product operator

» Let S be the permutation species and Der be the derangement
species(the permutation without fixed points). Then 8§ = E - Der.

' o]’
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Some properties of the product operator

The product of species is associative and commutative up to
isomorphism:

F.-G=G-Fand(F-G)-H=F - (G-H).

The product admits the species 1 as neutral element, and the
species 0 as absorbing element, i.e.,

IF=F1=F and OF =F0=0.
The operator of product distributes over the operation of sum, that is,
F(G+H)=FG+FH.
So the set of species is a semi-ring under the operations of sum and

product.
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The operator of substitution

» The substitution of G in F, denoted by F o G or F(G), is a little bit
complicated. Intuitively, an F (G)-structure is an F-assembly of
disjoint G-structures:

F(G) F F G
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An example of the operator of substitution

» Note that F o X = F(X) = F for any species F. Recall X := E; is the
species characteristic of singletons:

_ [ Uy ifuf=1,
X[U]:= { @  otherwise.

®

F(X) F 9
®
®
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The derivative operator

» Let F = F(X) be a species of structures. The species F’ (also
denoted by dF or & F (X)) called the derivative of F, is defined as
follows:

» An F’-structure on U is an F-structure on U* := U U {x}, where x is a
element chosen outside of U. In other words, for any finite set U ,

one sets
F'[U] :=F[U*], where U*:=U + {x}.

F' —

» The point x is different from the points in the set U. We can image *
as a virtual point and elements in U as real points.
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The derivative operator

The transport along a bijection o : U — V is carried out by setting, for
any F’-structure s on U,

F'lol(s) = Flo"](s),

where o* : U + {x} — V + {x} is the canonical extension of o
obtained by setting

o*(u) :==0o(u) ifu e U and o (x) := *.

Up to isomorphism, the derivation of species satisfies additivity and
Leibniz rule, i.e.,

(F+G) =F +G' and (FG) =F'G + FG'.

The operator d is called the combinatorial differential operator.
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Examples of the derivative operator

» We decompose the process of derivation F’[U] to the following three
steps:
1. Add the point * to the set U, that is, U* = U U {x};
2. Form the structures F[U*]. In this step, take the point « as a real point
temporarily;
3. Take out the point = from the structures in F[U*], because the point x
is indeed a virtual point.

» (En) = E,_p forany n > 1. For example, E; = E3:
for any finite set U with |U| # 3, we have
E;[U] = E4[U*] = 0 = E3[U], and for U with |[U| = 3, we have
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Examples of the derivative operator

» We decompose the process of derivation F’[U] to the following three
steps:
1. Add the point * to the set U, that is, U* = U U {x};
2. Form the structures F[U*]. In this step, take the point « as a real point
temporarily;
3. Take out the point = from the structures in F[U*], because the point x
is indeed a virtual point.
» (Cn) =Ln_1 = X"~ for any n > 3, where C, is the n-cycle species
(i.e. the cylce species C restrict to cardinality n) and L,,_; is the
(n — 1)-linear order species (i.e. the linear species L restrict to
cardinality n — 1).
» For example, (C4)’ = Ls: for any finite set U with |U| # 3, we have
C,[U] = C4[U*] = 0 = L3[U], and for U with |U| = 3, we have
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Examples of the derivative operator

» L' = L2

25
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Combinatorial differential constant

A combinatorial differential constant is a species K = K(X) such that
K/(X) = 0.

There are plenty of “non constant” combinatorial differential
constants. For example, K = K(X) := 3 4+ X® — 5Cs, as

K/(X) = (3+X®-5Cs) =0 +5X* - 5X*=0,

where Cs is the 5-cycle species.

Another example of combinatorial differential constant is
K = K(X):=X? - 2E,, as

K’ = (X% - 2E;) =2X —2E; = 2X —2X = 0.

Question: Characterize the combinatorial differential constant.

26



The virtual species

To introduce the concept of the integral operator, we need the
subtraction of species, that is, the concept of virtual species.

The situation is analogous to the case of semi-ring N of natural
numbers for which the subtraction is not everywhere defined.

More precisely, a virtual species is an element of the quotient
Virt := Spec x Spec/ ~,
where ~ is defined by
(F,G)~(H,K)& F +K =G +H.

Write
F — G := the class of of (F,G) accordingto ~ .

We have the semi-ring embedding: Species — Virtual Species via
F—F-0.

27
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The Joyal integral operator

For a virtual species ®, write (") := d"(d) for the n-th derivation of
.

Theorem(A. Joyal 1985) Every virtual species ¢ = ®(X) has an
integral Je (®(X)) such that Jg (¢(0)) = 0 defined by,

Je(D(X)) := Jg (D) := E1® — Exd’ + Egd®@) 4 ...

Proof. Want: (Jg(®)) = ¢. Differentiate term by term to obtain
“telescopic” cancellation:

(Je(¢)) = (E19)' — (E2®') + (Eg®”) + ---
=&+ E 9 — E1 0 — E,0?) 4 E,0®) 4 Eg0B) ...
=

Call Jg the Joyal integral operator.
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Combinatorial differential tower

To introduce other kind of integrals of virtual species, we need the
concept of combinatorial differential tower.

A combinatorial differential tower is a species T = T (X) such that
T/(X)=T(X)and T(0) = 1.

There are plenty of combinatorial differential towers. For example,

E(X)=1+X+Ex(X)+ - +Ea(X)+---
2 XN

X X
_1+—+—+ e
21 n!

Every combinatorial differential tower T =To+ Ty + -+ Tp+--- is

characterized by To=1and T, =T,_; forn > 1.
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Variant of Joyal integral

» TheoremLetT =To+ Ty +---+Th+--- be any given
combinatorial differential tower. Then every integral J of a virtual
species ® = ®(X) can be written in the form

J(®) = I(®(X)) == K(X) + It (®(X)),
where K (X) is a combinatorial differential constant and

It (¢(X))

=T1(X)D(X) — To(X)P'(X) + - - + (=1)" 1T (X))o =D(X) + - ..

» Iftaking T = E, then J7 is precisely the Joyal integral.
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Integro-differential algebra

» A (commutative) integro-differential algebra of weight A is a
differential k-algebra (R, D) of weight A together with a linear
operator 1: R — R satisfying the section axiom D o I1 = idg and the
hybrid/differential Rota-Baxter axiom

N(D(x)N(y)) =xN(y) — N(xy) — AN(D(x)y), X,y €R.

» The hybrid Rota-Baxter axiom implies the Rota-Baxter axiom: Let
x = MN(X). Then D(x) = D(M(X))) = X and the above Equation
becomes

which is the Rota-Baxter axiom.
» Every integro-differential algebra of weight X is a Rota-Baxter
algebra of weight \.
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Equivalent conditions

» Let (R, D) be a differential algebra of weight \ with a linear operator
MTon R suchthat D o1 = idg. Denote J = N o D, called the
initialization, and & = idg — J, called the evaluation. Then the
following statements are equivalent:

1.

NGO~ WN

(R, D, N) is an integro-differential algebra;

E(xy) =E(x)E(y) forallx,y € R;

d(x)A(y) +d(xy) =3(x)y +x3(y), vx,y €R
kerE =imJ is an ideal;

I(xa(y)) =xd(y) forallx,y eR;

J(xMN(y)) =xN(y) forallx,y € R;

xMN(y) = N(D(x)N(y)) + N(xy) + AN(D(x)y) forallx,y € R;
(R, D, N) is a differential Rota-Baxter algebra and
NEXx)y) =E&(x)N(y) forallx,y € R;

(R, D, N) is a differential Rota-Baxter algebra and
J(EX)A(Y)) = EX)a(y) forallx,y € R.

» We will focus on 2: E(xy) = E(x)E(y). and 3:
Jx)Iy) +d(xy) = I(xX)y +xd(y), Vx,y €R.
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Integro-differential algebra of virtual species

Let & = ®(X) be a virtual species and J be an arbitrary integral on
virtual species given by

J(®) = I(®(X)) == K(X) + Ir (®(X)),
where K (X) is a combinatorial differential constant and

Jr(e(X))
=T1(XO)B(X) = To(X)@'(X) + -+ (1) Ta (X)) (X) 4 ---

Theorem (Gao-Guo-Rosenkranz-Zhang) The virtual species with the

derivative d and integral J is a commutative integro-differential
Z-algebra of weight 0 if and only if K(X) = 0.

Corollay (Gao-Guo-Rosenkranz-Zhang) The virtual species with the
derivative d and the Joyal integral Jg is a commutative
integro-differential Z-algebra of weight 0.

Corollary (Gao-Guo-Rosenkranz-Zhang) The set of species with the
Joyal integral Jg is a Rota-Baxter Z-algebra of weight O.
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Applications of Int-diff algebras

» The integro-differential algebra can be used to solve initial problems
and boundary problems. For example:

» Theorem (Rosenkranz et. al.) Let (R, D, M) be an ordinary
integro-differential algebra. Given a regular differential operator
T =D"+4c¢,_1D" 1 +... +¢co € R[D] and a regular fundamental

system uy, - -- , Uy € R, the canonical initial value problem
Tu=f
u(0) =u'(0)=---=ul™1(0) =0

has the unique solution u = Gf, where

n
G=> uMNa 'y
i=1
is the Green operator, a = detW (ug,--- ,un) and a; is the

determinant of the matrix W; obtained form W by replacing the i-th
column by the n-th unit vector.
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Applications of Int-diff algebras

» Another application, having the integro-differential Z-algebra S of
virtual species, we can also form the integro-differential polynomials
(say in one variable) with coefficients in S. This will give an exact
algebraic meaning to nonlinear combinatorial differential equations,
including initial conditions.

» For the concept of integro-differential polynomial, we refer to

References: M. Rosenkranz, G. Regensburger, L. Tec, and

B. Buchberger, Symbolic analysis for boundary problems: From
rewriting to parametrized Grobner bases. In U. Langer and P. Paule
(eds.), Numerical and Symbolic Scientific Computing: Progress and
Prospects, Springer Vienna, 2012, 273-331.
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The definition of linear species

The linear species is defined on totally ordered set.

A totally ordered set is a pair ¢ = (U, <), where U is a finite set and
< is a total order relation on U.

The smallest element of a nonempty totally ordered set ¢ is denoted
by m,, that is,
mg := min{x | x € ¢}.

Let ¢ = (U, <) be a totally ordered set. For subsets Uy, --- ,Uy of U
such that U; + --- + U = U, we write

b+ 4 =1

if ¢ := £|y, is the restriction of £ to U;, fori =1,--- k.

Between two ordered sets ¢; and /5, an increasing function
f : 41 — /5 is function such that, for u and v in /1,

u <p, v =1~1(u) <y, f(v).
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The definition of linear species

» A LL-species is a rule F which

1. to each totally ordered set ¢, associates a finite (weighted) set F[¢],

2. to each increasing bijection o : {1 — {5, associates a function
(morphism of weighted sets) F[o] : F[¢1] — F[¢2]; these functions F[o]
must satisfy the following functoriality properties:

F[idz]:idp[g], F[JOT]:F[O']OF[T]. (4)

» In category terms, an LL-species is a functor . — [E, where L denote
the category of totally ordered sets and increasing bijections and E,
that of finite sets and bijections.
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Some operators on linear species

» Let F, G be two linear species and ¢ = (U, <) a totally ordered set.
Define (In each case, the transport of structures is defined in the
obvious way)

1. the sum, F + G:
(F +G)[{] :=F[{ + G[¢, (the disjoint union);
2. the product, FG:

(FG)[:= > Fl] x Glta];

L1+l =1

3. the derivation, o(F):
R[] :=F[1+0 4];

where 1 +¢ /£ is the totally ordered set obtained by adding a new
minimum element 1 to /.
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The integral operator
» 4. the integral, MN(F):

0 if U =0,
F[¢\ my] otherwise.

(e = {

The following figure illustrates graphically the IM(F)-structure, where
min = min /.

min

» Note that the minimum element min ¢ of the underlying total order set
¢ of a IN(F)-structure does not appear in the corresponding
F-structure.

39



Integro-diff algebra of linear virtual species

» Theorem (Gao-Guo-Rosenkranz-Zhang) The set of virtual linear
species with the derivative 9 and integral 1 is an integro-differential
Z-algebra of weight 0.

» Corollary (Gao-Guo-Rosenkranz-Zhang) The set of virtual linear
species with the integral N is a Rota-Baxter Z-algebra of weight O.
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» References:
*Bergeron F,, Labelle G. and Leroux P., Combinatorial species and

tree-like structures, in: Encyclopedia of Mathematics and Its
Applications, vol. 67, Cambridge U. Press (1998).

» Thank You!
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