# Integro-differential Algebras of Combinatorial species

Xing Gao

Lanzhou University in China, Rutgers University-Newark

(Joint work with L. Guo, M. Rosenkranz and S. Zhang)

Kolchin Seminar in Differential Algebra

September 12, 2015

#### **Outline**

- The definition and some operators on (plane) species
- Integro-differential algebra
- Integro-differential algebra of plane species
- ▶ The definition and some operators on linear species
- Integro-differential algebra of linear species

#### An example

- Let U be a finite set. Denote by  $\mathfrak{G}[U]$  the set of all simple connected graphs  $g=(\gamma,U)$  (i.e., undirected graphs without loops or multiple edges) on U, where  $\gamma$  is the edge set.
- ▶ Each bijection  $\sigma: U \to V$  induces a function (bijection)  $\mathfrak{G}[\sigma]: \mathfrak{G}[U] \to \mathfrak{G}[V]$ . Then  $\mathfrak{G}$  is called the graph species.
- ► For example, let  $U = \{1, 2, 3\}$  and  $V = \{a, b, c\}$ .



### The definition of species

- ► The concept of structure is fundamental, recurring in all branches of mathematics, as well as in computer science.
- Informally, a species is a class of finite structures on arbitrary finite sets which is closed under arbitrary "relabellings" along bijections.
- ► Formally, A (plane) species of structures is a rule F which
  - 1. produces, for each finite set U, a finite set F[U],
  - 2. produces, for each bijection  $\sigma: U \to V$ , a function  $F[\sigma]: F[U] \to F[V]$ .

The functions  $F[\sigma]$  should further satisfy the following functorial properties:

(i) for all bijections  $\sigma: U \to V$  and  $\tau: V \to W$ ,

$$F[\sigma \circ \tau] = F[\sigma] \circ F[\tau]. \tag{1}$$

(ii) for the identity map  $id_U : U \rightarrow U$ ,

$$F[\mathrm{id}_U] = \mathrm{id}_{F[U]}. \tag{2}$$

#### The definition of structure

- (A. Joyal 1981) In categorial terms, a species is a functor from the category of finite sets to the category of finite sets, where the morphisms are bijections.
- ▶ The following is a drawing of an *F*-structure, where the block dots represent the elements in the underlying set *U* and the circular arc labeled *F* represent the *F*-structure.



- An element s ∈ F[U] is called an F-structure on U.
- ▶ The function  $F[\sigma]$  is called the transport of F-structures along  $\sigma$ .

#### Some examples

- Let U be a finite set. In each of the following cases, the transport of structures F[σ] is obvious.
- ▶ The empty species, denoted by 0, defined by  $0[U] = \emptyset$  for all U.
- The species 1, characteristic of the empty set, defined by

$$1[U] := \begin{cases} \{U\} & \text{if } U = \emptyset, \\ \emptyset & \text{otherwise.} \end{cases}$$

The species E<sub>n</sub> with n ≥ 1, characteristic of sets of cardinality n, defined by

$$E_n[U] := \begin{cases} \{U\} & \text{if } |U| = n, \\ \emptyset & \text{otherwise.} \end{cases}$$

In particular, write  $X := E_1$ , characteristic of singletons.

### Some examples

- ▶ The set species E, defined by  $E[U] := \{U\}$ . For each finite set U, there is a unique E-structure, namely the set U itself.
- ▶ The tree species  $\alpha$ , defined by

$$\alpha[U] = \{\text{all trees on } U\}.$$

► The cyclic species *C*, defined by

$$C[U] = \{ \text{all oriented cycles on } U \}.$$

▶ The linear order species *L*, defined by

$$L[U] = \{ \text{all linear orders on } U \}.$$

► The permutation species S, defined by

$$S[U] = \{\text{all permutations on } U\}.$$

# The combinatorial equality of species

- In categorical terms, an isomorphism of species is an invertible natural transformation of functors.
- Let F and G be two species of structures. An isomorphism of F to G is a family of bijections φ<sub>U</sub>: F[U] → G[U] which satisfies the following naturality condition: For any bijection σ : U → V between two finite sets, the following diagram commutes:

$$F[U] \xrightarrow{\varphi_U} G[U]$$

$$F[\sigma] \downarrow \qquad G[\sigma] \downarrow$$

$$F[V] \xrightarrow{\varphi_V} G[V]$$

- Two isomorphic species essentially possess the "same" combinatorial properties. Henceforth they will be considered as equal in the combinatorial algebra developed in the following.
- ▶ Thus we write F = G to indicate that F and G are isomorphic.

#### The sum operator

- ▶ Let F and G be two species of structures. The species F + G, called the sum of F and G, is defined as follows:
- ► For any finite set *U*, one has

$$(F+G)[U] := F[U] + G[U],$$
 (disjoint union).

▶ The transport along a bijection  $\sigma: U \to V$  is carried out by setting, for any (F + G)-structure s on U, one has

$$(F+G)[\sigma](s) := \left\{ egin{array}{ll} F[\sigma](s) & ext{if } s \in F[U], \\ G[\sigma](s) & ext{if } s \in G[U]. \end{array} 
ight.$$

### The illustration of the sum operator

► A (F + G)-structure can be represented as:



#### A remark of the sum

- ▶ It is possible that  $F[U] \cap G[U] \neq \emptyset$ . For example, let F be the graph species and G be the tree species.
- ▶ If  $F[U] \cap G[U] \neq \emptyset$ , then F[U] + G[U] is still the disjoint union. To obtain this, we must at first form distinct copies of the sets F[U] and G[U]. A standard way of distinguishing the F-structures from the G-structures is to replace the set F[U] by the isomorphic set  $F[U] \times \{1\}$  and G[U] by  $G[U] \times \{2\}$ , and to set

$$(F+G)[U] := (F[U] \times \{1\}) \sqcup (G[U] \times \{2\}).$$

# Some properties of the sum operator

- ▶ Recall (F + G)[U] = F[U] + G[U].
- ► The operation of sum is commutative and associative, up to isomorphism, that is,

$$F + G = G + H$$
 and  $(F + G) + H = F + (G + H)$ .

► The empty species 0 is a neutral element for the operation of sum:

$$F + 0 = 0 + F = F$$

for all species F.

# Extend the sum operator to summable familiy

- A family (F<sub>i</sub>)<sub>i∈I</sub> of species is said to be summable if for each finite set U, F<sub>i</sub>[U] = ∅ except for finitely many indices i ∈ I. The sum of a summable family (F<sub>i</sub>)<sub>i∈I</sub> is denoted by ∑<sub>i∈I</sub> F<sub>i</sub>.
- ► For example, the family  $(E_n)_{n\geq 0}$  is summable. Recall  $E_n$  is the species characteristic of sets of cardinality n with  $n\geq 0$ :

$$E_n[U] := \left\{ egin{array}{ll} \{U\} & ext{if } |U| = n, \\ \emptyset & ext{otherwise.} \end{array} \right.$$

▶  $E = E_0 + E_1 + E_2 + \cdots$ , where E is the set species: Let U be a finite set U and suppose |U| = n. Then we have  $E[U] = \{U\}$  and

$$(E_0 + E_1 + E_2 + \cdots)[U]$$
  
=  $E_0[U] + E_1[U] + E_2[U] + \cdots + E_n[U] + \cdots = E_n[U] = \{U\}.$ 

# Extend the sum operator to summable familiy

▶ In general, for any species *F*, we have

$$F = F_0 + F_1 + F_2 + \cdots$$

where  $F_n$  is the species F restricted to cardinality n,  $n \ge 0$ . More precisely,

$$F_n[U] = \begin{cases} F[U], & \text{if } |U| = n, \\ \emptyset, & \text{otherwise.} \end{cases}$$

#### The product operator

- Let F and G be two species of structures. The product of F and G, denote by F ⋅ G or FG, is defined as follows:
- For any finite set U

$$(FG)[U] := \sum_{U_1 + U_2 = U} F[U_1] \times G[U_2],$$
 (cartisian product of sets)

where the disjoint sum being taken over all pairs  $(U_1, U_2)$  forming a decomposition of U.

▶ The transport  $(FG)[\sigma]$  along a bijection  $\sigma: U \to V$  is natural. More precisely, for each (FG)-structure s = (f, g) on U,

$$(FG)[\sigma](s) := (F[\sigma_1](f), G[\sigma_2](g)), \tag{3}$$

where  $\sigma_1 := \sigma|_{U_1}$  and  $\sigma_2 := \sigma|_{U_2}$  are the restriction of  $\sigma$  on  $U_1$  and  $U_2$ , respectively.

# The transport of the product operator

In a pictorial fashion, any *FG*-structure can be represented as:



Informally, an (FG)-structure is an ordered pair formed by an
 F-structure and a G-structure over complementary disjoint subsets.

# An example of the product operator

▶ Let S be the permutation species and Der be the derangement species(the permutation without fixed points). Then  $S = E \cdot Der$ .



# Some properties of the product operator

► The product of species is associative and commutative up to isomorphism:

$$F \cdot G = G \cdot F$$
 and  $(F \cdot G) \cdot H = F \cdot (G \cdot H)$ .

► The product admits the species 1 as neutral element, and the species 0 as absorbing element, i.e.,

$$1F = F1 = F$$
 and  $0F = F0 = 0$ .

➤ The operator of product distributes over the operation of sum, that is,

$$F(G+H)=FG+FH.$$

▶ So the set of species is a semi-ring under the operations of sum and product.

# The operator of substitution

The substitution of G in F, denoted by F ∘ G or F(G), is a little bit complicated. Intuitively, an F(G)-structure is an F-assembly of disjoint G-structures:



### An example of the operator of substitution

▶ Note that  $F \circ X = F(X) = F$  for any species F. Recall  $X := E_1$  is the species characteristic of singletons:

$$X[U] := \left\{ egin{array}{ll} \{U\} & ext{ if } |U| = 1, \\ \emptyset & ext{ otherwise.} \end{array} 
ight.$$



### The derivative operator

- Let F = F(X) be a species of structures. The species F' (also denoted by dF or  $\frac{d}{dX}F(X)$ ) called the derivative of F, is defined as follows:
- An F'-structure on U is an F-structure on  $U^* := U \cup \{*\}$ , where \* is a element chosen outside of U. In other words, for any finite set U, one sets

$$F'[U] := F[U^*], \text{ where } U^* := U + \{*\}.$$



► The point \* is different from the points in the set U. We can image \* as a virtual point and elements in U as real points.

### The derivative operator

The transport along a bijection σ : U → V is carried out by setting, for any F'-structure s on U,

$$F'[\sigma](s) := F[\sigma^*](s),$$

where  $\sigma^*: U + \{*\} \to V + \{*\}$  is the canonical extension of  $\sigma$  obtained by setting

$$\sigma^*(u) := \sigma(u)$$
 if  $u \in U$  and  $\sigma^*(*) := *$ .

▶ Up to isomorphism, the derivation of species satisfies additivity and Leibniz rule, i.e.,

$$(F+G)' = F'+G'$$
 and  $(FG)' = F'G+FG'$ .

▶ The operator *d* is called the combinatorial differential operator.

### Examples of the derivative operator

- ▶ We decompose the process of derivation F'[U] to the following three steps:
  - 1. Add the point \* to the set U, that is,  $U^* = U \cup \{*\}$ ;
  - 2. Form the structures  $F[U^*]$ . In this step, take the point \* as a real point temporarily;
  - 3. Take out the point \* from the structures in  $F[U^*]$ , because the point \* is indeed a virtual point.
- ▶  $(E_n)' = E_{n-1}$  for any  $n \ge 1$ . For example,  $E_4' = E_3$ : for any finite set U with  $|U| \ne 3$ , we have  $E_4'[U] = E_4[U^*] = \emptyset = E_3[U]$ , and for U with |U| = 3, we have

# Examples of the derivative operator

- ▶ We decompose the process of derivation F'[U] to the following three steps:
  - 1. Add the point \* to the set U, that is,  $U^* = U \cup \{*\}$ ;
  - 2. Form the structures  $F[U^*]$ . In this step, take the point \* as a real point temporarily;
  - 3. Take out the point \* from the structures in  $F[U^*]$ , because the point \* is indeed a virtual point.
- ▶  $(C_n)' = L_{n-1} = X^{n-1}$  for any  $n \ge 3$ , where  $C_n$  is the n-cycle species (i.e. the cylce species C restrict to cardinality n) and  $L_{n-1}$  is the (n-1)-linear order species (i.e. the linear species L restrict to cardinality n-1).
- ► For example,  $(C_4)' = L_3$ : for any finite set U with  $|U| \neq 3$ , we have  $C'_4[U] = C_4[U^*] = \emptyset = L_3[U]$ , and for U with |U| = 3, we have



# Examples of the derivative operator

►  $L' = L^2$ :



#### Combinatorial differential constant

- A combinatorial differential constant is a species K = K(X) such that K'(X) = 0.
- ▶ There are plenty of "non constant" combinatorial differential constants. For example,  $K = K(X) := 3 + X^5 5C_5$ , as

$$K'(X) = (3 + X^5 - 5C_5)' = 0 + 5X^4 - 5X^4 = 0,$$

where  $C_5$  is the 5-cycle species.

▶ Another example of combinatorial differential constant is  $K = K(X) := X^2 - 2E_2$ , as

$$K' = (X^2 - 2E_2)' = 2X - 2E_1 = 2X - 2X = 0.$$

Question: Characterize the combinatorial differential constant.

#### The virtual species

- ➤ To introduce the concept of the integral operator, we need the subtraction of species, that is, the concept of virtual species.
- ▶ The situation is analogous to the case of semi-ring  $\mathbb{N}$  of natural numbers for which the subtraction is not everywhere defined.
- More precisely, a virtual species is an element of the quotient

$$Virt := Spec \times Spec / \sim,$$

where  $\sim$  is defined by

$$(F,G) \sim (H,K) \Leftrightarrow F+K=G+H.$$

Write

$$F - G :=$$
 the class of of  $(F, G)$  according to  $\sim$ .

▶ We have the semi-ring embedding: Species  $\hookrightarrow$  Virtual Species via  $F \mapsto F - 0$ .

### The Joyal integral operator

- ► For a virtual species  $\Phi$ , write  $\Phi^{(n)} := d^n(\Phi)$  for the *n*-th derivation of  $\Phi$ .
- ▶ **Theorem**(A. Joyal 1985) Every virtual species  $\Phi = \Phi(X)$  has an integral  $J_E(\Phi(X))$  such that  $J_E(\Phi(0)) = 0$  defined by,

$$J_E(\Phi(X)) := J_E(\Phi) := E_1\Phi - E_2\Phi' + E_3\Phi^{(2)} + \cdots$$

▶ **Proof.** Want:  $(J_E(\Phi))' = \Phi$ . Differentiate term by term to obtain "telescopic" cancellation:

$$(J_{E}(\Phi))' = (E_{1}\Phi)' - (E_{2}\Phi')' + (E_{3}\Phi'')' + \cdots$$

$$= \Phi + E_{1}\Phi' - E_{1}\Phi' - E_{2}\Phi^{(2)} + E_{2}\Phi^{(2)} + E_{3}\Phi^{(3)} + \cdots$$

$$= \Phi$$

Call J<sub>E</sub> the Joyal integral operator.

#### Combinatorial differential tower

- ➤ To introduce other kind of integrals of virtual species, we need the concept of combinatorial differential tower.
- A combinatorial differential tower is a species T = T(X) such that T'(X) = T(X) and T(0) = 1.
- There are plenty of combinatorial differential towers. For example,

$$E(X) = 1 + X + E_2(X) + \dots + E_n(X) + \dots$$
$$e^X = 1 + \frac{X}{1!} + \frac{X^2}{2!} + \dots + \frac{X^n}{n!} + \dots$$

▶ Every combinatorial differential tower  $T = T_0 + T_1 + \cdots + T_n + \cdots$  is characterized by  $T_0 = 1$  and  $T'_n = T_{n-1}$  for  $n \ge 1$ .

# Variant of Joyal integral

▶ **Theorem** Let  $T = T_0 + T_1 + \cdots + T_n + \cdots$  be any given combinatorial differential tower. Then every integral J of a virtual species  $\Phi = \Phi(X)$  can be written in the form

$$J(\Phi):=J(\Phi(X)):=K(X)+J_T(\Phi(X)),$$

where K(X) is a combinatorial differential constant and

$$J_{T}(\Phi(X))$$
:=  $T_{1}(X)\Phi(X) - T_{2}(X)\Phi'(X) + \cdots + (-1)^{n-1}T_{n}(X)\Phi^{(n-1)}(X) + \cdots$ 

▶ If taking T = E, then  $J_T$  is precisely the Joyal integral.

# Integro-differential algebra

A (commutative) integro-differential algebra of weight λ is a differential k-algebra (R, D) of weight λ together with a linear operator Π: R → R satisfying the section axiom D ∘ Π = id<sub>R</sub> and the hybrid/differential Rota-Baxter axiom

$$\Pi(D(x)\Pi(y)) = x\Pi(y) - \Pi(xy) - \lambda\Pi(D(x)y), \quad x, y \in R.$$

► The hybrid Rota-Baxter axiom implies the Rota-Baxter axiom: Let  $x = \Pi(\tilde{x})$ . Then  $D(x) = D(\Pi(\tilde{x})) = \tilde{x}$  and the above Equation becomes

$$\Pi(\tilde{x}\Pi(y)) = \Pi(\tilde{x})\Pi(y) - \Pi(\Pi(\tilde{x})y) - \lambda\Pi(\tilde{x}y)$$
  

$$\Leftrightarrow \Pi(\tilde{x})\Pi(y) = \Pi(\tilde{x}\Pi(y)) + \Pi(\Pi(\tilde{x})y) + \lambda\Pi(\tilde{x}y)$$

which is the Rota-Baxter axiom.

▶ Every integro-differential algebra of weight  $\lambda$  is a Rota-Baxter algebra of weight  $\lambda$ .

# **Equivalent conditions**

- ▶ Let (R, D) be a differential algebra of weight  $\lambda$  with a linear operator  $\Pi$  on R such that  $D \circ \Pi = \mathrm{id}_R$ . Denote  $\mathcal{J} = \Pi \circ D$ , called the initialization, and  $\mathcal{E} = \mathrm{id}_R \mathcal{J}$ , called the evaluation. Then the following statements are equivalent:
  - 1.  $(R, D, \Pi)$  is an integro-differential algebra;
  - 2.  $\mathcal{E}(xy) = \mathcal{E}(x)\mathcal{E}(y)$  for all  $x, y \in R$ ;
  - 3.  $\vartheta(x)\vartheta(y) + \vartheta(xy) = \vartheta(x)y + x\vartheta(y), \quad \forall x, y \in R$
  - 4.  $\ker E = \operatorname{im} \mathfrak{J}$  is an ideal;
  - 5.  $\mathcal{J}(x\mathcal{J}(y)) = x\mathcal{J}(y)$  for all  $x, y \in R$ ;
  - 6.  $\Im(x\Pi(y)) = x\Pi(y)$  for all  $x, y \in R$ ;
  - 7.  $x\Pi(y) = \Pi(D(x)\Pi(y)) + \Pi(xy) + \lambda\Pi(D(x)y)$  for all  $x, y \in R$ ;
  - 8.  $(R, D, \Pi)$  is a differential Rota-Baxter algebra and  $\Pi(\mathcal{E}(x)y) = \mathcal{E}(x)\Pi(y)$  for all  $x, y \in R$ ;
  - 9.  $(R, D, \Pi)$  is a differential Rota-Baxter algebra and  $\mathcal{J}(\mathcal{E}(x)\mathcal{J}(y)) = \mathcal{E}(x)\mathcal{J}(y)$  for all  $x, y \in R$ .
- ▶ We will focus on 2:  $\mathcal{E}(xy) = \mathcal{E}(x)\mathcal{E}(y)$ . and 3:  $\mathcal{J}(x)\mathcal{J}(y) + \mathcal{J}(xy) = \mathcal{J}(x)y + x\mathcal{J}(y)$ ,  $\forall x, y \in R$ .

# Integro-differential algebra of virtual species

Let  $\Phi = \Phi(X)$  be a virtual species and J be an arbitrary integral on virtual species given by

$$J(\Phi) := J(\Phi(X)) := K(X) + J_T(\Phi(X)),$$

where  $K(\boldsymbol{X})$  is a combinatorial differential constant and

$$J_T(\Phi(X))$$
  
:= $T_1(X)\Phi(X) - T_2(X)\Phi'(X) + \cdots + (-1)^{n-1}T_n(X)\Phi^{(n-1)}(X) + \cdots$ 

- ► Theorem (Gao-Guo-Rosenkranz-Zhang) The virtual species with the derivative *d* and integral *J* is a commutative integro-differential Z-algebra of weight 0 if and only if *K*(*X*) = 0.
- ▶ Corollay (Gao-Guo-Rosenkranz-Zhang) The virtual species with the derivative *d* and the Joyal integral J<sub>E</sub> is a commutative integro-differential Z-algebra of weight 0.
- ▶ Corollary (Gao-Guo-Rosenkranz-Zhang) The set of species with the Joyal integral  $J_E$  is a Rota-Baxter  $\mathbb{Z}$ -algebra of weight 0.

# Applications of Int-diff algebras

- ► The integro-differential algebra can be used to solve initial problems and boundary problems. For example:
- ▶ **Theorem** (Rosenkranz et. al.) Let  $(R, D, \Pi)$  be an ordinary integro-differential algebra. Given a regular differential operator  $T = D^n + c_{n-1}D^{n-1} + \cdots + c_0 \in R[D]$  and a regular fundamental system  $u_1, \dots, u_n \in R$ , the canonical initial value problem

Tu = f  

$$u(0) = u'(0) = \cdots = u^{(n-1)}(0) = 0$$

has the unique solution u = Gf, where

$$G = \sum_{i=1}^{n} u_i \Pi a^{-1} a_i$$

is the Green operator,  $a = \det W(u_1, \dots, u_n)$  and  $a_i$  is the determinant of the matrix  $W_i$  obtained form W by replacing the i-th column by the n-th unit vector.

### Applications of Int-diff algebras

- ▶ Another application, having the integro-differential Z-algebra S of virtual species, we can also form the integro-differential polynomials (say in one variable) with coefficients in S. This will give an exact algebraic meaning to nonlinear combinatorial differential equations, including initial conditions.
- ► For the concept of integro-differential polynomial, we refer to

**References:** M. Rosenkranz, G. Regensburger, L. Tec, and B. Buchberger, Symbolic analysis for boundary problems: From rewriting to parametrized Gröbner bases. In U. Langer and P. Paule (eds.), *Numerical and Symbolic Scientific Computing: Progress and Prospects*, Springer Vienna, 2012, 273–331.

# The definition of linear species

- ▶ The linear species is defined on totally ordered set.
- ▶ A totally ordered set is a pair  $\ell = (U, \leq)$ , where U is a finite set and  $\leq$  is a total order relation on U.
- ► The smallest element of a nonempty totally ordered set  $\ell$  is denoted by  $m_{\ell}$ , that is,

$$m_{\ell} := \min\{x \mid x \in \ell\}.$$

▶ Let  $\ell = (U, \leq)$  be a totally ordered set. For subsets  $U_1, \dots, U_k$  of U such that  $U_1 + \dots + U_k = U$ , we write

$$\ell_1 + \cdots + \ell_k = \ell$$

if  $\ell_i := \ell|_{U_i}$  is the restriction of  $\ell$  to  $U_i$ , for  $i = 1, \dots, k$ .

▶ Between two ordered sets  $\ell_1$  and  $\ell_2$ , an increasing function  $f: \ell_1 \to \ell_2$  is function such that, for u and v in  $\ell_1$ ,

$$u <_{\ell_1} v \Rightarrow f(u) <_{\ell_2} f(v)$$
.

### The definition of linear species

- A ⊥-species is a rule F which
  - 1. to each totally ordered set  $\ell$ , associates a finite (weighted) set  $F[\ell]$ ,
  - 2. to each increasing bijection  $\sigma:\ell_1\to\ell_2$ , associates a function (morphism of weighted sets)  $F[\sigma]:F[\ell_1]\to F[\ell_2]$ ; these functions  $F[\sigma]$  must satisfy the following functoriality properties:

$$F[\mathrm{id}_{\ell}] = \mathrm{id}_{F[\ell]}, \quad F[\sigma \circ \tau] = F[\sigma] \circ F[\tau].$$
 (4)

▶ In category terms, an  $\mathbb{L}$ -species is a functor  $\mathbb{L} \to \mathbb{E}$ , where  $\mathbb{L}$  denote the category of totally ordered sets and increasing bijections and  $\mathbb{E}$ , that of finite sets and bijections.

# Some operators on linear species

- Let F, G be two linear species and  $\ell = (U, <)$  a totally ordered set. Define (In each case, the transport of structures is defined in the obvious way)
  - 1. the sum, F + G:

$$(F+G)[\ell] := F[\ell] + G[\ell],$$
 (the disjoint union);

2. the product, *FG*:

$$(FG)[\ell] := \sum_{\ell_1 + \ell_2 = \ell} F[\ell_1] \times G[\ell_2];$$

3. the derivation,  $\partial(F)$ :

$$\partial(F)[\ell] := F[1 +_{\mathcal{O}} \ell];$$

where 1  $+_{\odot}$   $\ell$  is the totally ordered set obtained by adding a new minimum element 1 to  $\ell$ .

#### The integral operator

▶ 4. the integral, Π(F):

$$\Pi(F)[\ell] := \left\{ \begin{array}{cc}
\emptyset & \text{if } U = \emptyset, \\
F[\ell \setminus m_{\ell}] & \text{otherwise.} \end{array} \right.$$

The following figure illustrates graphically the  $\Pi(F)$ -structure, where  $\min = \min \ell$ .



Note that the minimum element  $\min \ell$  of the underlying total order set  $\ell$  of a  $\Pi(F)$ -structure does not appear in the corresponding F-structure.

### Integro-diff algebra of linear virtual species

- Theorem (Gao-Guo-Rosenkranz-Zhang) The set of virtual linear species with the derivative ∂ and integral Π is an integro-differential Z-algebra of weight 0.
- ► Corollary (Gao-Guo-Rosenkranz-Zhang) The set of virtual linear species with the integral Π is a Rota-Baxter Z-algebra of weight 0.

#### ► References:

\*Bergeron F., Labelle G. and Leroux P., Combinatorial species and tree-like structures, in: Encyclopedia of Mathematics and Its Applications, vol. 67, Cambridge U. Press (1998).

#### ▶ Thank You!