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Motivation:
I Throughout the history, mathematical objects are often

understood through studying operators defined on them.
I Well-known examples include Galois theory where a field is

studied by its automorphisms, and analysis and geometry
were functions and manifolds are studied through their
derivations and related vector fields.
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Rota’s Question:
I By the 1970s, several other operators had been found from

studies in analysis, probability and combinatorics.

Average operator P(x)P(y) = P(xP(y)),

Inverse average operator P(x)P(y) = P(P(x)y),

(Rota-)Baxter operator P(x)P(y) = P(xP(y) + P(x)y + λxy),

where λ is a fixed constant,
Reynolds operator P(x)P(y) = P(xP(y) + P(x)y − P(x)P(y)).

I Rota posed the question of finding all the identities that
could be satisfied by a linear operator defined on associative
algebras. He also suggested that there should not be many
such operators other than these previously known ones.
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Quotation from Rota
I ”In a series of papers, I have tried to show that other linear

operators satisfying algebraic identities may be of equal
importance in studying certain algebraic phenomena, and I
have posed the problem of finding all possible algebraic
identities that can be satisfied by a linear operator on an
algebra. Simple computations show that the possibility are
very few, and the problem of classifying all such identities is
very probably completely solvable.2 A partial (but fairly
complete) list of such identities is the following. Besides
endomorphisms and derivations, one has averaging
operators, Reynolds operators and Baxter operators.”

2A notable step forward has been made in the unpublished (and
unsubmitted) Harvard thesis of Alexander Doohovskoy.
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Post Rota developments
I Little progress was made on finding all such operators. In

the meantime, new operators have merged from physics
and combinatorial studies, such as

Nijenhuis operator P(x)P(y) = P(xP(y) + P(x)y − P(xy)),

Leroux’s TD operator P(x)P(y) = P(xP(y) + P(x)y − xP(1)y).

I These previously known operators continued to find
remarkable applications in pure and applied mathematics.
For the differential operator, we witnessed the establishing
of differential algebra and difference algebra (and the
DARTs). The Rota-Baxter algebra have found applications
in classical Yang-Baxter equations, operads, combinatorics,
and most prominently, the renormalization of quantum field
theory through the Hopf algebra framework of Connes and
Kreimer.

I What do we mean by a linear operator satisfying an
algebraic identity?

5



A simplified analogy: PI algebras
I A k-algebra R is called a PI algebra if it satisfies a

polynomial identity: there is a fixed element f (X ) in a
noncommutative polynomial algebra (that is, a free algebra)
k〈X 〉 over a set X such that f (X ) is sent to zero under any
algebra homomorphism from k〈X 〉 to R.

I So identities for a PI algebra are elements from the free
algebra k〈X 〉.

I Then identities for an operator on an algebra should be
elements from free algebra with operators.
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Operated algebras
I An operated monoid is a monoid U together with a map

α : U → U. A morphism from an operated monoid (U, α) to
an operated monoid (V , β) is a monoid homomorphism
f : U → V such that f ◦ α = β ◦ f .

U
α //

f
²²

U

f
²²

V
β // V

Let k be a commutative unitary ring. When monoid is
replaced by semigroup, k-algebra or nonunitary k-algebra in
the above definition, we obtain the concept of operated
semigroup, operated k-algebras or operated nonunitary
k-algebra.

I The set F of forests with the grafting map and the
concatenation product is a operated semigroup. The
k-module k F generated by F is a operated nonunitary
k-algebra.
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Free operated algebras
I The adjoint functor of the forgetful functor from the category

of operated monoids to the category of sets gives the free
operated monoids in the usual way.

I More precisely, a free operated monoid on a set X is an
operated monoid (UX , αX ) together with a map jX : X → UX
with the property that, for any operated monoid (V , β)
together with a map f : X → V , there is a unique morphism
f̄ : (UX , αX ) → (V , β) of operated monoids such that
f = f̄ ◦ jX .

X
jX //

f
&&NNNNNNNNNNNNN UX

f̄
²²

V

I We similarly define the concept of free operated
(nonunitary) k-algebras on a set X .
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Construction of free operated algebras
I For a given set Y , let S(Y ) be the free semigroup generated

by Y , let M(Y ) be the free monoid generated by Y and let
bY c be the set {byc∣∣y ∈ Y} which is just another copy of Y
whose elements are denoted by byc for distinction.

I Let X be a set. We recursively define a direct system
{in,n+1 : Sn → Sn+1} of free semigroups {Sn}∞n=0, and a
direct system {̃in,n+1 : Mn → Mn+1} of free monoids
{Mn}∞n=0, where the transition maps in,n+1 and ĩn,n+1 are
injective morphisms.

I We do this by first letting S0 = S(X ) and M0 = M(X ), and
then define

S1 = S(X ∪ bM0c) = S(X ∪ bM(X )c), M1 = M(X ∪ bM0c)
with i0,1 and ĩ0,1 being the natural injection

i0,1 : S0 = S(X ) ↪→ S1 = S(X ∪ bM0c),
ĩ0,1 : M0 = M(X ) ↪→ M1 = M(X ∪ bM0c).
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I Inductively assume that Sn−1 and Mn−1 have been defined
for n ≥ 2, with the embeddings

in−2,n−1 : Sn−2 ↪→ Sn−1 and ĩn−2,n−1 : Mn−2 → Mn−1.

I We define

Sn := S(X ∪ bMn−1c), Mn := M(X ∪ bMn−1c) = Sn ∪ {1}.
(1)

I We also have the injections

bMn−2c ↪→ bMn−1c and X ∪ bMn−2c ↪→ X ∪ bMn−1c,

yielding injective maps of free semigroups and free monoids

Sn−1 = S(X ∪ bMn−2c) ↪→ S(X ∪ bMn−1c) = Sn,

Mn−1 = M(X ∪ bMn−2c) ↪→ M(X ∪ bMn−1c) = Mn.
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I We finally define the semigroup

S(X ) = lim−→Sn =
⋃

n≥0

Sn

and monoid
M(X ) = lim−→Mn =

⋃

n≥0

Mn

with identity (the image of) 1.
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Construction of free operated algebras II
I Let jX : X → M(X ) be the natural embedding.

1. The triple (M(X ), (b c), jX ) is the free operated monoid on X .
2. The triple (k M(X ), (b c), jX ) is the free operated unitary

algebra on X .
I We also call M(X ) the set of bracketed words generated

by X .
I Let M′(X ) be the set of disjoint bracketed words

consisting of bracketed words with no pairs of brackets right
next to each other, such as b∗cb∗c.

I M′(X ) is called the set of Rota-Baxter words since it forms a
k-basis of the free Rota-Baxter k-algebra generated by X .

I Words in X ∪ bM(X )c are called indecomposable. Any
x ∈ M(X )− {1} has a unique factorization x = x1 · · ·xb of
indecomposable words, called the standard
decomposition.
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PI operated algebras
I For a commutative ring k, denote k{X} = kM(X ) and

k{X}′ = kM′(X ).
I We generalize the concept of PI algebras to the context of

operated algebras.
I Let φ(x1, · · · , xk ) ∈ k{x1, · · · , xn} be given. For a given

operated algebra (R, P) and a set map f : {x1, · · · , xk} → R,
we let φ̄(f (x1), · · · , f (xk )) denote the image of φ(x1, · · · , xk )
under the unique operated algebra homomorphism
f̄ : k{x1, · · · , xk} → R that extends f by the universal
property of k{x1, · · · , xk} as a free operated algebra on
{x1, · · · , xk}.

I Let (R, P) be an operated algebra. If

φ̄(u1, · · · , uk ) = 0, ∀u1, · · · , uk ∈ R,

then R is called a φ-algebra and P is called a φ-operator.
A φ-algebra is called a polynomial identity operated
algebra or a PIO algebra for short.
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Examples
I When φ = [xy ]− x [y ]− [x ]y , then a φ-operator (resp.

algebra) is a differential operator (resp. algebra).
I When φ = [x ][y ]− [x [y ]]− [[x ]y ]− λ[xy ], then a φ-operator

(resp. φ-algebra) is a Rota-Baxter operator (resp. algebra)
of weight λ.

I When φ is from the noncommutative polynomial algebra
k〈X 〉, then a φ-algebra is an algebra with polynomial
identity. Here we regard an algebra as an operated algebra
where the operator is taken to be the identity map.

I Proposition Let X be a given set. The free φ-algebra on X
is given by the quotient operated algebra k{X}/Iφ where Iφ
is the operated ideal of k{X} generated by the set

{φ̄(u1, · · · , uk ) | u1, · · · , uk ∈ k{X}}.
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Special kinds of PIO algebras
I What Rota-Baxter operator, average operator, Nijenhuis

operator, etc. (will come to differential operator later) have in
common is that they are of the form

[u][v ] = [M(u, v)]

where M(u, v) is an expression involving u, v and P, i.e.
M(u, v) ∈ k{u, v}.

I Also, M(u, v) is formally associative:

M(M(u, v), w) = M(u, M(v , w))

modulo the relation φM := [u][v ]− [M(u, v)].
I Further, free algebras in the corresponding categories (of

Rota-Baxter algebras, of average algebras, ...) have a
special basis. More precisely, The map

k{X}′ → k{X} → k{X}/IM

is bijective. Thus a suitable multiplication on k{X}′ makes it
the free φM -algebra on X .

I As we will see, these properties are related.
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Some concepts
I Let x , y be two symbols. A fixed element M ∈ k{x , y}′ gives

a map
m : k{X} × k{X} → k{X} (2)

by substitution.
I Let M ∈ k{x , y}′ be given.
I Define φ := φM := [x ][y ]− [M(x , y)] and denote IM = IφM ,

namely IM is the operated ideal of k{X} generated by the
set

{[a][b]− [M(a, b)]
∣∣ a, b ∈ k{X}}.

I For a set X , denote jX : k{X}′ → k{X} for the inclusion map
and πM : k{X} → k{X}/IM for the quotient map. Define ρM
to be the composition

ρM : k{X}′ jX−→ k{X} πX−→ k{X}/IM . (3)

I Call M bijective if ρM is bijective for every set X .
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I Define the composition of linear maps

ρ̄M : k{X}′ → k{X}′k{X}′ → k{X}′k{X}′
IM ∩ k{X}′k{X}′

∼= k{X}′k{X}′ + IM
IM

where the first map is the inclusion, the second map is the
quotient map and the last quotient is a k-submodule of k{X}

IM
.

I Call M pre-bijective if ρ̄M is bijective for every set X .
I Let M be pre-bijective. Define the map

m̄ : k{X}′×k{X}′ conc−→ k{X}′k{X}′ πM−→ (k{X}′k{X}′+IM)/IM
ρ̄−1

M−→ k{X}′.

Here conc is the concatenation product in k{X}.
I Call a pre-bijective M associative if m̄ is associative in the

sense that
m̄(m̄(x , y), z) = m̄(x , m̄(y , z))

in k{x , y , z}′.
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Examples
I M(x , y) = x [y ] + [x ]y + λxy is both bijective and associative.
I M(x , y) = x [[y ]] is pre-bijective, but is neither bijective nor

associative.
I M(x , y) = x [y ] + [x ]y − [x ][y ] (Reynolds operator) is not

pre-bijective.
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Several equivalent properties
I Let M ∈ k{X}′ be pre-bijective. For any set X , define

¦M : k{X}′ × k{X}′ → k{X}′

by x ¦M x′ =
{ bm̄(x̄, x̄′)c, x = bx̄c, x′ = bx̄′c,

x x′, otherwise (4)

if x and x′ are indecomposable and

x ¦M x′ = x1 · · ·xm−1(xm ¦M x′1)x
′
2 · · ·x′n (5)

in general. Here x = x1 · · ·xm and x′ = x′1 · · ·x′n are the
standard decompositions.

I Theorem Let M ∈ k{x , y}′ be pre-bijective. The following
statements are equivalent.

1. M is bijective.
2. M is associative.
3. For any set X , the triple (k{X}′, ¦M , b c) is a φM -algebra.

Here b c is the restriction of b c : k{X} → k{X} to k{X}′
4. The triple (k{X}′, ¦M , b c) above, together with the

embedding iX : X → k{X}′, is a free φM -algebra on X .
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I Let M ∈ k{x , y}′ be pre-bijective. If either (and so all) of the
equivalent conditions in Theorem is satisfied, then M is
called a shuffle type product and the corresponding
φM -algebra (resp. φM -operator) is called a Rota-Baxter
type algebra (resp. Rota-Baxter type operator).

I (Classification Problem of Rota-Baxter type operators)
Find all Rota-Baxter type operators. In other words, find all
shuffle type M(x , y) ∈ k{x , y}′.
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Classification of Rota-Baxter type operators
I Conjecture The following is the list of all shuffle type

products M(x , y).

dxy + exP(1)y multiplicative operator
xP(y) average operator
P(x)y inverse average operator
xP(y)− xP(1)y ∗average TD operator
P(x)y − xP(1)y ∗inverse average TD operator
xP(y) + P(x)y + λxy Rota-Baxter operator of weight λ
xP(y) + P(x)y − P(xy) Nijenhuis operator
xP(y) + P(x)y − xP(1)y + λxy ∗TD operator of weight λ
xP(y) + P(x)y − P(xy)− xP(1)y + λxy ∗complete operator of weight λ

I In other words, all Rota-Baxter type operators are of the
form

P(x)P(y) = P(M(x , y))

for some M(x , y) from the above list.
I The operators marked by a ∗ in the table, except the Leroux

operator when λ = 0, are not known previously.
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What about differential type operators?
I The differential operator is defined by the identity

[xy ] = [x ]y + x [y ]

So it is the form [xy ] = M(x , y) where
1. M(x , y) ∈ k{x , y} does not contain [uv ];
2. M(x , y) is associative modulo IM :

M(uv , w) = M(u, vw) mod IM .

3. The free object on X is defined by the noncommutative
polynomial algebra k〈X , [X ], [[X ]], [[[X ]]], · · · 〉 with a suitable
derivation.

4. The restriction

k〈X , [X ], [[X ]], [[[X ]]], · · · 〉 ↪→ k{X} → k{X}/IM

is bijective.

An operator is called a differential type operator if it
satisfies these properties.
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Associativity of differential operator
I Let M(x , y) = [x ]y + x [y ]. Then modulo IM , we have

M(uv , w) = [uv ]w+uv [w ] = [u]vw+u[v ]w+uv [w ] = M(u, vw).

23


