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Motivation: Classification of Linear Operators

◮ Throughout the history, mathematical objects are often understood
through studying operators defined on them.
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Motivation: Classification of Linear Operators

◮ Throughout the history, mathematical objects are often understood
through studying operators defined on them.

◮ Well-known examples include Galois theory where a field is studied
by its automorphisms (the Galois group),

◮ and analysis and geometry where functions and manifolds are
studied through their derivations, integrals and related vector fields.
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Rota’s Question

◮ By the 1970s, several other operators had been discovered from
studies in analysis, probability and combinatorics.

Average operator P(x)P(y) = P(xP(y)),

Inverse average operator P(x)P(y) = P(P(x)y),

(Rota-)Baxter operator P(x)P(y) = P(xP(y) + P(x)y + λxy),

where λ is a fixed constant,

Reynolds operator P(x)P(y) = P(xP(y) + P(x)y − P(x)P(y)).
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Rota’s Question

◮ By the 1970s, several other operators had been discovered from
studies in analysis, probability and combinatorics.

Average operator P(x)P(y) = P(xP(y)),

Inverse average operator P(x)P(y) = P(P(x)y),

(Rota-)Baxter operator P(x)P(y) = P(xP(y) + P(x)y + λxy),

where λ is a fixed constant,

Reynolds operator P(x)P(y) = P(xP(y) + P(x)y − P(x)P(y)).

◮ Rota posed the question of finding all the identities that could be
satisfied by a linear operator defined on associative algebras. He
also suggested that there should not be many such operators other
than these previously known ones.
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Quotation from Rota and Known Operators

◮ ”In a series of papers, I have tried to show that other linear operators
satisfying algebraic identities may be of equal importance in studying
certain algebraic phenomena, and I have posed the problem of
finding all possible algebraic identities that can be satisfied by a
linear operator on an algebra. Simple computations show that the
possibility are very few, and the problem of classifying all such
identities is very probably completely solvable. A partial (but fairly
complete) list of such identities is the following. Besides
endomorphisms and derivations, one has averaging operators,
Reynolds operators and Baxter operators.”
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Quotation from Rota and Known Operators

◮ ”In a series of papers, I have tried to show that other linear operators
satisfying algebraic identities may be of equal importance in studying
certain algebraic phenomena, and I have posed the problem of
finding all possible algebraic identities that can be satisfied by a
linear operator on an algebra. Simple computations show that the
possibility are very few, and the problem of classifying all such
identities is very probably completely solvable. A partial (but fairly
complete) list of such identities is the following. Besides
endomorphisms and derivations, one has averaging operators,
Reynolds operators and Baxter operators.”

◮ Little progress was made on finding all such operators while new
operators have merged from physics and combinatorial studies, such
as

Nijenhuis operator P(x)P(y) = P(xP(y) + P(x)y − P(xy)),

Leroux’s TD operator P(x)P(y) = P(xP(y) + P(x)y − xP(1)y).
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Other Post-Rota developments

◮ These previously known operators continued to find remarkable
applications in pure and applied mathematics.
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mechanical proof of geometric theorems and mathematics
mechanization (based on work of Ritt).
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Other Post-Rota developments

◮ These previously known operators continued to find remarkable
applications in pure and applied mathematics.

◮ Vast theories were established for differential algebra and difference
algebra, with wide applications, including Wen-Tsun Wu’s
mechanical proof of geometric theorems and mathematics
mechanization (based on work of Ritt).

◮ Rota-Baxter algebra has found applications in classical Yang-Baxter
equations, operads, combinatorics, and most prominently, the
renormalization of quantum field theory through the Hopf algebra
framework of Connes and Kreimer.
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operator?—Polynomial identity (PI) algebras gives a simplified
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PI Algebras

◮ What is an algebraic identity that is satisfied by a linear
operator?—Polynomial identity (PI) algebras gives a simplified
analogue:

◮ A k-algebra R is called a PI algebra (Procesi, Rowen, ...) if there is a
fixed element f (x1, · · · , xn) in the noncommutative polynomial
algebra (that is, the free algebra) k〈x1, · · · , xn〉 such that

f (a1, · · · ,an) = 0, ∀a1, · · · ,an ∈ R.

Thus an algebraic identity satisfied by an algebra is an element in the
free algebra.

◮ Then an algebraic identity satisfied by a linear operator should be an
element in a free algebra with an operator, a so called free operated
algebra.
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algebras and integro-differential algebras.
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Operated algebras

◮ An operated k-algebra is a k-algebra R with a linear operator P on
R. Examples are given by differential algebras and Rota-Baxter
algebras. We can also consider algebras with multiple operators,
such as differential-difference algebras, differential Rota-Baxter
algebras and integro-differential algebras.

◮ An operated ideal of R is an ideal I of R such that P(I) ⊆ I.
◮ A homomorphism from an operated k-algebra (R, α) to an operated

k-algebra (S, β) is a k-linear map f : R → S such that f ◦ α = β ◦ f .
◮ The adjoint functor of the forgetful functor from the category of

operated algebras to the category of sets gives the free operated
k-algebras.

◮ More precisely, a free operated k-algebra on a set X is an operated
k-algebra (k⌊|X |⌋, αX ) together with a map jX : X → k⌊|X |⌋ with the
property that, for any operated algebra (R, β) together with a map
f : X → R, there is a unique morphism f̄ : (k⌊|X |⌋, αX ) → (R, β) of
operated algebras such that f = f̄ ◦ jX .
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denote a set indexed by Y and disjoint from Y .
◮ For a fixed set X , let M0 = M(X )0 = M(X ) (free monoid). For n ≥ 0,

let Mn+1 := M(X ∪ [Mn]).

◮ With the embedding X ∪ [Mn−1] → X ∪ [Mn], we obtain an
embedding of monoids in : Mn → Mn+1, giving the direct limit

M(X ) := lim
−→

Mn.

◮ Elements of M(X ) are called bracketed words.
◮ M(X ) can also be identified with elements of M(X ∪ {[, ]}) such that

◮ the total number of ⌊ in the word equals to the total number of ⌋ in the
word;

◮ counting from the left, the number of ⌊ is always greater or equal to the
number of ⌋.
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Bracketed words
◮ For any set Y , let [Y ] := {⌊y⌋ |y ∈ Y}

denote a set indexed by Y and disjoint from Y .
◮ For a fixed set X , let M0 = M(X )0 = M(X ) (free monoid). For n ≥ 0,

let Mn+1 := M(X ∪ [Mn]).

◮ With the embedding X ∪ [Mn−1] → X ∪ [Mn], we obtain an
embedding of monoids in : Mn → Mn+1, giving the direct limit

M(X ) := lim
−→

Mn.

◮ Elements of M(X ) are called bracketed words.
◮ M(X ) can also be identified with elements of M(X ∪ {[, ]}) such that

◮ the total number of ⌊ in the word equals to the total number of ⌋ in the
word;

◮ counting from the left, the number of ⌊ is always greater or equal to the
number of ⌋.

◮ M(X ) can also be constructed by rooted trees and Motzkin paths.
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◮ Theorem. 1. The set M(X ), equipped with the concatenation
product, the operator w 7→ ⌊w ⌋,w ∈ M(X ) and the natural
embedding jX : X → M(X ), is the free operated monoid on X .
2. k⌊|X |⌋ := kM(X ) is the free unitary k-algebra on X .
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basis of the free differential algebra on Z .
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◮ Theorem. 1. The set M(X ), equipped with the concatenation
product, the operator w 7→ ⌊w ⌋,w ∈ M(X ) and the natural
embedding jX : X → M(X ), is the free operated monoid on X .
2. k⌊|X |⌋ := kM(X ) is the free unitary k-algebra on X .

◮ Let D(Z ) be the submonoid of M(Z ) generated by the set

∆(Z ) := Z ∪ ⌊Z ⌋ ∪ ⌊⌊Z ⌋⌋ ∪ · · · .

◮ Elements in D(Z ) are called differential words since they form a
basis of the free differential algebra on Z .

◮ Elements in kD(Z ) are called in differentially reduced form (DRF).
◮ Note that D(Z ) is closed under multiplication by definition, but not

under the operator ⌊ ⌋.
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Operated Polynomial Identities
◮ An operated k-algebra (R,P) is called an operated PI (OPI)

k-algebra if there is a fixed element φ(x1, · · · , xn) ∈ k⌊|x1, · · · , xn|⌋
such that

φ(a1, · · · ,an) = 0, ∀a1, · · · ,an ∈ R.

where a pair of brackets ⌊ ⌋ is replaced by P everywhere.
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Operated Polynomial Identities
◮ An operated k-algebra (R,P) is called an operated PI (OPI)

k-algebra if there is a fixed element φ(x1, · · · , xn) ∈ k⌊|x1, · · · , xn|⌋
such that

φ(a1, · · · ,an) = 0, ∀a1, · · · ,an ∈ R.

where a pair of brackets ⌊ ⌋ is replaced by P everywhere.
◮ More precisely, for any f : {x1, · · · , xn} → R, the unique

f̄ : k⌊|x1, · · · , xn|⌋ → R of operated algebras sends φ to zero.
◮ In this case, we also call (R,P) a φ-k-algebra and call P a

φ-operator.
◮ Examples

1. When φ = [xy ] − x [y ]− [x ]y , a φ-operator (resp. algebra) is a
differential operator (resp. algebra).
2. When φ = [x ][y ] − [x [y ]] − [[x ]y ]− λ[xy ], a φ-operator (resp.
φ-algebra) is a Rota-Baxter operator (resp. algebra) of weight λ.
3. When φ = [x ]− x , then a φ-algebra is just an associative algebra.
Together with a second identity from the noncommutative polynomial
algebra k〈X 〉, we get a PI-algebra.
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Free φ-algebras

◮ Proposition Let φ = φ(x1, · · · , xk ) ∈ k⌊|X |⌋ be given. For any set Z ,
the free φ-algebra on Z is given by the quotient operated algebra
k⌊|Z |⌋/Iφ,Z where Iφ,Z is the operated ideal of k⌊|Z |⌋ generated by the
set

{φ(u1, · · · ,uk ) | u1, · · · ,uk ∈ k⌊|Z |⌋}.
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Free φ-algebras

◮ Proposition Let φ = φ(x1, · · · , xk ) ∈ k⌊|X |⌋ be given. For any set Z ,
the free φ-algebra on Z is given by the quotient operated algebra
k⌊|Z |⌋/Iφ,Z where Iφ,Z is the operated ideal of k⌊|Z |⌋ generated by the
set

{φ(u1, · · · ,uk ) | u1, · · · ,uk ∈ k⌊|Z |⌋}.

◮ Examples
◮ When φ = [x ]− x , then the quotient k⌊|Z |⌋/Iφ,Z gives the free algebra

k〈Z 〉 on Z .
◮ When φ = [xy ]− x [y ]− [x ]y , then the quotient gives the free

noncommutative polynomial differential algebra k〈D(Z )〉 on Z .

37



Remarks:

◮ A classification of linear operators can be regarded as a
classification of elements in k⌊|X |⌋.
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Remarks:

◮ A classification of linear operators can be regarded as a
classification of elements in k⌊|X |⌋.

◮ This problem is precise, but is too broad.
◮ We remind ourselves that Rota also wanted the operators to be

defined on associative algebras.
◮ This means that the operated identity φ ∈ k⌊|x1, · · · , xn|⌋ should be

compatible with the associativity condition.
◮ What does this mean?
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Examples of compatibility with associativity
◮ Example 1: For φ(x , y) = [xy ] − [x ]y − x [y ], we have

[xy ] 7→ [x ]y + x [y ].

Thus

[(xy)z] 7→ [xy ]z + (xy)[z] 7→ [x ]yz + x [y ]z + xy [z].

[x(yz)] 7→ [x ](yz) + x [yz] 7→ [x ]yz + x [y ]z + xy [z].

So [(xy)z] and [x(yz)] have the same reduction, indicating that the
differential operator is consistent with the associativity condition.
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Examples of compatibility with associativity
◮ Example 1: For φ(x , y) = [xy ] − [x ]y − x [y ], we have

[xy ] 7→ [x ]y + x [y ].

Thus

[(xy)z] 7→ [xy ]z + (xy)[z] 7→ [x ]yz + x [y ]z + xy [z].

[x(yz)] 7→ [x ](yz) + x [yz] 7→ [x ]yz + x [y ]z + xy [z].

So [(xy)z] and [x(yz)] have the same reduction, indicating that the
differential operator is consistent with the associativity condition.

◮ Example 2: The same is true for φ(x , y) = [xy ]− [x ]y :

⌊x⌋yz 7→⌊xy⌋z 7→[(xy)z] = ⌊x(yz)⌋ 7→ [x ]yz.
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Examples of compatibility with associativity
◮ Example 1: For φ(x , y) = [xy ] − [x ]y − x [y ], we have

[xy ] 7→ [x ]y + x [y ].

Thus

[(xy)z] 7→ [xy ]z + (xy)[z] 7→ [x ]yz + x [y ]z + xy [z].

[x(yz)] 7→ [x ](yz) + x [yz] 7→ [x ]yz + x [y ]z + xy [z].

So [(xy)z] and [x(yz)] have the same reduction, indicating that the
differential operator is consistent with the associativity condition.

◮ Example 2: The same is true for φ(x , y) = [xy ]− [x ]y :

⌊x⌋yz 7→⌊xy⌋z 7→[(xy)z] = ⌊x(yz)⌋ 7→ [x ]yz.

◮ Example 3: Suppose φ(x , y) = [xy ] − [y ]x . Then [xy ] 7→ [y ]x . So

[w ]uv 7→[(uv)w ] = [u(vw)] 7→ [vw ]u 7→ [w ]vu.

Thus a φ-algebra (R, δ) satisfies the weak commutativity:

δ(w)(uv − vu) = 0,∀u, v ,w ∈ Z .
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Differential type operators

◮ differential operator [xy ] = [x ]y + x [y ],
differential operator of weight λ [xy ] = [x ]y + x [y ] + λ[x ][y ],
homomorphism [xy ] = [x ][y ],
semihomomorphism [xy ] = x [y ].
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Differential type operators

◮ differential operator [xy ] = [x ]y + x [y ],
differential operator of weight λ [xy ] = [x ]y + x [y ] + λ[x ][y ],
homomorphism [xy ] = [x ][y ],
semihomomorphism [xy ] = x [y ].

◮ They are of the form [xy ] = N(x , y) where
1. N(x , y) ∈ k⌊|x , y |⌋ is in DRF, namely, it does not contain [uv ], u, v 6= 1,

that is, N(x , y) is in kD(x , y);
2. N(uv ,w) = N(u, vw) is reduced to zero under the reduction

[xy ] 7→ N(x , y).

An operator identity φ(x , y) = 0 is said of differential type if
φ(x , y) = [xy ] − N(x , y) where N(x , y) satisfies these properties. We
call N(x , y) and an operator satisfying φ(x , y) = 0 of differential type.
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Differential type operators

◮ differential operator [xy ] = [x ]y + x [y ],
differential operator of weight λ [xy ] = [x ]y + x [y ] + λ[x ][y ],
homomorphism [xy ] = [x ][y ],
semihomomorphism [xy ] = x [y ].

◮ They are of the form [xy ] = N(x , y) where
1. N(x , y) ∈ k⌊|x , y |⌋ is in DRF, namely, it does not contain [uv ], u, v 6= 1,

that is, N(x , y) is in kD(x , y);
2. N(uv ,w) = N(u, vw) is reduced to zero under the reduction

[xy ] 7→ N(x , y).

An operator identity φ(x , y) = 0 is said of differential type if
φ(x , y) = [xy ] − N(x , y) where N(x , y) satisfies these properties. We
call N(x , y) and an operator satisfying φ(x , y) = 0 of differential type.

◮ The above examples also satisfy
1. The free φ-algebra on Z can be defined by the noncommutative

polynomial algebra k〈∆(Z )〉 with a suitable operator. So D(Z ) is a
canonical basis of the free object.

2. The restriction k〈∆(Z )〉 →֒ k⌊|Z |⌋ → k⌊|Z |⌋/Iφ(Z ) is bijective.
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Classification of differential type operators

◮ (Rota’s Problem: the Differential Case) Find all operated
polynomial identities of differential type by finding all expressions
N(x , y) ∈ k⌊|x , y |⌋ of differential type.
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Classification of differential type operators

◮ (Rota’s Problem: the Differential Case) Find all operated
polynomial identities of differential type by finding all expressions
N(x , y) ∈ k⌊|x , y |⌋ of differential type.

◮ Conjecture (OPIs of Differential Type) Let k be a field of
characteristic zero. Every expression N(x , y) ∈ k⌊|x , y |⌋ of differential
type takes one of the forms below for some a,b, c,e ∈ k :

1. b(x⌊y⌋+ ⌊x⌋y) + c⌊x⌋⌊y⌋+ exy where b2 = b + ce,
2. ce2yx + exy + c⌊y⌋⌊x⌋ − ce(y⌊x⌋+ ⌊y⌋x),
3. axy⌊1⌋+ b⌊1⌋xy + cxy ,
4. x⌊y⌋+ ⌊x⌋y + ax⌊1⌋y + bxy ,
5. ⌊x⌋y + a(x⌊1⌋y − xy⌊1⌋),
6. x⌊y⌋+ a(x⌊1⌋y − ⌊1⌋xy).
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Rewriting systems

◮ φ(x , y) := ⌊xy⌋ − N(x , y) ∈ k⌊|x , y |⌋ defines a rewriting system:

Σφ := {⌊ab⌋ 7→ N(a,b) | a,b ∈ M(Z )\{1}} , (1)

where Z is a set.
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Rewriting systems

◮ φ(x , y) := ⌊xy⌋ − N(x , y) ∈ k⌊|x , y |⌋ defines a rewriting system:

Σφ := {⌊ab⌋ 7→ N(a,b) | a,b ∈ M(Z )\{1}} , (1)

where Z is a set.
◮ More precisely, for g,g′ ∈ k⌊|Z |⌋, denote g 7→Σφ

g′ if g′ is obtained
from g by replacing a subword ⌊ab⌋ in a monomial of g by N(a,b).
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Rewriting systems

◮ φ(x , y) := ⌊xy⌋ − N(x , y) ∈ k⌊|x , y |⌋ defines a rewriting system:

Σφ := {⌊ab⌋ 7→ N(a,b) | a,b ∈ M(Z )\{1}} , (1)

where Z is a set.
◮ More precisely, for g,g′ ∈ k⌊|Z |⌋, denote g 7→Σφ

g′ if g′ is obtained
from g by replacing a subword ⌊ab⌋ in a monomial of g by N(a,b).

◮ A rewriting system Σ is call
◮ terminating if every reduction g0 7→Σ g1 7→ · · · stops after finite steps,
◮ confluent if any two reductions of g can be reduced to the same

element.
◮ convergent if it is both terminating and confluent.
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Rewriting systems

◮ φ(x , y) := ⌊xy⌋ − N(x , y) ∈ k⌊|x , y |⌋ defines a rewriting system:

Σφ := {⌊ab⌋ 7→ N(a,b) | a,b ∈ M(Z )\{1}} , (1)

where Z is a set.
◮ More precisely, for g,g′ ∈ k⌊|Z |⌋, denote g 7→Σφ

g′ if g′ is obtained
from g by replacing a subword ⌊ab⌋ in a monomial of g by N(a,b).

◮ A rewriting system Σ is call
◮ terminating if every reduction g0 7→Σ g1 7→ · · · stops after finite steps,
◮ confluent if any two reductions of g can be reduced to the same

element.
◮ convergent if it is both terminating and confluent.

◮ Theorem φ = [xy ] − N(x , y) defines a differential type operator if and
only if the rewriting system Σφ is convergent.

54



Monomial well orderings
◮ Let Z be a set. Let M⋆(Z ) denote the bracketed words in Z ∪ {⋆}

where ⋆ appears exactly once.
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Monomial well orderings
◮ Let Z be a set. Let M⋆(Z ) denote the bracketed words in Z ∪ {⋆}

where ⋆ appears exactly once.
◮ For q ∈ M⋆(Z ) and u ∈ M(Z ), let q|u denote the bracketed word in

M(Z ) when ⋆ in q is replaced by u.
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Monomial well orderings
◮ Let Z be a set. Let M⋆(Z ) denote the bracketed words in Z ∪ {⋆}

where ⋆ appears exactly once.
◮ For q ∈ M⋆(Z ) and u ∈ M(Z ), let q|u denote the bracketed word in

M(Z ) when ⋆ in q is replaced by u.
◮ Then g 7→Σφ

g′ if there are q ∈ M⋆(Z ) and a,b ∈ M(Z ) such that
1. q|⌊ab⌋ is a monomial of g with coefficient c 6= 0,
2. g′ = g − cq|[ab]−N(a,b).
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Monomial well orderings
◮ Let Z be a set. Let M⋆(Z ) denote the bracketed words in Z ∪ {⋆}

where ⋆ appears exactly once.
◮ For q ∈ M⋆(Z ) and u ∈ M(Z ), let q|u denote the bracketed word in

M(Z ) when ⋆ in q is replaced by u.
◮ Then g 7→Σφ

g′ if there are q ∈ M⋆(Z ) and a,b ∈ M(Z ) such that
1. q|⌊ab⌋ is a monomial of g with coefficient c 6= 0,
2. g′ = g − cq|[ab]−N(a,b).

◮ A monomial ordering on M(Z ) is a well-ordering < on M(X ) such
that

1 ≤ u and u < v ⇒ q|u < q|v , ∀u, v ∈ M(X ),q ∈ M⋆(X ).
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Monomial well orderings
◮ Let Z be a set. Let M⋆(Z ) denote the bracketed words in Z ∪ {⋆}

where ⋆ appears exactly once.
◮ For q ∈ M⋆(Z ) and u ∈ M(Z ), let q|u denote the bracketed word in

M(Z ) when ⋆ in q is replaced by u.
◮ Then g 7→Σφ

g′ if there are q ∈ M⋆(Z ) and a,b ∈ M(Z ) such that
1. q|⌊ab⌋ is a monomial of g with coefficient c 6= 0,
2. g′ = g − cq|[ab]−N(a,b).

◮ A monomial ordering on M(Z ) is a well-ordering < on M(X ) such
that

1 ≤ u and u < v ⇒ q|u < q|v , ∀u, v ∈ M(X ),q ∈ M⋆(X ).

◮ Given a monomial ordering < and a bracketed polynomial s ∈ k⌊|X |⌋,
we let s̄ denote the leading bracketed word (monomial) of s.
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Monomial well orderings
◮ Let Z be a set. Let M⋆(Z ) denote the bracketed words in Z ∪ {⋆}

where ⋆ appears exactly once.
◮ For q ∈ M⋆(Z ) and u ∈ M(Z ), let q|u denote the bracketed word in

M(Z ) when ⋆ in q is replaced by u.
◮ Then g 7→Σφ

g′ if there are q ∈ M⋆(Z ) and a,b ∈ M(Z ) such that
1. q|⌊ab⌋ is a monomial of g with coefficient c 6= 0,
2. g′ = g − cq|[ab]−N(a,b).

◮ A monomial ordering on M(Z ) is a well-ordering < on M(X ) such
that

1 ≤ u and u < v ⇒ q|u < q|v , ∀u, v ∈ M(X ),q ∈ M⋆(X ).

◮ Given a monomial ordering < and a bracketed polynomial s ∈ k⌊|X |⌋,
we let s̄ denote the leading bracketed word (monomial) of s.

◮ If the coefficient of s̄ in s is 1, we call s monic with respect to the
monomial order <
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Gröbner-Shirshov bases

◮ Bokut, Chen and Qiu determined Gröbner-Shirshov bases for free
nonunitary operated algebras. This can be similarly given for free
unitary operated algebras k⌊|Z |⌋.
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Gröbner-Shirshov bases

◮ Bokut, Chen and Qiu determined Gröbner-Shirshov bases for free
nonunitary operated algebras. This can be similarly given for free
unitary operated algebras k⌊|Z |⌋.

◮ Let > be a monomial ordering on M(Z ). Let f ,g be two monic
bracketed polynomials.
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Gröbner-Shirshov bases

◮ Bokut, Chen and Qiu determined Gröbner-Shirshov bases for free
nonunitary operated algebras. This can be similarly given for free
unitary operated algebras k⌊|Z |⌋.

◮ Let > be a monomial ordering on M(Z ). Let f ,g be two monic
bracketed polynomials.

◮ If there are p,q ∈ M⋆(Z ) and s, t ∈ k⌊|Z |⌋ such that w := p|s = q|t ,
then call

(f ,g)p,q
w := p|s − q|t

an composition of f and g.
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Gröbner-Shirshov bases

◮ Bokut, Chen and Qiu determined Gröbner-Shirshov bases for free
nonunitary operated algebras. This can be similarly given for free
unitary operated algebras k⌊|Z |⌋.

◮ Let > be a monomial ordering on M(Z ). Let f ,g be two monic
bracketed polynomials.

◮ If there are p,q ∈ M⋆(Z ) and s, t ∈ k⌊|Z |⌋ such that w := p|s = q|t ,
then call

(f ,g)p,q
w := p|s − q|t

an composition of f and g.
◮ For S ⊆ k⌊|Z |⌋ and u ∈ k⌊|Z |⌋, we call u trivial modulo (S,w) if

u =
∑

i ciqi |si , with ci ∈ k, qi ∈ M⋆(Z ), si ∈ S and qi |si
< w .
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Gröbner-Shirshov bases

◮ Bokut, Chen and Qiu determined Gröbner-Shirshov bases for free
nonunitary operated algebras. This can be similarly given for free
unitary operated algebras k⌊|Z |⌋.

◮ Let > be a monomial ordering on M(Z ). Let f ,g be two monic
bracketed polynomials.

◮ If there are p,q ∈ M⋆(Z ) and s, t ∈ k⌊|Z |⌋ such that w := p|s = q|t ,
then call

(f ,g)p,q
w := p|s − q|t

an composition of f and g.
◮ For S ⊆ k⌊|Z |⌋ and u ∈ k⌊|Z |⌋, we call u trivial modulo (S,w) if

u =
∑

i ciqi |si , with ci ∈ k, qi ∈ M⋆(Z ), si ∈ S and qi |si
< w .

◮ A set S ⊆ k⌊|X |⌋ is called a Gröbner-Shirshov basis if, for all f ,g ∈ S,
all compositions (f ,g)p,q

w of f and g are trivial modulo (S,w).
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Gröbner-Shirshov bases

◮ Bokut, Chen and Qiu determined Gröbner-Shirshov bases for free
nonunitary operated algebras. This can be similarly given for free
unitary operated algebras k⌊|Z |⌋.

◮ Let > be a monomial ordering on M(Z ). Let f ,g be two monic
bracketed polynomials.

◮ If there are p,q ∈ M⋆(Z ) and s, t ∈ k⌊|Z |⌋ such that w := p|s = q|t ,
then call

(f ,g)p,q
w := p|s − q|t

an composition of f and g.
◮ For S ⊆ k⌊|Z |⌋ and u ∈ k⌊|Z |⌋, we call u trivial modulo (S,w) if

u =
∑

i ciqi |si , with ci ∈ k, qi ∈ M⋆(Z ), si ∈ S and qi |si
< w .

◮ A set S ⊆ k⌊|X |⌋ is called a Gröbner-Shirshov basis if, for all f ,g ∈ S,
all compositions (f ,g)p,q

w of f and g are trivial modulo (S,w).
◮ The Gröbner-Shirshov condition can be weakened to requiring for

only intersection and including compositions.
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Differential well ordering
◮ Let > be a well order on a set Z . We extend > to a well order on

M(Z ) = lim
−→

Mn(Z ) by inductively defining a well ordering > on

Mn := Mn(Z ), n ≥ 0.
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Differential well ordering
◮ Let > be a well order on a set Z . We extend > to a well order on

M(Z ) = lim
−→

Mn(Z ) by inductively defining a well ordering > on

Mn := Mn(Z ), n ≥ 0.
◮ Let deg

Z
(u) denote the number of elements of Z in u.
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Differential well ordering
◮ Let > be a well order on a set Z . We extend > to a well order on

M(Z ) = lim
−→

Mn(Z ) by inductively defining a well ordering > on

Mn := Mn(Z ), n ≥ 0.
◮ Let deg

Z
(u) denote the number of elements of Z in u.

◮ For n = 0, have M0 = M(Z ). For u, v ∈ M(Z ), define u > v if either
degZ (u) > degZ (v) or degZ (u) = degZ (v) and u >lex v for the
lexicographic order >lex on M(Z ). Here 1 is taken to be the least
element. Call this order (tentatively) vocabulary order.
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Differential well ordering
◮ Let > be a well order on a set Z . We extend > to a well order on

M(Z ) = lim
−→

Mn(Z ) by inductively defining a well ordering > on

Mn := Mn(Z ), n ≥ 0.
◮ Let deg

Z
(u) denote the number of elements of Z in u.

◮ For n = 0, have M0 = M(Z ). For u, v ∈ M(Z ), define u > v if either
degZ (u) > degZ (v) or degZ (u) = degZ (v) and u >lex v for the
lexicographic order >lex on M(Z ). Here 1 is taken to be the least
element. Call this order (tentatively) vocabulary order.

◮ Suppose a well order > has been defined on Mn for n ≥ 0. Then for
u, v ∈ Z ∪ ⌊Mn⌋, define

u > v ⇔







u, v ∈ X , and u > v , or
u ∈ ⌊Mn⌋, v ∈ x , or
u = ⌊u′⌋, v = ⌊v ′⌋ ∈ ⌊Mn⌋ and u′ > v ′.

Then extend this > to Mn+1 := M(X ∪ ⌊Mn⌋) by the vocabulary
order.
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Differential well ordering
◮ Let > be a well order on a set Z . We extend > to a well order on

M(Z ) = lim
−→

Mn(Z ) by inductively defining a well ordering > on

Mn := Mn(Z ), n ≥ 0.
◮ Let deg

Z
(u) denote the number of elements of Z in u.

◮ For n = 0, have M0 = M(Z ). For u, v ∈ M(Z ), define u > v if either
degZ (u) > degZ (v) or degZ (u) = degZ (v) and u >lex v for the
lexicographic order >lex on M(Z ). Here 1 is taken to be the least
element. Call this order (tentatively) vocabulary order.

◮ Suppose a well order > has been defined on Mn for n ≥ 0. Then for
u, v ∈ Z ∪ ⌊Mn⌋, define

u > v ⇔







u, v ∈ X , and u > v , or
u ∈ ⌊Mn⌋, v ∈ x , or
u = ⌊u′⌋, v = ⌊v ′⌋ ∈ ⌊Mn⌋ and u′ > v ′.

Then extend this > to Mn+1 := M(X ∪ ⌊Mn⌋) by the vocabulary
order.

◮ We obtain a well order, still denoted by >, on the direct limit
M(Z ) = lim

−→

Mn.
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Differential well ordering (cont’d)

◮ Let deg
Z
(u) denote the number of z ∈ Z in u. Denote the weight of

u by
wt(u) = (deg

Z
(u),u).

Define
u > v ⇐⇒ wt(u) > wt(v) lexicographically. (2)
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Differential well ordering (cont’d)

◮ Let deg
Z
(u) denote the number of z ∈ Z in u. Denote the weight of

u by
wt(u) = (deg

Z
(u),u).

Define
u > v ⇐⇒ wt(u) > wt(v) lexicographically. (2)

◮ This order is a monomial well ordering on M(Z ).
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Differential well ordering (cont’d)

◮ Let deg
Z
(u) denote the number of z ∈ Z in u. Denote the weight of

u by
wt(u) = (deg

Z
(u),u).

Define
u > v ⇐⇒ wt(u) > wt(v) lexicographically. (2)

◮ This order is a monomial well ordering on M(Z ).
◮ Under this order, ⌊xy⌋ is greater than elements in ∆(x , y). Thus ⌊xy⌋

is the leading term for φ(x , y) = ⌊xy⌋ − N(x , y) when N(x , y) is in
DRF.
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Differential type, rewriting systems and Gröbner-
Shirshov bases
◮ Theorem. For φ(x , y) := δ(xy) − N(x , y) ∈ k⌊|x , y |⌋, the following

statements are equivalent.
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Differential type, rewriting systems and Gröbner-
Shirshov bases
◮ Theorem. For φ(x , y) := δ(xy) − N(x , y) ∈ k⌊|x , y |⌋, the following

statements are equivalent.
◮ φ(x , y) is of differential type;
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Differential type, rewriting systems and Gröbner-
Shirshov bases
◮ Theorem. For φ(x , y) := δ(xy) − N(x , y) ∈ k⌊|x , y |⌋, the following

statements are equivalent.
◮ φ(x , y) is of differential type;
◮ The rewriting system Σφ is convergent;
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Differential type, rewriting systems and Gröbner-
Shirshov bases
◮ Theorem. For φ(x , y) := δ(xy) − N(x , y) ∈ k⌊|x , y |⌋, the following

statements are equivalent.
◮ φ(x , y) is of differential type;
◮ The rewriting system Σφ is convergent;
◮ Let Z be a set with a well ordering. With the differential order >, the

set

S := Sφ := {φ(u, v) = δ(uv) − N(u, v)| u, v ∈ M(Z )\{1}}

is a Gröbner-Shirshov basis in k⌊|Z |⌋.
◮ The free φ-algebra on a set Z is the noncommutative polynomial

k-algebra k〈∆(Z )〉, together with the operator d := dZ on k〈∆(Z )〉
defined by the following recursion:
Let u = u1u2 · · · uk ∈ M(∆(Z )), where ui ∈ ∆(Z ),1 ≤ i ≤ k .

1. If k = 1, i.e., u = δi(x) for some i ≥ 0, x ∈ Z , then define
d(u) = δ(i+1)(x).

2. If k ≥ 1, then define d(u) = N(u1, u2 · · ·uk ).
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Rota-Baxter type words

◮ Let M′(Z ) be the set of disjoint bracketed words consisting of
bracketed words with no pairs of brackets right next to each other,
such as ⌊∗⌋⌊∗⌋.
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Rota-Baxter type words

◮ Let M′(Z ) be the set of disjoint bracketed words consisting of
bracketed words with no pairs of brackets right next to each other,
such as ⌊∗⌋⌊∗⌋.

◮ Elements of M′(Z ) are called Rota-Baxter words since they form a
k-basis of the free Rota-Baxter k-algebra on Z .
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Rota-Baxter type words

◮ Let M′(Z ) be the set of disjoint bracketed words consisting of
bracketed words with no pairs of brackets right next to each other,
such as ⌊∗⌋⌊∗⌋.

◮ Elements of M′(Z ) are called Rota-Baxter words since they form a
k-basis of the free Rota-Baxter k-algebra on Z .

◮ Note that M′(Z ) is not closed under multiplication, but is closed
under the operator ⌊ ⌋.
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Rota-Baxter type words

◮ Let M′(Z ) be the set of disjoint bracketed words consisting of
bracketed words with no pairs of brackets right next to each other,
such as ⌊∗⌋⌊∗⌋.

◮ Elements of M′(Z ) are called Rota-Baxter words since they form a
k-basis of the free Rota-Baxter k-algebra on Z .

◮ Note that M′(Z ) is not closed under multiplication, but is closed
under the operator ⌊ ⌋.

◮ Words in Z ∪ ⌊M(Z )⌋ are called indecomposable. Any
z ∈ M(Z )− {1} has a unique factorization z = z1 · · · zb of
indecomposable words, called the standard decomposition.
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Rota-Baxter type operators
◮ What Rota-Baxter operator, average operator, Nijenhuis operator,

etc. have in common is that
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Rota-Baxter type operators
◮ What Rota-Baxter operator, average operator, Nijenhuis operator,

etc. have in common is that
◮ 1). they are of the form

[u][v ] = [M(u, v)]

where M(u, v) is an expression involving u, v and P, i.e.
M(u, v) ∈ k⌊|u, v |⌋.
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Rota-Baxter type operators
◮ What Rota-Baxter operator, average operator, Nijenhuis operator,

etc. have in common is that
◮ 1). they are of the form

[u][v ] = [M(u, v)]

where M(u, v) is an expression involving u, v and P, i.e.
M(u, v) ∈ k⌊|u, v |⌋.

◮ 2). M(u, v) is formally associative:

M(M(u, v),w) − M(u,M(v ,w))

is reduced to zero under the rewriting system [u][v ] 7→ [M(u, v)].
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Rota-Baxter type operators
◮ What Rota-Baxter operator, average operator, Nijenhuis operator,

etc. have in common is that
◮ 1). they are of the form

[u][v ] = [M(u, v)]

where M(u, v) is an expression involving u, v and P, i.e.
M(u, v) ∈ k⌊|u, v |⌋.

◮ 2). M(u, v) is formally associative:

M(M(u, v),w) − M(u,M(v ,w))

is reduced to zero under the rewriting system [u][v ] 7→ [M(u, v)].
◮ We call φ(x , y) := [x ][y ] − [M(x , y)] of Rota-Baxter type if the above

two conditions are satisfied.
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Rota-Baxter type operators
◮ What Rota-Baxter operator, average operator, Nijenhuis operator,

etc. have in common is that
◮ 1). they are of the form

[u][v ] = [M(u, v)]

where M(u, v) is an expression involving u, v and P, i.e.
M(u, v) ∈ k⌊|u, v |⌋.

◮ 2). M(u, v) is formally associative:

M(M(u, v),w) − M(u,M(v ,w))

is reduced to zero under the rewriting system [u][v ] 7→ [M(u, v)].
◮ We call φ(x , y) := [x ][y ] − [M(x , y)] of Rota-Baxter type if the above

two conditions are satisfied.
◮ Rota-Baxter type operators can be similarly characterized in terms of

convergent rewriting systems and Gröbner-Shirshov bases.
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Rota-Baxter type words

◮ Let M′(Z ) be the set of disjoint bracketed words consisting of
bracketed words with no pairs of brackets right next to each other,
such as ⌊∗⌋⌊∗⌋.
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Rota-Baxter type words

◮ Let M′(Z ) be the set of disjoint bracketed words consisting of
bracketed words with no pairs of brackets right next to each other,
such as ⌊∗⌋⌊∗⌋.

◮ Elements of M′(Z ) are called Rota-Baxter words since they form a
k-basis of the free Rota-Baxter k-algebra on Z .

89



Rota-Baxter type words

◮ Let M′(Z ) be the set of disjoint bracketed words consisting of
bracketed words with no pairs of brackets right next to each other,
such as ⌊∗⌋⌊∗⌋.

◮ Elements of M′(Z ) are called Rota-Baxter words since they form a
k-basis of the free Rota-Baxter k-algebra on Z .

◮ Note that M′(Z ) is not closed under multiplication, but is closed
under the operator ⌊ ⌋.
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Rota-Baxter type words

◮ Let M′(Z ) be the set of disjoint bracketed words consisting of
bracketed words with no pairs of brackets right next to each other,
such as ⌊∗⌋⌊∗⌋.

◮ Elements of M′(Z ) are called Rota-Baxter words since they form a
k-basis of the free Rota-Baxter k-algebra on Z .

◮ Note that M′(Z ) is not closed under multiplication, but is closed
under the operator ⌊ ⌋.

◮ Words in Z ∪ ⌊M(Z )⌋ are called indecomposable. Any
z ∈ M(Z )− {1} has a unique factorization z = z1 · · · zb of
indecomposable words, called the standard decomposition.
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Rota-Baxter type operators
◮ What Rota-Baxter operator, average operator, Nijenhuis operator,

etc. have in common is that they are of the form

[u][v ] = [M(u, v)]

where M(u, v) is an expression involving u, v and P, i.e.
M(u, v) ∈ k⌊|u, v |⌋.

◮ Also, M(u, v) is formally associative:

M(M(u, v),w) = M(u,M(v ,w))

modulo the relation φM := [u][v ] − [M(u, v)].
◮ Further, free algebras in the corresponding categories (of

Rota-Baxter algebras, of average algebras, ...) have a special basis.
More precisely, The map

k{Z}′ := kM′(Z ) → k⌊|Z |⌋ → k⌊|Z |⌋/Iφ,Z

is bijective. Thus a suitable multiplication on k{Z}′ makes it the free
φM -algebra on Z .

◮ As we will see, these properties are related.
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Classification of Rota-Baxter type operators

◮ Conjecture. Any Rota-Baxter type operator is necessarily of the
form

P(x)P(y) = P(M(x , y)),

for an M(x , y) from the following list (new types in red).
1. xP(y) (average operator)
2. P(x)y (inverse average operator)
3. xP(y) + yP(x)
4. P(x)y + P(y)x
5. xP(y) + P(x)y − P(xy) (Nijenhuis operator)
6. xP(y) + P(x)y + e1xy (RBA with weight e1)
7. xP(y)− xP(1)y + e1xy
8. P(x)y − xP(1)y + e1xy
9. xP(y) + P(x)y − xP(1)y + e1xy (TD operator with weight e1)

10. xP(y) + P(x)y − xyP(1)− xP(1)y + e1xy
11. xP(y) + P(x)y − P(xy)− xP(1)y + e1xy
12. xP(y) + P(x)y − xP(1)y − P(1)xy + e1xy
13. d0xP(1)y + e1xy (generalized endomorphisms)
14. d2yP(1)x + e0yx
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Summary and outlook

◮ In the framework of bracketed polynomials, operators of differential
type are defined by the convergence of special cases of the rewriting
system from the operator identity. The fact that these special cases
are enough for the general convergence is proved by
Gröbner-Shirshov bases.

94



Summary and outlook

◮ In the framework of bracketed polynomials, operators of differential
type are defined by the convergence of special cases of the rewriting
system from the operator identity. The fact that these special cases
are enough for the general convergence is proved by
Gröbner-Shirshov bases.

◮ For operators of Rota-Baxter type (including Rota-Baxter, average,
Nijenhuis, Leroux’s TD), a similar conjecture and equivalence can be
established.
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Summary and outlook

◮ In the framework of bracketed polynomials, operators of differential
type are defined by the convergence of special cases of the rewriting
system from the operator identity. The fact that these special cases
are enough for the general convergence is proved by
Gröbner-Shirshov bases.

◮ For operators of Rota-Baxter type (including Rota-Baxter, average,
Nijenhuis, Leroux’s TD), a similar conjecture and equivalence can be
established.

◮ In general, the linear operators that interested Rota and maybe other
mathematicians (good operators) should be the ones whose defining
identities define convergent rewriting systems (good systems), or
give Gröbner-Shirshov bases (good bases).

Thank You!
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