DIFFSPEC AND OTHER MATTERS

RAYMOND HOOBLER

Dedicated to Jerry Kovacic on his 67th birthday

0.1. **Sheaf Theory.** These are notes of a talk devoted to interpreting results in Benoist's article [Ben08] (He credits Kovacic ([Kov02b] [Kov02a]) for most of them.) in terms of sheaf theory. The goal is to better see where the various conditions imposed on $Spec_{\delta}$ come from.

Let A be a differential ring containing \mathbb{Q} . In order to construct a differential scheme we would hope that A determines a pair $(Spec_{\delta}(A), \mathcal{O}_{A}^{\delta})$ where, as a set,

$$Spec_{\delta}(A) = \{x \mid x \text{ is a differential prime ideal in } A\}.$$

We make it into a topological space by considering the embedding

$$j: Spec_{\delta}(A) \rightarrow Spec(A)$$

and using the induced topology. Alternatively we observe that, while elements $f \in A$ are not functions on $Spec_{\delta}(A)$, it does make sense to say that f vanishes at $x \in Spec_{\delta}(A)$ if $f \in \mathfrak{p}_x$, the prime ideal corresponding to x. Then closed sets are of the form $\cap V(f_a) = V([\{f_{\alpha}\}])$ where $[\{f_{\alpha}\}]$ indicates the differential ideal generated by $\{f_{\alpha}\}$ and a basis for the topology is $D_{\delta}(f)$, $f \in A$.

This takes care of the topological space but not the differential structure sheaf. Here Benoist and Kovacic define \mathcal{O}_A^{δ} to be the sheaf associated to the presheaf on $Spec_{\delta}(A)$, that we indicate by \underline{A} , given by $\underline{A}(D_{\delta}(f)) = A_f$. (It is worth observing that \mathcal{O}_A^{δ} can also be described as $j^*(\mathcal{O}_A)$ where j is the continuous map $Spec_{\delta}(A) \to Spec(A)$.) Observe that $\mathcal{O}_{A,x}^{\delta} = A_x$ for any prime differential ideal $x \in Spec_{\delta}(A)$. But then there are some problems caused by the existence of differential zeros; that is, elements $a \in A$ such that $1 \in [Ann(a)]$. These are elements whose support lies in $Spec(A) - Spec_{\delta}(A)$ and so cannot be seen using only differential primes. Dealing with such elements caused Kovacic to introduce conditions on A such as AAD (Annihilators Are Differential) or, more generally, reduced ([Kov02b],[Kov02a]). Benoist ([Ben08]) calls the AAD condition 'well-mixed'. Conditions like these are then used to show that $A \to \widehat{A} := \Gamma\left(Spec_{\delta}(A), \mathcal{O}_A^{\delta}\right)$ is 'almost surjective' and then everything flows nicely.

We start with the definition of almost surjective and list the consequences.

Definition 1. A differential ring homomorphism $\phi: A \to B$ is said to be almost surjective if for any differential prime ideal $\mathfrak{p} \subset A$ and any element $b \in B$, there are elements $a_1, a_2 \in A$ with $a_1 \neq \mathfrak{p}$ such that $\phi(a_1)b = \phi(a_2)$.

Let $\Gamma_{\delta}: ((\delta - schemes)) \to ((\delta - rings))$ be the global section functor. Let $\widehat{}$ be the composition $\Gamma_{\delta} \circ Spec_{\delta}(-)$. Then there is a natural transformation $\iota_{A}: A \to \widehat{A}$ given by $a \mapsto \frac{a}{1} \in A_{x}$ for all $x \in Spec_{\delta}(A)$. This map need not be injective (there

Date: March 19, 2009.

exist differential zeros) nor surjective (any differentially simple ring that is not a field). We wish to understand the conditions as above that have been introduced to deal with these difficulties in terms of the sheaves involved.

Definition 2. Let F be a presheaf on X. +F is the presheaf defined by

$$+F\left(U\right)=\lim_{\substack{\left\{U_{\alpha}\right\}_{\alpha\in I}\\\text{is a covering of }U\end{array}}Ker\left[\prod_{\alpha\in I}F\left(U_{\alpha}\right)\overset{\rho_{U_{\alpha}\cap U_{\beta}}^{U_{\alpha}}-\rho_{U_{\alpha}\cap U_{\beta}}^{U_{\beta}}}{\rightarrow}\prod_{(\alpha,\beta)\in I\times I}F\left(U_{\alpha}\cap U_{\beta}\right)\right].$$

Definition 3. A presheaf F on X is said to be separated if for all open sets $U \subseteq X$ and any covering $\{U_{\alpha}\}_{{\alpha}\in I}$ of U, $F(U)\subseteq\prod_{{\alpha}\in I}F(U_{\alpha})$.

The following Proposition is straightforward and can be found as an exercise in the last chapter of [Ten75], a useful introduction to sheaves.

Proposition 1. Let F be a presheaf on X.

- (1) +F is a separated presheaf.
- (2) If F is a separated presheaf, then +F is a sheaf and $F \hookrightarrow +F$.

Corollary 1. If F is a presheaf, the associated sheaf can be defined as +(+F).

The concepts of almost surjective and lack of differential zeros are critical for understanding \mathcal{O}_A^{δ} . Our main result identifies the corresponding sheaf properties.

Proposition 2. Let A be a δ -ring, $X = Spec_{\delta}(A)$. Then $\iota_A : A \to \widehat{A}$ is almost surjective if and only if $(+\underline{A})(X) \to \widehat{A}$ is surjective.

Proof. Assume ι_A is almost surjective. Let $s \in \widehat{A}$ be given by $s_x \in A_x$ for all $x \in X$. Then there is a finite covering $\{U_i := D_\delta(b_i)\}_{1 \le i \le n}$ of X and a representation of the section s by elements $\frac{a_i}{b_i} \in A_{b_i}$ such that $\left(\frac{a_i}{b_i}\right)_x = s_x \in A_x = \mathcal{O}_{A,x}^\delta$ for every $x \in D_\delta(b_i)$. For each $x \in X$, let $U_x := D_\delta^x(b^x)$ and let $a_x, b_x \in A$ with $a_x(x) \neq 0$ such that

$$\iota_{A}\left(a_{x}\right)s=\iota_{A}\left(b_{x}\right).$$

Let $U_x = D_\delta(a_x)$ so that we may assume that

$$s \mid_{U_x} = \iota_{A_{a_x}} \left(\frac{b_x}{a_x} \right) \in \Gamma \left(U_x, \mathcal{O}_A^{\delta} \right).$$

Since X is quasi-compact, a finite number of U_x , say U_1, \dots, U_n containing x_1, \dots, x_n respectively suffice to cover X. But then the element

$$\left(\frac{b_{x_i}}{a_{x_i}}\right) \in \prod A_{fx_i}$$

is in $+\underline{A}(X)$ since

$$\frac{b_{x_i}}{a_{x_i}} \mid_{U_i \cap U_j} = \frac{b_{x_j}}{a_{x_i}} \mid_{U_i \cap U_j}$$

and clearly maps onto $s \in \widehat{A}$. Hence $(+\underline{A})(X) \to \widehat{A}$ is surjective.

Conversely, if $(+\underline{A})(X) \to \widehat{A}$ is surjective and we are given $x \in X$ and $s \in \widehat{A}$ then there is a covering that we may assume is finite by basic opens $U_i := D_{\delta}(a_i)$, $0 \le i \le n$, and elements $\frac{b_i}{a_i} \in A_{a_i}$ such that $\iota_{A_{a_i}}\left(\frac{b_i}{a_i}\right) = s \mid_{U_i}$. Let U_0 be the open

that contains x. For each j, $U_j \cap U_0 = D_\delta\left(a_0a_j\right)$ and on $U_j \cap U_0$ we have $\frac{b_j}{a_j} = \frac{b_0}{a_0} \in A_{a_0a_j}$ by the definition of $+\underline{A}$. Consequently $(a_0a_j) \in \sqrt{Ann\left(a_0b_j - b_0a_j\right)}$. Choose n sufficiently large so that $(a_0a_j)^n\left(b_0a_j - a_0b_j\right) = 0$ for all j. Then $a_0^{n+1} \notin \mathfrak{p}_x$ and $\iota_A\left(a_0^{n+1}\right)s = \iota_A\left(b_0a_0^n\right)$ since, on U_j ,

$$(a_0^{n+1})_y s_y = \frac{a_j^n}{a_j^n} \frac{a_0^n a_0 b_j}{a_j} = \frac{a_j^n}{a_j^n} \frac{a_0^n b_0 a_j}{a_j} = (a_0^n b_0).$$

Corollary 2. If $\iota_A: A \to \widehat{A}$ is almost surjective and $\mathfrak{q} \subset \widehat{A}$ is any differential prime ideal with $\mathfrak{p} = i_A^{-1}(\mathfrak{q})$, then $A_{\mathfrak{p}} \to \widehat{A}_{\mathfrak{q}}$ is onto.

Proof. Copying Benoist [Ben08, Corollary 5, 3 \Longrightarrow 2], we show that if $\phi: A \to B$ is almost surjective and $\mathfrak{q} \subset B$ with $\phi^{-1}(\mathfrak{q}) = \mathfrak{p}$, then $A_{\mathfrak{p}} \to B_{\mathfrak{q}}$ is onto. Let $\left(\frac{f}{g}\right) \in B_{\mathfrak{q}}$ and find $a, b, c, d \in A$ with $b, d \notin \mathfrak{p}$ such that $\phi(b) f = \phi(a)$ and $\phi(d) g = \phi(c)$. Observe that $c \notin \mathfrak{p}$ since $\phi(c) = \phi(d) g \notin \mathfrak{q}$. Then

$$\left(\frac{f}{g}\right)_{\mathbf{q}} = \left(\frac{\phi\left(ad\right)}{\phi\left(bc\right)}\right)_{\mathbf{q}} = \phi\left(\left(\frac{ad}{bc}\right)_{\mathbf{p}}\right)$$

because $\phi(bc) f = \phi(ac) = \phi(ad) g$.

Corollary 3. $\underline{A} \to \mathcal{O}_A^{\delta}$ is almost surjective when evaluated on any basic open $U = D_{\delta}(f)$ if and only if $+\underline{A} = \mathcal{O}_A^{\delta}$.

Proof. $+\underline{A}$ is separated and so is a subpresheaf in its associated sheaf.

The condition that $\iota_A: A \to \widehat{A}$ is injective yields even stronger results since then \underline{A} is a separated presheaf $(\widehat{A} \subset \prod_{x \in X} \mathcal{O}_{A,x}^{\delta})$. This applies if the ring A satisfies AAD

(Annihilators Are Differential) or, equivalently, is well-mixed.

Proposition 3. Let A be a δ -ring, $X = Spec_{\delta}(A)$. Then $\iota_A : A \to \widehat{A}$ is injective if and only if \underline{A} is a separated presheaf. In this case $(+\underline{A}) \to \mathcal{O}_A^{\delta}$ is an isomorphism, and $A_f \subset \Gamma(D_{\delta}(f), \mathcal{O}_A^{\delta})$ for all $f \in A$.

Corollary 4. If $\iota_A : A \to \widehat{A}$ is injective, then $\underline{A} \to \mathcal{O}_A^{\delta}$ is almost surjective. In particular $\iota_A : A \to \widehat{A}$ is almost surjective.

Thus either of these conditions on the presheaf \underline{A} forces $+\underline{A}$ to be the associated sheaf but the AAD/well mixed condition is slightly preferable since ι_A almost surjective is probably not equivalent to $\underline{A} \to \mathcal{O}_A^{\delta}$ being almost surjective.

Proposition 4. Let A be a δ -ring, $X = Spec_{\delta}(A)$. If $\iota_A : A \to \widehat{A}$ is almost surjective, $\iota_{\widehat{A}} : \widehat{A} \to \widehat{\widehat{A}}$ is an isomorphism.

Proof. By Corollary 2 $A_{\mathfrak{p}} \to \left(\widehat{A}\right)_{\mathfrak{q}}$ is onto if $\mathfrak{p} = i_A^{-1}\left(\widehat{\mathfrak{p}}\right)$. But we also know that $A_{\mathfrak{p}} \cong \mathcal{O}_{A,\mathfrak{p}}^{\delta}$ and this isomorphism factors through the surjection. Hence $A_{\mathfrak{p}} \to \left(\widehat{A}\right)_{\widehat{\mathfrak{p}}}$ is an isomorphism. But this means that on stalks, $\mathcal{O}_{A,\mathfrak{q}}^{\delta} \to \mathcal{O}_{\widehat{A},\widehat{\mathfrak{q}}}^{\delta}$ is an isomorphism if $\iota_{\widehat{A}}^{-1}\left(\widehat{\mathfrak{q}}\right) = \mathfrak{q}$. Hence the associated sheaves are isomorphic and $\iota_{\widehat{A}}: \widehat{A} \to \widehat{A}$ is also an isomorphism.

0.2. **Tangent space.** Tangent vectors to a scheme X at a point $j_0: x \to X$ are defined using the scheme of dual numbers, $Spec(k(x)[\varepsilon])$ where $\varepsilon^2 = 0$, i.e. $k(x)[\varepsilon] = k(x)[T]/(T^2)$. Thus $t_x = \{j_1: Spec(k(x)[\varepsilon]) \to X \mid j_1\mid_{k(x)} = j_0\}$. If we try to do this for differential schemes, we need differential dual numbers. Fix K a differential field. Then $K_{\delta}[\varepsilon]$ should be a differential ring that sees zero divisors but is a 'square zero' extension. Hence we should try

$$K_{\delta}\left[\varepsilon\right] = K\left\{T\right\} / \left[T^{2}\right]^{+}$$

where $I = [T]^+$ denotes the well-mixed differential ideal determined by T and, of course, $\varepsilon = \overline{T}$. This ideal is differentially generated by T^2 and has the property that if $ab \in [T^2]^+$, then so is ab'. We immediately see that $TT' \in I$, and then $TT'', TT''', \ldots, TT^{(i)}, \ldots \in I$. Applying the condition in the other order then shows that $T^{(i)}T^{(j)} \in I$ for any positive integers i, j. Hence as a K vector space

$$K_{\delta}[\varepsilon] = K + K\varepsilon + K\varepsilon' + \ldots + K\varepsilon^{(i)} + \ldots$$

with all products of basis vectors in $\{\varepsilon,\ldots,\varepsilon^{(i)},\ldots\}$ being 0. Thus only the differentiation operator remains to characterize the differential ideal generated by ε . Note that $K \to K_{\delta}[\varepsilon]$ is a δ -homomorphism as is $K_{\delta}[\varepsilon] \to K$. With this definition we could try defining the tangent space at a δ -point $j_0: Spec(K) \to X$ by

$$t_{\delta}\left(j_{0}\right)=\left\{ j_{1}:Spec\left(K_{\delta}\left[\varepsilon\right]\right)\rightarrow X\mid j_{0}\text{ is the composite }Spec\left(K\right)\rightarrow Spec\left(K\left[\varepsilon\right]\right)\stackrel{j_{1}}{\rightarrow}X\right\} .$$

In terms of the differential rings this amounts to fixing a differential local ring A_x with residue field K and considering all differential maps $A \to K_{\delta}[\varepsilon] \to K$. Such maps are determined by a differential map $\mathfrak{m}/\mathfrak{m}^2 \to \varepsilon \cdot K_{\delta}[\varepsilon]$ since \mathfrak{m} is a differential ideal and the corresponding products in $K_{\delta}[\varepsilon]$ vanish. This raises the following question:

Question: Is $\dim_K \left(\operatorname{Hom}_{\delta} \left(\mathfrak{m}/\mathfrak{m}^2, \varepsilon \cdot K_{\delta} \left[\varepsilon \right] \right) \right)$ finite and, if so, can we define a smooth point as one where it is the same as the dimension given by the differential dimension polynomial of the differential local ring A?

References

[Ben08] Franck Benoist, Some notions of d-algebraic geometry, website: www.amsta.leeds.ac.uk/ benoist/ (September 9, 2008).

[Kov02a] Jerald J. Kovacic, Differential algebra and related topics (Newark, NJ, 2000), World Sci. Publ., River Edge, NJ, 2002, Differential schemes. MR MR1921695 (2003i:12010)

[Kov02b] _____, Global sections of diffspec, J. Pure Appl. Algebra 171 (2002), no. 2-3, 265–288.
MR MR1904483 (2003c:12008)

[Ten75] B. R. Tennison, Sheaf theory, Cambridge University Press, Cambridge, England, 1975,
 London Mathematical Society Lecture Note Series, No. 20. MR MR0404390 (53 #8192)