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@ Review of Brauer groups of fields, rings, and A-rings

@ Cohomology

@ Cohomological interpretation of A—Brauer groups
(with connections to Hodge theory)
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Brauer Groups of Fields

Finite dimensional division algebras A over a field K are classified by
Br (K), the Brauer group of K.

o If A'is a central, simple algebra over K, then it is isomorphic to
M, (D) for some division algebra D.

@ Given two such algebras A and I', A ®k I' is again a central simple K
algebra.

@ They are said to be Brauer equivalent if there are vector spaces V, W
and a K—algebra isomorphism A @k End (V) =T ®x End (W).
This is an equivalence relation, and Br (K) is then defined to be the
group formed from the equivalence classes with ® as product. Br (K)
classifies division algebras over K.

@ For any such algebra A over K, there is a Galois extension L/ K such
that A ®x L = End; (V)

@ Galois cohomology is then used to classify all such equivalence classes
using an isomorphism Br (K) = H? (G?/K’?*> .
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Brauer Groups of Rings

@ Azumaya algebras over a commutative ring R

o A finitely generated central R algebra A is an Azumaya algebra algebra
if A®p L is a central simple algebra over L for any homomorphism
from R to a field L.

o An Azumaya algebra A is a central, finitely generated R algebra which
is a projective A ® g A°P algebra.

@ Two such Azumaya algebras A and I' are Brauer equivalent if there
are faithful, projective R modules P, @ and an R—algebra
isomorphism A ®z End (P) T ®g End (Q) .

e If R is a local ring, there is an etale extension S/ R such that
A ®r S = Ends (P) for some projective S module P.

o Etale cohomology is then used to classify all such equivalence classes
using an isomorphism 9 : Br (R) — H? (Ret,Gpn) .
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Brauer Groups of A-rings

Let A = {d1,...,0,} be a set of n commuting derivations on R, a ring
containing Q.

o A A Azumaya algebra over R is an Azumaya algebra A over R
equipped with derivations extending the action of A on R.

@ Two such A Azumaya algebras A and I" are A Brauer equivalent if
there are faithful, projective A — R modules P, @ and a A— R
algebra isomorphism A ®g End (P) =T ®g End (Q). This is an
equivalence relation, and Bra(R) is the resulting group on the set of
equivalence classes with ®g as the product.

o If R is local, there is an etale extension S and a A — S isomorphism
A ®pr S & Ends (P) for some A — S projective module P.
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Cohomology

Let C be a category with fibred products. A pretopology on C consists of
specifying for all X € ob(C), a set Cov(X) whose members are collections
{fy : Uy — X|a € A} € Cov(X) satisfying

@ If f: X — X is an isomorphism, {f} € Cov (X).

Q If {fy: Uy — X} € Cov(X) and {g": V* — Uy} € Cov (U;) for all
i, then {fg*: V¥ — X} € Cov (X).

Q If {fy:Uy— X} € Cov(X)and Y — X €C, then
{fa XxY:UyxxY — Y}E COV(Y)

A presheaf F : C%? — ((Sets)) is a sheaf if for all X € C and
{Uy — X} € Cov (X),

F(X)—=TIF(Us) S ]]F (Un xx Up)

is exact.
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Cohomology

Q X has {{fy: V, — U| fyis an etale map and U =1, (Vo) }} =
Cover (U).

Q Xp_g has
{{gx: Vo — U| gu is a flat A map of finite type and U = U gx (V4)}}
COVA_f/ (U)

v

If G is a scheme, then its functor of points defines a sheaf in either of
these topologies. Moreover there is a map of sites T : Xp_gy — Xet since
any etale map is a flat A map. Thus 771 ({f,}) € Cova_g (U) . Moreover
H* (Xet, G) — H* (Xa—g, G) for sheaves G defined by smooth,

quasi—projectiT/e group schemes over X like the sheaf of units, G,.
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Cohomological Interpretation

In particular on Xs_z we have the exact sequence

O—>Gﬁ—>Gmﬂ1Z}<—>0

whose cohomology sequence contains
H (Xa_g, ZL) — H? (XA,f,,Gﬁ,) — Pic (X) & H* (Xa_g, ZL)
— K (XA_f,,G,An) — Br(X) —0
if X is smooth since then H? (Xer, G,) is torsion unlike the vector space

H? (XA_f/, Z)1<)!
How do we interpret this??
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Cohomological Interpretation

Let X be a quasi-projective variety of finite type over a field K of
characteristic 0. If x € H* (X, ), then there is an Azumaya algebra A
equipped with an integrable connection constructed from x such that

3 ([A]) = in (x) € H? (Xet, Gm) where iy : py — Gy is inclusion.

For simplicity, let's consider the case where X = Spec (R) is a local ring
and R contains a primitive N root of unity. Then there is an etale
extension R — S € Cov (Spec (R)), i.e. U= Spec(S) — Spec(R), and
a Cech 2 cocycle ¢ € py (S®) such that [{] =x € A2 ((R— S) uy) -
Now by refining S we may assume that it is in the standard form
S=(R[T]/(p(T)))g(r) where p(T) is a monic polynomial of degree D.
So we approximate S by R[t] := R[T]/ (p(T)) = ®PR.
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Cohomological Interpretation

Now our cocycle { € uy (S ®r S ®r S) is constant on each connected
component of S®3 but may vary from one component to another. So we
must use an index set that accounts for this. We let

J = {connected components of S°}

Of course F : = (H R [t]“> = (Bacy (BYR)) is not usually connected

ac)
but for each connected component a of S®3 there is an R [t], which

admits multiplication by the value {, of { on that connected component
and, as an R module, F is free of rank M = D - (# (J)) . Then we define
an R module isomorphism

b=, : FORS®RS — F Qr S®r S
J

by multiplying the a'” factor in F by {,. Note that this amounts to a
diagonal block matrix where the a*" block is ,/p.
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Cohomological Interpretation

We let ¢ (©,0,) : Endg (F) ®r S®r S — Endr (F) ®r S @r S be the

algebra isomorphism given by conjugation by /;. Then we get descent data
from the diagram

End(]:) RRS®r S
e/
A— End(F)®gS Le(®8s)
er "\,
End(.'F) RrRS®r S

where e; means insert 15 into the it copy of S. Note that End (F) is the
algebra of M x M matrices with ¢ (e;) = 0 for all § € A. Here

c (®,¢,) = c ({;) is the patching data used to define A and it preserves

the action of A since ¢ (Kg) is given by conjugation by an N root of
unity on each block in End (F).

Raymond Hoobler (City College of New York

The Differential Brauer Group



Cohomological Interpretation

It satisfies the cocycle condition

End (f) QR S©3
End (f) KRR S®3 le (C (gg))

End (F) @g S%3

This commutes because

(&2 (¢ (®184))) " (€1 (c (B18,))) (€3 (c (€,8,))) is conjugation on
End (F) ®r S @r S ®r S by 1 ® ( since { is a 2 cocycle. But this is
LEnd(F)@se=s which is the cocycle condition for descent.
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Cohomological Interpretation

Thus the Cech cocycle provides the needed descent data and we
immediately see that

A ([c(es8)) =g € A2 (X, p1,)

where A = [c (©,(,)] is the desired A Azumaya algebra.
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