The Differential Brauer Group

Raymond Hoobler

City College of New York and Graduate Center, CUNY

Outline

- Review of Brauer groups of fields, rings, and Δ -rings
- Cohomology
- Cohomological interpretation of $\Delta-$ Brauer groups (with connections to Hodge theory)

Brauer Groups of Fields

Finite dimensional division algebras Λ over a field K are classified by $Br\left(K\right)$, the Brauer group of K.

- If Λ is a central, simple algebra over K, then it is isomorphic to $M_n(D)$ for some division algebra D.
- Given two such algebras Λ and Γ , $\Lambda \otimes_K \Gamma$ is again a central simple K algebra.
- They are said to be Brauer equivalent if there are vector spaces V, W and a K-algebra isomorphism $\Lambda \otimes_K End(V) \cong \Gamma \otimes_K End(W)$. This is an equivalence relation, and Br(K) is then defined to be the group formed from the equivalence classes with \otimes as product. Br(K) classifies division algebras over K.
- For any such algebra Λ over K, there is a Galois extension L/K such that $\Lambda \otimes_K L \cong End_L(V)$.
- Galois cohomology is then used to classify all such equivalence classes using an isomorphism $Br\left(K\right) \approxeq H^2\left(G_{\overline{K}/K}, \overline{K}^*\right)$.

Brauer Groups of Rings

- Azumaya algebras over a commutative ring R
 - A finitely generated central R algebra Λ is an Azumaya algebra algebra if $\Lambda \otimes_R L$ is a central simple algebra over L for any homomorphism from R to a field L.
 - An Azumaya algebra Λ is a central, finitely generated R algebra which is a projective $\Lambda \otimes_R \Lambda^{op}$ algebra.
- Two such Azumaya algebras Λ and Γ are Brauer equivalent if there are faithful, projective R modules P, Q and an R-algebra isomorphism $\Lambda \otimes_R End(P) \cong \Gamma \otimes_R End(Q)$.
- If R is a local ring, there is an etale extension S/R such that $\Lambda \otimes_R S \cong End_S(P)$ for some projective S module P.
- Etale cohomology is then used to classify all such equivalence classes using an isomorphism $\partial: Br\left(R\right) \underset{\approx}{\longrightarrow} H^2\left(R_{et}, \mathbb{G}_m\right)$.

Brauer Groups of Δ -rings

Let $\Delta = \{\delta_1, ..., \delta_n\}$ be a set of n commuting derivations on R, a ring containing \mathbb{Q} .

- A Δ Azumaya algebra over R is an Azumaya algebra Λ over R equipped with derivations extending the action of Δ on R.
- Two such Δ Azumaya algebras Λ and Γ are Δ Brauer equivalent if there are faithful, projective $\Delta-R$ modules P, Q and a $\Delta-R$ algebra isomorphism $\Lambda \otimes_R End(P) \cong \Gamma \otimes_R End(Q)$. This is an equivalence relation, and $Br_{\Delta}(R)$ is the resulting group on the set of equivalence classes with \otimes_R as the product.
- If R is local, there is an etale extension S and a ΔS isomorphism $\Lambda \otimes_R S \cong End_S(P)$ for some ΔS projective module P.

Cohomology

Let C be a category with fibred products. A pretopology on C consists of specifying for all $X \in ob(C)$, a set Cov(X) whose members are collections $\{f_{\alpha}: U_{\alpha} \to X | \alpha \in A\} \in Cov(X)$ satisfying

- **1** If $f: X \to X$ is an isomorphism, $\{f\} \in Cov(X)$.
- ② If $\{f_{\alpha}: U_{\alpha} \to X\} \in Cov(X)$ and $\{g_{i}^{\alpha}: V_{i}^{\alpha} \to U_{\alpha}\} \in Cov(U_{i})$ for all i, then $\{f_{\alpha}g_{i}^{\alpha}: V_{i}^{\alpha} \to X\} \in Cov(X)$.
- ③ If $\{f_{\alpha}: U_{\alpha} \to X\} \in Cov(X)$ and $Y \to X \in C$, then $\{f_{\alpha} \times_{X} Y: U_{\alpha} \times_{X} Y \to Y\} \in Cov(Y)$.

A presheaf $F:\mathcal{C}^{op} \to ((Sets))$ is a sheaf if for all $X \in \mathcal{C}$ and $\{U_{\alpha} \to X\} \in Cov(X)$,

$$F(X) \hookrightarrow \prod F(U_{\alpha}) \rightrightarrows \prod F(U_{\alpha} \times_X U_{\beta})$$

is exact.

Cohomology

Example

- **1** X_{et} has $\{\{f_{\alpha}: V_{a} \rightarrow U \mid f_{\alpha} \text{ is an etale map and } U = \bigcup f_{\alpha}(V_{a})\}\} = Cov_{et}(U)$.
- ② $X_{\Delta-fl}$ has $\left\{\left\{g_{\alpha}:V_{a}
 ightarrow U \mid g_{\alpha} \text{ is a flat } \Delta \text{ map of finite type and } U = \bigcup g_{\alpha}\left(V_{a}\right)\right\}\right\}$ $Cov_{\Delta-fl}\left(U\right)$.

If G is a scheme, then its functor of points defines a sheaf in either of these topologies. Moreover there is a map of sites $\tau: X_{\Delta-fl} \to X_{et}$ since any etale map is a flat Δ map. Thus $\tau^{-1}\left(\{f_{\alpha}\}\right) \in Cov_{\Delta-fl}\left(U\right)$. Moreover $H^*\left(X_{et},G\right) \underset{\cong}{\to} H^*\left(X_{\Delta-fl},G\right)$ for sheaves G defined by smooth, quasi-projective group schemes over X like the sheaf of units, \mathbb{G}_m .

In particular on $X_{\Delta-fl}$ we have the exact sequence

$$0 \to \mathbb{G}_m^\Delta \to \mathbb{G}_m \overset{d \, ln}{\to} Z_X^1 \to 0$$

whose cohomology sequence contains

$$H^{0}\left(X_{\Delta-fl},Z_{X}^{1}\right) \rightarrow H^{1}\left(X_{\Delta-fl},\mathbb{G}_{m}^{\Delta}\right) \rightarrow Pic\left(X\right) \stackrel{c_{1}}{\rightarrow} H^{1}\left(X_{\Delta-fl},Z_{X}^{1}\right)$$

$$\rightarrow H^{2}\left(X_{\Delta-fl},\mathbb{G}_{m}^{\Delta}\right) \rightarrow Br\left(X\right) \rightarrow 0$$

if X is smooth since then $H^2(X_{et},\mathbb{G}_m)$ is torsion unlike the vector space $H^2(X_{\Delta-fl},Z_X^1)!$

How do we interpret this??

Theorem

Let X be a quasi-projective variety of finite type over a field K of characteristic 0. If $x \in H^2\left(X, \mu_N\right)$, then there is an Azumaya algebra Λ equipped with an integrable connection constructed from x such that $\partial\left(\left[\Lambda\right]\right) = i_N\left(x\right) \in H^2\left(X_{\rm et}, \mathbb{G}_m\right)$ where $i_N: \mu_N \to \mathbb{G}_m$ is inclusion.

For simplicity, let's consider the case where X = Spec(R) is a local ring and R contains a primitive N^{th} root of unity. Then there is an etale extension $R \to S \in Cov(Spec(R))$, i.e. $U = Spec(S) \to Spec(R)$, and a Cech 2 cocycle $\zeta \in \mu_N(S^3)$ such that $[\zeta] = x \in \check{H}^2((R \to S), \mu_N)$. Now by refining S we may assume that it is in the standard form $S = (R[T]/(p(T)))_{g(t)}$ where p(T) is a monic polynomial of degree D. So we approximate S by $R[t] := R[T]/(p(T)) = \bigoplus_1^D R$.

Now our cocycle $\zeta \in \mu_N \ (S \otimes_R S \otimes_R S)$ is constant on each connected component of $S^{\otimes 3}$ but may vary from one component to another. So we must use an index set that accounts for this. We let

$$J = \left\{ \text{connected components of } S^3 \right\}$$

Of course
$$\mathcal{F}:=\left(\prod_{\alpha\in J}R\left[t\right]_{\alpha}\right)=\left(\oplus_{\alpha\in J}\left(\oplus_{1}^{D}R\right)\right)$$
 is not usually connected

but for each connected component α of $S^{\otimes 3}$ there is an $R\left[t\right]_{\alpha}$ which admits multiplication by the value ζ_{α} of ζ on that connected component and, as an R module, $\mathcal F$ is free of rank $M=D\cdot (\#\left(J\right))$. Then we define an R module isomorphism

$$\ell_{\zeta} = \bigoplus_{J} \zeta_{\alpha} : \mathcal{F} \otimes_{R} \mathcal{S} \otimes_{R} \mathcal{S} \to \mathcal{F} \otimes_{R} \mathcal{S} \otimes_{R} \mathcal{S}$$

We let $c\left(\oplus_{J}\zeta_{\alpha}\right): End_{R}\left(\mathcal{F}\right)\otimes_{R}S\otimes_{R}S \to End_{R}\left(\mathcal{F}\right)\otimes_{R}S\otimes_{R}S$ be the algebra isomorphism given by conjugation by ℓ_{ζ} . Then we get descent data from the diagram

$$\begin{array}{cccc} & & & & \textit{End} \ (\mathcal{F}) \otimes_{\textit{R}} \mathcal{S} \otimes_{\textit{R}} \mathcal{S} \\ & & & & & \\ \Lambda \rightarrow & \textit{End} \ (\mathcal{F}) \otimes_{\textit{R}} \mathcal{S} & & & \downarrow \textit{c} \ (\oplus_{\textit{J}} \zeta_{\alpha}) \\ & & & & & \\ e_1 \searrow & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

where e_i means insert 1_S into the i^{th} copy of S. Note that $End(\mathcal{F})$ is the algebra of $M \times M$ matrices with $\delta\left(e_{ij}\right) = 0$ for all $\delta \in \Delta$. Here $c\left(\bigoplus_J \zeta_\alpha\right) = c\left(\ell_\zeta\right)$ is the patching data used to define Λ and it preserves the action of Δ since $c\left(\ell_\zeta\right)$ is given by conjugation by an N^{th} root of unity on each block in $End(\mathcal{F})$.

It satisfies the cocycle condition

$$\mathsf{End}\,(\mathcal{F})\otimes_{\mathsf{R}}\mathcal{S}^{\otimes 3}$$

$$\mathsf{e}_{3}\left(c\left(\ell_{\zeta}\right)\right)\nearrow$$

$$\mathsf{End}\,(\mathcal{F})\otimes_{\mathsf{R}}\mathcal{S}^{\otimes 3}\qquad \qquad \downarrow \mathsf{e}_{1}\left(c\left(\ell_{\zeta}\right)\right)$$

$$\mathsf{e}_{2}\left(c\left(\ell_{\zeta}\right)\right)\searrow$$

$$\mathsf{End}\,(\mathcal{F})\otimes_{\mathsf{R}}\mathcal{S}^{\otimes 3}$$

This commutes because $(e_2(c(\oplus_J\zeta_\alpha)))^{-1}(e_1(c(\oplus_J\zeta_\alpha)))(e_3(c(\oplus_J\zeta_\alpha)))$ is conjugation on $End(\mathcal{F})\otimes_R\mathcal{S}\otimes_R\mathcal{S}\otimes_R\mathcal{S}$ by $1\otimes\zeta$ since ζ is a 2 cocycle. But this is $1_{End(\mathcal{F})\otimes\mathcal{S}^{\otimes 3}}$ which is the cocycle condition for descent.

Thus the Cech cocycle provides the needed descent data and we immediately see that

$$\partial\left(\left[c\left(\oplus_{J}\zeta_{\alpha}\right)\right]\right)=\left[\zeta\right]\in\check{H}^{2}\left(X,\mu_{n}\right)$$

where $\Lambda = [c \, (\oplus_J \zeta_\alpha)]$ is the desired Δ Azumaya algebra.