
FPQC DESCENT AND GROTHENDIECK TOPOLOGIES IN A DIFFERENTIAL
SETTING

RAYMOND HOOBLER

1. Grothendieck Topologies

All rings are noetherian, all rings are commutative with 1 unless specified at the beginning of the
section; ring extensions are of finite type unless otherwise specified; and the notation ((−)) stands
for the category described by −.

1.1. Sites. We begin with the underlying idea for a Grothendieck topology. Consider your favorite
topological space X. Its topology, don’t use the Zariski topology, is determined by the partially
ordered category UX consisting of all the open subsets of X ordered with respect to inclusion.
In order to verify that a presheaf is a sheaf on X, we must first construct all possible coverings
U =

{
(Ui ⊂ U)i∈I

}
of open sets U in X and then verify the two sheaf conditions hold for each

covering (Ui ⊂ U)i∈I . But we also want to compare coverings in the following two ways. If (Ui)i∈I

is a covering of U and for each i,
(
V i

j

)
j∈Ji

is a covering of Ui, then
(
V i

j

)
∪Ji

is also a covering of U.

If (Ui)i∈I is a covering of U and V ⊂ U is an open set, then (Ui ∩ V )i∈I is a covering of V. We are
just stating that refinements of each open in a covering yields a covering and intersecting a covering
with a smaller open set still yields a covering. Keep this example in mind as we go through some
category theoretical definitions. Also remember that Ui ∩ Uj = Ui ×X Uj .

We will only consider ‘local’ topologies. Let C/X be a category with finite products, i.e. a
terminal object X and products of pairs of objects.

Definition 1 (following Artin). A pretopology T on C/X is a set Cov (T ) consisting of families
(πi : Ui → U)i∈I for all U → X ∈ C/X such that

(1) If π : V → U is an isomorphism, then (π) ∈ Cov (T ) .
(2) If (Ui → U)i∈I ∈ Cov (T ) and

(
V i

j → Ui

)
j∈Ii

∈ Cov (T ) , then
(
V i

j → U
)
∪Ij

∈ Cov (T ) .

(3) If (Ui → U)i∈I ∈ Cov (T ) and V → U ∈ Mor (C/X) , then Ui×UV exists and (Ui ×U V → V )i∈I ∈
Cov (T ) .

Technically this is called a pretopology on C/X but it generates a unique Grothendieck topology
and the sheaves for this topology are characterized by the pretopology. Such a category with its
coverings is called a site.

So here are some examples where X is a scheme.

Example 1. XZar, the Zariski site on X, has C/X equal to the category of open subschemes U ⊂ X.

Cov {XZar} =
{

(Ui ⊂ U) | 1)Ui is open and 2)U =
⋃

Ui

}

Example 2. Xet, the étale site on X, has C/X equal to the category of all étale schemes U → X.

Cov {Xet} =
{

(pi : Ui → U) | 1)pi is étale and 2)U =
⋃

pi (Ui)
}

Example 3. Xpl, the flat site on X, has C/X equal to the category of all schemes U → X which
are locally of finite type and flat over X.

Cov {Xpl} =
{

(pi : Ui → U) | 1)pi is flat, locally of finite type and 2)U =
⋃

pi (Ui)
}

Some comments:

(1) My definition varies somewhat from Milne. I have defined what he calls the small sites while
his notation (as above) refers to the big sites.
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(2) A good characterization of étale is ([4, I, Theorem 3.14]). This states that f : X → Y is étale
iff for all x ∈ X, there are affine open neighborhoods V = Spec (B) of x and U = Spec (A)
of f (x) such that B can be described as follows:

There is a monic polynomial P (T ) ∈ A [T ] such that

B u
(

A [T ]
〈P (T )〉

)

g

for some g ∈ A[T ]
〈P (T )〉 with P ′ (t) a unit in B (t is the image of T in B). Note that this

characterization of étale means f is flat, locally of finite type, and unramified, i.e.fa
(
pf(x)

)
=

px ⊆ Bpx
.

(3) If R is a differential ring with derivation δ and S is étale over R, then there is a unique
extension of δ to S since locally on Spec (S) , S u

(
R[T ]
〈P (T )〉

)
g

as above. Hence, if P (T ) =

a0 + · · ·+ Tn and t = T ,

δ (t) =
(∑

δ (ai) ti
)

/P ′ (t)

which is uniquely defined since P ′ (t) is a unit in S.
(4) Flat morphisms that are locally of finite type are open. Thus coverings of U in the flat or

étale topology determine a covering of U in the Zariski topology.
(5) In order to define a site by a class E of morphism as above the class of morphisms, e.g.

open immersions, étale or flat and locally of finite presentation, must satisfy the sorités:
• all isomorphisms are in E,
• if α : X → Y and β : Y → Z are in E, so is βα, i.e. E is closed under composition of

morphisms, and
• if α : X → Y is in E and Z → Y, then X ×Y Z → Z is in E, i.e. E is closed under base

change.

For the purposes of this discussion let D = Spec (R) where R is a differential ring containing Q
with derivation δ. We introduce two new topologies, Dδ−et and Dδ−pl as follows. Let C/Dδ be the
category of schemes π : X → D such that X is a scheme with a derivation δX and π preserves the
differentiation.

Example 4. Dδ−et, the δ−étale site on D, has C/D equal to the full sub-category of C/Dδ consisting
of all étale schemes π : U → D.

Cov {Uδ−et} =

{
(pi : Ui → U) |

1)pi is étale, 2)U =
⋃

pi (Ui) ,

and 3)pi is a differential morphism

}

Example 5. Dδ−pl, the δ−flat site on D, has C/D equal to the full sub-category of C/Dδ consisting
of all schemes U → D which are locally of finite type and flat over D.

Cov {Uδ−pl} =

{
(pi : Ui → U) |

1)pi is flat and locally of finite type, 2)U =
⋃

pi (Ui) ,

and 3)pi is a differential morphism

}

If X → Y and X ′ → Y are differential morphisms of differential schemes, then X ×Y X ′ is a
differential scheme and the projection maps are differential homomorphisms. This follows from the
usual covering argument and the fact that, in the affine case, if ι1 : R → S1 and ι2 : R → S2 are
differential ring homomorphisms of commutative differential rings, then S1 ⊗R S2 is a differential
ring with δ12 (s1 ⊗ s2) = δ1 (s1)⊗ s2 + s1 ⊗ δ2 (s2) as derivation and εi : Si → S1 ⊗R S2 is a sum in
the category of commutative differential rings. Furthermore the composite of differential morphisms
is a differential morphism. These are the differential sites of interest.

1.2. FPQC descent and sheaves. We now (hopefully!) have some idea of what a site is, but we
still have no examples of sheaves. This is where descent theory comes in. The current approach is
very stacky and categorically tedious. Instead we will follow the original order and discuss descent
first. If we look at our model and ask how to construct a (real) vector bundle on our topological
space X, we use an equivalence relation on a trivial vector bundle on the disjoint union of the open
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sets in a covering of X as follows..First pick a covering (Ui ⊂ X) . For each i, we fix a trivial vector
bundle Ei = Rn × Ui. Then on Ui ∩ Uj , we construct a patching isomorphism

αij : (Rn × Ui) |Ui∩Uj

≈→ (Rn × Uj) | .
Finally transitivity requires that the cocycle condition be satisfied

αjk |Uijk
αij |Uijk

= αik |Uijk
: (Rn × Ui) |Ui∩Uj∩Uk

→ (Rn × Uk) |Ui∩Uj∩Uk

where Uijk is notation for Ui ∩ Uj ∩ Uk. (See separate Descent Diagram at end.) Fpqc descent (=
fidèlement plat et quasi-compact) transfers this construction to a Grothendieck topology. Doing it
correctly requires keeping track of innumerable canonical identifications. Instead we will assume that
all canonical isomorphisms may be replaced with equality, and refer the dedicated but masochistic
reader to a recent updating of the categorical foundations ([1]).

But this is getting ahead of the story. First we need some sheaves.

Definition 2. Let C/X be a site.

(1) A presheaf is a contravariant functor F : (C/X)op → Sets.

(2) A presheaf F is a sheaf of sets if, for all
(
Ui

pi→ U
)
∈ Cov (T ) , the following conditions are

satisfied:
S1 F (U) → ∏F (Ui) is one-to-one
S2 If (si) ∈

∏F (Ui) has pr∗1 (si) = pr∗2 (sj) ∈
∏

(i,j)∈I×I F (Ui ×U Uj) , then there is s ∈ F (U)
such that p∗i (s) = si for all i ∈ I.

An equivalent formulation of the two sheaf conditions is that F (U) → ∏F (Ui) is the difference
kernel of

∏
i∈I F (Ui)

pr∗1 //
pr∗2 //

∏
(i,j)∈I×I F (Ui ×U Uj)

where the two maps pr∗i are projections onto the ith factor. Consequently we can (and will) use this
definition to define sheaves with values in any category D that has difference kernels. A presheaf
satisfying S1 is said to be separated.

With this in mind, observe that each of the categories underlying the sites XZar, Xet, Xδ−et, and
Xδ−pl is a (not necessarily full) subcategory of the category defining Xpl. Moreover any covering in
Cov (Xpl) is a covering for the site defined by the subcategory if it’s maps are in the subcategory.
Consequently any sheaf (or presheaf) for Xpl defines a sheaf for one of the other four sites. We make
use of this be just producing sheaves for Xpl and then recognizing them as sheaves for one of the
other sites. A little thought shows that a presheaf on Xpl is a sheaf iff it is a Zariski sheaf for any
U ∈ Xpl and satisfies the sheaf conditions S1 and S2, for coverings of the form {Ui → U} where U
and Ui are affine. (See [4, II, Proposition 1.5].) Since we already understand Zariski sheaves, this
reduces us to algebra.

A central result is flat descent whose statement comes from Milne ([4, I, Theorem 2.17 and
Remark 2.19]).

Proposition 1. If f : A → B is a faithfully flat ring homomorphism and M is an A module, then
the sequence

0 → M
1⊗f→ M ⊗A B

1⊗d1

→ M ⊗A B⊗2 1⊗d2

→ · · ·
1⊗dr−2

→ M ⊗A B⊗r 1⊗dr

→ M ⊗A B⊗r+1

is exact where B⊗r = B⊗A B⊗A · · ·⊗A B r times, dr =
∑r+1

i=1 (−1)i
ei and ei (b1 ⊗ b2 ⊗ · · · ⊗ br) =

b1 ⊗ · · · bi−1 ⊗ 1⊗ bi ⊗ · · · ⊗ br with a 1 in the ith factor.

Idea of proof. Since B is faithfully flat, the sequence is exact iff it is exact after tensoring over A
with B. Thus we may assume that we are in the situation B → B ⊗A B where the map sends b
to b ⊗ 1. Now multiplication B ⊗A B → B provides a ‘section’ that can be used to construct a
contracting homotopy for the complex, and so it must be acyclic. ¤
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Corollary 1. Let M be a quasi-coherent sheaf on X. The presheaf
(
U

p→ X
)
7→ Γ (U, p∗ (M))

is a sheaf written W (M)on Xpl as is the presheaf
(
U

p→ X
)
7→ HomOU

(p ∗ (M) , p∗ (N ))

if M,N are coherent sheaves on X.

In commutative algebra terms this is the statement that for A modules M, N, with M of finite
type, the presheaf

(U = Spec (B) → Spec (A)) 7→ M ⊗A B

and
(U = Spec (B) → Spec (A)) 7→ HomB (M ⊗A B,N ⊗A B)

are both sheaves on Spec (A)pl . Note that the latter presheaf uses the isomorphism

(1.1) HomB (M, N)⊗A B u HomB (M ⊗A B,N ⊗A B) .

Clearly the above notation is too cumbersome. From now on presheaves and sheaves G will
have their values on U indicated by Γ (U,G) . Given a site X∗, Sh (X∗) will indicate the category of
sheaves of abelian groups on X∗.

Examples of sheaves with notation include:

• W (OX) ∈ Sh (Xpl) and Wδ (OX) ∈ Sh (Xd−pl)
• Gm ∈ Sh (Xpl) and Gm,δ ∈ Sh (Xd−pl) where Γ (U,Gm,δ) = units in Γ (U,OU )
• If G is a constant group, Γ (U,G) := Gπ0(U) defines a sheaf where π0 (U) is the set of

connected components of the scheme U.
• Gln ∈ Sh (Xpl) and Gln,δ ∈ Sh (Xδ−pl) where we observe that End (On

x ) ∈ Sh (Xpl) is a
sheaf with the usual values on U and the exactness of (1) shows that an endomorphism on
A that is an automorphism on B must have been an automorphism to begin.

• Presheaves defined from any commutative group scheme ([4, II, Corollary 1.7]) with a sub-
script δ if they are regarded as sheaves on the site Xδ−et of Xδ−pl.

This gives us a reasonable collection of sheaves. General theorems ([4, III, Proposition 1.1])
then show that S (Xpl) := ((sheaves of abelian groups on Xpl)) is an abelian category with enough
injectives so that the usual games can begin!

But Proposition 1 has another important application as mentioned at the beginning of this
section, the construction of torsors or principal homogeneous spaces.

Here the question is the following:
Suppose we are given a faithfully flat ring homomorphism A → B and a B module M. What

information do we need to canonically write M = N ⊗A B? (You should think of B =
∏

Bi where
(Ui → U) is a covering, Ui = Spec (Bi) , and U = Spec (A).)

I am going to use the following notation which is different from Milne, but, I hope, more in-
formative. We must construct patching isomorphisms on intersections that agree on ‘triple’ in-
tersections under the restriction map. In commutative algebra terms this means a map from
B ⊗A B → B ⊗A B ⊗A B where we will start with a B ⊗A B module and extend the base with this
ring homomorphism. I will write eij : B ⊗A B → B ⊗A B ⊗A B to indicate the map which uses the
ith and jth factors of B⊗3 as the images of the first and second factors of B⊗A B and places a 1 into
the omitted factor, e.g. e13 (b⊗ b′) = b⊗1⊗b′. In order to simplify the notation, all tensor products
are taken over A and a B module, M, if it appears in a tensor product, is always understood to
have the factor B in that position acting on it. For a morphism, a subscript i or ij indicates that
the identity map acts on the missing factor.

Definition 3. Let M be a B module. Descent data for M consists of a B ⊗ B isomorphism
φ : M ⊗B → B ⊗M.
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Descent data (M,φ) satisfies the cocycle condition if the diagram of isomorphisms

B ⊗M ⊗B
↗ φ12

M ⊗B ⊗B ↓ φ23

↘ φ13

B ⊗B ⊗M

commutes, i.e. φ23φ12 = φ13 : M ⊗B ⊗B → B ⊗B ⊗M.

Definition 4. Given A → B, the category of descent data for B over A consists of pairs (M, φ)
where M is a finitely generated B module and φ is descent data for M. Hom ((M,φ) , (M ′, φ′))
consists of B module homomorphisms f : M → M ′ such that the diagram

M ⊗B
φ→ B ⊗M

↓ f ⊗B ↓ B ⊗ f

M ′ ⊗B
φ′→ B ⊗M ′

commutes. ((Descent data for B-modules + cocycle)) stands for the full subcategory of ((Descent data for B-modules))
consisting of the descent data that satisfy the cocycle condition.

The statement of the next theorem should be compared with the Descent Diagram in the Ap-
pendix.

Theorem 1. Let A → B be a faithfully flat ring homomorphism. Then the functor

−⊗B : ((Finitely generated A-modules)) → ((Descent data for B-modules + cocycle))

is an equivalence of categories.

Idea behind proof. Suppose (M, φ) is descent data satisfying the cocycle condition. Define

N := Ker

[
M

φ(1⊗e2)−1⊗Be1→ B ⊗M

]
.

This kernel is not a B module, only an A submodule of M . But there is a natural map α : N⊗B → M
which turns out to be an isomorphism, and then φ = (B ⊗ α) ◦ (

α−1 ⊗B
)

: M ⊗A B → B ⊗A M.
For more details see the diagram. ¤

For descent questions we are only interested in the descended module, not in the descent data.
Fix a module over A that will act as a ‘model’ for descent. Let’s call it F. Let Aut (F ) be the presheaf
given by (Aut (F )) (B) = Aut (F ⊗B) . Our goal is to identify A modules N such that there is a B
isomorphism

N ⊗B → F ⊗B.

The set of such modules is ‘almost’ the same as the set of descent data for F ⊗B that satisfies
the cocycle condition. However we are not interested in the homomorphism part of the descent data,
and so we must introduce an equivalence relation.

Definition 5. Given a faithfully flat ring extension A → B, a ‘model’ A module F, define

Z1 (B/A,Aut (F )) := {φ ∈ Aut (F ⊗B ⊗B) | φ23φ12 = φ13}
Let φ, σ ∈ Z1 (B/A,Aut (F )) . Then φ ∼ σ if there is f : F ⊗B → F ⊗B ∈ Aut (F ⊗B) such that

σ = f−1
2 φf1.

It is easy to check that this is an equivalence relation and, in fact, removes the descent data
from the picture for if we have descent data φ, then it comes, by the theorem, from an isomorphism
β : F ⊗ B → N ⊗ B as φ = β−1

2 β1. (Caution: β = α−1.) If σ : F ⊗ B → B ⊗ F is different descent
data for F ⊗B resulting in an isomorphic A module N, then σ = γ−1

2 γ1 where γ : F ⊗B → N ⊗B
defines the descent data in the second case. But then γ = βf where f : F ⊗ B → F ⊗ B is
simply β−1γ. Hence σ = (βf)−1

2 (βf)1 =
(
f−1β−1

)
2
β1f1 = f−1

2 φf1 which is exactly the equivalence
relation introduced in the definition.
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Definition 6. Given a faithfully flat ring extension A → B, an A module F, define

H1 (B/A,Aut (F )) := Z1 (B/A,Aut (F )) / ∼ .

The following result is then a direct consequence of Theorem 1.

Theorem 2. Let B be a faithfully flat A algebra, F an A module. Then there is a natural isomor-
phism of pointed sets

H1 (B/A,Aut (F )) u
{

N | N is an A module and there is
a B module isomorphism F ⊗B u N ⊗B

}
.

If F happens to have additional structure given by a tensor such as multiplication, then N ∈
H1 (B/A,Aut (F )) will have such a structure also since it is described as a kernel.

We get rid of the dependence on a single covering in the site X∗ by observing that for a given
U = Spec (B) ∈ C/X, Cov (U) becomes a directed set and so we define

H1 (B∗, Aut (F )) = lim
(Ui→U)∈Cov(U)

H1 (Bi/B,Aut (F ))

where Ui = Spec (Bi). (The general definition applies, of course, to arbitrary schemes in X∗ and
coverings of U ∈ X∗.) This results in a better version of Theorem 2 as follows.

Theorem 3. Let Spec (A)∗ be a site for one of our Grothendieck topologies, and let F be an A
module. Then there is a natural isomorphism of pointed sets

H1 (A∗, Aut (F )) u



N |

N is an A module and there is a covering
Spec (B) → Spec (A) ∈ Cov (Spec (A)) and
a B module isomorphism F ⊗B u N ⊗B



 .

Thus attention is focussed on the set of objects that are ‘locally’ isomorphic to F in the ∗ = Zar,
et, pl, δ − et, or δ − pl topology.

Example 6. (1) F = A, Aut (F ) = Gm, and

H1 (A,Aut (F )) = H1 (A∗, Gm) =
{

L | L⊗B u B for some faithfully flat
A algebra B of finite type over A

}

= Pic (A)

(2) F = A, Aut (F ) = Gδ
m, and

H1 (Aδ−∗, Aut (F )) = H1
(
Aδ−∗, Gδ

m

)

=
{

L | L⊗B u B as differential modules
where B is a covering in the δ − ∗ topology

}

(3) F = A⊕n, Aut (F ) = Gln, and

H1 (A,Aut (F )) = H1 (A∗, Gln) = {P/ P ⊗B is free of rank n}
(4) F = A⊕n, Aut (F ) = Glδn, and

H1 (A,Aut (F )) = H1
(
Aδ−∗, Glδn

)

=
{

P | P ⊗B is free of rank n as a differential module
with a basis defining δ where B is a covering in the δ − ∗ topology

}

Here we note that automorphisms of a free differential module of rank n are elements of Gln
that commute with the derivation and so are denoted Glδn.

(5) F = Mn (A) , Aut (F ) := PGln, and

H1 (A,Aut (F )) = H1 (A∗, PGln)

=
{

Λ | Λ⊗B uMn (B) as algebras
for some covering A → B in the ∗ topology

}

In this case, the isomorphism is a B algebra isomorphism since it is easy to see that the
descended module, which is Λ, is closed under multiplication.
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In examples 1 and 3 ∗ can be Zar, et, or pl without affecting the result since any locally free
module becomes free on a Zariski covering. We will see that this is not the case in examples 2
and 4 since we will need a Picard-Vesiot extension to make a δ locally free module differentially
isomorphic to a free module with standard differentiation. Example 5 is more interesting yet since
H1 (AZar,PGln) is a one point set if A is a regular local ring while H1 (Aet,PGln) = H1 (Apl,PGln)
consists of all Azumaya algebras over A of rank n2 in general.

1.3. Application to Azumaya algebras.

Definition 7. Let A be a ring. An Azumaya algebra Λ is a finite A algebra such that the center of
Λ is A, Λ is locally free as an A module, and for all maximal ideals m, Λ/mΛ is a central, simple
algebra over A/m.

The following facts are well known.

• A finite, flat A algebra is an Azumaya A algebra iff the natural map

Φ : Λ⊗A Λop → EndA (Λ)

given by Φ (λ1 ⊗ λ2) (λ) = λ1λλ2 is an isomorphism.
• An A algebra Λ is an Azumaya algebra if and only if Λ⊗A B is an Azumaya B algebra for

a faithfully flat A algebra B.
• There is a one-to-one correspondence between two sided ideals of an Azumaya A algebra

and ideals in A given by I ⊂ A corresponds to IΛ. In particular any Azumaya algebra over
a field is simple. (This can be show by descent theory since it holds for matrix rings.)

• For any Azumaya algebra Λ over a local ring, there is a Galois ring extension A → B of the
local ring A and a B algebra isomorphism Λ ⊗A B u EndB (Bn). In particular the rank
of Λ is always a square. Moreover given an Azumaya A algebra, there is an étale covering
(Ui = Spec (Bi) → Spec (A))i∈I such that Λ ⊗A Bi u Mn (Bi) for all i ∈ I. In fact since
Spec (A) is quasi compact, we may assume that the index set is finite and then that there
is an étale ring extension A → B which is faithfully flat and splits Λ by setting B =

∏
Bi.

Let’s collect some facts about these algebras. Rieffel (1964) has given a Proof from the Book of
Wedderburn’s theorem over a field. This version is taken from Lang’s Algebra.

Theorem 4 (Wedderburn’s Theorem). Let Λ be a ring with unit element whose only two sided
ideals are Λ and (0) . Let L be a non-zero left ideal, Λ′ = EndΛ (L) and let Λ′′ = EndΛ′ (L) so that
Λ′′ is the commutant of Λ′ in End (L) . Then the natural ring homomorphism φ : Λ → Λ′′ given by
φ (λ) (`) = λ` is an isomorphism.

Proof. Ker (φ) is a two-sided ideal in Λ and so φ must be injective. LΛ = Λ since it is a two-sided
ideal. Thus φ (L) φ (Λ) = φ (Λ) . For any x, y ∈ L and f ∈ Λ′′, we must have f (xy) = f (x) y since
right multiplication by y is a left Λ endomorphism of L and so in Λ′.

Hence φ (L) is a left ideal in Λ′′, and so

Λ′′ = Λ′′φ (Λ) = Λ′′φ (L)φ (Λ) = φ (L)φ (Λ) = φ (Λ)

as desired. ¤

Corollary 2. Let Λ be a central simple algebra over a field K. Then Λ u Mn (D) for a unique
division algebra D.

Proof. Λ u EndΛ′ (L) where L is a non-zero left ideal of minimum dimension. Since L is a simple
left module, Λ′ = EndΛ (L) is a division ring. ¤

As an illustration of the power of the descent technique, let’s prove Hochschild’s Theorem.

Theorem 5 (Hochschild). Let A be a ring with a derivation δ, and let Λ be an Azumaya A algebra.
Then there is a derivation D : Λ → Λ which extends δ. If A is a semi-local ring with derivation,
any other derivation D′ extending D is of the form D′ = D + [λ,−] for some λ ∈ Λ where [λ, a] =
(λ · a)− (a · λ) for any a ∈ Λ.
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Proof. Let Λ be an A module of rank n2. We first find an étale A algebra B and a B algebra
isomorphism β : Mn (B) → Λ⊗ B. This gives us descent data φ : Mn (B ⊗B) → Mn (B ⊗B) such
that

Λ = Ker
(
Mn (B ⊗B)

φe1−e2→ Mn (B ⊗B)
)

.

Now there is a unique extension of δ to B which we continue to indicate by δ. We use β to transfer
the coordinatewise derivation δ to Λ ⊗ B. Note that this makes the descent datum φ a derivation
preserving isomorphism. But e1 and e2 also preserve the coordinate derivation on Mn (B) and so Λ,
being the kernel of two derivation preserving maps, acquires a derivation such that β is derivation
preserving.

Consider D − D′, the difference of derivations that each extend ′ on A. This is a derivation of
Λ extending the 0 derivation on A. So assume that A consists of constants and consider the set of
derivations on Λ. Let δ be a derivation on Λ with A contained in the constants. The derivation δ
defines an A[ε] automorphism φδ of Λ[ε]=Λ⊗A A[ε] where ε2 = 0, by setting

φδ (λ0 + λ1ε) = λ0 + (λ1 + δ (λ0)) ε.

By Morita theory such an automorphism is given by conjugation by a unit if Pic (A [ε]) = 0 (See
Corollary 5). Such a unit is of the form u = u0 + u1ε ∈ Λ [ε] . An easy calculation shows that
u−1 = u−1

0 − u−1
0 u1u

−1
0 ε where u0 is a unit and u1 is arbitrary. Then if λ = λ0 + λ1ε,

φδ (λ) = λ + δ (λ0) ε = u (λ0 + λ1ε)u−1

= u0λu−1
0 − u0λu−1

0 u1u
−1
0 ε + u1

(
u−1

0 u0

)
λ0u

−1
0 ε

= λ +
(
u1u

−1
0

)
λ0 − λ0

(
u1u

−1
0

)
.

Hence δ (λ0) =
[(

u1u
−1
0

)
, λ0

]
as claimed. ¤

Corollary 3. Let Λ be a central simple algebra over the differential field K such that Λ uMn (D) .
If Λ has a derivation δ, then δ : D → D is a derivation.

Proof. D is realized as eΛe where e is a primitive idempotent, i.e. e =




1 0 · · ·
0

. . .
...

... 0 · · ·


 . Since

e2 = e, we have δe = 0. ¤

Corollary 4. Let A be a semi-local ring, Λ a differential Azumaya algebra of rank n2. Then there is
a δ − pl covering A → B such that there is a differential B algebra isomorphism Λ⊗A B → Mn (B)
where Mn (B) has coordinatewise differentiation. In particular

H1 (Aδ−pl, Aut (Mn)) = H1 (Aδ−pl, PGln))

=
{

Λ | Λ⊗B uMn (B) as differential algebras where
B is δ-flat and Mn (B) has coordinatewise differentiation

}

=
{
Λ | Λ is a differential Azumaya algebra of rank n2 over A

}

Proof. We can first find an etale extension A → A1 such that Λ ⊗A A1 → Mn (A1) as Azumaya
algebras. We use this isomorphism to endow Mn (A1) with a derivation δ1 coming from Λ⊗AA1 that
extends the derivation on A1. We denote coordinatewise differentiation by ′. Then the theorem shows
that δ1 = ′ + [v,−] for some v ∈ Mn (A1) . Now the argument in Juan and Magid [2, Proposition
2] applies directly since the only fact they need is that derivations of Λ extending 0 are inner,
but we give our own argument. The semi-local ring hypothesis together with the Skolem-Noether
theorem characterize automorphisms of matrix rings as those algebra homomorphisms given by
conjugation with a unit. Thus an algebra automorphism φ : (Mn, δ1) →

(
Mn,

′
)

that converts δ1

into coordinatewise differentiation is given by φ (λ) = uλu−1 where

φ (δ1λ) = φ (λ′ + [v, λ]) = uλ′u−1 + u [v, λ]u−1

= (φ (λ))′ = u′λu−1 + u
(
λ′u−1 − λu−1u′u−1

)
.
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Consequently for a given v ∈ Mn (A1) , we must find u ∈ Gln (A1) such that

uvλu−1 − uλvu−1 = u′λu−1 − uλu−1u′u−1 or
vλ− λv = u−1u′λ− λu−1u′ for all λ ∈ Mn (A1) .

But the equation u−1u′ = v can be solved in a δ − pl covering A1 → B. (Note that u−1u′ =
− (

u−1
)′ (

u−1
)
. Then the equation becomes w′w = −v or w′ + vw = 0 if w = u−1 if you prefer the

normal order of matrix multiplication.) ¤

The usual argument as above to show that any derivation of an Azumaya algebra is given by
[λ,−] uses the Skolem-Noether theorem characterizing automorphisms of Azumaya algebras. In
order to be complete we will include a proof of this based on the Morita theorems [3, p.53].

Theorem 6 (Morita). Let Λ be an Azumaya A algebra, and let P be a finitely generated faithful,
projective right Λ module. Let Γ := EndΛ (P ) and define Q := HomΛ (P, Λ) so that we are in the
situation ΓPΛ and ΛQΓ.where the actions are defined by (λqγ) (p) = λq (γ (p)) and γpλ = γ (pλ)
with the obvious notation. Then

(1) The maps fP : P ⊗Λ Q → Γ via (p⊗ q) (x) = p · q (x) and gP : Q⊗Γ P → Λ via q⊗p 7→ q (p)
are Γ− Γ and Λ− Λ bimodule isomorphisms respectively.

(2) The functors

P ⊗Λ − : ((ΛMod)) → ((ΓMod))
Q⊗Γ − : ((ΓMod)) → ((ΛMod))
−⊗Λ Q : ((ModΛ)) → ((ModΓ))
−⊗Γ P : ((ModΓ)) → ((ModΛ))

are equivalences of categories.

Corollary 5. Let Λ be an Azumaya algebra over a ring A such that Pic (A) = 0, and let φ : Λ → Λ
be an A algebra automorphism. Then there is a unit u ∈ Λ such that φ (λ) = u−1λu. Moreover if Λ
is a differential Azumaya A algebra with derivation δ, then φ is a differential automorphism if and
only if u−1δu ∈ A. In particular, Autδ (Mn) = Aut

(
(Mn)δ

)

Proof. First part later if there is enough interest.
Note that δ

(
u−1u

)
= 0 = u−1δ (u) + δ

(
u−1

)
u and so δ

(
u−1

)
= u−1δ (u) u−1. Now

φ (δ (λ)) = u−1δ (λ) u = δ (φ (λ)) = δ
(
u−1

)
λu + u−1δ (λ) u + u−1λδ (u)

and so δ
(
u−1

)
λu + u−1λδ (u) must vanish if φ is a differential automorphism. But the above

calculation shows that this is equivalent to the derivation
[
u−1δ (u) ,−]

vanishing for all λ. Hence
we must have u−1δ (u) ∈ A. In the δ − pl topology we can solve the linear equation T−1δT = −a

locally by B → C and then, if t is a solution, (tu)−1
δ (tu) = 0 and so conjugation by tu ∈

Aut
(
Mn

(
Cδ

))
. ¤

Note that this allows us to calculate, for F a free A module of rank n, the sheaf of automorphisms
of End (F ) and the obstruction to φ being a δ algebra automorphism as Aut (End (F )) = Gln/Gm

if A is a local ring and Ob (φ) =
[
u−1δ (u) ,−] ∈ Der (Λ) .

1.4. Summary. We will only consider ‘local’ topologies. Let C/X be a category with finite products,
i.e. a terminal object X and products of pairs of objects.

Definition 8 (following Artin). A pretopology T on C/X is a set Cov (T ) consisting of families
(πi : Ui → U)i∈I for all U → X ∈ C/X such that

(1) If π : V → U is an isomorphism, then (π) ∈ Cov (T ) .
(2) If (Ui → U)i∈I ∈ Cov (T ) and

(
V i

j → Ui

)
j∈Ii

∈ Cov (T ) , then
(
V i

j → U
)
∪Ij

∈ Cov (T ) .

(3) If (Ui → U)i∈I ∈ Cov (T ) and V → U ∈ Mor (C/X) , then Ui×UV exists and (Ui ×U V → V )i∈I ∈
Cov (T ) .

Such a category with its coverings is called a site. Here are some examples where X is a scheme.
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Example 7. XZar, the Zariski site on X, has C/X equal to the category of open subschemes U ⊂ X.

Cov {XZar} =
{

(Ui ⊂ U) / 1)Ui is open and 2)U =
⋃

Ui

}

Example 8. Xet, the étale site on X, has C/X equal to the category of all étale schemes U → X.

Cov {Xet} =
{

(pi : Ui → U) / 1)pi is étale and 2)U =
⋃

pi (Ui)
}

Example 9. Xpl, the flat site on X, has C/X equal to the category of all schemes U → X which
are locally of finite type and flat over X.

Cov {Xpl} =
{

(pi : Ui → U) / 1)pi is flat, locally of finite type and 2)U =
⋃

pi (Ui)
}

Let D = Spec (R) where R is a differential ring containing Q with derivation δ. We introduce
two new topologies, Dδ−et and Dδ−pl as follows. Let C/Dδ be the category of schemes π : X → D
such that X is a scheme with a derivation δX and π is a differentiation preserving morphism.

Example 10. Dδ−et, the δ−étale site on D, has C/D equal to the full sub-category of C/Dδ consisting
of all étale schemes π : U → D.

Cov {Uδ−et} =

{
(pi : Ui → U) |

1)pi is étale, 2)U =
⋃

pi (Ui) ,

and 3)pi is a differential morphism

}

Example 11. Dδ−pl, the δ−flat site on D, has C/D equal to the full sub-category of C/Dδ consisting
of all schemes U → D which are locally of finite type and flat over D.

Cov {Uδ−pl} =
(pi : Ui → U) |1) pi is flat and locally of finite type,
2)U =

⋃
pi (Ui) , and 3)pi is a differential morphism

Examples of sheaves with notation include:

• W (OX) ∈ Sh (Xpl) and Wδ (OX) ∈ Sh (Xd−pl)
• Gm ∈ Sh (Xpl) and Gm,δ ∈ Sh (Xd−pl) where Γ (U,Gm,δ) = units in Γ (U,OU )
• If G is a constant group, Γ (U,G) := Gπ0(U) defines a sheaf where π0 (U) is the set of

connected components of the scheme U.
• Gln ∈ Sh (Xpl) and Gln,δ ∈ Sh (Xδ−pl) where we observe that End (On

x ) ∈ Sh (Xpl) is a
sheaf with the usual values on U and the exactness of (1) shows that an endomorphism on
A that is an automorphism on B must have been an automorphism to begin.

• Presheaves defined from any commutative group scheme ([4, II, Corollary 1.7]) with a sub-
script δ if they are regarded as sheaves on the site Xδ−et of Xδ−pl.

• S (Xpl) := ((sheaves of abelian groups on Xpl)) is an abelian category with enough injec-
tives.

Definition 9. Let M be a B module. Descent data for M consists of a B ⊗ B isomorphism
φ : M ⊗B → B ⊗M.

Descent data (M,φ) satisfies the cocycle condition if the diagram of isomorphisms

B ⊗M ⊗B
↗ φ12

M ⊗B ⊗B ↓ φ23

↘ φ13

B ⊗B ⊗M

commutes, i.e. φ23φ12 = φ13 : M ⊗B ⊗B → B ⊗B ⊗M.

Given A → B, the category of descent data for B over A consists of pairs (M,φ) where M is
a finitely generated B module and φ is descent data for M. Hom ((M, φ) , (M ′, φ′)) consists of B
module homomorphisms f : M → M ′ such that the diagram

M ⊗B
φ→ B ⊗M

↓ f ⊗B ↓ B ⊗ f

M ′ ⊗B
φ′→ B ⊗M ′

commutes.
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Theorem 7. Let A → B be a faithfully flat ring homomorphism. Then the functor

−⊗B : ((Finitely generated A-modules)) → ((Descent data for B-modules + cocycle))

is an equivalence of categories.

Definition 10. Given a faithfully flat ring extension A → B and an A module F, define

Z1 (B/A,Aut (F )) := {φ ∈ Aut (F ⊗B ⊗B) | φ23φ12 = φ13}
Let φ, σ ∈ Z1 (B/A,Aut (F )) . Then φ ∼ σ if there is f : F ⊗B → F ⊗B ∈ Aut (F ⊗B) such that

σ = f−1
2 φf1.

Definition 11.
H1 (B/A,Aut (F )) := Z1 (B/A,Aut (F )) / ∼ .

The following result is then a direct consequence of 1.

Theorem 8. Let Spec (A)∗ be in a site for one of our Grothendieck topologies, and let F be an A
module. Then there is a natural isomorphism of pointed sets

H1 (A∗, Aut (F )) u



N |

N is an A module and there is a covering
Spec (B) → Spec (A) ∈ Cov (Spec (A)) and a

B module isomorphism F ⊗B u N ⊗B



 .

Thus attention is focussed on the set of objects that are ‘locally’ isomorphic to F in the ∗ = Zar,
et, pl, δ − et, or δ − pl topology.

Example 12. (1) F = A, Aut (F ) = Gm, and

H1 (A,Aut (F )) = H1 (A∗, Gm)

=
{

L | L⊗B u B for some faithfully flat A algebra
B of finite type over A in the ∗ topology

}

= Pic (A)

(2) F = A, Aut (F ) = Gδ
m, and

H1 (Aδ−∗, Aut (F )) = H1
(
Aδ−∗, Gδ

m

)

=
{

L | L⊗B u B as differential modules where
B is a covering in the δ − ∗ topology

}

(3) F = A⊕n, Aut (F ) = Gln, and

H1 (A,Aut (F )) = H1 (A∗, Gln)

=
{

P | P ⊗B is free of rank n where
B is a covering in the ∗ topology

}

(4) F = A⊕n, Aut (F ) = Glδn, and

H1 (A, Aut (F )) = H1
(
Aδ−∗, Glδn

)
={

P | P ⊗B is free of rank n as differential modules where
B is a covering in the δ − ∗ topology

}

Here we note that automorphisms of a free differential module of rank n are elements of Gln
that commute with the derivation and so are denoted Glδn.

(5) F = Mn (A) , Aut (F ) := PGln, and

H1 (A, Aut (F )) = H1 (A∗, PGln) ={
Λ | Λ⊗B u Mn (B) as algebras where

B is a covering in the ∗ topology

}

In this case, the isomorphism is a B algebra isomorphism since it is easy to see that the
descended module, which is Λ, is closed under multiplication.
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(6) F = Mn,δ (A) , Aut (F ) := PGln,δ, and

H1 (Aδ−pl, Aut (Mn,δ)) ( = H1 (Aδ−pl, PGln,δ))

=
{

Λ | Λ⊗B u Mn (B) as differential algebras where
B is δ-flat and Mn (B) has coordinatewise differentiation

}

=
{
Λ | Λ is a differential Azumaya algebra of rank n2 over A

}
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Appendix A. Descent Diagram

The first diagram describes the construction of a real vector bundle of rank n on X by establishing
an equivalence relation on

⋃
i∈I(Ui × Rn). The second diagram translates this into the language of

algebra. Note that in the first diagram every other line indicates the open sets being used in the
construction. These are omitted from the second diagram. Notation: {Uα} is a covering of X by
”open” sets. Uαβ = Uα ∩ Uβ , etc.

R Uα × Rn

²²

Uβ × Rn

²²

Uβ × Rn

²²

Uγ × Rn

²²
Uα Uβ Uβ Uγ

S Uα × Rn | φαβ //

²²

Uβ × Rn |

²²

Uβ × Rn |

²²

φβγ // Uγ × Rn |

²²
Uαβ Uαβ Uβγ Uβγ

Uα × Rn ||

²²

φαβ // Uβ × Rn ||

²²

φβγ // Uγ × Rn ||

²²
T Uαβγ Uαβγ Uαβγ

Uα × Rn || φαγ //

OO

Uγ × Rn ||

OO

Uα × Rn | φαγ //

²²

Uγ × Rn |

²²
Uαγ Uαγ

(A.1)
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In algebraic terms, let Uα = Spec(Bα) and B =
∏

Bα so that B ⊗A B =
∏

Bα ⊗A Bβ etc. We
assume the product is over a finite index set so that (

∏
Bα)⊗A F =

∏
(Bα⊗A F ). We let Bαβ stand

for Bα ⊗A Bβ , etc. (A ”1” in a subscript on φ indicates that the identity map is used on the factor
corresponding to the missing Greek letter. Canonical isomorphisms such as Bγαβ u Bαβγ are not
indicated.)

The analogous diagram for the ”model” A module F looks like:

Bα ⊗A F

²²

Bβ ⊗A F

²²

Bβ ⊗A F

²²

Bγ ⊗A F

²²
Bαβ ⊗A F

''OOOOOOOOOOO
φαβ // Bβα ⊗A F

''OOOOOOOOOOO
Bβγ ⊗A F

wwooooooooooo

φβγ // Bγβ ⊗A F

wwppppppppppp

Bαβγ ⊗A F
φαβ1 // Bβαγ ⊗A F

φ1βγ // Bγαβ ⊗A F

Bαβγ ⊗A F
φα1γ // Bγβα ⊗A F

Bαγ ⊗A F

OO

φαγ //

OO

Bγα ⊗A F

OO

Bα ⊗A F

77ppppppppppp
Bγ ⊗A F

ggNNNNNNNNNNN

(A.2)

The identification requirement is that the upper rectangle in the middle, the one with the vertical
= signs, must be commutative, i.e. the cocycle condition must be satisfied. Fpqc descent says
that if B is a faithfully flat A algebra, then such a diagram defines a module M over A such that
M ⊗A B u F ⊗A B and the φαβ is defined by this isomorphism.
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