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Frobenius and QF Algebras

Definition

(i) An algebra A is Frobenius if A= AY where V" denotes the dual of the
vector space V.

(ii) A f.d. (Artinian...) algebra is called quasi-Frobenius if the following
equivalent conditions hold:

oA is left (or right) injective.

eEvery left (or right) injective module is projective.

eEvery left (or right) projective module is injective.

eThe function { left (right) f.d. projectives } P—— PV { right (left) f.d.
injectives } is well defined (and then, consequently, bijective).

eThe function { left (right) f.d. injectives } Q@ — Q" { right (left) f.d.
projectives } is well defined (and then, consequently, bijective).

oA is weakly isomorphic to AV, that is, there are some coproduct powers
of these modules which are isomorphic: A() = (AV)().
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Frobenius and QF Algebras

Every QF algebra is Morita equivalent to a Frobenius algebra. l
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Frobenius and QF Algebras

Every QF algebra is Morita equivalent to a Frobenius algebra.

_

So then, what’s the difference? Let Sy, ..., S, be “the” simple left
A-modules. A/Jac(A) =@ S,

A= P, where P; are projective covers of S; (i.e. P; local and
P; — S; — 0). Let P/ — S be the projctive right modules.

A= @(PP)
J
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Frobenius and QF Algebras

Every QF algebra is Morita equivalent to a Frobenius algebra

So then, what’s the difference? Let Sy, ..., S, be “the” simple left
A-modules. A/Jac(A) =@ S,
A= P, where P; are projective covers of S; (i.e. P; local and
P; — S; — 0). Let P/ — S be the projctive right modules.
A\/ — @(FZ/\/)HJ

J
Suppose A is QF. Let j = o(i) if P}Y = P;.

An isomorphism A = AV means
A= 59 Pl =AY = @(P’V)"f @ P So we need n; = n,;
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Frobenius and QF Algebras

n;j= multiplicity of S;;
ny(n=multiplicity of S4;). J

Since PY = P(’fv(’.) — 5;/(1.) — 0 (a proj cover), we have 0 — S,(;y — P; (an
injective envelope). Thus we need that

the multiplicity of the socle of P; (the bottom) equals the multiplicity
of the cosocle of P; (the top).
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Frobenius and QF Algebras

n;j= multiplicity of S;;
ny(n=multiplicity of S4;). J

Since PY = Pc/fv(’.) — SC\T/(I.) — 0 (a proj cover), we have 0 — S,(;y — P; (an
injective envelope). Thus we need that

the multiplicity of the socle of P; (the bottom) equals the multiplicity
of the cosocle of P; (the top).

When the basefield K is algebraically closed (or A/Jac(A) is a product of
blocs of K-matrices), multiplicity of the simple module S; is the
dimension of S;. So

Frobenius & QF + “dim of the top of P; equals dim of the bottom of
P;".
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Weak Hopf algebras and quasi-Hopf algebras

quasi-Hopf algebras = Hopf algebras which are only coassociative only
up to an invertible twist

coquasi-Hopf algebras, or dual quasi-Hopf algebras = Hopf algebras
which are only associative up to a twist

weak Hopf algebras = “Hopf algebras over a base”, that is an algebra

and a coalgebra, onlu with “weaker” axioms for the antipode and counit.

v
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General starting category: C = Rep(A), for an algebra A.
C - finite tensor category:

finite - finitely many simples, semiperfect (projective covers exist for
simples), all objects have finite length and Hom(S, S) finite dimensional
for simple objects S (or all Hom(M, N) are f.d.). tensor - monoidal, rigid,
and 1 is simple (in general, 1 is semisimple - multitensor category)
category - K-category
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Tannakian reconstruction

Notions: Monoidal category, dual objects (rigid category), tensor functor
= faithful and F(A® B) = F(A) ® F(B), F(I) = | with “compatible”
isomorphisms. quasi-tensor functor = we do not require compatibility for
these isomorphisms.

Tensor category = Monoidal + ridgid. + 1 is simple.
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Tannakian reconstruction

Notions: Monoidal category, dual objects (rigid category), tensor functor
= faithful and F(A® B) = F(A) ® F(B), F(I) = | with “compatible”
isomorphisms. quasi-tensor functor = we do not require compatibility for
these isomorphisms.
Tensor category = Monoidal + ridgid. + 1 is simple.
A
Let v be a tensor category. Tannakian duality: a certain one-one
correspondence (equivalence of suitably defined categories) between
Tensor Functors C — « and Hopf algebras in 7. In general,

Hopf(y) > H — (Rep(H) = H —mod — ) € (x — )

has a left adjoint.

In many situations, there is a Tannakian reconstruction C — R — Bimod
< ——to—— > (comod — H).) (must be f.g. proj over R...) with fibre
functors, where H is a Hopf algebra in R — Bimod, for a ring R.

o
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1. compact groups G / Rep.(G) j— — —; semisimple symmetric tensor
C-categories, with dim Hom(S,S) = 1 for simple objects, together with
fibre functor to Vectc / comod-R:(G).

2. algebraic groups G / Rep,(G) /f.g. commutative Hopf algebras

i— — —i symmetric rigid tensor categories (and equal left and right
duals), together with fibre functor to Vecty / comod-R,(G).

3. algebraic group schemes / commutative Hopf algebras H (representing
the scheme as a representable functor) < — — — > neutral Tannakian
categories (ridgid tensor categories, with same left and right duals) with
fibre functor to Vectyx / comod-H.

4. Hopf algebras H < — — — > finite tensor categories C with fibre
functor C — Vecty / comod-H / mod-H*.
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5. quasi-Hopf algebras / co-quasi Hopf algebras < — — — > finite tensor
categories C with fibre quasi-tensor functor C — Vect) / comod-H /
mod-H*

6. weak-Hopf algebras L / Hopf algebras H in A —mod < — — — > finite
tensor categories C with fibre functor C — A — mod, A-semisimple
separable / comod-H / mod-L

7. “weak quasi-Hopf algebras” L / Hopf algebras H in A — mod

< — — — > finite tensor categories C with fibre quasi-tensor functor

C — A—mod / comod-H / mod-L

7. differential algebraic groups / a “suitable” commutative Hopf algebra of
representative functions / commutative Hopf algebras in the category
K[01,...,0n] — Mod. < — — — > neutral Tannakian categories C with fibre
functors to K[y, ...,0,] — Mod.
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F : C = Rep(H) — Bimod(A) (quasi)tensor functor.
(Vi)ier - the simple objects in C, with P; covers.
The vector space dimension of an H-module M is dimk (F(M)).
Then H = @ PHmF(V))

icl
(5j)j=1,p the simple right A-modules; S;j = S @k S; are the simple
A-bimodules. d,' = dImK(S,)
For X of C define N)kg defined by the left multiplication by X, where N)kg is
the multiplicity [X ® V; : Vi] of Vj in the Jordan-Holder series of X ® V;
in C.
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Some fairly imediate facts

(Etingof,Ostrik)
For P;, i € I, there is D(i) € | be such that P} ~ Pp; (here (—)*
denotes the categorical right dual).

Also, there is an invertible object V/, of C such that Pp;) = P«; ® V), and
VD(,-) =Vii®V,="V;®V,, where we convey Vi; =*V,.
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Counting dimensions

Denote [F(X) : Sj] the multiplicity of Sjj. Then
dimk(F(soc(Py))) = > [F(Vpw) : Sildid]
i

dimk (F(cosoc(Px)))

Z[F(*Vk) : Sjldid;
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We have P} — cosoc(P}) — 0, equivalently, by taking left duals, we get
0 — *cosoc(P;) — *(Py) = Pk so soc(Py) = *cosoc(Py). Also,
dimk(F(*X)) = dimk (F(X*)) = dimk(F(X))Y = dimk(F(X)) (in
Bimod(A) left and right duals are the same). Therefore

dimk(F(soc(Px))) = dimg(F(*cosoc(Py))) (byduality)

(
= d|mK(F(*cosoc(PD(k ) (Ppw = Pk)
my (F(* VD(k )) = dimk (F(Vpx)))

Z[F . S;j]d:d;

The second equality follows similarly.
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A first result

If X, Y are objects of C, then the matrix Mx = [F(X) : Sjj]i j=1,n has
integer coefficients, and moreover, Mxgy = Mx My .
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A first result

If X, Y are objects of C, then the matrix Mx = [F(X) : Sjj]i j=1,n has
integer coefficients, and moreover, Mxgy = Mx My .

Let H be a weak quasi-Hopf algebra with the base algebra A. If the
dimensions of the simple components of A are all equal, then H is a
Frobenius algebra. In particular, this is true if the base algebra A is
commutative, so also when H is a quasi-Hopf algebra.
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Another proof

Since VD(k) =*Vi® Vp, MVD(k) = M- V, MVp'

V, is invertible = Mvp . I\/IV;1 = Mv;1 . M\/p = MV,J@V;I = M; =1d, so
My, is a permutation matrix (has Z-coefficients and so does its inverse
I\/IV;1)

col's and elements of My, ,, = [F(Vpx)) : Sijlij=1,» are a permutation of
the col's and elements of M-\, = [F(*Vj) : 5;].

d =d; = dj for all i,j (e.g. A-commutative)

dimk (F(soc(Pk))) = dzZ[F(VD(k)) 0 Sijl

= d>) [F("Vi) : S
ij

= dimg(F(cosoc(Pk)))
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The Main Example

(Taft algebras)

B= Taft algebra of dimension p:
has generators g, x with gP =1, xP = 0, xg = Agx with A a primitive p'th
root of unity, and comultiplication A(g) =g® g, A(x) =g@x+x®1,

counit £(g) = 1, ¢(x) = 0 and antipode S(g) = g1, S(x) = —g !x.
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The Main Example

(Taft algebras)

B= Taft algebra of dimension p:
has generators g, x with gP =1, xP = 0, xg = Agx with A a primitive p'th
root of unity, and comultiplication A(g) =g® g, A(x) =g@x+x®1,

counit £(g) = 1, ¢(x) = 0 and antipode S(g) = g1, S(x) = —g !x.

Denote V) the 1-dimensional B-module K with structure x - « = 0 and
g - o = M\a - the simple B-modules.
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Taft's algebra

P — Vi — 0 projective covers are in fact chain modules:
There is a Jordan-Holder series of I,f = Py,
0=C I,} - IE c...C l,f_l - l,f and the terms of these series are

BT = Vi

So we have the quotients of the J-H series:
[Vk+1, ey Vp, Vl, ey Vk,]_, Vk]
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The tensor functor

(O
We now build a tensor functor F : Rep(B) — Bimod(A) in several steps.

Rep(B) ——— Rep(Z/p)

e

Bimod(A) < Bimod(K[Z/p])
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The tensor functor

(A
e F1 : Rep(B) — Rep(Z/p) be the forgetful functor, given by
<1,g,..,8°7' >~ K[Z/p] — B.

o F»: K[Z/p]—mod = Rep(Z/p) — Bimod(KI[Z/p]),

F2(Vk) @ V QK V @ V_i ®k (V_, & Vk) Left adjoint of
i+j=k

G : Bimod(Z/p) = Rep(Z/p x Z/p) — K[Z/p]—mod = Rep(Z/p)
, induced by the diagonal map K[Z/p] — K[Z/p] ® K[Z/p] (from
Z/p > iv—> (—i,i)EZ/pxZ/p).
e A= @ Mg (K) and F3 : Bimod(Z/p) — Bimod(A),
F3(V;* ®V)_SV®SJ_S,J
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When Taft(d;, d>, . .., d,) is Frobenius

Proposition

With the notations above, the weak Hopf algebra H is a Frobenius algebra
if and only if di,...,d, are all equal. Also, the algebra H has dimension
(3> d;)*. Thus, if the d;'s are not all equal, H is a weak Hopf algebra

1
which is not a Frobenius algebra.
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dimk(F(soc(Px))) = dimk(F(Vit1)) =dimg( @ S/ ®S)) =
i+j=k+1
Y. didj and also dimk(F(cosoc(Px))) = dimk(F(Vk)) = > did;.
i+j=k+1 i+j=k
H is Frobenius < these two are equal for all k. Let 1 # w be a p'th root

p—1
of 1 and t(x) = 3 dix.
k=0

t(w)? = > didiw™ = Z Y didiwk = (Zd d_j)- (;wk) = 0 (indices

k=0 i+j=k
p—1
are mod p). So t is divisible by Y xP, i.e. they are proportional. Hence
k=0

all d; are equal.
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The “correct” version of weak Hopf algebras are Frobenius

Proposition

If C is a finite tensor category, then di(soc(Px)) = dy(cosoc(Px)), where
dy represents the Frobenius-Perron dimension in C.

Proof. As in Proposition 12, soc(Px) = *Lpx), so we compute

di(soc(Pk)) = d+("Lp(k)) = d+(Lpk)) = d+ ("L ® L) =
dy(*Lk)dy(L,) = d(Lk) = di(cosoc(Py)). O
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Perhapse Frobenius in other way?

Frobenius Extensions: k — H

A— H

AR AP — H

None of the above... reason: transitivity of Frobenius Extensions.
k—A— Hand k— AR A%®° — H
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(A
MCI, Lars Kadison, * When Weak Hopf Algebras are Frobenius,

Proceedings of the American Mathematical Society, Volume 138,
Number 3, March 2010, Pages 837845.

*with special thanks to P.Etingof, MIT
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