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Generalized Weyl algebras

The Generalized Weyl Algebras (GWAs) were introduced independently by
A. Rosenberg (1995) and V. Bavula (1993).

GWA of rank 1: Let R be a ring, σ : R → R be an automorphism and t
be a central element of R. The GWA A = A(R, σ, t) is the ring extension
of R generated by X ,Y modulo the relations

YX = t, XY = σ(t),

Xr = σ(r)X , Yr = σ−1(r)Y ∀r ∈ R.

A is free as an R-module with basis {1,X n,Y n | n ∈ N}.
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Examples of Generalized Weyl algebras

Let R = k[T ] the polynomial ring over some field k. Let t = T and
σ : R → R defined by σ(T ) = T + 1.

Then the GWA A = A(R, σ, t) is generated over k[T ] by varaibles X ,Y
and relations YX = T ,XY = T + 1, and Xf = σ(f )X , Yf = σ−1(f )Y .

That is, XY − YX = 1.

That is, A is the first Weyl Algebra over k, denoted A1.
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Examples of Generalized Weyl algebras

Let R = k[T ] the polynomial ring over some field k, and q ∈ k∗. Let
t = T and σ : R → R defined by σ(T ) = qT + 1.

Then the GWA A = A(R, σ, t) is generated over k[T ] by varaibles X ,Y
and relations YX = T ,XY = qT + 1, and Xf = σ(f )X , Yf = σ−1(f )Y .

That is, XY − qYX = 1.

That is, A is the first quantum Weyl Algebra over k, denoted Aq
1 .
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Examples of Generalized Weyl algebras

Let R = k[H,T ], the polynomial algebra in two variables. Let t = T and
σ : R → R defined by σ(H) = H + 2 and σ(T ) = Y + H.

In this case, A = A(R, σ, t) is generated over R by two variables X ,Y with
YX = T ,XY = T + H, Xf = σ(f )X , and Yf = σ−1(f )Y .

That is, XY − YX = H, XH − HX = 2X , YH − HY = −2Y .

A is the universal enveloping algebra over sl2(k).

That is, A = U(sl2).
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Examples of Generalized Weyl algebras

Let R = k[T ,Z ,Z−1], the localization of polynomial algebra in two
variables k[T ,Z ] with respect to the multiplicative set {Z i}. Let
q ∈ k \ {0,−1, 1} and t = T . Define σ : R → R by σ(Z) = q2Z and

σ(T ) =
Z − Z−1

q − q−1
.

In this case, A = A(R, σ, t) is generated over R by two variables X ,Y with

YX = T ,XY = T +
Z − Z−1

q − q−1
, XZ = q2ZX , and YZ = q−2Y .

That is, ZXZ−1 = q2X , ZYZ−1 = q−2Y , and XY − YX =
Z − Z−1

q − q−1
.

A is the quantum group over sl2(k).

That is, A = Uq(sl2).
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Weight Modules

Let R be a commutative ring. Let V be an R-module.

Denote by Max(R), the set of all maximal ideals of R.

For m ∈ Max(R), let Vm = {v ∈ V | mv = 0}, the weight space of V
corresponding to weight m.

The support of V is the set Supp(V ) = {m ∈ Max(R) | Vm 6= 0}.
We say that V is a weight module if V =

∑
m∈Max(R) Vm = ⊕m∈Max(R)Vm.

Now suppose A is a ring with R a fixed commutative subalgebra of A, and
let V be an A-module.

Then we call V a weight module over A if V is a weight module over R.

U.N. Iyer, Bronx Community College Representations of an Algebra of Quantum Differential Operators



Weight Module over a GWA of rank 1.

Let R be a commutative ring, t ∈ R, σ : R → R be an automorphism and
A = A(R, σ, t) be a GWA of rank 1.

The cyclic group < σ > acts on Max(R). Let Ω be the orbit set of
Max(R) under this action.

Note: X · Vm ⊂ Vσ(m) and Y · Vm ⊂ Vσ−1(m) for m ∈ Max(R).

Therefore, any weight module V decomposes into a direct sum:

V = ⊕ω∈ΩVω

with Supp(Vω) ⊂ ω.

For m ∈ Max(R), we call m a break if t ∈ m.

Let B be the set of all breaks.

For ω ∈ Ω, denote Bω = B ∩ ω, the set of breaks in ω.
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Indecomposable Weight Modules over a GWA of rank 1.

The Indecomposable Weight Modules over a GWA of rank 1 were
classified by Drozd, Guzner, and Ovsienko in 1996.

The indecomposable weight modules fall in five families.

Family I: Here, |ω| =∞ and Bω = ∅.
An example: Let a ∈ C \ Z. Then the action of A1 on the vector space
xaC[x , x−1] is indecomposable with linear orbit and no breaks.

v−2 v−1 v0 v1

τ = a− 2 τ = a− 1 τ = a τ = a + 1

X = 1

Y = a− 2

X = 1

Y = a− 1

X = 1

Y = a
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Indecomposable Weight Modules over a GWA of rank 1.

Family II: Here, |ω| =∞, Bω 6= ∅.
An example of this family is as follows:

Let the characteristic of k be p > 0. Then k[x ] is an A1 indecomposable
module which is not irreducible.

v1 v2 v3 · · ·

τ = a + 1 τ = a + 2 τ = a + 3

Y = 0

X = 1

Y = a + 1

X = 1

Y = a + 2

X = 1

Y = a + 3
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Indecomposable Weight Modules over a GWA of rank 1.

Family III: Here, |ω| <∞ and Bω = ∅.
Here we obtain finite dimensional representations. The orbit is circular.

For example, when the characteristic of k is p > 0, then A1 has finite
dimensional irreducible modules.

Family IV, Family V: These families occur when |ω| <∞ and Bω 6= ∅.
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The algebra quantum differential operators

We follow here definitions and constructions given by V. Lunts and A. L.
Rosenberg in a series of papers (1997-1999).

Let k be a field, Γ be an abelian group, R be a Γ-graded k-algebra. Fix a
bicharacter β : Γ× Γ −→ k∗.
For each a ∈ Γ, define σa ∈ grHomk(R,R) defined by σa(r) = β(a, dr )r for
homogeneous r ∈ R, and extend σa linearly on all of R. We call σa the
grading operator. Note, σa is an automorphism with σ−1

a = σ−a.

Let Zq denote the quantum-center of grHomk(R,R) defined as the k-span
of homogeneous homomorphisms ϕ for which there exists an a ∈ Γ such
that

ϕr = σa(r)ϕ for r ∈ R.

Let [ϕ, r ]a = ϕr − σa(r)ϕ. Using these notations,

Zq = k− span{homogeneous ϕ | ∃a ∈ Γ such that [ϕ, r ]a = 0∀r ∈ R}.
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Quantum differential operators on graded algebras

Let D0
q = RZqR.

For i ≥ 1, D i
q denotes the R-bimodule generated by the set

k− span{homogeneous ϕ | ∃a ∈ Γ such that [ϕ, r ]a ∈ D i−1
q ∀r ∈ R}.

D0
q ⊂ D1

q ⊂ · · · and Dq = ∪i≥0D
i
q.

The algebra D0
q(R) is generated by the set {λr , ρs , σa | r , s ∈ R, a ∈ Γ}

where
λr (t) = rt, ρr (t) = tr ∀t ∈ R.

We see the following relations:

λrρs = ρsλr , σaλr = λσa(r)σa, and σaρr = ρσa(r)σa.
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The algebra Dq( K [x ])

Example (Joint with T.C.McCune): Let q be transcendental over Q and
Q(q) ⊂ k. Let R = k[x ], Γ = Z, deg(x) = 1, and β : Γ× Γ→ k∗ be given
by β(n,m) = qnm.

Let σ : R → R be the authormorphism given by σ(xn) = qnxn, and extend
σ linearly. Denote by σ−1 the inverse of σ. That is, σ−1(xn) = q−nxn and
extended linearly.

Let ∂1, ∂, ∂−1 : R → R be the linear maps defined by

∂1(xn) =

(
qn − 1

q − 1

)
xn−1, ∂(xn) = nxn−1, ∂−1(xn) =

(
q−n − 1

q−1 − 1

)
xn−1.

The algebra Dq(R) is generated by the set {λx = x , ∂1, ∂, ∂−1}.
In a joint work with D.A. Jordan, we have proved that this algebra is left
and right Noetherian algebra. Moreover, Dq(R) is a simple domain of GK
dimension 3.

The defining relations among the generators {x , ∂1, ∂, ∂−1} are:
(a, b ∈ {−1, 0, 1})

∂ax − qax∂a = 1, ∂ax∂b = ∂bx∂a, ∂−1∂1 = q∂1∂−1.
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The algebra Dq = Dq(k[x ])

Note, σ = ∂1x − x∂1 and σ−1 = ∂−1x − x∂−1. One can check that
∂−1 = σ−1∂1.

Let τ = ∂x .

Then, Dq = Dq(k[x ]) is generated over k[τ, σ, σ−1] with generating set
{x , ∂, ∂1}.
Note that, Dq has two GWAs of rank 1 generated over k[τ, σ, σ−1]:

A1 is generated by {x , ∂} over k[τ, σ, σ−1];

Aq is generated by {x , ∂1} over k[τ, σ, σ−1].
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Weight Modules of Dq

The following is joint work with V. Futorny.

We study the weight modules over Dq as an algebra over k[τ, σ, σ−1].

Let k = k.

Family I: Irreducible Dq modules which are extended from irreducible A1

modules.

An example: Suppose the characteristic of k is 0. Then, the natural action
of A1 on k[x ] is irreducible. If q is a root of 1, then the natural action of
Aq on k[x ] is not irreducible.
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Weight Modules of Dq

Family II: Irreducible Dq modules which are extended from irreducible Aq

modules.

An example: Suppose the characteristic of k is p > 0. Then, the natural
action of A1 on k[x ] is not irreducible. If q is not a root of 1, then the
natural action of Aq on k[x ] is irreducible.

Family III: Irreducible Dq modules which do not descend to irreducible A1

or Aq modules.

An example:

v−2 v−1 v0 v1

σ = q−2b,
τ = a− 2

σ = q−1b,
τ = a− 1

σ = b,
τ = a

σ = qb,
τ = a + 1

X = 1

∂1 = b
q
− 1

∂ = a− 2

X = 1

∂1 = b − 1

∂ = a− 1

X = 1

∂1 = qb − 1

∂ = a

When a ∈ Z and b = qi for some i ∈ Z, this example descends to
indecomposable (but not irreducible) modules over A1 and Aq. As long as
(∂, ∂1) 6= (0, 0) simultaneously, this is an irreducible Dq module.
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Weight Modules of Dq

Theorem [V. Futorny, U.I] Let k = k. Every irreducible Dq weight
module is indecomposable as an A1 and as an Aq module.

Theorem [V. Futorny, U.I] Let k = k. The irreducible Dq weight
modules are described in Families I, II, and III.
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Future Work

With V. Futorny, we are investigating the irreducible weight modules of
Dq(k[x1, x2, · · · , xn]).

Several works have been done on weight modules of An and An
q.

Some of the authors being: V. Bekkert, G. Benkart, V. Futorny, J.
Hartwig.

Thank you.
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