Representations of an Algebra of Quantum Differential Operators

U.N. Iyer, Bronx Community College

October 4, 2016

Generalized Weyl algebras

- The Generalized Weyl Algebras (GWAs) were introduced independently by A. Rosenberg (1995) and V. Bavula (1993).
- **GWA of rank 1:** Let R be a ring, $\sigma: R \to R$ be an automorphism and t be a central element of R. The GWA $A = A(R, \sigma, t)$ is the ring extension of R generated by X, Y modulo the relations

$$YX = t$$
, $XY = \sigma(t)$, $Xr = \sigma(r)X$, $Yr = \sigma^{-1}(r)Y$ $\forall r \in R$.

• A is free as an R-module with basis $\{1, X^n, Y^n \mid n \in \mathbb{N}\}.$

- Let $R = \mathbb{k}[T]$ the polynomial ring over some field \mathbb{k} . Let t = T and $\sigma : R \to R$ defined by $\sigma(T) = T + 1$.
- Then the GWA $A = A(R, \sigma, t)$ is generated over k[T] by variables X, Y and relations YX = T, XY = T + 1, and $Xf = \sigma(f)X$, $Yf = \sigma^{-1}(f)Y$.
- That is, XY YX = 1.
- That is, A is the first Weyl Algebra over \mathbb{k} , denoted A_1 .

- Let $R = \mathbb{k}[T]$ the polynomial ring over some field \mathbb{k} , and $q \in \mathbb{k}^*$. Let t = T and $\sigma : R \to R$ defined by $\sigma(T) = qT + 1$.
- Then the GWA $A = A(R, \sigma, t)$ is generated over $\mathbb{k}[T]$ by variables X, Y and relations YX = T, XY = qT + 1, and $Xf = \sigma(f)X$, $Yf = \sigma^{-1}(f)Y$.
- That is, XY qYX = 1.
- That is, A is the first quantum Weyl Algebra over \mathbb{k} , denoted A_1^q .

- Let $R = \mathbb{k}[H, T]$, the polynomial algebra in two variables. Let t = T and $\sigma : R \to R$ defined by $\sigma(H) = H + 2$ and $\sigma(T) = Y + H$.
- In this case, $A = A(R, \sigma, t)$ is generated over R by two variables X, Y with $YX = T, XY = T + H, Xf = \sigma(f)X$, and $Yf = \sigma^{-1}(f)Y$.
- That is, XY YX = H, XH HX = 2X, YH HY = -2Y.
- A is the universal enveloping algebra over $sl_2(\mathbb{k})$.
- That is, $A = U(sl_2)$.

- Let $R=\Bbbk[T,Z,Z^{-1}]$, the localization of polynomial algebra in two variables $\Bbbk[T,Z]$ with respect to the multiplicative set $\{Z^i\}$. Let $q\in \Bbbk\setminus\{0,-1,1\}$ and t=T. Define $\sigma:R\to R$ by $\sigma(Z)=q^2Z$ and $\sigma(T)=\frac{Z-Z^{-1}}{q-q^{-1}}$.
- In this case, $A=A(R,\sigma,t)$ is generated over R by two variables X,Y with $YX=T,XY=T+\frac{Z-Z^{-1}}{q-q^{-1}},\ XZ=q^2ZX$, and $YZ=q^{-2}Y$.
- That is, $ZXZ^{-1} = q^2X$, $ZYZ^{-1} = q^{-2}Y$, and $XY YX = \frac{Z Z^{-1}}{q q^{-1}}$.
- A is the quantum group over $sl_2(\mathbb{k})$.
- That is, $A = U_q(sl_2)$.

Weight Modules

- Let R be a commutative ring. Let V be an R-module.
- Denote by Max(R), the set of all maximal ideals of R.
- For m ∈ Max(R), let V_m = {v ∈ V | mv = 0}, the weight space of V corresponding to weight m.
- The support of V is the set $Supp(V) = \{m \in Max(R) \mid V_m \neq 0\}.$
- We say that V is a weight module if $V = \sum_{m \in Max(R)} V_m = \bigoplus_{m \in Max(R)} V_m$.
- Now suppose A is a ring with R a fixed commutative subalgebra of A, and let V be an A-module.
- Then we call V a weight module over A if V is a weight module over R.

Weight Module over a GWA of rank 1.

- Let R be a commutative ring, $t \in R$, $\sigma : R \to R$ be an automorphism and $A = A(R, \sigma, t)$ be a GWA of rank 1.
- The cyclic group $<\sigma>$ acts on Max(R). Let Ω be the orbit set of Max(R) under this action.
- Note: $X \cdot V_m \subset V_{\sigma(m)}$ and $Y \cdot V_m \subset V_{\sigma^{-1}(m)}$ for $m \in Max(R)$.
- ullet Therefore, any weight module V decomposes into a direct sum:

$$V = \bigoplus_{\omega \in \Omega} V_{\omega}$$

with $Supp(V_{\omega}) \subset \omega$.

- For $m \in Max(R)$, we call m a break if $t \in m$.
- Let B be the set of all breaks.
- For $\omega \in \Omega$, denote $B_{\omega} = B \cap \omega$, the set of breaks in ω .

Indecomposable Weight Modules over a GWA of rank 1.

- The Indecomposable Weight Modules over a GWA of rank 1 were classified by Drozd, Guzner, and Ovsienko in 1996.
- The indecomposable weight modules fall in five families.
- Family I: Here, $|\omega| = \infty$ and $B_{\omega} = \emptyset$.
- An example: Let $a \in \mathbb{C} \setminus \mathbb{Z}$. Then the action of A_1 on the vector space $x^a \mathbb{C}[x,x^{-1}]$ is indecomposable with linear orbit and no breaks.

Indecomposable Weight Modules over a GWA of rank 1.

- Family II: Here, $|\omega| = \infty$, $B_{\omega} \neq \emptyset$.
- An example of this family is as follows:
- Let the characteristic of k be p > 0. Then k[x] is an A_1 indecomposable module which is not irreducible.

Indecomposable Weight Modules over a GWA of rank 1.

- Family III: Here, $|\omega| < \infty$ and $B_{\omega} = \emptyset$.
- Here we obtain finite dimensional representations. The orbit is circular.
- For example, when the characteristic of k is p > 0, then A₁ has finite dimensional irreducible modules.
- Family IV, Family V: These families occur when $|\omega| < \infty$ and $B_{\omega} \neq \emptyset$.

The algebra quantum differential operators

We follow here definitions and constructions given by V. Lunts and A. L. Rosenberg in a series of papers (1997-1999).

- Let k be a field, Γ be an abelian group, R be a Γ -graded k-algebra. Fix a bicharacter $\beta: \Gamma \times \Gamma \longrightarrow k^*$.
- For each $a \in \Gamma$, define $\sigma_a \in \operatorname{grHom}_{\Bbbk}(R,R)$ defined by $\sigma_a(r) = \beta(a,d_r)r$ for homogeneous $r \in R$, and extend σ_a linearly on all of R. We call σ_a the grading operator. Note, σ_a is an automorphism with $\sigma_a^{-1} = \sigma_{-a}$.
- Let \mathcal{Z}_q denote the *quantum-center* of $\operatorname{grHom}_{\Bbbk}(R,R)$ defined as the \Bbbk -span of homogeneous homomorphisms φ for which there exists an $a \in \Gamma$ such that

$$\varphi r = \sigma_a(r)\varphi$$
 for $r \in R$.

• Let $[\varphi, r]_a = \varphi r - \sigma_a(r)\varphi$. Using these notations,

 $\mathcal{Z}_q = \mathbb{k} - span\{ \text{homogeneous } \varphi \mid \exists a \in \Gamma \text{ such that } [\varphi, r]_a = 0 \forall r \in R \}.$

Quantum differential operators on graded algebras

- Let $D_q^0 = R \mathcal{Z}_q R$.
- For $i \geq 1$, D_q^i denotes the *R*-bimodule generated by the set

$$\Bbbk-\mathit{span}\{\mathit{homogeneous}\ \varphi\mid\exists a\in\Gamma\ \mathit{such\ that}\ [\varphi,r]_a\in D_q^{i-1}\forall r\in R\}.$$

- $D_q^0 \subset D_q^1 \subset \cdots$ and $D_q = \bigcup_{i \geq 0} D_q^i$.
- The algebra $D_q^0(R)$ is generated by the set $\{\lambda_r, \rho_s, \sigma_a \mid r, s \in R, a \in \Gamma\}$ where

$$\lambda_r(t) = rt, \ \rho_r(t) = tr \ \forall t \in R.$$

We see the following relations:

$$\lambda_r \rho_s = \rho_s \lambda_r, \ \sigma_a \lambda_r = \lambda_{\sigma_a(r)} \sigma_a, \ \text{and} \ \sigma_a \rho_r = \rho_{\sigma_a(r)} \sigma_a.$$

The algebra $D_q(K[x])$

- Example (*Joint with T.C.McCune*): Let q be transcendental over \mathbb{Q} and $\mathbb{Q}(q) \subset \mathbb{k}$. Let $R = \mathbb{k}[x]$, $\Gamma = \mathbb{Z}$, deg(x) = 1, and $\beta : \Gamma \times \Gamma \to \mathbb{k}^*$ be given by $\beta(n,m) = q^{nm}$.
- Let $\sigma: R \to R$ be the authormorphism given by $\sigma(x^n) = q^n x^n$, and extend σ linearly. Denote by σ^{-1} the inverse of σ . That is, $\sigma^{-1}(x^n) = q^{-n} x^n$ and extended linearly.
- Let $\partial_1, \partial, \partial_{-1}: R \to R$ be the linear maps defined by

$$\partial_1(x^n) = \left(\frac{q^n-1}{q-1}\right)x^{n-1}, \quad \partial(x^n) = nx^{n-1}, \quad \partial_{-1}(x^n) = \left(\frac{q^{-n}-1}{q^{-1}-1}\right)x^{n-1}.$$

- The algebra $D_q(R)$ is generated by the set $\{\lambda_x = x, \partial_1, \partial_1, \partial_2, \partial_{-1}\}$.
- In a joint work with D.A. Jordan, we have proved that this algebra is left and right Noetherian algebra. Moreover, $D_q(R)$ is a simple domain of GK dimension 3.
- The defining relations among the generators $\{x,\partial_1,\partial,\partial_{-1}\}$ are: $(a,b\in\{-1,0,1\})$

$$\partial_a x - q^a x \partial_a = 1$$
, $\partial_a x \partial_b = \partial_b x \partial_a$, $\partial_{-1} \partial_1 = q \partial_1 \partial_{-1}$.

The algebra $D_q = D_q(\Bbbk[x])$

- Note, $\sigma = \partial_1 x x \partial_1$ and $\sigma^{-1} = \partial_{-1} x x \partial_{-1}$. One can check that $\partial_{-1} = \sigma^{-1} \partial_1$.
- Let $\tau = \partial x$.
- Then, $D_q = D_q(\mathbb{k}[x])$ is generated over $\mathbb{k}[\tau, \sigma, \sigma^{-1}]$ with generating set $\{x, \partial, \partial_1\}$.
- Note that, D_q has two GWAs of rank 1 generated over $\mathbb{k}[\tau, \sigma, \sigma^{-1}]$:
- A_1 is generated by $\{x, \partial\}$ over $\mathbb{k}[\tau, \sigma, \sigma^{-1}]$;
- A_q is generated by $\{x, \partial_1\}$ over $\mathbb{k}[\tau, \sigma, \sigma^{-1}]$.

Weight Modules of D_q

- The following is joint work with V. Futorny.
- We study the weight modules over D_q as an algebra over $\mathbb{k}[\tau, \sigma, \sigma^{-1}]$.
- Let $\mathbb{k} = \overline{\mathbb{k}}$.
- Family I: Irreducible D_q modules which are extended from irreducible A₁ modules.
- An example: Suppose the characteristic of k is 0. Then, the natural action of A_1 on k[x] is irreducible. If q is a root of 1, then the natural action of A_q on k[x] is not irreducible.

Weight Modules of D_q

- Family II: Irreducible D_q modules which are extended from irreducible A_q modules.
- An example: Suppose the characteristic of k is p > 0. Then, the natural action of A_1 on k[x] is not irreducible. If q is not a root of 1, then the natural action of A_q on k[x] is irreducible.
- Family III: Irreducible D_q modules which do not descend to irreducible A_1 or A_q modules.
- An example:

When $a \in \mathbb{Z}$ and $b = q^i$ for some $i \in \mathbb{Z}$, this example descends to indecomposable (but not irreducible) modules over A_1 and A_q . As long as $(\partial, \partial_1) \neq (0, 0)$ simultaneously, this is an irreducible D_q module.

Weight Modules of D_q

- Theorem [V. Futorny, U.I] Let $\mathbb{k} = \overline{\mathbb{k}}$. Every irreducible D_q weight module is indecomposable as an A_1 and as an A_q module.
- Theorem [V. Futorny, U.I] Let $\mathbb{k} = \overline{\mathbb{k}}$. The irreducible D_q weight modules are described in Families I, II, and III.

Future Work

- With V. Futorny, we are investigating the irreducible weight modules of $D_a(\mathbb{K}[x_1, x_2, \dots, x_n])$.
- Several works have been done on weight modules of A_n and A_a^n .
- Some of the authors being: V. Bekkert, G. Benkart, V. Futorny, J. Hartwig.
- Thank you.