Category Theory Meets the First Fundamental Theorem of Calculus
Kolchin Seminar in Differential Algebra

Shilong Zhang
Li Guo
Bill Keigher(*)

Lanzhou University (China)
Rutgers University-Newark
Rutgers University-Newark

February 20, 2015
One of the most important results in the calculus is the First Fundamental Theorem of Calculus, which states that if \(f : [a, b] \rightarrow \mathbb{R} \) is a continuous function and if \(F \) is defined on \([a, b] \) by \(F(x) = \int_a^x f(t)dt \), then

1. \(F \) is continuous on \([a, b]\),

2. \(F \) is differentiable on \((a, b)\) and

3. \(\frac{d}{dx} \left(\int_a^x f(t)dt \right) = f(x) \) on \((a, b)\).

We will investigate (3) from a categorical viewpoint.
Outline

- Notations & Review of Some Category Theory
- Differential Algebras
- Rota-Baxter Algebras
- Mixed Distributive Laws
- Differential Rota-Baxter Algebras
Notations

- Fix k a commutative ring with identity and fix $\lambda \in k$.
- All algebras are commutative k-algebras with identity.
- All homomorphisms preserve the identity.
- All linear maps and tensor products are over k.
- $\mathbb{N} = \{0, 1, 2, \ldots\}$ will denote the natural numbers.
- $\mathbb{N}_+ = \{1, 2, 3, \ldots\}$.
Definition: For categories \(\mathbf{A} \) and \(\mathbf{B} \) and functors \(F : \mathbf{A} \to \mathbf{B} \) and \(G : \mathbf{A} \to \mathbf{B} \), a **natural transformation** \(\eta : F \to G \) is a family of morphisms in \(\mathbf{B} \), \(\{ \eta_X : FX \to GX \} \), one for each \(X \in \mathbf{A} \), such that for any morphism \(f : X \to Y \) in \(\mathbf{A} \), we have the following in \(\mathbf{B} \):

\[
\eta_Y \circ Ff = Gf \circ \eta_X,
\]

i.e., the diagram

\[
\begin{array}{ccc}
FX & \xrightarrow{\eta_X} & GX \\
Ff \downarrow & & \downarrow Gf \\
FY & \xrightarrow{\eta_Y} &GY
\end{array}
\]

commutes.
Natural Transformations

Example

- Let \(\textbf{FVS} \) denote the category of finite-dimensional vector spaces over some field \(K \). Let \(V \in \textbf{FVS} \) and \(V^* \) be the dual space of \(V \). Then \(V^* \cong V \), but the isomorphism is not “natural” in the sense that it requires the choice of a basis for \(V \).

- However, there is a natural transformation \(\eta_V : V \rightarrow V^{**} \) defined by \((\eta_V(v))(\varphi) = \varphi(v) \) for any \(v \in V \) and \(\varphi \in V^* \).
Adjoint Functors

Definition: Given categories \(A \) and \(B \), an adjunction between \(A \) and \(B \) consists of functors \(F : A \to B \) and \(U : B \to A \) (opposite directions) such that for each \(X \in A \) and \(Y \in B \),

\[
\mathbf{B}(FX, Y) \cong \mathbf{A}(X, UY),
\]

where the isomorphism is natural in \(X \in A \) and \(Y \in B \). In this case, we say that \(F \) is **left adjoint** to \(U \), or that \(U \) is **right adjoint** to \(F \).
Adjoint Functors

Example

- Let $\mathbf{A} = \mathbf{SET}$, the category of sets and functions, and let $\mathbf{B} = \mathbf{GRP}$, the category of groups and group homomorphisms.

- Let $F : \mathbf{SET} \to \mathbf{GRP}$ be the free group functor, and let $U : \mathbf{GRP} \to \mathbf{SET}$ be the underlying set functor, i.e. the "forgetful" functor.

- Then F is left adjoint to U, since we have the natural isomorphism

\[
\mathbf{GRP}(FX, G) \cong \mathbf{SET}(X, UG)
\]

for any set X and any group G.
Unit-Counit Description of an Adjunction

Given adjoint functors $F : A \to B$ and $U : B \to A$ with F left adjoint to U, we can equivalently describe the adjunction by using natural transformations.

In this case, there are natural transformations $\eta : \text{id}_A \to UF$ and $\varepsilon : FU \to \text{id}_B$ such that

$$\varepsilon F \circ F \eta = \text{id}_F$$

and

$$U \varepsilon \circ \eta U = \text{id}_U.$$

η is called the **unit** of the adjunction, and ε is called the **counit** of the adjunction.

We write the adjunction as $\langle F, U, \eta, \varepsilon \rangle : A \leftrightarrow B$.

Shilong Zhang Li Guo Bill Keigher(*)
Unit-Counit Description of an Adjunction

Example

- As before, let \(F : \text{SET} \rightarrow \text{GRP} \) be the free group functor, and \(U : \text{GRP} \rightarrow \text{SET} \) the forgetful functor.

- The unit is the natural transformation \(\eta : \text{id}_{\text{SET}} \rightarrow UF \) given for each set \(X \) by \(\eta_X : X \rightarrow UFX \), i.e., \(\eta_X \) is the injection of the generators into the (underlying set of the) free group on \(X \).

- The counit is \(\varepsilon : FU \rightarrow \text{id}_{\text{GRP}} \) given for each group \(G \) by \(\varepsilon_G : FUG \rightarrow G \), where \(\varepsilon_G \) maps an element of the free group on \(UG \) to the corresponding element in \(G \) by using the operation in \(G \) to "condense" the string to an element in \(G \).
Definition: A monad \mathbf{T} on a category \mathbf{A} is a triple $\mathbf{T} = (T, \eta, \mu)$ where

- $T : \mathbf{A} \to \mathbf{A}$ is a functor (i.e., an endofunctor on \mathbf{A}),
- η is a natural transformation $\eta : \text{id}_\mathbf{A} \to T$, and
- μ is a natural transformation $\mu : TT \to T$,

such that

- $\mu \circ T\eta = \text{id}_T = \mu \circ \eta T$, and
- $\mu \circ T\mu = \mu \circ \mu T$

that is, the diagrams
Monads

\[T \xrightarrow{T\eta} TT \xleftarrow{\eta T} T \]

\[\text{id}_T \xrightarrow{} \mu \quad \mu \xrightarrow{} \text{id}_T \]

and

\[TTTT \xrightarrow{T\mu} TTT \]

\[\mu T \xrightarrow{} \mu \]

\[\mu \xrightarrow{} T \]

commute.
Example

- Take $\mathbf{A} = \mathbf{SET}$.
- Let $T : \mathbf{SET} \to \mathbf{SET}$ to be the functor that assigns to each set X the underlying set of the free group on X.
- Let $\eta_X : X \to TX$ be the "insertion of the generators" as before.
- Let $\mu_X : TTX \to TX$ be the underlying set map of the "partial collapse" of a string of strings to a string using the operation in the free group.
Algebras from a Monad

Given a monad $T = (T, \eta, \mu)$ on a category A, we can form the category of T-algebras, denoted by A^T, as follows.

- The objects of A^T are pairs (A, f), where A is an object of A and $f : TA \to A$ is a morphism in A such that
 - $f \circ \eta_A = \text{id}_A$, and
 - $f \circ \mu_A = f \circ Tf$.
- A morphism $g : (A, f) \to (A', f')$ in A^T is a morphism $g : A \to A'$ in A such that $g \circ f = f' \circ Tg$.
Algebras from a Monad

The diagrams for objects:

\[A \xrightarrow{\eta_A} TA \quad \text{and} \quad TTA \xrightarrow{\mu_A} TA \]

and for morphisms:

\[TA \xrightarrow{Tg} TA' \]

Shilong Zhang Li Guo Bill Keigher(*)

Category Theory Meets the First Fundamental Theorem of Calculus
Monad from an Adjunction

Given adjoint functors $F: A \to B$ and $U: B \to A$ with F left adjoint to U, the adjunction $\langle F, U, \eta, \varepsilon \rangle: A \to B$ gives rise to a monad $T = (T, \eta, \mu)$ on the category A by taking:

- $T = UF: A \to A$,
- $\eta = \eta: \text{id}_A \to UF = T$, and
- $\mu = U\varepsilon F: UFUF = TT \to UF = T$.

Adjunction from a Monad

Given a monad \(T = (T, \eta, \mu) \) on the category \(A \), there are adjoint functors \(F^T : A \to A^T \) and \(U^T : A^T \to A \) defined as follows:

- For any \(X \in A \), define \(F^T X = (TX, \mu_X) \), and define \(F^T \) on morphisms in \(A \) similarly.
- For any \((A, f) \in A^T \), define \(U^T(A, f) = A \), and similarly for morphisms in \(A^T \).

This adjunction gives rise to the same monad \(T = (T, \eta, \mu) \) on the category \(A \).
Given adjoint functors $F : A \to B$ and $U : B \to A$ with F left adjoint to U, let $T = (T, \eta, \mu)$ be the monad on the category A generated by the adjunction, and let $\langle F^T, U^T, \eta^T, \varepsilon^T \rangle : A \to A^T$ be the adjunction given from T.

Then there is a “comparison” functor $K : B \to A^T$ given by $KX = (UX, U\varepsilon_X)$, which satisfies $KF = F^T$ and $U^TK = U$.

In some nice cases, K is an isomorphism, in which case we say that B is monadic over A.
A **comonad** G on a category \mathcal{B} is a (co)triple $G = (G, \varepsilon, \delta)$ where $G : \mathcal{B} \to \mathcal{B}$ is a functor (i.e., an endofunctor on \mathcal{B}) and ε and δ are natural transformations, $\varepsilon : G \to \text{id}_\mathcal{B}$ and $\delta : G \to GG$ such that the following diagrams commute:

![Diagram](attachment:image.png)

and

![Diagram](attachment:image2.png)
We have seen that an adjunction \(\langle F, U, \eta, \varepsilon \rangle : A \rightarrow B \) gives rise to a monad \(T = (T, \eta, \mu) \) on the category \(A \) by taking \(T = UF \) and \(\mu = U\varepsilon F \).

The adjunction \(\langle F, U, \eta, \varepsilon \rangle : A \rightarrow B \) also gives rise to a comonad \(G = (G, \varepsilon, \delta) \) on the category \(B \) by taking \(G = FU \) and \(\delta = F\eta U \).
A comonad \(\mathbf{G} = (G, \varepsilon, \delta) \) on \(\mathbf{B} \) gives a category of \(\mathbf{G} \)-coalgebras, denoted by \(\mathbf{B}_{\mathbf{G}} \), as follows.

The objects of \(\mathbf{B}_{\mathbf{G}} \) are pairs \((B, g) \), where \(B \) is an object of \(\mathbf{B} \) and \(g : B \to GB \) is a morphism in \(\mathbf{B} \) such that \(\varepsilon_B \circ g = \text{id}_B \) and \(Gg \circ g = \delta_B \circ g \).

A morphism \(f : (B, g) \to (B', g') \) in \(\mathbf{B}_{\mathbf{G}} \) is a morphism \(f : B \to B' \) in \(\mathbf{B} \) such that \(g' \circ f = Gf \circ g \).

Et cetera, et cetera, et cetera.
Derivations with Weight

Let k be a ring, $\lambda \in k$, and let R be an algebra.

- A **derivation of weight λ on R over k** or more briefly, a **λ-derivation on R over k** is a module endomorphism d of R satisfying both

 $$d(xy) = d(x)y + xd(y) + \lambda d(x)d(y), \text{ for all } x, y \in R$$

 and

 $$d(1_R) = 0.$$

- A **λ-differential algebra** is a pair (R, d) where R is an algebra and d is a λ-derivation on R over k.

- Let (R, d) and (S, e) be two λ-differential algebras. A **homomorphism of λ-differential algebras** $f : (R, d) \to (S, e)$ is a homomorphism $f : R \to S$ of algebras such that $f(d(x)) = e(f(x))$ for all $x \in R$.

Note that a 0-derivation is a derivation in the usual sense.
An Example of a λ-Derivation

Example

Let \mathbb{R} denote the field of real numbers, and let $\lambda \in \mathbb{R}$, $\lambda \neq 0$. Let A denote the \mathbb{R}-algebra of \mathbb{R}-valued continuous functions on \mathbb{R}, and consider the usual "difference quotient" operator d_λ on A defined by

$$(d_\lambda(f))(x) = (f(x + \lambda) - f(x))/\lambda.$$

Then a simple calculation shows that d_λ is a λ-derivation on A.
Proposition (Leibniz’ Rule): Let \((R, d)\) be a \(\lambda\)-differential algebra, let \(x, y \in R\), and let \(n \in \mathbb{N}\). Then

\[
d^{(n)}(xy) = \sum_{k=0}^{n} \sum_{j=0}^{n-k} \binom{n}{k} \binom{n-k}{j} \lambda^k d^{(n-j)}(x) d^{(k+j)}(y).
\]

When \(\lambda = 0\), this reduces to the familiar

\[
d^{(n)}(xy) = \sum_{k=0}^{n} \binom{n}{k} d^{(k)}(x) d^{(n-k)}(y).
\]
A Simplification

For the remainder of the talk, to simplify notation, we will assume that

$$\lambda = 0.$$
The Hurwitz Product

For any algebra A, let A^N denote the k-module of all functions $f : N \to A$. On A^N, we define the Hurwitz product fg of any $f, g \in A^N$ by

$$(fg)(n) = \sum_{k=0}^{n} \binom{n}{k} f(k)g(n - k).$$

Compare with Leibniz’ Rule:

$$d^{(n)}(xy) = \sum_{k=0}^{n} \binom{n}{k} d^{(k)}(x)d^{(n-k)}(y).$$
The Algebra of Hurwitz Series

- A^N (with the Hurwitz product) is called the \textbf{algebra of Hurwitz series} over A.

- The map $\partial_A : A^N \to A^N$, defined by $\partial_A(f)(n) = f(n + 1)$ for any $f \in A^N$, is a derivation on A^N.

- Hence (A^N, ∂_A) is a differential algebra for any algebra A.

- For any algebra homomorphism $h : A \to B$, the map $h^N : A^N \to B^N$ defined by $(h^N(f))(n) = h(f(n))$ for any $f \in A^N$ and $n \in \mathbb{N}$ is a differential algebra homomorphism from (A^N, ∂_A) to (B^N, ∂_B).
Let \textbf{DIF} denote the category of differential algebras, and let \textbf{ALG} denote the category of algebras.

We have a functor $G : \textbf{ALG} \rightarrow \textbf{DIF}$ given on objects $A \in \textbf{ALG}$ by $G(A) = (A^N, \partial_A)$ and on morphisms $h : A \rightarrow B$ in \textbf{ALG} by $G(h) = h^N$ as defined above.

Let $V : \textbf{DIF} \rightarrow \textbf{ALG}$ denote the forgetful functor defined on objects $(R, d) \in \textbf{DIF}$ by $V(R, d) = R$ and on morphisms $g : (R, d) \rightarrow (S, e)$ in \textbf{DIF} by $V(g) = g$.
Beginning of the Big Picture

\[\text{DIF} \leftarrow \text{ALG} \] (1)

Shilong Zhang Li Guo Bill Keigher(*) Category Theory Meets the First Fundamental Theorem of Calculus
There are two natural transformations $\eta : \text{id}_{\text{DIF}} \to GV$ and $\varepsilon : VG \to \text{id}_{\text{ALG}}$.

- For any $(R, d) \in \text{DIF}$, define

 $$\eta_{(R,d)} : (R, d) \to (GV)(R, d) = (R^\mathbb{N}, \partial_R)$$

 by $(\eta_{(R,d)}(x))(n) = d^n(x), x \in R, n \in \mathbb{N}$.

- For any $A \in \text{ALG}$, define

 $$\varepsilon_A : (VG)(A) = A^\mathbb{N} \to A$$

 by $\varepsilon_A(f) = f(0), f \in A^\mathbb{N}$.

Proposition:

- The functor $G : \text{ALG} \rightarrow \text{DIF}$ defined above is the right adjoint of the forgetful functor $V : \text{DIF} \rightarrow \text{ALG}$.

- It follows that (A^N, ∂_A) is a cofree differential algebra on the algebra A.
The Comonad from the Adjunction

The adjunction \(\langle V, G, \eta, \varepsilon \rangle : \text{DIF} \rightarrow \text{ALG} \) gives rise to a comonad \(C = (C, \varepsilon, \delta) \) on the category \(\text{ALG} \), where

- \(C \) is the functor \(C : = V G : \text{ALG} \rightarrow \text{ALG} \) given by \(C(A) = A^\mathbb{N} \) for any \(A \in \text{ALG} \), and

- \(\delta : C \rightarrow CC \) is the natural transformation defined by \(\delta : = V \eta G \).

It follows that for any \(A \in \text{ALG} \),

\[\delta_A : A^\mathbb{N} \rightarrow (A^\mathbb{N})^\mathbb{N}, \quad (\delta_A(f)(m))(n) = f(m+n), \quad f \in A^\mathbb{N}, m, n \in \mathbb{N}. \]

Note that as a \(k \)-module, \((A^\mathbb{N})^\mathbb{N} \cong A^{\mathbb{N} \times \mathbb{N}} \), the set of sequences of sequences, or equivalently, doubly-indexed sequences with values in \(A \).
The Comonad Comes from the Monoid \((\mathbb{N}, +, 0)\)

Observe that comonad \(C = (C, \varepsilon, \delta)\) on \(\text{ALG}\) come from the monoid of natural numbers \((\mathbb{N}, +, 0)\) in the following sense:

- The functor \(C\) is given by \(C(A) = A^\mathbb{N}\).
- \(\varepsilon_A : A^\mathbb{N} \to A \cong A^{\{\ast\}}\) is induced by \(0 : \{\ast\} \to \mathbb{N}\), i.e., \(\varepsilon_A \cong A^0\).
- \(\delta_A : A^\mathbb{N} \to (A^\mathbb{N})^\mathbb{N} \cong A^{\mathbb{N} \times \mathbb{N}}\) is induced by \(+ : \mathbb{N} \times \mathbb{N} \to \mathbb{N}\), i.e., \(\delta_A \cong A^+\).
The comonad \mathbf{C} induces a category of \mathbf{C}-coalgebras, denoted by $\mathbf{ALG}_\mathbf{C}$.

The objects in $\mathbf{ALG}_\mathbf{C}$ are pairs $\langle A, f \rangle$ where $A \in \mathbf{ALG}$ and $f : A \to A^N$ is an algebra homomorphism satisfying the two properties

$$\varepsilon_A \circ f = \text{id}_A, \quad \delta_A \circ f = f^N \circ f$$

A morphism $\varphi : \langle A, f \rangle \to \langle B, g \rangle$ in $\mathbf{ALG}_\mathbf{C}$ is an algebra homomorphism $\varphi : A \to B$ such that $g \circ \varphi = \varphi^N \circ f$.

Shilong Zhang Li Guo Bill Keigher(*)
Proposition: The cocomparison functor $H : \text{DIF} \to \text{ALG}_C$ is an isomorphism, i.e., DIF is comonadic over ALG.

Corollary: For any algebra A, there is a one-to-one correspondence among

- derivations d on A over k;
- C-costructures f on A, i.e., algebra homomorphisms $f : A \to A^\mathbb{N}$ satisfying $\varepsilon_A \circ f = \text{id}_A$ and $\delta_A \circ f = f^\mathbb{N} \circ f$;
- sequences of k-module homomorphisms $(f_n) : A \to A$ for $n \in \mathbb{N}$ that satisfy $f_0 = \text{id}_A$, $f_m \circ f_n = f_{m+n}$ and

 $$f_n(ab) = \sum_{k=0}^{n} \binom{n}{k} f_k(a)f_{n-k}(b)$$
 for all $a, b \in A$.
The Picture Grows
Definitions

Let R be an algebra.

- A **Rota-Baxter operator** on R is a k-linear endomorphism P of R satisfying

 $$P(x)P(y) = P(xP(y)) + P(yP(x)),$$

 for all $x, y \in R$.

- A **Rota-Baxter algebra** is a pair (R, P) where R is an algebra and P is a Rota-Baxter operator on R.

- Let (R, P) and (S, Q) be two Rota-Baxter algebras. A **homomorphism of Rota-Baxter algebras**

 $f : (R, P) \rightarrow (S, Q)$ is a homomorphism $f : R \rightarrow S$ of algebras with the property that $f(P(x)) = Q(f(x))$ for all $x \in R$.
An Example

Example

Let $R = \text{Cont}(\mathbb{R})$ denote the \mathbb{R}-algebra of continuous functions on \mathbb{R}. Let P_0 be the operator on R given by

$$P_0(f)(x) = \int_0^x f(t)\,dt.$$

Then P_0 is a Rota-Baxter operator on R.
Let \textbf{RBA} denote the category of commutative Rota-Baxter k-algebras, and let \textbf{ALG} denote the category of commutative algebras.

Let $U : \textbf{RBA} \to \textbf{ALG}$ denote the forgetful functor given on objects $(R, P) \in \textbf{RBA}$ by $U(R, P) = R$ and on morphisms $f : (R, P) \to (S, Q)$ in \textbf{RBA} by $U(f) = f : R \to S$.

We proved earlier that U has a left adjoint, and below we give an explicit description of the left adjoint, the free commutative Rota-Baxter algebra functor.

There are earlier constructions (e.g., by Cartier and by Rota) of free commutative Rota-Baxter algebras on sets, that is, as a left adjoint of the forgetful functor from \textbf{RBA} to \textbf{SET}.
The Free Rota-Baxter Algebra

We begin with some general observations about the free commutative Rota-Baxter algebra on a commutative algebra A with identity 1_A.

- The product for this free Rota-Baxter algebra on A is constructed in terms of a generalization of the shuffle product, called the **mixable shuffle product**, which we will describe below and which in its recursive form is a natural generalization of the quasi-shuffle product.

- This free commutative Rota-Baxter algebra on A is denoted by $\mathbb{III}(A)$.

- As a module, we have

$$\mathbb{III}(A) = \bigoplus_{i \geq 1} A^\otimes i = A \oplus (A \otimes A) \oplus (A \otimes A \otimes A) \oplus \cdots$$

where the tensors are defined over k.

Shilong Zhang Li Guo Bill Keigher(*)
Category Theory Meets the First Fundamental Theorem of Calculus
The Mixable Shuffle Product

The multiplication on \(\Pi(A) \) is the product \(\diamond \) defined as follows.

Let \(a = a_0 \otimes \cdots \otimes a_m \in A^{\otimes (m+1)} \) and \(b = b_0 \otimes \cdots \otimes b_n \in A^{\otimes (n+1)} \).

If \(mn = 0 \), define

\[
\begin{align*}
a \diamond b &= \begin{cases}
(a_0 b_0) \otimes b_1 \otimes \cdots \otimes b_n, & m = 0, n > 0, \\
(a_0 b_0) \otimes a_1 \otimes \cdots \otimes a_m, & m > 0, n = 0, \\
a_0 b_0, & m = n = 0.
\end{cases}
\end{align*}
\]
If $m > 0$ and $n > 0$, then $a \diamond b$ is defined inductively on $m + n$ by

$$a \diamond b = (a_0 b_0) \otimes \left((a_1 \otimes \cdots \otimes a_m) \diamond (1_A \otimes b_1 \otimes \cdots b_n) \right) + (1_A \otimes a_1 \otimes \cdots \otimes a_m) \diamond (b_1 \otimes \cdots b_n).$$

Extending by additivity, \diamond gives a k-bilinear map

$$\diamond : \mathcal{R}(A) \times \mathcal{R}(A) \to \mathcal{R}(A).$$
An Example of the Product

Example

\[(a_0 \otimes a_1)(b_0 \otimes b_1 \otimes b_2) = (a_0 b_0) \otimes \left(a_1 (1_A \otimes b_1 \otimes b_2) + (1_A \otimes a_1)(b_1 \otimes b_2) \right).\]

Now the first term in the right tensor factor is just \(a_1 \otimes b_1 \otimes b_2\). For the second term, we have

\[(1_A \otimes a_1)(b_1 \otimes b_2) = b_1 \otimes (a_1 (1_A \otimes b_2) + (1_A \otimes a_1)b_2) = b_1 \otimes (a_1 \otimes b_2 + b_2 \otimes a_1).\]

Thus we obtain

\[(a_0 \otimes a_1)(b_0 \otimes b_1 \otimes b_2) = (a_0 b_0) \otimes (a_1 \otimes b_1 \otimes b_2 + b_1 \otimes a_1 \otimes b_2 + b_1 \otimes b_2 \otimes a_1).\]
The Rota-Baxter Operator on $\mathfrak{III}(A)$

Define a linear endomorphism P_A on $\mathfrak{III}(A)$ by assigning

$$P_A(x_0 \otimes x_1 \otimes \ldots \otimes x_n) = 1_A \otimes x_0 \otimes x_1 \otimes \ldots \otimes x_n,$$

for all $x_0 \otimes x_1 \otimes \ldots \otimes x_n \in A^{\otimes(n+1)}$ and extending by additivity.
The Rota-Baxter Functors

- Let $F : \text{ALG} \to \text{RBA}$ denote the functor given on objects $A \in \text{ALG}$ by $F(A) = (\Pi(A), P_A)$ and on morphisms $f : A \to B$ in ALG by

$$F(f) \left(\sum_{i=1}^{k} a_{i0} \otimes a_{i1} \otimes \cdots \otimes a_{in_i} \right) = \sum_{i=1}^{k} f(a_{i0}) \otimes f(a_{i1}) \otimes \cdots \otimes f(a_{in_i})$$

which we also denote by $\Pi(f)$.

- As above, $U : \text{RBA} \to \text{ALG}$ denotes the forgetful functor.
Next define two natural transformations $\eta : \text{id}_{\text{ALG}} \to UF$ and $\varepsilon : FU \to \text{id}_{\text{RBA}}$.

- For any $A \in \text{ALG}$, define $\eta_A : A \to (UF)(A) = \mathcal{III}(A)$ to be just the natural embedding $j_A : A \to \mathcal{III}(A) = \bigoplus A^\otimes i$.

- For any $(R, P) \in \text{RBA}$, define

$$
\varepsilon_{(R,P)} : (FU)(R, P) = (\mathcal{III}(R), P_R) \to (R, P)
$$

by

$$
\varepsilon_{(R,P)} \left(\sum_{i=1}^{k} a_i0 \otimes a_i1 \otimes \cdots \otimes a_{in_i} \right) = \sum_{i=1}^{k} a_i0 P(a_i1 P(\cdots P(a_{in_i}) \cdots)),
$$

for any $\sum_{i=1}^{k} a_i0 \otimes a_i1 \otimes \cdots \otimes a_{in_i} \in \mathcal{III}(R)$.

Shilong Zhang Li Guo Bill Keigher(*)
Theorem: The functor $F : \text{ALG} \to \text{RBA}$ defined above is the left adjoint of the forgetful functor $U : \text{RBA} \to \text{ALG}$. More precisely, there is an adjunction $\langle F, U, \eta, \varepsilon \rangle : \text{ALG} \to \text{RBA}$.

Adjoint Functors for RBA
The adjunction $\langle F, U, \eta, \varepsilon \rangle : \mathbf{ALG} \to \mathbf{RBA}$ gives rise to a monad $T = \langle T, \eta, \mu \rangle$ on \mathbf{ALG}.

- T is the functor defined for any $A \in \mathbf{ALG}$ by $T(A) = \mathbf{III}(A)$.
- μ is the natural transformation $\mu_A : \mathbf{III}(\mathbf{III}(A)) \to \mathbf{III}(A)$ extended additively from

$$
\mu_A((a_{00} \otimes \cdots \otimes a_{0n_0}) \otimes \cdots \otimes (a_{k0} \otimes \cdots \otimes a_{kn_k}))
= (a_{00} \otimes \cdots \otimes a_{0n_0}) P_A(\cdots P_A(a_{k0} \otimes \cdots \otimes a_{kn_k}) \cdots),
$$

where

$$(a_{00} \otimes \cdots \otimes a_{0n_0}) \otimes \cdots \otimes (a_{k0} \otimes \cdots \otimes a_{kn_k}) \in \mathbf{III}(\mathbf{III}(A))$$

with $a_{i0} \otimes \cdots \otimes a_{in_i} \in A^{\otimes (n_i+1)}$ for $n_0, \ldots, n_k \geq 0$ and $0 \leq i \leq k$.

Shilong Zhang Li Guo Bill Keigher(*)

Category Theory Meets the First Fundamental Theorem of Calculus
Algebras for the Rota-Baxter Monad T on ALG

- The monad T induces a category of T-algebras, denoted by ALG^T.
- The objects in ALG^T are pairs $\langle A, h \rangle$ where $A \in \text{ALG}$ and $h : \mathbb{W}(A) \to A$ is an algebra homomorphism satisfying the two properties

$$h \circ \eta_A = \text{id}_A, \quad h \circ T(h) = h \circ \mu_A.$$

- A morphism $\phi : \langle R, f \rangle \to \langle S, g \rangle$ in ALG^T is an algebra homomorphism $\phi : R \to S$ such that $g \circ T(\phi) = \phi \circ f$.
RBA is Monadic over ALG

Theorem: The comparison functor $K : \text{RBA} \to \text{ALG}^T$ is an isomorphism, i.e., \textbf{RBA} is monadic over \textbf{ALG}.

Corollary: For any algebra A, there is a one-to-one correspondence between

1. Rota-Baxter operators P on A;
2. T-structures on A, i.e., algebra homomorphisms $h : \mathcal{III}(A) \to A$ satisfying both $h \circ \eta_A = \text{id}_A$ and $h \circ T(h) = h \circ \mu_A$;
3. Sequences of linear maps $h_n : \mathcal{III}(A) \to A$, $n \in \mathbb{N}_+$, satisfying certain conditions.
The Big Picture Grows a Little More

RBA → U → DIF

H ← V ← ALG

T U ↘ ↘ ↙ ↙ ↖ ↖

ALG \rightarrow ALG^T \rightarrow ALG_C \rightarrow ALG

(3)
Proposition: Let \((A, P)\) be a Rota-Baxter algebra.

- Define a \(k\)-linear mapping \(\tilde{P} : A^N \rightarrow A^N\) by
 \[
 \tilde{P}(f)(0) = P(f(0)), \quad \tilde{P}(f)(n) = f(n - 1), \quad f \in A^N, n \in \mathbb{N}_+.
 \]
- Then \(\tilde{P}\) is a Rota-Baxter operator on \(A^N\),
 \[
 \varepsilon_A \circ \tilde{P} = P \circ \varepsilon_A
 \]
 and
 \[
 \partial_A \circ \tilde{P} = \text{id}_{A^N}.
 \]
- Compare with the First Fundamental Theorem of Calculus.
Definition of Mixed Distributive Law

Definition: Given a category A, a monad $T = (T, \eta, \mu)$ on A and a comonad $C = (C, \varepsilon, \delta)$ on A, then a **mixed distributive law of T over C** is a natural transformation $\beta : TC \to CT$ such that

- $\beta \circ \eta C = C \eta$;
- $\varepsilon T \circ \beta = T \varepsilon$;
- $\delta T \circ \beta = C \beta \circ \beta C \circ T \delta$ and
- $\beta \circ \mu C = C \mu \circ \beta T \circ T \beta$.

Shilong Zhang Li Guo Bill Keigher(*)

Category Theory Meets the First Fundamental Theorem of Calcul
The Lifting Theorem

Theorem: Given a category \mathcal{A}, a monad $\mathbf{T} = (T, \eta, \mu)$ on \mathcal{A}, a comonad $\mathbf{C} = (C, \varepsilon, \delta)$ on \mathcal{A}, and a mixed distributive law of \mathbf{T} over \mathbf{C}. Then:

- there is a comonad $\tilde{\mathbf{C}}$ on the category $\mathcal{A}^\mathbf{T}$ of \mathbf{T}-algebras which lifts \mathbf{C},
- there is a monad \tilde{T} on the category $\mathcal{A}^\mathbf{C}$ of \mathbf{C}-coalgebras which lifts \mathbf{T}, and
- there is an isomorphism of categories $(\mathcal{A}^\mathbf{C})^{\tilde{T}} \cong (\mathcal{A}^\mathbf{T})^{\tilde{\mathbf{C}}}$ over \mathcal{A}.
The Mixed Distributive Law

- We want to apply this theorem to the case where \(A = \text{ALG}, \)
 \(T \) is the Rota-Baxter monad and \(C \) is the differential comonad. So we need a mixed distributive law of \(T \) over \(C \).

- This means that for each \(A \in \text{ALG} \), we need a natural homomorphism \(\beta_A : \text{III}(A^N) \rightarrow (\text{III}(A))^N \).

- By an earlier result, the Rota-Baxter operator \(P_A \) on \(\text{III}(A) \)
 extends to a Rota-Baxter operator \(\widetilde{P}_A \) on \((\text{III}(A))^N \).
The Key Lemma

Lemma: For any algebra A, there is a unique Rota-Baxter algebra homomorphism

$$\beta_A : (\Pi(A^N), P_{AN}) \rightarrow ((\Pi(A))^N, \widetilde{P_A})$$

such that the equation

$$(\eta_A)^N = \beta_A \circ \eta_{AN}$$

holds.
The Main Theorem

- The natural transformation $\beta : TC \to CT$ given by $\beta_A : \Pi(A^N) \to (\Pi(A))^N$ is a mixed distributive law of T over C.

- $\beta : TC \to CT$ gives rise to a comonad \tilde{C} on the category ALG^T of T-algebras which lifts C in the sense that the underlying functor $U^T : \text{ALG}^T \to \text{ALG}$ commutes with \tilde{C} and C, that is,

$$U^T \tilde{C} = CU^T, \quad U^T \tilde{\varepsilon} = \varepsilon U^T \quad \text{and} \quad U^T \tilde{\delta} = \delta U^T.$$

- Similarly, β gives rise to a monad \tilde{T} on the category ALG_C of C-coalgebras which lifts T.

- There is an isomorphism $\Phi : (\text{ALG}_C)^\tilde{T} \to (\text{ALG}^T)^\tilde{C}$ of categories.
The Big Picture Grows Larger

(4)
Definition: We say that \((R, d, P)\) is a **differential Rota-Baxter algebra** if

- \((R, d)\) is a differential algebra,
- \((R, P)\) is a Rota-Baxter algebra, and
- \(d \circ P = \text{id}_R\).

If \((R, d, P)\) and \((R', d', P')\) are differential Rota-Baxter algebras, then a morphism of differential Rota-Baxter algebras \(f : (R, d, P) \to (R', d', P')\) is an algebra homomorphism \(f : R \to R'\) such that \(d'(f(x)) = f(d(x))\) and \(P'(f(x)) = f(P(x))\) for all \(x \in R\). The category of differential Rota-Baxter algebras will be denoted by \(\text{DRB}\).
There are forgetful functors:

- $U' : \text{DRB} \to \text{DIF}$ and
- $V' : \text{DRB} \to \text{RBA}$

such that $UV' = VU'$. We will see that:

- U' has a left adjoint,
- V' has a right adjoint, and
- $\text{DRB} \cong (\text{ALG}_C)^\sim \cong (\text{ALG}^T)_{\tilde{C}}$, where \tilde{T} and \tilde{C} come from the Main Theorem.
The Right Adjoint to V'

- Suppose that $(A, P) \in \text{RBA}$.

- Let $\partial_A : A^N \to A^N$ and $\tilde{P} : A^N \to A^N$ be as above.

- Since $\partial_A \circ \tilde{P} = \text{id}_{A^N}$, the triple $(A^N, \partial_A, \tilde{P})$ is a differential Rota-Baxter algebra.

- Thus we have a functor $G' : \text{RBA} \to \text{DRB}$ given on objects $(A, P) \in \text{RBA}$ by $G'(A, P) = (A^N, \partial_A, \tilde{P})$ and on morphisms $\varphi : (A, P) \to (A', P')$ in \text{RBA} by $(G'(\varphi)(f))(n) = \varphi(f(n))$ for $f \in A^N$ and $n \in \mathbb{N}$.

- G' is the right adjoint to V'.

Shilong Zhang Li Guo Bill Keigher(*) Category Theory Meets the First Fundamental Theorem of Calculus
Another Comonad

The adjunction \(\langle V', G', \eta', \varepsilon' \rangle : \text{DRB} \rightarrow \text{RBA} \) gives a comonad \(C' = \langle C', \varepsilon', \delta' \rangle \) on the category \(\text{RBA} \), where

- \(C' := V' G' : \text{RBA} \rightarrow \text{RBA} \) is given by \(C'(A, P) = (A^N, \tilde{P}) \),

- \(\delta' \) is a natural transformation from \(C' \) to \(C'C' \) defined by \(\delta' := V' \eta' G' \).

In other words, for any \((A, P) \in \text{RBA} \),

\[
\delta'_{(A,P)} : (A^N, \tilde{P}) \rightarrow ((A^N)^N, \tilde{\tilde{P}}), \quad \delta'_{(A,P)}(f) = \delta_A(f), \quad f \in A^N.
\]
And Another Category of Coalgebras

- The comonad C' on RBA gives a category of C'-coalgebras, denoted by $RBA_{C'}$.

- The comonad C' also induces an adjunction.

- There is a uniquely defined cocomparison functor $H' : DRB \rightarrow RBA_{C'}$, and

- H' is an isomorphism, so that $DRB \cong RBA_{C'}$.
More Functors for the Big Picture

\[\begin{array}{ccc}
\text{RBA} & \xrightarrow{\phi} & \text{DIF} \\
\text{(ALG}_T^C)^\sim & & \text{(ALG}_C)^\sim T \\
\text{ALG}^T & \xrightarrow{U^T} & \text{ALG}_C
\end{array} \]
Some Folklore from Category Theory

Lemma: Suppose that A and B are categories, $K : A \to B$ is an isomorphism of categories, $C = \langle C, \varepsilon, \delta \rangle$ is a comonad on A and $C' = \langle C', \varepsilon', \delta' \rangle$ is a comonad on B. If K commutes with C and C', i.e., $KC = C'K$, $K\varepsilon = \varepsilon'K$ and $K\delta = \delta'K$, then there exists a unique isomorphism $\widetilde{K} : A_C \to B_{C'}$ that lifts K, i.e., $U_{C'}\widetilde{K} = KU_C$.

Corollary: There is an isomorphism of categories $\widetilde{K} : RBA_{C'} \to (\text{ALG}^T)_{\widetilde{C}}$ such that $V_{\widetilde{C}}\widetilde{K} = KV_{C'}$.
Let \((A, d)\) be a differential algebra.

- There is a derivation \(\tilde{d}\) on \(\Pi(A) \rightarrow \Pi(A)\) extending \(d\).

- \((\Pi(A), \tilde{d}, P_A)\) is a free differential Rota-Baxter algebra on the differential algebra \((A, d)\).

- There is a functor \(F' : \text{DIF} \rightarrow \text{DRB}\) that is left adjoint to the forgetful \(U' : \text{DRB} \rightarrow \text{DIF}\).

- There is a monad \(T'\) on \(\text{DIF}\) such that \(\text{DIF}^{T'} \cong \text{DRB}\).
To Complete the Picture

\[\begin{array}{c}
\text{RBA} \\
\text{T\text{ALG}} \\
\text{ALG} \\
\text{DIF} \\
\text{DRB} \\
\end{array} \]

\[\begin{array}{c}
\text{RBA}_C' \\
\text{ALG}_C^T \sim \tilde{C} \\
\text{ALG}_C \\
\text{DIF}^T \sim \tilde{T} \\
\end{array} \]

\[\begin{array}{c}
\text{K} \\
\text{K'} \\
\text{H} \\
\text{H'} \\
\text{U} \\
\text{U'} \\
\end{array} \]

\[\begin{array}{c}
\text{V} \\
\text{V'} \\
\text{V_C} \\
\text{V_C'} \\
\text{U} \\
\text{U'} \\
\text{U^T} \\
\text{U^T'} \\
\end{array} \]

\[\begin{array}{c}
\text{Φ} \\
\text{Φ} \</p>