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Motivation

Correlation functions of diverse statistical models, gap
probabilities in the Random Matrix Theory can be expressed in
terms of solutions of the Painlevé type differential equations. In
the recent years discrete analogs of the Painlevé equations
have attracted considerable interest due to their connections to
discrete probabilistic models. A. Borodin observed that the
general setup for these equations is provided by the theory of
isomonodromy transformations of linear systems of difference
equations with rational coefficients.



The analytic theory of matrix linear difference equations

Ψ(z + 1) = A(z)Ψ(z), A = A0 +
n∑

m=1

Am

z − zm
(1)

with rational coefficients is a subject of its own interest. It goes
back to the fundamental results of Birkhoff (1911,1913) which
have been developed later by many authors (see van der Put,
Singer "Galois Theory of Difference Equations").

They are classified in a rough way by terms: regular,
regular singular, mild and wild
The equation is regular singular if A0 = 1.
It is regular if in addition

∑n
m=1 Am = 0.

The mild equations are those for which the matrix A0 is
invertible.



The analytic theory of matrix linear difference equations

Ψ(z + 1) = A(z)Ψ(z), A = A0 +
n∑

m=1

Am

z − zm
(1)

with rational coefficients is a subject of its own interest. It goes
back to the fundamental results of Birkhoff (1911,1913) which
have been developed later by many authors (see van der Put,
Singer "Galois Theory of Difference Equations").

They are classified in a rough way by terms: regular,
regular singular, mild and wild
The equation is regular singular if A0 = 1.
It is regular if in addition

∑n
m=1 Am = 0.

The mild equations are those for which the matrix A0 is
invertible.



The analytic theory of matrix linear difference equations

Ψ(z + 1) = A(z)Ψ(z), A = A0 +
n∑

m=1

Am

z − zm
(1)

with rational coefficients is a subject of its own interest. It goes
back to the fundamental results of Birkhoff (1911,1913) which
have been developed later by many authors (see van der Put,
Singer "Galois Theory of Difference Equations").

They are classified in a rough way by terms: regular,
regular singular, mild and wild
The equation is regular singular if A0 = 1.
It is regular if in addition

∑n
m=1 Am = 0.

The mild equations are those for which the matrix A0 is
invertible.



The analytic theory of matrix linear difference equations

Ψ(z + 1) = A(z)Ψ(z), A = A0 +
n∑

m=1

Am

z − zm
(1)

with rational coefficients is a subject of its own interest. It goes
back to the fundamental results of Birkhoff (1911,1913) which
have been developed later by many authors (see van der Put,
Singer "Galois Theory of Difference Equations").

They are classified in a rough way by terms: regular,
regular singular, mild and wild
The equation is regular singular if A0 = 1.
It is regular if in addition

∑n
m=1 Am = 0.

The mild equations are those for which the matrix A0 is
invertible.



The analytic theory of matrix linear difference equations

Ψ(z + 1) = A(z)Ψ(z), A = A0 +
n∑

m=1

Am

z − zm
(1)

with rational coefficients is a subject of its own interest. It goes
back to the fundamental results of Birkhoff (1911,1913) which
have been developed later by many authors (see van der Put,
Singer "Galois Theory of Difference Equations").

They are classified in a rough way by terms: regular,
regular singular, mild and wild
The equation is regular singular if A0 = 1.
It is regular if in addition

∑n
m=1 Am = 0.

The mild equations are those for which the matrix A0 is
invertible.



We will consider the case of mild equations with a
diagonalizable leading coefficient A0. It will be assumed also
that the poles zm are not congruent, zl − zm /∈ Z .
If A0 is diagonalizable, then using the transformations

Ψ′ = ρ zΨ, A′ = ρA(z), ρ ∈ C; Ψ′ = gΨ,A′ = gA(z)g−1, g ∈ SLr

we may assume without loss of generality that A0 is a diagonal
matrix of determinant 1,

Aij
0 = ρiδ

ij , det A0 =
∏

j

ρj = 1.

In addition, it will be assumed that

Tr (res∞Adz) = Tr

(
n∑

m=1

Am

)
= 0.
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If ρi 6= ρj , then equation (1) has a unique formal solution

Y (z) =

(
1 +

∞∑
s=1

χsz−s

)
ez ln A0+K ln z ,

where K ij = kiδ
ij is a diagonal matrix.



Birkhoffs’ results

Birkhoff considered difference equations with polynomial
coefficients Ã. The general case of rational A(z) is reduced to
the polynomial one by the transformation

Ã = A(z)
∏
m

(z − zm), Ψ̃ = Ψ
∏
m

Γ(z − zm),

where Γ(z) is the Gamma-function.

Birkhoff proved that,
if the ratios of the eigenvalues ρi are not real, = (ρi/ρj) 6= 0,
then equation (1) with polynomial coefficients has two
canonical meromorphic solutions Ψ̃r (z) and Ψ̃l(z) which
are holomorphic and asymptotically represented by Ỹ (z) in
the half-planes < z >> 0 and < z << 0, respectively.
the connection matrix

S̃(z) = Ψ̃−1
r (z)Ψ̃l(z) ,

is a rational function in exp(2πiz).
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Ã = A(z)
∏
m

(z − zm), Ψ̃ = Ψ
∏
m

Γ(z − zm),

where Γ(z) is the Gamma-function.

Birkhoff proved that,
if the ratios of the eigenvalues ρi are not real, = (ρi/ρj) 6= 0,
then equation (1) with polynomial coefficients has two
canonical meromorphic solutions Ψ̃r (z) and Ψ̃l(z) which
are holomorphic and asymptotically represented by Ỹ (z) in
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This function has just as many constants involved as there
are parameters in Ã.
if two polynomial matrix functions Ã′(z) and Ã(z) have the
same connection matrix S(z) then there exists a rational
matrix R(z) such that

Ã′(z) = R(z + 1)Ã(z)R−1(z) .

Remark.The condition = (ρi/ρj) 6= 0 under which Birkhoff’s
results are valid is due to Deligne.
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Birkhoff’s approach to the construction of the canonical
solutions:

Ψl = A(z − 1)A(z − 2) · · ·

Ψr = · · ·A−1(z + 1)A−1(z)

For regular case the products converge. For other cases the
canonical solutions are defined as it regularization of the
products.

Over the years key ideas of Birhoff’s approach have remained
intact. A construction of actual solutions of (1) having
prescribed asymptotic behavior in various sectors at infinity
resembles rather the Stocks’ theory of differential equations
with irregular singularities, then the conventional theory of
differential equations with regular singularities. The monodromy
representation of π1(C\{z1, . . . , zn}) which provides the
integrals of motion for the Schlesinger equations, has no
obvious analog in discrete situation.
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Alternative approach

Meromorphic solutions of the difference equations can be
constructed via the following auxiliary Riemann-Hilbert type
problem.

Problem I: To find in the strip Πx : x ≤ < z ≤ x + 1, a
continuous matrix function Φ(z) which is meromorphic inside
Πx , and such that its boundary values on the two sides of the
strip satisfy the equation

Φ+(ξ + 1) = A(ξ)Φ−(ξ), ξ = x + iy .



Fundamental results of the theory of singular integral equations
imply that:

The Problem 1 always has solutions.
If

indxA =
1

2πi

∫
L

d ln det A = 0, z ∈ L : <z = x .

then for a generic A(z) this problem has a unique (up to
the transformation Φ′(z) = Φ(z)g, g ∈ SLr ) sectionally
holomorphic)

∃ 0 ≤ α < 1, |Φ(z)| < e2πα|= z|, |= z| → ∞.

non-degenerate solution.
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Mild equations with real exponents

Let Px be the space of continuous functions Φ(z) in the strip
Πx , which are holomorphic inside the strip and have at most
polynomial growth at the infinity.

Lemma
Let x be a real number such that x 6= <zj . Then:
(a) for |x | >>0 there exists a unique up to normalization
non-degenerate solution Φx ∈ Px of the Problem 1;
(b) for a generic A(z) the solution Φx ∈ Px exists and is unique
up to normalization for all x such that indxA = 0;
(c) at the two infinities of the strip the function Φx asymptotically
equals

Φx (z) = Y (z)g±x , =z → ±∞.

The matrix gx = g+
x (g−x )−1 can be seen as a "transition" matrix

along a thick path Πx .
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Theorem
Let ρi 6= ρj ,=ρi = 0. Then:
(A) there are unique meromorphic solutions Ψl ,Ψr of equation
(1), which are holomorphic in the domains <z << 0 and
<z >> 0, respectively, and which are asymptotically
represented by Yg±l(r), g−l(r) = 1, as =z → ±∞;

g ii
r(l) = 1, g ij

r = 0, if ρi < ρj , g ij
l = 0, if ρi > ρj ,

(B) the connection matrix S = (Ψr )−1Ψl has the form

S(z) = 1−
n∑

m=1

Sm

e2πi(z−zm) − 1
, S∞ = 1 +

n∑
m=1

Sm = g−1
r e2πiK gl ;



Local monodromies

Lemma
Let x < y be real numbers such that the corresponding
canonical solutions Ψx and Ψy do exists. Then the function
Mx ,y = Ψ−1

y Ψx has the form

Mx ,y = 1−
∑

k∈ Jx,y

mk ,(x ,y)

e2πi(z−zk ) − 1
,

where the sum is taking over a subset of indices Jx ,y
corresponding to the poles such that x < <zk < y.



Regular singular equations. Small norm case.

Let us assume that < zk < < zm, k < m and the matrix
K =

∑
k Ak is diagonal.

Theorem
There exists ε such that, if |Ak | < ε, then equation (1) has a set
of unique canonical normalized solutions Ψk , k = 0, . . . ,n,
which are holomorphic for rk + ε < < z < rk+1 + 1.

Ψk ∼ Yg±k , = z → ±∞; g−k = 1

The local connection matrices Mk = Ψ−1
k Ψk−1 have the form

Mk = 1− mk

e2πi(z−zk ) − 1
,

where (1 + mn) . . . (1 + m1) = e2πiK .
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Theorem
In the limit h→ 0:
(A) the canonical solution Ψk of the difference equation

Ψ(z + h) =

(
1 + hA0 + h

n∑
m=1

Am

z − zm

)
Ψ(z)

uniformly in Dk converges to a solution Ψ̂k of the differential
equation

dΨ̂

dz
=

(
A0 +

n∑
m=1

Am

z − zm

)
Ψ̂(z).

which is holomorphic in Dk ;
(B) the local monodromy matrix gkg−1

k+1 converges to the
monodromy of Ψ̂k along the closed path from z = −i∞ and
goes around the pole zk ;
(C) the upper- and lower-triangular matrices (gr ,gl) for the
cases of real exponents, converge to the Stokes’ matrices.
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