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A function f : Z→ Q is called a (univariate) quasi-polynomial
of period q if there exist q polynomials gi(x) ∈ Q[x ]
(0 ≤ i ≤ q − 1) such that

f (n) = gi(n) whenever n ∈ Z, and n ≡ i (mod q).

An equivalent way of introducing quasi-polynomials is as
follows.
A rational periodic number U(n) is a function U : Z→ Q with
the property that there exists (a period) q ∈ N such that

U(n) = U(n′) whenever n ≡ n′ (mod q).

A rational periodic number can be represented by a list of q its
possible values enclosed in square brackets:

U(n) = [a0, . . . ,aq−1]n.
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Example 1. U(n) =

[
1
2
,

3
4
, 1
]

n
is a periodic number with

period 3 such that U(n) =
1
2

if n ≡ 0 (mod 3),

U(n) =
3
4

if n ≡ 1 (mod 3), and U(n) = 1 if n ≡ 2 (mod 3).

A (univariate) quasi-polynomial of degree d is a function
f : Z→ Q such that

f (n) = cd (n)nd + · · ·+ c1(n)n + c0(n) (n ∈ Z)

where ci(n)’s are rational periodic numbers.
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One of the main applications of the theory of quasi-polynomials
is its application to the problem of counting integer points in
polytopes.
Recall that a rational polytope in Rd is the convex hall of
finitely many points (vertices) in Qd .
Equivalently, a rational polytope P ⊆ Rd is the set of solutions
of a finite system of linear inequalities

Ax ≤ b,

where A is an m × d-matrix with integer entries (m is a positive
integer) and b ∈ Zm, provided that the solution set is bounded.

A lattice polytope is a polytope whose vertices have integer
coordinates.



beamer-tu-logo

beamer-ur-logo

Let P ⊆ Rd be a rational polytope. (We assume that P has
dimension d , that is, P is not contained in a proper affine
subspace of Rd .) Then a polytope

nP = {nx |x ∈ P}

(n ∈ N, n ≥ 1) is called the nth dilate of P.

Clearly, if v1, . . . ,vk are all vertices of P, then nP is the convex
hall of nv1, . . . ,nvk .

In what follows, L(P,n) denotes the number of integer points
(that is, points with integer coordinates) in nP. In other words,

L(P,n) = Card(nP ∩ Zd ).
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Theorem 1 (Ehrhart, 1962)

Let P ⊆ Rd be a rational polytope. Then

(i) L(P,n) is a degree d quasi-polynomial.

(ii) The coefficient of the leading term of this quasi-polynomial
is independent of n and is equal to the Euclidean volume of P.

(iii) The period of L(P,n) is a divisor of the least common
multiple of the denominators of the vertices of nP.

(iv) If P is a lattice polynomial, then L(P,n) is a polynomial of n
with rational coefficients.
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The main tools for computing Ehrhart quasi-polynomials are
Alexander Barvinok’s polynomial time algorithm and its
modifications, see

A. I. Barvinok. Computing the Ehrhart polynomial of a convex
lattice polytope, Discrete Comput. Geom. 12 (1994), 35–48.

A. I. Barvinok and J. E. Pommersheim, An algorithmic theory of
lattice points in polyhedra, New Perspectives in Algebraic
Combinatorics. Math. Sci. Res. Inst. Publ., vol. 38, Cambridge
Univ. Press, 1999, 91–147.

A. I. Barvinok. Computing the Ehrhart quasi-polynomial of a
rational simplex, Math. Comp. 75 (2006), no. 255, 1449–1466.

In some cases, Ehrhart quasi-polynomial can be found directly
from the Ehrhart’s theorem by evaluating the periodic numbers,
which are coefficients of the quasi-polynomial.
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Example 2. Consider a polytope

P = {(x1, x2 ∈ R2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 3, 2x1 ≤ 5}.

Then

nP = {(x1, x2 ∈ R2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 3n, 2x1 ≤ 5n}

is a polytope with vertices (0,0),
(

5n
2
,0
)

, (0,3n), and(
5n
2
,
n
2

)
. By the Ehrhart Theorem,

L(P,n) = αn2 + [β1, β2]nn + [γ1, γ2]n.
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The direct counting gives L(P,0) = 1, L(P,1) = 9,
L(P,2) = 27, L(P,3) = 52, and L(P,4) = 88. The following
figure shows integer points in nP for n = 0,1,2.
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Substituting n = 0,1,2,3,4 into the expression

L(P,n) = αn2 + [β1, β2]nn + [γ1, γ2]n

one obtains a system of linear equations

γ1 = 1,
α + β2 + γ2 = 9,
4α + 2β1 + γ1 = 27,
9α + 3β2 + γ2 = 52,
16α + 4β1 + γ1 = 88.

That gives α =
35
8

, β1 =
17
4

, β2 = 4, γ1 = 1, and γ2 =
5
8

. Thus,

L(P,n) =
35
8

n2 +

[
17
4
,4
]

n
n +

[
1,

5
8

]
n
.
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In what follows, if w = (w1, . . . ,wm) is am m-tuple of positive
integers, then λ(m)

w (t) denotes the Ehrhart quasi-polynomial that
describes the number of integer points in the conic polytope

{(x1, . . . , xm) ∈ Rm |
m∑

i=1

wixi ≤ t , xj ≥ 0 (1 ≤ j ≤ m)}.

It follows from the Ehrhart’s Theorem that λ(m)
w (t) is a

quasi-polynomial of degree m whose leading coefficient is

1
m!w1 . . .wm

.

A polynomial time algorithm for computing λ(m)
w (t) was obtained

in the works of A. Barvinok.
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Let K be an inversive difference field of zero characteristic with
basic set of translations (automorphisms) σ = {α1, . . . , αm} that
are assigned positive integer weights w1, . . . ,wm, respectively.

In what follows we set σ∗ = {α1, . . . , αm, α
−1
1 , . . . , α−1

m } and use
prefix σ∗- instead of ”inversive difference”.

Let Γ denote the free commutative group generated by σ and
for any transform γ = αk1

1 . . . αkm
m ∈ Γ (ki ∈ Z), let

ord γ =
m∑

i=1

wi |ki |.

Furthermore, for any r ∈ N, let

Γ(r) = {γ ∈ Γ | ord γ ≤ r}.
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Theorem 2
Let L = K 〈η1, . . . , ηn〉∗ be a σ∗-field extension of K generated by
a finite set η = {η1, . . . , ηn}. (L = K ({γηj |γ ∈ Γ,1 ≤ j ≤ n}) as a
field.) Then there exists a quasi-polynomial Φη|K (t) such that
(i) Φη|K (r) = tr.degK K (∪n

i=1Γ(r)ηi) for all sufficiently large
r ∈ N.
(ii) deg Φη|K ≤ m = Card σ.
(iii) Φη|K is a linear combination with integer coefficients of

Ehrhart quasi-polynomials of the form λ
(m)
w (t − a), a ∈ Z.

(iv) The leading coefficient of Φη|K is a constant that does not
depend on the set of generators η of L/K . Furthermore, the

coefficient of tm in Φη|K is equal to
2ma

w1 . . .wmm!
where a is the

difference transcendence degree of L/K .
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If all weights of the basic translations are 1, this statement
gives the theorem on a dimension polynomial of a finitely
generated inversive difference field extension (Theorem 4.2.12
of [A. B. Levin. Difference Algebra. Springer, 2008]).

The quasi-polynomial Φη|K is called the difference dimension
quasi-polynomial associated with the extension L/K and the
system of difference generators η.

Note that the existence of Ehrhart-type dimension
quasi-polynomials associated with weighted filtrations of
differential modules was established by C. Dönch in his
dissertation [C. Dönch, Standard Bases in Finitely Generated
Difference-Skew-Differential Modules and Their Application to
Dimension Polynomials, Ph. D. Thesis, Johannes Kepler
University Linz, RISC, 2012.]
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In order to prove Theorem 2, we apply the technique of
characteristic sets (using a ranking that respects the weighted
order of transforms) and the following result that generalizes
the theorem on the dimension polynomial of a subset of Zm

proved in Chapter 2 of [M. Kondrateva, A. Levin, A. Mikhalev,
and A. Pankratev. Differential and Difference Dimension
Polynomials. Kluwer Acad. Publ., 1998].

Let N and Z− denote the sets of nonnegative and nonpositive
integers, respectively. Then Zm =

⋃
1≤j≤2m

Z(m)
j where Z(m)

j are

all distinct Cartesian products of m factors each of which is
either N or Z−. A set Z(m)

j (1 ≤ j ≤ 2m) an orthant of Zm.
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We consider Zm as a partially ordered set with respect to the
ordering E defined as follows:

(x1, . . . , xm) E (y1, . . . , ym)

if and only if (x1, . . . , xm) and (y1, . . . , ym) belong to the same
orthant and |xi | ≤ |yi | for i = 1, . . . ,m.

We fix positive integers w1, . . . ,wm and define the order of

x = (x1, . . . , xm) ∈ Zm as ord x =
m∑

i=1

wi |xi |.

Furthermore, for any A ⊆ Zm, we set

VA = {v ∈ Zm |a 5 v for any a ∈ A}

and A(r) = {a ∈ A | ord a ≤ r} (r ∈ N).



beamer-tu-logo

beamer-ur-logo

Theorem 3
With the above conventions, for any set A ⊆ Zm, there exists a
quasi-polynomial ωA(t) such that

(i) ωA(r) = Card VA(r) for all sufficiently large r ∈ N.

(ii) deg ωA ≤ m.

(iii) ωA = 0 if and only if (0, . . . ,0) ∈ A.

(iv) ωA(t) is a linear combination with integer coefficients of
Ehrhart quasi-polynomials of the form λ

(m)
w (t − a), a ∈ Z,

associated with conic rational polytopes.

Example 3. Let A = {((2,1), (0,3)} ⊂ N2 and let
w1 = 2, w2 = 1. Then the set VA consists of all lattice points (i.
e., points with integer coordinates) that lie in the shadowed
region in the following figure.
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BF : 2x + y = r . C(2, r − 4), D( r−3
2 ,3), E( r−1

2 ,1).
P1 := 4BOF ; P2 := 4BAD; P3 := 4CGE ; P4 := 4CHD.
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The conic polytope P1 is the r th dilate of

0

1

1
2

A
A
Ar

r

The direct computation shows that L(P1,0) = 1, L(P1,1) = 2,
L(P1,2) = 4, and L(P1,3) = 6. As in Example 2 we obtain that

L(P1, r) =
1
4

r2 + r +

[
1,

3
4

]
r
.

As it is seen from Fig. 1, the conic polytopes P2, P3 and P4 are
similar to P1. If Ni denotes the number of lattice points in Pi
(i = 1,2,3,4), then

ω
(1)
A (r) = N1 − N2 − N3 + N4, that is,

ω
(1)
A (r) = L(P1, r)−L(P1, r−3)−L(P1, r−5)+L(P1, r−7) =

1
2

r+

[
5,

9
2

]
r
.
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Adding the numbers of lattice points in the 2nd, 3rd, and 4th
quadrants computed in the same way we obtain that

ωA(r) =
1
2

r2 + 2r +

[
3,

5
2

]
r
.
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Sketch of the proof of Theorem 2

Let K be a σ∗-field, σ = {α1, . . . , αm}, Γ the free commutative
group generated by σ, and Zm =

⋃
1≤j≤2m

Z(m)
j a representation

of Zm as the union of orthants.
As before, we assume that each αi has a positive weight wi and

if γ = αk1
1 . . . αkm

m ∈ Γ, then ord γ =
n∑

i=1

wi |ki |.

Let K{y1, . . . , yn}∗ be an algebra of inversive difference (also
called σ∗-) polynomials in σ∗-indetermiantes y1, . . . , yn over K .
(This is a polynomial ring in the set of indeterminates
{γyi | γ ∈ Γ, 1 ≤ i ≤ n} treated as an inversive difference
K -algebra where α(γyi) = (αγ)yi for any α ∈ σ∗.
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let Y denote the set {γyi |γ ∈ Γ,1 ≤ i ≤ s} whose elements are
called terms (here and below we often write γyi for γ(yi )). By
the order of a term u = γyj we mean the order of the element
γ ∈ Γ.

Setting Yj = {γyi |γ ∈ Γj ,1 ≤ i ≤ n} (j = 1, . . . ,2m) we obtain a

representation of the set of terms as a union Y =
2m⋃
j=1

Yj .

A term v ∈ Y is called a transform of a term u ∈ Y if and only
if u and v belong to the same set Yj (1 ≤ j ≤ 2m) and v = γu
for some γ ∈ Γj . If γ 6= 1, v is said to be a proper transform of u.
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A well-ordering ≤ of the set of terms Y is called a ranking if
(i) If u ∈ Yj and γ ∈ Γj (1 ≤ j ≤ 2n), then u ≤ γu.
(ii) If u, v ∈ Yj , u ≤ v and γ ∈ Γj , then γu ≤ γv .
A ranking is called orderly if for any u, v ∈ Y , the inequality
ord u < ordv implies that u < v . As an example of an orderly
ranking one can consider the standard ranking:
u = αk1

1 . . . αkm
m yi ≤ v = αl1

1 . . . α
lm
myj if and only if the

(2m + 2)-tuple (
m∑

ν=1

|kν |, |k1|, . . . , |km|, k1, . . . , km, i) is less than

or equal to (
m∑

ν=1

|lν |, |l1|, . . . , |lm|, l1, . . . , lm, j) with respect to the

lexicographic order on Z2m+2.



beamer-tu-logo

beamer-ur-logo

In what follows, we fix an orderly ranking on Y . If
A ∈ K{y1, . . . , yn}∗, then the greatest (with respect to the
ranking ≤) term from Y that appears in A is called the leader of
A; it is denoted by uA.

If d = degu A, then the σ∗-polynomial A can be written as
A = Idud + Id−1ud−1 + · · ·+ I0 where Ik (0 ≤ k ≤ d) do not
contain u.

Id is called the initial of A; it is denoted by IA.

If A and B are two σ∗-polynomials, then A is said to have rank
less than B (we write A < B) if either A ∈ K ,B /∈ K or
A,B ∈ K{y1, . . . , ys}∗ \ K and uA < uB, or uA = uB = u and
deguA < deguB. If uA = uB = u and degu A = degu B, we say
that A and B are of the same rank and write rk A = rk B.
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If A,B ∈ K{y1, . . . , yn}∗, then A is said to be reduced with
respect to B if A does not contain any power of a transform γuB
whose exponent is greater than or equal to deguB

B. If
S ⊆ K{y1, . . . , yn}∗ \ K , then a σ∗-polynomial A, is said to be
reduced with respect to S if it is reduced with respect to every
element of S.
A set A ⊆ K{y1, . . . , yn}∗ is said to be autoreduced if either it
is empty or S

⋂
K = ∅ and every element of S is reduced with

respect to all other elements of A.
It is easy to show that distinct elements of an autoreduced set
have distinct leaders and every autoreduced set is finite.
Proposition 1. Let A = {A1, . . . ,Ap} be an autoreduced set in
K{y1, . . . , yn}∗. Let I(A) = {B ∈ K{y1, . . . , yn}∗ |either B = 1 or
B is a product of finitely many σ∗-polynomials of the form γ(IAi )
(γ ∈ Γ, i = 1, . . . ,p)}. Then for any C ∈ K{y1, . . . , yn}∗, there
exist J ∈ I(A) and C0 such that C0 is reduced with respect to A
and JC ≡ C0(mod [A]∗) (that is, JC − C0 ∈ [A]∗).
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Let A = {A1, . . . ,Ap} and B = {B1, . . . ,Bq} be two autoreduced
sets whose elements are written in the order of increasing rank.
We say that A has lower rank than B if one of the following
conditions holds:
(i) there exists k ∈ N, 1 ≤ k ≤ min{p,q}, such that rk Ai = rk Bi
for i = 1, . . . , k − 1 and Ak < Bk ;
(ii) p > q and rk Ai = rk Bi for i = 1, . . . ,q.

Proposition 2. (i) Every nonempty set of autoreduced sets
contains an autoreduced set of lowest rank.
(ii) Let J be an ideal of K{y1, . . . , yn}∗ and A an autoreduced
subset of J of lowest rank in J (such an autoreduced set is
called a characteristic set of J). Then J does not contain
nonzero σ∗-polynomials reduced with respect to A. In
particular, if A ∈ A, then IA /∈ J.
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Let P be the defining σ∗-ideal of the extension
L = K 〈η1, . . . , ηn〉∗, P = Ker(K{y1, . . . , yn}∗ → L), yi 7→ ηi .
Let A = {A1, . . . ,Ad} be a characteristic set of P and let ui
denote the leader of Ai (1 ≤ i ≤ d) and for every j = 1, . . . ,n, let

Ej = {(k1, . . . , km) ∈ Nm|αk1
1 . . . αkm

m yj is a leader of a
σ∗-polynomial in A}.

Let V = {u ∈ Y |u is not a transform of any ui and for every
r ∈ N, let V (r) = {u ∈ V | ord u ≤ r}. By Proposition 2, the
ideal P does not contain non-zero σ∗-polynomials reduced with
respect to A. It follows that for every r ∈ N, the set
Vη(r) = {v(η) | v ∈ V (r)} is algebraically independent over K .
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If Ai ∈ A, then A(η) = 0, hence ui(η) is algebraic over the field
K ({γηj | γyj < uA (γ ∈ Γ, 1 ≤ j ≤ n)}). Therefore, for every
r ∈ N, the field Lr = K ({γηj | γ ∈ Γ(r), 1 ≤ j ≤ n}) is an
algebraic extension of the field K ({v(η) | v ∈ V (r)}). It follows
that Vη(r) is a transcendence basis of Lr over K and
tr.degK Lr = Card Vη(r). For every j = 1, . . . ,n.
The number of terms αk1

1 . . . αkm
m yj in V (r) is equal to the

number of m-tuples k = (k1, . . . , km) ∈ Zm such that ordw k ≤ r
and k does not exceed any m-tuple in Ej with respect to the
product order E on Zm. By Theorem 3, this number is
expressed by a quasi-polynomial of degree at most m.
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Therefore, for all sufficiently large r ∈ N,

tr.degK Lr = Card Vη(r) =
n∑

j=1

ωEj (r)

where ωEj (t) is the dimension quasi-polynomial of the set

Ej ⊆ Zm.

Thus, the quasi-polynomial

Φη|K (t) =
n∑

i=1

ωEj (t)

satisfies the conditions of Theorem 2.
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Theorem 2 allows one to assign a quasi-polynomial to a system
of algebraic difference equations with weighted basic
translations

fi(y1, . . . , yn) = 0 (i = 1, . . . ,p) (1)

(fi ,∈ R = K{y1, . . . , yn}∗ for i = 1, . . . ,p) such that the reflexive
difference ideal P of R generated by f1, . . . , fp is prime (e. g. to
a system of linear difference equations).

In this case, one can consider the quotient field L = q.f .(R/P)
as a finitely generated inversive (σ∗-) field extension of K :
L = K 〈η1, . . . , ηn〉∗ where ηi is the canonical image of yi in R/P.
The corresponding dimension quasi-polynomial Φη|K (t) is
called the difference dimension quasi-polynomial of system
(1).
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System of the form (1) arise, in particular, as finite difference
approximations of systems of PDEs with weighted derivatives,
see, for example,

[Shananin, N. A. Unique continuation of solutions of differential
equations with weighted derivatives, Mat. Sb., 191 (2000), no.
3, 113–142] and

[Shananin, N. A. Partial quasianalyticity of distribution solutions
of weakly nonlinear differential equations with weights assigned
to derivatives. Math. Notes 68 (2000), no.3–4, pp. 519–527].

In this case the difference dimension quasi-polynomial can be
viewed as the Einstein’s strength of the system of partial
difference equations with weighted translations.
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Thanks!


