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ALICE MEDVEDEV

notation

These notes are a commentary on, and refer to, the July 24, 2012 draft of
Hrushovski’s “The elementary theory of the Frobenius Automorphisms” posted
on the arxiv.

If you see ⊂, it’s likely to be ⊆. When A and B are sets with structure, A ≤ B
means substructure (e.g. subring, or sub-difference-ring), while A E B is reserved
for (not necessarily difference) ideals A of rings B.

Single, undecorated letters like b may stand for tuples; in that case, bi are the
entries in the tuple.

1. flavours of ideals: definitions, examples, easy lemmas

1.1. Definitions.

Definition 1. A difference ring is a commutative ring with identity with an endo-
morphism σ. The usual signature for doing model theory is Lring,σ := {+, ·, 0, 1, σ}.

A homomorphism of Lring,σ-structures is a ring homomorphism, and the iso-
morphism type of its image is determined by its kernel. An ideal I is a kernel of an
Lring,σ-homomorphism iff I is closed under σ; such an ideal is a difference ideal.

Example 2. Difference polynomial rings.
Let N[σ] := {

∑m
i=0miσ

i : m,mi ∈ N}, and order it by setting σ > n for all
n ∈ N, and requiring the ordering to respect addition and multiplication.
For ν :=

∑m
i=0miσ

i ∈ N[σ], we write xν :=
∏m
i=0(σi(x))mi .

For a difference ring R, the difference polynomial ring R[x]σ is the set of formal
finite R-linear combinations of xν , also known as the polynomial ring over R in
variables x, σ(x), σ2(x), . . .. For multiple variables, Rx, yσ := (R[x]σ)[y]σ.
In the paper, N[σ] is somehow ordered, but the order is ?never? defined.

Lemma 3. All the properties of difference ideals I E R of difference rings (R, σ)
that we care about are equivalent to properties of the quotient difference ring R/I.
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ideal I ER quotient ring R/I

algebraically prime (algebraically) integral domain
ab ∈ I ⇒ a ∈ I ∨ b ∈ I no zero-divisors

radical algebraically reduced
∀n ∈ N an ∈ I ⇒ a ∈ I no nilpotents
⇔, a2 ∈ I ⇒ a ∈ I

perfect perfectly reduced
∀ν ∈ N[σ] aν ∈ I ⇒ a ∈ I ∀ν ∈ N[σ] aν = 0⇒ a = 0
⇔, aσ(a) ∈ I ⇒ a ∈ I no σ-nilpotents

reflexive transformally reduced
σ(a) ∈ I ⇒ a ∈ I endomorphism σ is injective

well-mixed well-mixed
ab ∈ I ⇒ aσ(b) ∈ I ab = 0⇒ aσ(b) = 0
transformally prime difference domain

algebraically prime and reflexive integral domain with injective endomorphism

Proof. Let us show that the two definitions of “perfect” are equivalent. Suppose
that cσ(c) ∈ I ⇒ c ∈ I. First, we show that I is well-mixed:

ab ∈ I ⇒ σ(a)σ(b) ∈ I ⇒ I 3 σ(a)σ(b)aσ2(b) = (aσ(b))σ(aσ(b))⇒ I 3 aσ(b).

The first implication is from “difference”, the second is from “ideal”, and the last
uses cσ(c) ∈ I ⇒ c ∈ I with c = aσ(b). Then we show that I is radical:

a2 ∈ I ⇒ aσ(a) ∈ I ⇒ a ∈ I
the first implication uses I is well-mixed and the second uses cσ(c) ∈ I ⇒ c ∈ I with
c = a. Finally, suppose that

∏
j(σ

nj (a))mj ∈ I. Since I is an ideal, we may replace

all mj by their maximum M , and assume that the nj are 0, 1, 2, . . . 2N . Since I is

radical, we may replace M by 1. Using cσ(c) ∈ I ⇒ c ∈ I with c =
∏2N−1

j=0 σj(a),

we may replace N by (N − 1) until at N = 1 we get aσ(a) ∈ I, and then use
cσ(c) ∈ I ⇒ c ∈ I with c = a. �

Corollary 4. Perfect implies well-mixed and radical and reflexive.

The converse of the Corollary is also true.

Lemma 5. If I ER is a well-mixed, radical, reflexive ideal of a difference ring R,
then I is perfect.

Proof. Take a ∈ R such that aσ(a) ∈ I. Since I is well-mixed, σ(a)σ(a) ∈ I. Since
I is radical, σ(a) ∈ I. Since I is reflexive, a ∈ I. �

Lemma 6. An algebraically prime difference ideal is always well-mixed; it is perfect
iff it is reflexive. A difference ring (R, σ) where R is an integral domain is always
well-mixed.

Proof. This first part is immediate, and the second is a consequence of the first. �

1.2. Examples.

Example 7. (prime difference ideal, well-mixed but not reflexive.) Con-
sider a difference field (k, id) and a polynomial difference ring R := k[x]σ and
a difference ideal I generated by σ(x). This I consists of difference polynomials
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ν aνx

ν in which each ν includes σm(x) for some m ≥ 1. The quotient is iso-
morphic to the (not difference!) polynomial ring k[x], with σ fixing coefficients and
sending x to 0. In particular, the quotient is an integral domain, so the ideal is
prime, so (see Lemma 6) it is well-mixed. However, it is clearly not reflexive, as it
contains σ(x) but not x.

Example 8. (radical, reflexive, not well-mixed.) Consider a difference field
(k, id), the polynomial difference ring R := k[x]σ and a difference ideal I generated
by xσ(x). This I consists of difference polynomials

∑
ν aνx

ν in which each ν in-
cludes two consecutive powers of σ. This ideal is clearly reflexive: including two
consecutive powers of σ is invariant under σ−1 whenever σ−1 is defined. It is also
radical: take a polynomial p ∈ k[x]σ, drop all terms with consecutive powers of σ,
take a least leftover monomial aνx

ν in the sense of some lexicographic ordering,
and (aνx

ν)m will not cancel with anything in p(x)m, and will have no consecutive
powers of σ. On the other hand, xσ2(x) 6∈ I, so I is not well-mixed; and xσ(x) ∈ I
but x 6∈ I, so I is also not perfect.

Example 9. (well-mixed, not radical, not reflexive.) Consider the well-mixed
ideal Iwm generated by I E R from the previous example. As xσ(x) ∈ I, it must
be that xσm(x) ∈ Iwm for all m, so whenever ν includes two distinct powers of σ,
the difference monomial xν ∈ Iwm. On the other hand, as σ(x)x ∈ I, it must be
that σ(x)σ(x) ∈ Iwm, so whenever ν includes (σm(x))n for some m ≥ 1 and n ≥ 2,
the difference monomial xν ∈ Iwm. These monomials (all except xn and (σm(x))1)
generate Iwm as a k-vector space. It is clear that this ideal is neither radical, nor
reflexive.

Example 10. (no proper well-mixed ideals). Fix a field k, let the ring R := {f :
Z→ k} be the product of countably many copies of k, and define σ(f(x)) := f(x+1)
to be the shift operator. Consider ξo, ξe ∈ R, the characteristic functions of the sets
of odd and even integers, respectively. Note that σ(ξo) = ξe and σ(ξe) = ξo and
ξoξe = 0. Suppose that IER is a well-mixed difference ideal. Since ξeσ(ξe) = 0 ∈ I,
by well-mixedness if I also I 3 σ(ξe)

2 = ξ2o = ξo. In like manner, ξe ∈ I. But then
1 = ξo + ξe ∈ I, so I = R!

2. very easy difference commutative algebra

2.1. operations that preserve properties, and generation.

Remark 11. All of the properties of difference ideals in Lemma 3 are properties of
quotients, so given two difference ideals I1 ≤ I2ER, the ideal I2/I1 of the quotient
R/I1 has each property if and only if the ideal I2 of R does.

Remark 12. Since all the properties are universal, they pass to subrings: given an
ideal I ER and a subring R′ ≤ R, the ideal I ′ := I ∩R′ of R′ inherits all of these
properties. For the same reason, they are preserved under unions of chains, either
of ideals inside a fixed ring, or of pairs {(Ii ERi}i.
Lemma 13. If I E R has one of the properties listed in Lemma 3, then so does
σ−1(I)ER.

Proof. Let I2 := σ−1(I)ER and let I1 := ker(σ)ER. By Remark 11, it suffice to
show that the ideal I2/I1 of the quotient R/I1 has the property. That is, we need
to show that σ(σ−1(I)) has the property in σ(R). This follows from Remark 12, as
σ(σ−1(I)) = I ∩ σ(R). �
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Remark 14. Except for “prime” and “transformally prime”, each of these proper-
ties is a matter of being closed under certain operations. Thus, for any set A there
exists a unique smallest ideal with the desired property containing A, and these
properties are preserved under intersections. Given a difference ideal I E R, the
same thing is obtained by generating in R starting with I, or by generating in R/I
starting with {0} and then taking the preimage in R.

As usual,
√
I is the radical ideal generated by a difference ideal I. This preserves

all σ properties of I.

Lemma 15. If I is a difference ideal, so is
√
I.

If I is well-mixed (resp. reflexive), then so is
√
I.

If I is perfect,
√
I = I.

Proof.

a ∈
√
I ⇒ an ∈ I ⇒ σ(an) ∈ I ⇒ σ(a) ∈

√
I

ab ∈
√
I ⇒ anbn ∈ I ⇒ anσ(bn) ∈ I ⇒ aσ(b) ∈

√
I

σ(a) ∈
√
I ⇒ σ(an) ∈ I ⇒ an ∈ I ⇒ a ∈

√
I

The last follows immediately from Corollary 4: a perfect difference ideal is al-
ready radical. �

On the other hand, the well-mixed ideal generated by a radical difference ideal
need not remain radical - see Example 9. Furthermore, the generating procedures
for any of the σ properties might generate the whole ring, even starting from a
proper ideal!

The paper’s notation for generating well-mixed and perfect ideals is less than
satisfying:

• σ
√
I is defined in the paper to be the first displayed equation in Lemma

16 below. If I is not a well-mixed ideal, σ
√
I need not be a perfect ideal:

indeed, it may fail to be an ideal by failing to be closed under addition.
• radwm(R) is the well-mixed ideal generated by {0} in R. It seems natural

to write radRwm(I) for the smallest well-mixed ideal generated by an ideal
I in a ring R, also known as the pre-image of radwm(R/I) in R.

As far as I can tell, the notation σ
√
I is only used in the paper for well-mixed I.

It might be more natural to define σ
√
I to be the perfect ideal generated by I. In

Lemma 16 below, we reword Lemma 2.3 in the paper to avoid the notation σ
√
I,

and to better match the way Lemma 2.3 is used in the paper, for example, in 2.11
p. 15 and 3.7 p. 19.

Lemma 16 (Alternate Lemma 2.3). If I is a well-mixed ideal, then the perfect
ideal J1 generated by I coincides with

J2 := {a ∈ R :
∏
j

(σnj (a))mj ∈ I for some nj ,mj}

and with

J3 := {a ∈ R : (σn(a))m ∈ I for some n,m}.
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Proof. Clearly, J1 ⊇ J2 ⊇ J3, so it suffices to show that J3 is a perfect difference
ideal. By Lemma 15,

√
I is also a well-mixed difference ideal, and by Lemma 13,

σ−n(
√
I) are also well-mixed and radical for all n. Now J3 = ∪nσ−n(

√
I) is a union

of a chain of well-mixed radical difference ideals, so it is itself a well-mixed radical
difference ideal. It is clearly reflexive, so by Lemma 5, it is perfect. �

2.2. localizations. Most of the properties in Lemma 3 are also preserved under

localizations. To obtain a difference structure σ(ab ) := σ(a)
σ(b) , one should only localize

by multiplicative sets S closed under σ. However:

Example 17. (stupid localizing) Consider the ring R := k[x, 1x ] ∼= k[x, y]/(xy −
1) with σ fixing k and switching x and 1

x , and consider the set S := {xn : n ∈ N}.
On one hand, S is clearly not closed under σ. On the other hand, S consists of
R-units, so S−1R = R inherits a perfectly good difference structure.

Pleasantly, that does not happen when localizing at prime ideals.

Lemma 18. Let PER be an algebraically prime difference ideal, and let S := R\P .
The localization RP := S−1R admit a difference structure compatible with that of
R iff S is closed under σ, i.e. iff P is reflexive, i.e. iff P is transformally prime.

Proof. Suppose a ∈ S but σ(a) ∈ P . Denote the difference structure on S−1R by
σ as well. Now in S−1R,

1 = σ(1) = σ(a · 1

a
) = σ(a) · b

c

for some b ∈ R and some c ∈ S. Thus, for some s ∈ S, we have sc = sσ(a)b in R.
But sc ∈ S while sbσ(a) ∈ P , which are disjoint. �

In particular, σ will extend from an integral domain R to its field of fractions if
and only if S := R \ {0} is closed under σ, that is, if σ is injective on R. Together
with the Remark 11 this proves the first part of Lemma 2.1.1 in the paper.

As usual, the set S should also be disjoint from an ideal whose properties we’re
studying. Since localization commutes with quotients, and all the properties in
Lemma 3 are properties of quotients, we may and often do study the ideal is {0}
in R/I, thereby working with the ring properties in Lemma 3 instead of the ideal
properties there.

Example 19. Let R be the quotient of the polynomial difference ring k[x, y]σ by the
difference ideal generated by xy. So, monomials with σi(x)σi(y) for some i are zero
in R, and the rest remain linearly independent over k. This ideal is clearly reflexive,
so σ is injective on R. Let S := {σm(yn) : n ≥ 1, m ≥ 17} be the multiplicative set
closed under σ generated by σ17(y). In S−1R, σ17(x) = 0 but x 6= 0.

Lemma 20. Suppose that R is a difference ring, that S ⊂ R is closed under
multiplication and σ, and that 0 6∈ S.

(1) If R is an integral domain, then so is S−1R.
(2) If R has no nilpotents, then neither does S−1R.
(3) If R has no σ-nilpotents, then neither does S−1R. (“perfect”)
(4) This may fail for “reflexive”.
(5) If R is well-mixed, then so is S−1R.
(6) If R is an difference domain, then so is S−1R.
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Proof. The first two are standard, and the argument for “no nilpotents” generalizes
to an argument for “no σ-nilpotents” as follows. Suppose that ν :=

∑
j njσ

mj and

(ab )ν = 0 in S−1R. Then s(aν) = 0 in R for some s ∈ S. Then (sa)1+ν =

(saν)(asν) = 0, so sa = 0 since R has no σ-nilpotents. So a
b = 0 in S−1R.

Example 19 is a counterexample for “reflexive”.
For well-mixed, suppose that a

sa
b
sb

= 0 in S−1R. Then sab = 0 in R for some

s ∈ S. Since R is well-mixed, saσ(b) = 0 as well, making a
sa

σ(b)
σ(sb)

= 0.

For difference domain (aka {0} is transformally prime), we only need to show
that σ remains injective in the localization. If σ( asa ) = 0 in S−1R, then σ(a) = 0
in R as R is an integral domain, so a = 0 as σ is injective on R. �

Lemma 21. (Lemma 2.1, part 2) Given two difference rings R′ ≤ R and an
algebraically prime difference ideal P ER, let P ′ := P ∩R′, an algebraically prime
ideal of R′. Consider the two fields of fractions, K of R/P and K ′ of R′/P ′. The

natural map a+P ′

b+P ′ 7→
a+P
b+P is an embedding of K ′ in K; we identify K ′ with its

image under this embedding.
If K is an algebraic extension of K ′, then P is a transformally prime ideal of R

if and only if P ′ is a transformally prime ideal of R′.

Proof. First, we reduce to the case where P = P ′ = {0}. Let R′1 := R′/P ′ ≤
R/P =: R1, and let P1 = P ′1 = {0}. By Remark 11, P (resp. P ′) is transformally
prime iff P1 (resp. P ′1) is, and the fields K and K ′ are unchanged.

One direction of the Lemma is an instance of Remark 12. For the other, suppose
that {0} is a transformally prime ideal of R′. We need to show that {0} must be a
transformally prime ideal of R. By Lemma 18, it suffices to show that the field of
fractions K of R admits a difference structure compatible σ on R.

Let S := R′ \{0}, a multiplicative subset of R closed under σ and not containing
0. Now M := S−1R admits a difference structure compatible σ on R. This M is a
subring of the field of fractions K of R, containing the field of fractions K ′ of R′.
Since K is algebraic over K ′, M is generated over K ′ by algebraic elements, so it
is a field. So M is a subfield of K containing R, so M = K. �

3. Annihilators: enough good ideals.

Definition 22. For I ⊂ R, AnnR(a/I) := {b ∈ R : ab ∈ I} and Ann(a) =
Ann(a/{0}). This is only used when I E R. When R is clear, the subscript is
dropped.

Note that b ∈ Ann(a/I) if and only if a ∈ Ann(b/I), and I ≤ Ann(a/I) for any
a. Since all our rings have identity, Ann(a/I) is a proper ideal as long as a 6∈ I.

The proof of Lemma 2.5 in the paper proves the following generalization, and
the references to that lemma later in the paper use this more general result.

Lemma 23. Let R be a difference ring, a ∈ R, and J ER a well-mixed difference
ideal; then Ann(a/J) is a well-mixed ideal.

Furthermore, let I be the smallest well-mixed ideal containing a and J ; then
b2 ∈ J for any b ∈ I ∩Ann(a/J).

Proof. This is a search-and-replace generalization of the proof given for Lemma 2.5
in the paper.

cd ∈ Ann(a/J)⇒ acd ∈ J ⇒ acσ(d) ∈ J ⇒ cσ(d) ∈ Ann(a/J).
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Suppose that b ∈ Ann(A/J), so a ∈ Ann(b/J). Now Ann(b/J) is a well-mixed
ideal containing a and J , so I ⊂ Ann(b/J). So b ∈ I implies b ∈ Ann(b/J), which
means b2 ∈ J . �

Results 2.5 - 2.11 in the paper use annihilators to build difference ideals and
transformally prime ideals in well-mixed rings, ensuring that there will be enough
points on schemes. This section substantially reworks the presentation.

Lemma 2.6 has typos, and does not seem to be used anywhere. Judging by the
proof, the ambiguous hypothesis “R is a well-mixed domain” should be “R is a
well-mixed difference ring with no nilpotents”; and I(a) should be J(a) in the last
line - that’s a slightly stronger conclusion.

The following generalization of Lemma 2.7 in the paper appears in Zoe’s notes
about the paper. It clarifies the exposition immensely.

Lemma 24. Fix a difference ring R and a multiplicative S ⊂ R with 0 /∈ S and
σ(S) ⊂ S. Suppose that I ER is

(?) a well-mixed difference ideal of R, disjoint from S,

and that I is maximal with respect to (?). Then I is transformally prime.

Note that as long as S is disjoint from radwm(R), such ideals I exist: radwm(R)
satisfies (?), and (?) is preserved in unions of chains.

Proof. This is a direct generalization of the proof of Lemma 2.7 in the paper.
First, let us show that I is reflexive, that is that σ−1(I) = I. Since σ−1(I) ⊃ I, it

suffices to show that σ−1(I) satisfies (?). If a ∈ S ∩σ−1(I), then σ(a) ∈ I ∩σ(S) =
I ∩ S = ∅, a contradiction. Thus, σ−1(I) is disjoint from S. If ab ∈ σ−1(I),
then σ(a)σ(b) ∈ I. Since I is well-mixed, this puts σ(a)σ2(b) ∈ I, and then
aσ(b) ∈ σ−1(I).

It remains to show that I is prime. Suppose ab ∈ I, so b ∈ Ann(a/I). By Lemma
23, Ann(a/I) is a well-mixed ideal, and I ⊂ Ann(a/I).

If Ann(a/I) ∩ S = ∅, then Ann(a/I) satisfies (?). Then, by the maximality of
I, it must be that Ann(a/I) = I, so b ∈ I.

Otherwise, there is some b′ ∈ Ann(a/I)∩S. If c ∈ Ann(b′/I)∩S, then cb′ ∈ I∩S;
but I ∩S = ∅, so Ann(b′/I)∩S = ∅, and so Ann(b′/I)∩S satisfies (?) and contains
I. Then Ann(b′/I) = I, and a is in it. �

Alternately, if one is convinced that everything in the lemma is unaffected by
quotienting by I and localizing at S, it suffices to prove the special case where
S = {1} and I = {0} and R is well-mixed.

The following special case S = {1} of Lemma 24 is all that is needed for Lemma
2.7 in the paper (Lemma 34 here).

Corollary 25. If I is a proper well-mixed ideal of a well-mixed ring R, and there
are no proper well-mixed J such that I � J ER, then I is transformally prime.

Another special case of Lemma 24 gives a simple and correct proof of Lemma
2.11 in the paper; the proof given in the paper appears incorrect: algebraically
prime difference ideals of Lemma 2.10 magically become transformally prime.

Lemma 26. (Lemma 2.11 from the paper) In a well-mixed ring R, an element a
is σ-nilpotent if and only if it is in all transformally prime ideals of R.
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Proof. Clearly, every transformally prime ideal pER contains all σ-nilpotents. For
the other direction, suppose that a is not σ-nilpotent. Then the multiplicative set
S := {aν : ν ∈ N[σ]} is closed under σ and does not contain 0. The ideal

√
{0}

is well-mixed by Lemma 16, and disjoint from S. Find a ideal p that is proper,
well-mixed, and disjoint from S and maximal with respect to these properties as in
Lemma 24. By Lemma 24 p is transformally prime, and by construction a 6∈ p. �

Thinking of a as a global function on Specσ(R), this says that if a isn’t σ-
nilpotent, then it is not everywhere locally equal to the constant function 0.

Lemmas 2.8 - 2.10 require a bit more commutative algebra, and achieve a more
refined analog Lemma 2.10 of Lemma 2.11. Neither appears to follow from the
other. Again, annihilators are used to obtain difference ideals. This time, we
approximate a finitely-σ-generated difference ring by a sequence of finitely-ring-
generated rings, and approximate the desired difference ideal by annihilators: the
nth approximating annihilator agrees with the desired difference ideal on the nth
approximation to the ring. Again, we may and do work in the quotient by the ideal
I in the statement of Lemma 2.10 of the paper.

Lemma 27. (Lemma 2.10 of the paper, for finitely-σ-generated rings.)
Let R be a well-mixed ring with no nilpotents, finitely generated or finitely generated
over a difference field k, as a difference field. Then {0} is the intersection of
algebraically prime difference ideals.

Proof. Take 0 6= b ∈ R; we need to find an algebraically prime difference ideal pER
with b 6∈ p.

Let a be the tuple of generators of R as a difference ring (maybe over k), and let
Sn be the subring of R ring-generated by {σj(ai) : 0 ≤ j ≤ n, 0 ≤ i ≤ m} (maybe
over k). Clearly R = ∪nSn.

The desired ideal p will be the union ∪npn of a chain of minimal prime ideals of
Sn. In the finitely-ring-generated (maybe over k) and, therefore, Noetherian rings
Sn, minimal primes are annihilators, and this will make p a difference ideal.

Construction details. We inductively build pn, maintaining the following induc-
tive hypotheses:

(1) b 6∈ p0;
(2) pn+1 ∩ Sn = pn; and
(3) pn is a minimal prime ideal of Sn.

Since each Sn is Noetherian, each has finitely many minimal prime ideals, whose
intersection is the nilradical {0}: recall that the whole ambient ring R has no
nilpotents. In S0, there is a minimal prime ideal p0 63 b because b 6= 0. Whenever
Sn ≤ Sn+1 are Noetherian rings and pn is a minimal prime of Sn, some minimal
prime pn+1 of Sn+1 satisfies pn+1 ∩ Sn = pn. The proof given in Lemma 2.9 is
correct, easy commutative algebra. From the second inductive hypothesis, p∩Sn =
pn. From then third, p is an algebraically prime ideal of R.

Difference properties of p. For each n, we find cn ∈ Sn such that pn = AnnR(cn)∩
Sn. List the minimal primes q1 = pn, q2, q3, . . . qm of Sn, and let bi ∈ qi \ pn
for 2 ≤ i ≤ m. Let cn :=

∏m
i=2 bi; then by magical commutative algebra

pn = AnnSn(cn) = AnnR(cn) ∩ Sn. By Lemma 2.5 (actually, Lemma 23), each
AnnR(cn) is a well-mixed ideal of R.
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Suppose e ∈ p and take n sufficiently large to have e, σ(e) ∈ Sn. Then e ∈ pn =
Annr(cn) ∩ Sn. Since AnnR(cn) is a well-mixed ideal of R, now σ(e) ∈ AnnR(cn).
So σ(e) ∈ Annr(cn) ∩ Sn = pn ⊂ p. Thus, p is a difference ideal of R. �

The idea of writing R = ∪nSn as a union of Noetherian rings, finding an ideal
pER which is a union p = ∪npn of minimal primes pnESn, and observing as in the
proof above that p must be an algebraically prime difference ideal is reused later
in the paper. The collection of Noetherian rings Sn need not be a chain, but one
must at least assume that any finite subset of R is contained in some Sn. Such an
ideal p is called cofinally prime.

4. difference schemes

We should assume that all rings in this section are well-mixed - oth-
erwise Specσ(R) might be empty!

4.1. Definition and first properties of Specσ. The following is approximately
from the beginning of section 3.1 of the paper.

Definition 28. The difference spectrum Specσ(R) of a difference ring R is defined
to be the set of transformally prime ideals of R. It is made into a topological space
in the following way: a closed subset of Specσ(R) is the set of elements of Specσ(R)
extending a given ideal I. That is, Specσ(R) is the subset {p ∈ Spec(R) : σ−1(p) =
p} of the usual spectrum Spec(R) from algebraic geometry, and the topology is the
subspace topology.

Lemma 29. If R is well-mixed, Specσ(R) is non-empty. The sets VI := {p ∈
Specσ : I ≤ p} for perfect ideals I are all the closed sets of Specσ(R). As topological

spaces, Specσ(R) ∼= Specσ(R/( σ
√

0)).

Proof. By Lemma 24 with S := {1}, Specσ(R) is non-empty.
Any transformally prime ideal p that contains an ideal I also contains the perfect

hull σ
√
I of I, so VI = V σ√

I .

Every transformally prime ideal p contains σ
√

0, and so does every perfect ideal
I, so the two topological spaces have the same points and the same closed sets (see
the first observation in Sections 2.1). �

As with quotients by the nilradical in the usual algebraic geometry, the difference
schemes Specσ(R) and Specσ(R/( σ

√
0) have different structure sheaves. We delay

defining these and first prove a crucial topological property of difference spectra.

Lemma 30. Suppose that R is a well-mixed difference ring, either finitely-σ-
generated, or finitely-σ-generated over a difference field k. Then Specσ(R) is a
Noetherian topological space.

Proof. Since Specσ(R) and Specσ(R/( σ
√

0) are isomorphic as topological spaces, we
may assume that R has no σ-nilpotents. In particular, σ is injective on R, so that
R is a difference ring in the sense of Cohn.

We want to show that Specσ(R) has no infinite descending chains on closed sets,
or, equivalently, that R has no infinite ascending chains of perfect ideals. That is,
we want to show that R is a Ritt difference ring(see Cohn Theorem II p.86).

If R is finitely-σ-generated, let R0 be the subring of R generated by 1. It is a
quotient of Z by a radical ideal, closed under σ, and Noetherian, so it is a Ritt
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difference ring. Otherwise, let R0 = k, also closed under σ and Noetherian. Since
R is finitely-σ-generated over R0, it is also a Ritt difference ring by the Corollary
on p.93 of Cohn. �

The following is an easy fact about Noetherian topological spaces.

Corollary 31. Suppose that R is a well-mixed difference ring, either finitely-σ-
generated, or finitely-σ-generated over a difference field k. Then Specσ(R) is a
union of finitely many irreducible closed sets, that is closed sets which cannot be
written as a union of two proper closed subsets.

Properties of points in a Noetherian topological space can be proved by Noether-
ian induction.

Lemma 32. Let K be a class of Noetherian topological spaces such that for any
X ∈ K and any closed Y ⊂ X, Y ∈ K.

Let “rainy” be a property of points in spaces in K that passes up from closed
subspaces; that is, whenever p ∈ Y ⊂ X ∈ K and Y is closed in X, if p ∈ Y is
rainy, then p ∈ X is rainy.

Suppose that

base whenever {p} = X ∈ K, p is rainy; and that
induct for any X ∈ K, there is a closed Y ⊂ X such that all points in X \ Y are

rainy.

Then all points in all spaces in K are rainy.

Definition 33. The structure sheaf OSpecσ(R) is a sheaf of difference rings is de-
fined to have the same stalks Rp as the structure sheaf from the usual algebraic
geometry. The coordinate ring of an open set U then consist of functions f on U
such that

• the value f(p) at a point p is in the stalk Rp at p; and
• f is everywhere locally given by ratios of elements of R.

This topological space with this sheaf of difference rings is called an affine difference
scheme determined by R.

As we noted in Section 2.2, σ extends canonically from R to the stalks Rp. The
coordinate rings are then also difference rings. Furthermore, If R was well-mixed,
then the stalks Rp also are well-mixed (Lemma 20), and then it is easy to see that
so are the coordinate rings.

Beware that the obvious difference ring homomorphism from R to the global
sections OSpecσ(R)(Specσ(R)) might might not be an isomorphism!

Lemma 34. (Lemma 2.7 from the paper.) If R is well-mixed, then the obvious
difference ring homomorphism φ : R → OSpecσ(R)(Specσ(R)) is injective. For
non-zero a ∈ R, the set points where φ(a) is not locally constant and equal 0 is a
non-empty closed subset of Specσ(R).

Proof. The set of points where φ(a) is not locally constant and equal 0,

{p ∈ Specσ(R) : ap 6= 0} = {p ∈ Specσ(R) : AnnR(a) ⊂ p},
is the closed set corresponding to the ideal AnnR(a).

This set is non-empty iff φ(a) 6= 0, iff there is some p ∈ Specσ(R) such that
AnnR(a) ⊂ p. By Lemma 23, AnnR(a) is a (proper) well-mixed difference ideal.
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As “well-mixed” is preserved under unions of chains, there is a maximal (proper)
well-mixed difference ideal p containing AnnR(a). By Lemma 25, p is transformally
prime. �

As in algebraic geometry, a ∈ p means that the value of the global section a at
the point p is 0; and ap = 0 means that the global section a is locally constant and
equal to 0 on some neighborhood of p. So the geometric meaning of Lemma 2.7 is
that for a non-zero a ∈ R, the set of points where a is locally-constant and zero is
a proper open subset. This smells like irreducible components to me...

4.2. Homomorphisms to difference fields, formulas, quantifier-free types.
The points of Specσ(R), transformally prime ideals of R, are the only points of
Spec(R) at which the stalk of the structure sheaf of Spec(R) is a difference ring.
They are also precisely the kernels of difference-ring homomorphisms from R to
difference fields, so they encode isomorphism types of such homomorphisms onto
their images. We explain this slogan in some detail.

Definition 35. Given difference rings S ≤ R and a tuple a ∈ R,

IRσ (a/S) := {P (x) ∈ S[x]σ : R |= P (a) = 0}E S[x]σ.

Given a difference ring R and a tuple a ∈ R,

IRσ (a) := π−1(IRσ (a/R0))E Z[x]σ,

where R0 is the subring of R generated by 1, and π : Z → R0 is the ring unique
homomorphism with π(1) = 1.

IfR is generated as a difference ring by finitely many ai, thenR ∼= (Z[x]σ)/(IRσ (a)).
If R is generated as a difference ring over a difference field k by finitely many ai,

then R ∼= (k[x]σ)/(IRσ (a/k)).
If f : R → S is a homomorphism of difference rings and a ∈ R is some tuple,

then IRσ (a) ≤ ISσ (f(a)). If R, S, and f are over some difference field k, the same is
true of the ideals over k: IRσ (a/k) ≤ ISσ (f(a)/k).

If b ∈ L and L is a difference field, then ILσ (b) is transformally prime; if L is over
k, then ILσ (b/k) is transformally prime.

If R is generated as a difference ring by a finite tuple a, a difference ring ho-
momorphism f : R → L to a fixed difference field L is determined by f(a), and
the isomorphism type of f : R→ f(R) is determined by ILσ (f(a)), a transformally
prime difference ideal extending IRσ (a). Conversely, given a transformally prime
J E Z[x]σ) with J ≥ IRσ (a), the field of fractions of L := (Z[x]σ))/J admits a
homomorphism f : R→ L, given by f(a) = x/J . The same works over k.

Lemma 36. Suppose that R is generated as a difference ring by a finite tuple a,
and b ∈ L is a tuple of the same length as a in some difference field L. There is a
(necessarily unique) difference ring homomorphism f : R→ L with f(a) = b if and
only if ILσ (b) ≥ IRσ (a).

Similarly, if R is generated by a over a difference field k and L is over k, then
such f over k exists if and only if ILσ (b/k) ≥ IRσ (a/k).

Since ILσ (b) (resp., ILσ (b/k)) is transformally prime, it contains IRσ (a) (resp.,
IRσ (a/k)) if and only if it contains the perfect closure of the same. Recall (see the
proof of Lemma 30) that perfect ideals in Z[x]σ or in k[x]σ are finitely generated
as a perfect ideals.
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Lemma 37. Suppose that R is generated as a difference ring by a finite tuple a,
and b ∈ L is a tuple of the same length in a difference field L. Let {Pj : 1 ≤ j ≤
m} generate (as a perfect ideal) the perfect closure of IRσ (a), and let φR,a(x) :=
∧mj=1P (x) = 0. There is a (necessarily unique) difference ring homomorphism
f : R→ L with f(a) = b if and only if L |= φR,a(b).

Similarly, if R is generated by a over a difference field k and L is over k, let
Pj generate IRσ (a/k) and again set φR,a/k(x) := ∧mj=1P (x) = 0. Then there is a
(necessarily unique) difference ring homomorphism f : R→ L over k with f(a) = b
if and only if L |= φR,a/k(b).

Slogan 38. A finitely generated difference ring R together with a choice of gen-
erators corresponds to a quantifier-free formula; transformally prime ideals of R
correspond to complete quantifier-free types in the theory of difference fields con-
taining this formula.

If R is instead finitely generated over a difference field k, then the formula is
over k, and the types are in the theory of difference fields extending k.

4.3. algebraically prime difference ideals. Lemma 36 is just as true when L
is an integral domain with a difference structure instead of a difference field, but
the difference ideal ILσ (b) is then only algebraically prime instead of transformally
prime. Some of the deep/hard difference algebra in the paper requires this more
general setting. One (but I think not the only) purpose is to work over Z in order to
work across all positive characteristics. In this setting, well-mixed replaces perfect
(see Lemma 27). One difficulty of this more general setting is that well-mixed ideals
need not be finitely generated as well-mixed ideals, so there is no analog of Lemma
37.

5. Leftovers

5.1. From Zoe’s exp3. Small leftovers that maybe should be folded in:

• Definition of “inversive”, unique inversive closures: I + σ(R) = R doesn’t
smell like an interesting property of ideals.
• Another corollary of Zoelem, going up/going down from minimal transfor-

mal primes; 1.11 in exp3.
• 1.12.1, 1.12.2, and 1.12.4: more quotations from Cohn.
• 1.13 about [σk]V , which I don’t understand.

Section 2 of exp3 about dimensions might admit model-theoretic simplifications
using my Section 4.2?


