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Schanuel Conjecture

Conjecture (Schanuel 1963,1966)

For any Q-linearly independent complex numbers α1, . . . , αn, there are at

least n numbers among

α1, . . . , αn, eα1 , . . . , eαn

that are algebraically independent over Q.
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For any Q-linearly independent complex numbers α1, . . . , αn, there are at
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Take α1 = iπ, td(iπ,−1) ≥ 1.
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For any Q-linearly independent complex numbers α1, . . . , αn, there are at

least n numbers among

α1, . . . , αn, eα1 , . . . , eαn

that are algebraically independent over Q.

Take α1 = 1, td(1, e) ≥ 1. (Hermite 1873)

Take α1 = iπ, td(iπ,−1) ≥ 1. (Lindemann 1882)

Take α1, . . . αn ∈ Q, td(ααα, eααα) ≥ n. (Lindemann-Weierstrass 1885)

Take α, β ∈ Q, α 6= 0, 1, β /∈ Q. Then td(log α, β log α, α, αβ) ≥ 2.
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Schanuel Conjecture

Conjecture (Schanuel 1963,1966)

For any Q-linearly independent complex numbers α1, . . . , αn, there are at

least n numbers among

α1, . . . , αn, eα1 , . . . , eαn

that are algebraically independent over Q.

Take α1 = 1, td(1, e) ≥ 1. (Hermite 1873)

Take α1 = iπ, td(iπ,−1) ≥ 1. (Lindemann 1882)

Take α1, . . . αn ∈ Q, td(ααα, eααα) ≥ n. (Lindemann-Weierstrass 1885)

Take α, β ∈ Q, α 6= 0, 1, β /∈ Q. Then td(log α, β log α, α, αβ) ≥ 2.
Thus αβ is transcendental (Gelfond-Schneider 1934).

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 2 / 34



Ax’s Theorem

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 3 / 34



Ax’s Theorem

Theorem (Ax 68, 71)

Let F /C/Q be a tower of fields. Suppose ∆ is a set of derivations of F

with kerF ∆ = C. Let y1, . . . , yn, z1, . . . , zn ∈ F be such that
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Let F /C/Q be a tower of fields. Suppose ∆ is a set of derivations of F

with kerF ∆ = C. Let y1, . . . , yn, z1, . . . , zn ∈ F be such that
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(1 ≤ i ≤ n, D ∈ ∆);
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1 Dyi =
Dzi

zi
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2 no nontrivial power product of the zi ’s is in C;
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Let F /C/Q be a tower of fields. Suppose ∆ is a set of derivations of F

with kerF ∆ = C. Let y1, . . . , yn, z1, . . . , zn ∈ F be such that

1 Dyi =
Dzi

zi
(1 ≤ i ≤ n, D ∈ ∆);and

2 no nontrivial power product of the zi ’s is in C;or

3 the yi ’s are Q-linearly independent modulo C.
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Ax’s Theorem

Theorem (Ax 68, 71)

Let F /C/Q be a tower of fields. Suppose ∆ is a set of derivations of F

with kerF ∆ = C. Let y1, . . . , yn, z1, . . . , zn ∈ F be such that

1 Dyi =
Dzi

zi
(1 ≤ i ≤ n, D ∈ ∆);and

2 no nontrivial power product of the zi ’s is in C;or

3 the yi ’s are Q-linearly independent modulo C.

Then

tdC C(y1, . . . , yn, z1, . . . , zn) ≥ n + rankF (Dyi )
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Arithmetic functions are simply complex sequences.
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111A indicator function of A ⊆N; 111 = (1, 1, . . .).

en = (0, . . . ,
n-th
1 , 0, . . .)

1112 = (1, 1, 0, 1, 0, 0, 0, 1, 0 . . .)
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α = (α, 0, 0, . . .)

They form a C-algebra (A,+, ∗) under pointwise addition (+) and
convolution product (∗):
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111A indicator function of A ⊆N; 111 = (1, 1, . . .).

en = (0, . . . ,
n-th
1 , 0, . . .)

1112 = (1, 1, 0, 1, 0, 0, 0, 1, 0 . . .)

α = (α, 0, 0, . . .)

They form a C-algebra (A,+, ∗) under pointwise addition (+) and
convolution product (∗):

f ∗ g(n) =
∑

d |n

f (d)g (n/d) =
∑

d1d2=n

f (d1)g(d2)
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∑
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Arithmetic Functions

Arithmetic functions are simply complex sequences.

111A indicator function of A ⊆N; 111 = (1, 1, . . .).

en = (0, . . . ,
n-th
1 , 0, . . .)

1112 = (1, 1, 0, 1, 0, 0, 0, 1, 0 . . .)

α = (α, 0, 0, . . .)

They form a C-algebra (A,+, ∗) under pointwise addition (+) and
convolution product (∗):

f ∗ g(n) =
∑

d |n

f (d)g (n/d) =
∑

d1d2=n

f (d1)g(d2)

1112(n) =
∑

d |n 1 = τ (n) (# of factors)

1112 ∗ 1112 = (1, 2, 0, 3, 0, 0, 0, 4, 0 . . .).
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supp f = {n ∈N : f (n) 6= 0}.
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Valuation

supp f = {n ∈N : f (n) 6= 0}.

For A ⊆N, [A] denotes the set of prime factors of A
1 supp111p = {pk : k ≥ 0} and [supp111p ] = {p}.
2 supp en = {n} and [supp en] = {p : p | n}.
3 Q ⊆ P, supp 1Q = [supp 1Q ] = Q.
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2 supp en = {n} and [supp en] = {p : p | n}.
3 Q ⊆ P, supp 1Q = [supp 1Q ] = Q.
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For A ⊆N, [A] denotes the set of prime factors of A
1 supp111p = {pk : k ≥ 0} and [supp111p ] = {p}.
2 supp en = {n} and [supp en] = {p : p | n}.
3 Q ⊆ P, supp 1Q = [supp 1Q ] = Q.

The order of f , v(f ), min(supp f ) if f 6= 0; and is ∞ if f = 0.

‖f ‖ = 1/v(f ) and ‖0‖ = 0 is a non-archemedean norm on A.
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Valuation

supp f = {n ∈N : f (n) 6= 0}.

For A ⊆N, [A] denotes the set of prime factors of A
1 supp111p = {pk : k ≥ 0} and [supp111p ] = {p}.
2 supp en = {n} and [supp en] = {p : p | n}.
3 Q ⊆ P, supp 1Q = [supp 1Q ] = Q.

The order of f , v(f ), min(supp f ) if f 6= 0; and is ∞ if f = 0.

‖f ‖ = 1/v(f ) and ‖0‖ = 0 is a non-archemedean norm on A.

In particular, ‖fg‖ = ‖f ‖‖g‖ hence A is an integral domain.

fn → f if ‖fn − f ‖ → 0.

∑

αkgk converges ⇐⇒ gk → 0 ⇐⇒ ‖g‖ < 1 ⇐⇒ g ∈ A0.
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Two Isomorphisms

(1) A is isomorphic to the ring of formal Dirichlet series via:

f ←→ F (s) =
∑

n≥1

f (n)

ns
.

Example: 111↔ ζ(s). More generally, 111A ↔ ζA(s).

(2) A is isomorphic to C[[tp : p prime]] via:
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Two Isomorphisms

(1) A is isomorphic to the ring of formal Dirichlet series via:

f ←→ F (s) =
∑

n≥1

f (n)

ns
.

Example: 111↔ ζ(s). More generally, 111A ↔ ζA(s).

(2) A is isomorphic to C[[tp : p prime]] via:

f ←→ F (ttt) =
∑

n≥1

f (n)
∏

p

t
vp(n)
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Two Isomorphisms

(1) A is isomorphic to the ring of formal Dirichlet series via:

f ←→ F (s) =
∑

n≥1

f (n)

ns
.

Example: 111↔ ζ(s). More generally, 111A ↔ ζA(s).

(2) A is isomorphic to C[[tp : p prime]] via:

f ←→ F (ttt) =
∑

n≥1

f (n)
∏

p

t
vp(n)
p

Example: e12 ↔ t2
2 t3.
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Two Isomorphisms

(1) A is isomorphic to the ring of formal Dirichlet series via:

f ←→ F (s) =
∑

n≥1

f (n)

ns
.

Example: 111↔ ζ(s). More generally, 111A ↔ ζA(s).

(2) A is isomorphic to C[[tp : p prime]] via:

f ←→ F (ttt) =
∑

n≥1

f (n)
∏

p

t
vp(n)
p

Example: e12 ↔ t2
2 t3. 1112

2 = 1 + 2t2 + 3t2
2 + · · ·
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Two Isomorphisms

(1) A is isomorphic to the ring of formal Dirichlet series via:

f ←→ F (s) =
∑

n≥1

f (n)

ns
.

Example: 111↔ ζ(s). More generally, 111A ↔ ζA(s).

(2) A is isomorphic to C[[tp : p prime]] via:

f ←→ F (ttt) =
∑

n≥1

f (n)
∏

p

t
vp(n)
p

Example: e12 ↔ t2
2 t3. 1112

2 = 1 + 2t2 + 3t2
2 + · · ·

(A,+, ∗) is a UFD. [Cashwell-Everett (59)]
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Derivations of A

A derivation of A is a C-linear map D from A to itself satisfying the
Leibniz rule: D(f ∗ g) = Df ∗ g + f ∗Dg .
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.
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Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 7 / 34



Derivations of A

A derivation of A is a C-linear map D from A to itself satisfying the
Leibniz rule: D(f ∗ g) = Df ∗ g + f ∗Dg .

1 log-derivation: ∂L ←→ −
d

ds
. (∂Lf )(n) = log(n)f (n).

2 For each prime p, the p-basic derivation: ∂p ←→
∂

∂tp
.
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Derivations of A

A derivation of A is a C-linear map D from A to itself satisfying the
Leibniz rule: D(f ∗ g) = Df ∗ g + f ∗Dg .

1 log-derivation: ∂L ←→ −
d

ds
. (∂Lf )(n) = log(n)f (n).

2 For each prime p, the p-basic derivation: ∂p ←→
∂

∂tp
.

(∂pf )(n) = vp(np)f (np).

3 ker ∂L = C.
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. (∂Lf )(n) = log(n)f (n).

2 For each prime p, the p-basic derivation: ∂p ←→
∂

∂tp
.

(∂pf )(n) = vp(np)f (np).

3 ker ∂L = C.

4 ∂pf = 0 ⇐⇒ p /∈ [supp f ]. Thus ker{∂p : p prime} = C.

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 7 / 34



Continuous Derivations

A derivation D of A is continuous if Dfn → Df whenever fn → f ,
equivalently if D preserves null sequences.

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 8 / 34



Continuous Derivations

A derivation D of A is continuous if Dfn → Df whenever fn → f ,
equivalently if D preserves null sequences.

∂L is continuous.

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 8 / 34



Continuous Derivations

A derivation D of A is continuous if Dfn → Df whenever fn → f ,
equivalently if D preserves null sequences.

∂L is continuous.

∂p is continuous, for each p.

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 8 / 34



Continuous Derivations

A derivation D of A is continuous if Dfn → Df whenever fn → f ,
equivalently if D preserves null sequences.

∂L is continuous.

∂p is continuous, for each p.

Fact (H. Shapiro): D is continuous if and only if Dep → 0.

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 8 / 34



Continuous Derivations

A derivation D of A is continuous if Dfn → Df whenever fn → f ,
equivalently if D preserves null sequences.

∂L is continuous.

∂p is continuous, for each p.

Fact (H. Shapiro): D is continuous if and only if Dep → 0. In fact, if
D is continuous,

D =
∑

p

Dep ∗ ∂p.
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Exp and Log

The map defined by:
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Exp and Log

The map defined by:

f 7−→ Exp(f ) :=
∞
∑

k=0

f k

k !
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is a continuous isomorphism between (A0,+) and (A1, ∗).
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is a continuous isomorphism between (A0,+) and (A1, ∗). We extend it
to the exponential map of A by
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The map defined by:

f 7−→ Exp(f ) :=
∞
∑

k=0

f k

k !

is a continuous isomorphism between (A0,+) and (A1, ∗). We extend it
to the exponential map of A by

Exp(f ) := exp(f (1)) ∗ Exp(f − f (1)).

Exp is not 1-to-1 on A.

However, it is an isomorphism between (AR,+) and (A+, ∗).

The inverse of this isomorphism, denoted by Log, is called the Rearick
logarithm.
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Continuous Derivations
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Continuous Derivations

Proposition

D(Exp(f )) = Exp(f ) ∗Df for any continuous derivation D.
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The kernel of any set of continuous derivations is invariant under Exp and

Log.
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Continuous Derivations

Proposition

D(Exp(f )) = Exp(f ) ∗Df for any continuous derivation D.

Corollary

The kernel of any set of continuous derivations is invariant under Exp and

Log.

Corollary

For any k and continuous derivations D1, . . . , Dn,

det(Dj fi ) = 0 ⇐⇒ det(Dj Expk fi ) = 0
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Ax’s Theorem for A
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Ax’s Theorem for A

Theorem (P)

Suppose C = kerF ∆ for some set of continuous derivations ∆ of A and

f1, . . . , fn ∈ A such that either

1 no non-trivial power product of Exp(f1), . . . , Exp(fn) is in C; or

2 the fi are Q-linearly independent modulo C.

Then

tdC C(f1, . . . , fn, Exp(f1), . . . , Exp(fn)) ≥ n + rankF (Dfi ).
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Suppose C = kerF ∆ for some set of continuous derivations ∆ of A and

f1, . . . , fn ∈ A such that either

1 no non-trivial power product of Exp(f1), . . . , Exp(fn) is in C; or

2 the fi are Q-linearly independent modulo C.

Then

tdC C(f1, . . . , fn, Exp(f1), . . . , Exp(fn)) ≥ n + rankF (Dfi ).

Proof.

Immediately follows from Ax’s Theorem and the previous proposition.
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Jacobian Criterion

Shapiro-Sparer’s Jacobian criterion is a key result for proving algebraic
independence of arithmetic functions.

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 12 / 34



Jacobian Criterion

Shapiro-Sparer’s Jacobian criterion is a key result for proving algebraic
independence of arithmetic functions.

Theorem (Shapiro-Sparer)

Suppose f1, . . . , fn ∈ A and ∆ = {D1, . . . , Dn} is a set of derivations of A
such that det (Dj fi ) 6= 0. Then

f1, . . . , fn

are algebraically independent over ker ∆.
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Jacobian Criterion

Shapiro-Sparer’s Jacobian criterion can be strengthened if the derivations
involved are continuous.

Theorem (P)

Suppose f1, . . . , fn ∈ A and ∆ = {D1, . . . , Dn} is a set of continuous

derivations of A such that det (Dj fi ) 6= 0. Then

Exp∗{f1, . . . , fn}

are algebraically independent over ker ∆.

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 12 / 34



Jacobian Criterion

Shapiro-Sparer’s Jacobian criterion can be strengthened if the derivations
involved are continuous.

Theorem (P)

Suppose f1, . . . , fn ∈ A and ∆ = {D1, . . . , Dn} is a set of continuous

derivations of A such that det (Dj fi ) 6= 0. Then

Exp∗{f1, . . . , fn}

are algebraically independent over ker ∆.

Proof.

The non-vanishing of Jacobian implies the fi ’s are Q-linearly independent
modulo C and that rank(Dj fi ) = n.
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Jacobian Criterion

Shapiro-Sparer’s Jacobian criterion can be strengthened if the derivations
involved are continuous.

Theorem (P)

Suppose f1, . . . , fn ∈ A and ∆ = {D1, . . . , Dn} is a set of continuous

derivations of A such that det (Dj fi ) 6= 0. Then

Exp∗{f1, . . . , fn}

are algebraically independent over ker ∆.

Proof.

The non-vanishing of Jacobian implies the fi ’s are Q-linearly independent
modulo C and that rank(Dj fi ) = n. Then repeat the argument.
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Applications

Theorem (P)

Suppose C = kerF ∆ for some set of continuous derivations ∆ of A. Then

for any f ∈ A+ \ ker ∆, and c1, . . . , cn ∈ ker ∆, Log f is transcendental

over C(f , f c1 , . . . , f cn).
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Applications

Theorem (P)

Suppose C = kerF ∆ for some set of continuous derivations ∆ of A. Then

for any f ∈ A+ \ ker ∆, and c1, . . . , cn ∈ ker ∆, Log f is transcendental

over C(f , f c1 , . . . , f cn).

Sketch of proof By induction on n. Since D0 Log f 6= 0 for some D0 ∈ ∆,

tdC C(Log f , f ) ≥ 1 + rank(D Log f )D∈∆ = 2.

For the induction step:

1 1 and the ci are Q-linearly dependent. Follows from the induction
hypothesis.

2 1 and the ci are Q-linearly independent. Then no nontrivial power
product of f , f ci is in C.
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Otherwise, for some ki ∈ Z not all zero,

f k0 f c1k1 . . . f cnkn = Exp((k0 + k1c1 · · ·+ kncn) Log f ) ∈ C ∩A = ker ∆.
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tdC C(Log f , ci Log f , f , f ci ) ≥ (n + 1) + rank(D Log f , ciD Log f )D∈∆.

Special Case: f = 111 and ∆ = {∂L}.
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f k0 f c1k1 . . . f cnkn = Exp((k0 + k1c1 · · ·+ kncn) Log f ) ∈ C ∩A = ker ∆.

And so

(k0 + k1c1 + · · ·+ kncn)D0(Log f ) = 0

contradicting the assumption. Thus

tdC C(Log f , ci Log f , f , f ci ) ≥ (n + 1) + rank(D Log f , ciD Log f )D∈∆.

Special Case: f = 111 and ∆ = {∂L}. We see that log ζ is algebraically
independent over C(ζ, ζc1 , . . . , ζcn) for any complex numbers c1, . . . , cn.
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Otherwise, for some ki ∈ Z not all zero,

f k0 f c1k1 . . . f cnkn = Exp((k0 + k1c1 · · ·+ kncn) Log f ) ∈ C ∩A = ker ∆.

And so

(k0 + k1c1 + · · ·+ kncn)D0(Log f ) = 0

contradicting the assumption. Thus

tdC C(Log f , ci Log f , f , f ci ) ≥ (n + 1) + rank(D Log f , ciD Log f )D∈∆.

Special Case: f = 111 and ∆ = {∂L}. We see that log ζ is algebraically
independent over C(ζ, ζc1 , . . . , ζcn) for any complex numbers c1, . . . , cn.
Generalizes a result of Shapiro-Sparer (85).
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Generalizations

Theorem (Shapiro-Sparer)

Suppose [supp f ] 6⊆
⋃

i∈I [supp gi ], then Exp∗{f } is algebraically

independent over C[gi : i ∈ I ].
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Generalizations

Theorem (Shapiro-Sparer)

Suppose [supp f ] 6⊆
⋃

i∈I [supp gi ], then Exp∗{f } is algebraically

independent over C[gi : i ∈ I ].

Proof.

Let p ∈ [supp f ] but not in the union of [supp gi ]. Then ∂pf 6= 0 and so
Exp∗{f } is algebraically independent over ker ∂p ⊇ C[gi : i ∈ I ].
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Let p ∈ [supp f ] but not in the union of [supp gi ]. Then ∂pf 6= 0 and so
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Corollary

S := {g ∈ A : [supp g ] is finite} is algebraically closed in A.
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Corollary

S := {g ∈ A : [supp g ] is finite} is algebraically closed in A.

111 is transcendental over S and hence over T . ζ(s) is transcendental
over the Dirichlet polynomials.
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Generalizations

Theorem (Shapiro-Sparer)

Suppose [supp f ] 6⊆
⋃

i∈I [supp gi ], then Exp∗{f } is algebraically

independent over C[gi : i ∈ I ].

Proof.

Let p ∈ [supp f ] but not in the union of [supp gi ]. Then ∂pf 6= 0 and so
Exp∗{f } is algebraically independent over ker ∂p ⊇ C[gi : i ∈ I ].

Corollary

S := {g ∈ A : [supp g ] is finite} is algebraically closed in A.

111 is transcendental over S and hence over T . ζ(s) is transcendental
over the Dirichlet polynomials.

T is not alg. closed, e.g. 1112 /∈ T but its inverse 1− e2 ∈ T .
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Generalizations

Theorem (P)

Let f1, . . . , fn ∈ A. Suppose D1, . . . , Dn are continuous derivations of A

such that fi

(

⋂

i<j ker Dj

)

\ ker Di . Then Exp∗{fff } alg. ind. over ker{DDD}.
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(

⋂
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)

\ ker Di . Then Exp∗{fff } alg. ind. over ker{DDD}.

Corollary

Suppose pj ∈ [supp fj ] \
⋃

i<j [supp fi ] for 1 ≤ i ≤ n, then Exp∗{fff } is alg.

ind. over ker{∂p1 , . . . , ∂pn}.
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i<j [supp fi ] for 1 ≤ i ≤ n, then Exp∗{fff } is alg.

ind. over ker{∂p1 , . . . , ∂pn}.

Example: Exp∗ ({ep : p ∈ P} ∪ {1P}) is alg. ind. over C.

Example: For f , g ∈ A \C, with [supp f ] 6= [supp g ], then f , g are alg.
ind. over C.
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Generalizations

Theorem (P)

Let f1, . . . , fn ∈ A. Suppose D1, . . . , Dn are continuous derivations of A

such that fi

(

⋂

i<j ker Dj

)

\ ker Di . Then Exp∗{fff } alg. ind. over ker{DDD}.

Corollary

Suppose pj ∈ [supp fj ] \
⋃

i<j [supp fi ] for 1 ≤ i ≤ n, then Exp∗{fff } is alg.

ind. over ker{∂p1 , . . . , ∂pn}.

Example: Exp∗ ({ep : p ∈ P} ∪ {1P}) is alg. ind. over C.

Example: For f , g ∈ A \C, with [supp f ] 6= [supp g ], then f , g are alg.
ind. over C. A result of Ruengsinsub, Laohakosol, Udomkavanich (05).
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Generalizations

Theorem (Komatsu, Laohakosol, Ruengsinsub (11))

For any f1, . . . , fn ∈ A, if there exits p1, . . . , pn such that

∑

k1··· ,kn=m





n
∏

j=1

vpj
(kjpj)



 det (fi (kjpj)) 6= 0

for some m ∈N, then Exp∗{fff } is alg. ind. over ker{∂p1 , . . . , ∂pn}.
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The left side of the equation above is the value of det(∂pj
fi ) at m.
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For any f1, . . . , fn ∈ A, if there exits p1, . . . , pn such that

∑

k1··· ,kn=m





n
∏

j=1

vpj
(kjpj)



 det (fi (kjpj)) 6= 0

for some m ∈N, then Exp∗{fff } is alg. ind. over ker{∂p1 , . . . , ∂pn}.

Proof.

The left side of the equation above is the value of det(∂pj
fi ) at m.

When m = 1, we get

Corollary

If det (fi (pj)) 6= 0 then Exp∗{fff }is alg. ind. over ker{∂p1 , . . . , ∂pn}.
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Caution I

One cannot replace the primes in the above corollary by arbitrary
integers. (Reason: The derivations in Ax’s Theorem cannot be
replaced by linear differential operators)
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E.g. f1 = 1112, f2 = f1 ∗ f1. then

det
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1 2
1 3

)

= 1 6= 0

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 18 / 34



Caution I

One cannot replace the primes in the above corollary by arbitrary
integers. (Reason: The derivations in Ax’s Theorem cannot be
replaced by linear differential operators)

E.g. f1 = 1112, f2 = f1 ∗ f1. then

det

(

f1(2) f2(2)
f1(4) f2(4)

)

= det

(

1 2
1 3

)

= 1 6= 0

In particular, f needs not be hyper-transcendental even if supp f is
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One cannot replace the primes in the above corollary by arbitrary
integers. (Reason: The derivations in Ax’s Theorem cannot be
replaced by linear differential operators)

E.g. f1 = 1112, f2 = f1 ∗ f1. then

det

(

f1(2) f2(2)
f1(4) f2(4)

)

= det

(

1 2
1 3

)

= 1 6= 0

In particular, f needs not be hyper-transcendental even if supp f is
infinite. E.g. 1112 satisfies:

∂LX = log(2)(X 2 −X ).
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Generalizations

Example

Exp∗{111p, 111P : p ∈ P}. is alg. ind. over C.
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τ∗ = (111− 1)2 and 111P are alg. ind. over C. Since ∂p111p = 1, for every p,

det

(

∂2τ∗ ∂3τ∗

∂2111P ∂3111P

)

= ∂2τ∗ − ∂3τ∗

and its value at 4 is 2 6= 0.
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Generalizations

Example

Exp∗{111p, 111P : p ∈ P}. is alg. ind. over C.

Example

τ∗ = (111− 1)2 and 111P are alg. ind. over C. Since ∂p111p = 1, for every p,

det

(

∂2τ∗ ∂3τ∗

∂2111P ∂3111P

)

= ∂2τ∗ − ∂3τ∗

and its value at 4 is 2 6= 0. Note that this cannot be deduced from the
previous corollary since τ∗ vanishes at all primes.
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Generalizations

Theorem (P)

Let f1, . . . , fn ∈ A and D1, . . . , Dn be continuous derivations. For

1 ≤ j ≤ n, suppose

mj ≤ min{v(Dj fi ) : 1 ≤ i ≤ n}

and det (Dj fi (mj)) 6= 0 then Exp∗{fff } is alg. ind. over ker{Dj}.
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Generalizations

Theorem (P)

Let f1, . . . , fn ∈ A and D1, . . . , Dn be continuous derivations. For

1 ≤ j ≤ n, suppose

mj ≤ min{v(Dj fi ) : 1 ≤ i ≤ n}

and det (Dj fi (mj)) 6= 0 then Exp∗{fff } is alg. ind. over ker{Dj}.

Proposition (P)

Let fij ∈ A (1 ≤ i , j ≤ n). Suppose ai , bi (1 ≤ i ≤ n) are positive reals

such that aibj ≤ v(fij) for all 1 ≤ i , j ≤ n. Then

det(fij)

(

n
∏

k=1

akbk

)

= det (fij(aibj)) .
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Orders

Lemma (Shapiro-Sparer,P)

Suppose f1, . . . , fn ∈ A \ {0} with det
(

∂pj
fi

)

= 0 for some choice of

p1, . . . , pn. Then det
(

vpj
(v(fi ))

)

= 0.
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Proof.

Check that mi := v(fi ) ≤ v(∂pj
fi )pj .
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Lemma (Shapiro-Sparer,P)

Suppose f1, . . . , fn ∈ A \ {0} with det
(

∂pj
fi

)

= 0 for some choice of

p1, . . . , pn. Then det
(

vpj
(v(fi ))

)

= 0.

Proof.

Check that mi := v(fi ) ≤ v(∂pj
fi )pj . So by taking ai = mi and bj = 1/pj

in the previous prop., we have

det
(

∂pj
fi

)

(

n
∏

k=1

mk

pk

)

=

(

n
∏

i=1

fi (mi )

)

det
(

vpj
(mi )

)

.
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Orders

Theorem (R-L-U (05))

Suppose W ⊂ A \ {0} with the property that the orders of its members

are pairwise relatively prime then W is alg. ind. over C.
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Orders

Theorem (R-L-U (05), P)

Suppose W ⊂ A \ {0} with the property that no nontrivial power product

of the orders of its members equals 1 then Exp∗ W is alg. ind. over C.
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Orders

Theorem (R-L-U (05), P)

Suppose W ⊂ A \ {0} with the property that no nontrivial power product

of the orders of its members equals 1 then Exp∗ W is alg. ind. over C.

Example

For N ⊂N, Exp∗{en : n ∈ N} is alg. ind. over C if and only if no
nontrivial product of elements of N equals 1.
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Orders

Proof.

Suppose Exp∗{fff } is alg. dependent over C for some f1, . . . , fn ∈W .
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Suppose Exp∗{fff } is alg. dependent over C for some f1, . . . , fn ∈W . Then

the lemma implies det
(

vpj
(v(fi ))

)

= 0 for each choice of the pj ’s.
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the lemma implies det
(

vpj
(v(fi ))

)

= 0 for each choice of the pj ’s.That

means the vectors,

(vp(v(fi )))p (1 ≤ i ≤ n)

are Q-lin.dep.
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Orders

Proof.

Suppose Exp∗{fff } is alg. dependent over C for some f1, . . . , fn ∈W . Then

the lemma implies det
(

vpj
(v(fi ))

)

= 0 for each choice of the pj ’s.That

means the vectors,

(vp(v(fi )))p (1 ≤ i ≤ n)

are Q-lin.dep. and so for some k1, . . . , kn ∈ Z not all 0,

0 =
n
∑

i=1

kivp(vfi ) = vp

(

n
∏

i=1

(v(fi ))
ki

)

for all p.
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The operator mg
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The operator mg

For g ∈ A, consider the (continuous) operator mg from A to itself:

mg (f ) = g · f (pointwise product)

mg is a derivation iff g is completely additive, e.g. mlog = ∂L.

mg is a nonzero C-alg. homo. iff g is completely multiplicative. In
addition, if g is nowhere vanishing, then mg is an automorphism of A.

E.g. mIII where III is the identity map of N. More generally, for α ∈ C,
mnα(f )(n) := nαf (n) is an automorphism of A.
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mg -transcendence

An arithmetic function f is mg -transcendental over B ⊆ A if
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mg -transcendence

An arithmetic function f is mg -transcendental over B ⊆ A if

{mi
g f : i ∈ I},

where I = N ∪ {0} if mg is not invertible; otherwise I = Z, is algberically
independent over B.
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mg -transcendence

An arithmetic function f is mg -transcendental over B ⊆ A if

{mi
g f : i ∈ I},

where I = N ∪ {0} if mg is not invertible; otherwise I = Z, is algberically
independent over B.

Theorem (P)

Let f , g ∈ A. Suppose p1, . . . , pn ∈ [supp f ] such that g(v(∂pj
f )pj)

(1 ≤ j ≤ n) are distinct and nonzero. Then for any k ≥ 0,

Exp∗{mi
g f : k ≤ i ≤ k + n− 1}

is alg. ind. over ker{∂pj
: 1 ≤ j ≤ n}. Moreover, if g is nowhere vanishing

then the same is true for any k ∈ Z.
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mg -transcendence

Proof.

Let fi = m
i
g f .
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mg -transcendence

Proof.

Let fi = m
i
g f . One checks that mj := v(∂pj

f ) ≤ v(∂pj
fi ) for all

k ≤ i ≤ k + n− 1.
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mg -transcendence

Proof.

Let fi = m
i
g f . One checks that mj := v(∂pj

f ) ≤ v(∂pj
fi ) for all

k ≤ i ≤ k + n− 1. So it suffices to show that

det
(

∂pj
fi (mj)

)

= det
(

vpj
(mjpj)g(mjpj)

i f (mjpj)
)

= det
(

g(mjpj)
i
)

∏

j

∂pj
f (mj)

does not vanish.
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mg -transcendence

Proof.

Let fi = m
i
g f . One checks that mj := v(∂pj

f ) ≤ v(∂pj
fi ) for all

k ≤ i ≤ k + n− 1. So it suffices to show that

det
(

∂pj
fi (mj)

)

= det
(

vpj
(mjpj)g(mjpj)

i f (mjpj)
)

= det
(

g(mjpj)
i
)

∏

j

∂pj
f (mj)

does not vanish. But this is clear since the last determinant is
Vandermonde.
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Caution II

The condition “g(v(∂pj
f )pj) are distinct” in the previous theorem is

necessary.
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Otherwise, by taking g = log we can conclude that f does not satisfy
any ∂L-algebraic equation of order |[supp f ]| − 1.
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Caution II

The condition “g(v(∂pj
f )pj) are distinct” in the previous theorem is

necessary.

Otherwise, by taking g = log we can conclude that f does not satisfy
any ∂L-algebraic equation of order |[supp f ]| − 1.

However, that is not true for en when n has at least two distinct
prime factors, since en satisfies the differential equation:

∂LX − log(n)X = 0.
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mg -transcendence

For I ⊆ P, ∆I := {∂p : p ∈ I}.
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mg -transcendence

For I ⊆ P, ∆I := {∂p : p ∈ I}.

Theorem (P)

Suppose f ∈ A \ S and g is eventually 1-1. Then E := Exp∗{mi
g f : i ≥ 0}

is alg. ind. over ker ∆I for any infinite I ⊆ [supp f ] and hence over S. In

addition if g is nowhere vanishing, then i can range through Z.
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g f : i ≥ 0}

is alg. ind. over ker ∆I for any infinite I ⊆ [supp f ] and hence over S. In

addition if g is nowhere vanishing, then i can range through Z.

Proof.

For some n0 ∈N, g is 1-1 and nonvanishing on {n ≥ n0}.
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Suppose f ∈ A \ S and g is eventually 1-1. Then E := Exp∗{mi
g f : i ≥ 0}

is alg. ind. over ker ∆I for any infinite I ⊆ [supp f ] and hence over S. In

addition if g is nowhere vanishing, then i can range through Z.

Proof.

For some n0 ∈N, g is 1-1 and nonvanishing on {n ≥ n0}. Choose an
infinite sequence from I inductively as follows: Pick n0 < p1 ∈ I. For
j ≥ 1; choose pj+1 ∈ I such that pj+1 > v(∂pj

f )pj .
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g f : i ≥ 0}

is alg. ind. over ker ∆I for any infinite I ⊆ [supp f ] and hence over S. In

addition if g is nowhere vanishing, then i can range through Z.

Proof.

For some n0 ∈N, g is 1-1 and nonvanishing on {n ≥ n0}. Choose an
infinite sequence from I inductively as follows: Pick n0 < p1 ∈ I. For
j ≥ 1; choose pj+1 ∈ I such that pj+1 > v(∂pj

f )pj . Then
g(v(∂pj

f )pj), (j ≥ 0) are all distinct and nonzero
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mg -transcendence

For I ⊆ P, ∆I := {∂p : p ∈ I}.

Theorem (P)

Suppose f ∈ A \ S and g is eventually 1-1. Then E := Exp∗{mi
g f : i ≥ 0}

is alg. ind. over ker ∆I for any infinite I ⊆ [supp f ] and hence over S. In

addition if g is nowhere vanishing, then i can range through Z.

Proof.

For some n0 ∈N, g is 1-1 and nonvanishing on {n ≥ n0}. Choose an
infinite sequence from I inductively as follows: Pick n0 < p1 ∈ I. For
j ≥ 1; choose pj+1 ∈ I such that pj+1 > v(∂pj

f )pj . Then
g(v(∂pj

f )pj), (j ≥ 0) are all distinct and nonzero, so according to the
previous theorem every finite subset of E is alg. ind. over ker ∆J ⊇ ker ∆I

for some finite J ⊂ I.
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Examples
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Examples

Take g = log and f = 111, we conclude that 111 is ∂L-transcendental
(better known as hyper-transcendental) over S, i.e. ζ(s) is
transcendental over C and hence over C(s) by eliminating s.
(Hilbert, Stadigh).
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Carlitz (52) showed that IIIk := m
k
III (111) (k ≥ 0), (i.e. the functions

n 7→ nk) are alg. ind. over C.

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 29 / 34



Examples

Take g = log and f = 111, we conclude that 111 is ∂L-transcendental
(better known as hyper-transcendental) over S, i.e. ζ(s) is
transcendental over C and hence over C(s) by eliminating s.
(Hilbert, Stadigh).

Carlitz (52) showed that IIIk := m
k
III (111) (k ≥ 0), (i.e. the functions

n 7→ nk) are alg. ind. over C.

Shapiro-Sparer showed that IIIk (k ∈ Z) are alg. ind. over the kernel
of any infinite set of basic derivations, hence over S.

Wai Yan Pong (CSUDH) Alg. Ind. of Arith. Funct. Mar 20th, 2015 29 / 34



Examples

Take g = log and f = 111, we conclude that 111 is ∂L-transcendental
(better known as hyper-transcendental) over S, i.e. ζ(s) is
transcendental over C and hence over C(s) by eliminating s.
(Hilbert, Stadigh).

Carlitz (52) showed that IIIk := m
k
III (111) (k ≥ 0), (i.e. the functions

n 7→ nk) are alg. ind. over C.

Shapiro-Sparer showed that IIIk (k ∈ Z) are alg. ind. over the kernel
of any infinite set of basic derivations, hence over S.

By taking g = log and f = 111, we have Log IIIk , IIIk (k ∈ Z) are alg.
ind. over any infinite set of basic derivations, hence over S.
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Take g = log and f = 111, we conclude that 111 is ∂L-transcendental
(better known as hyper-transcendental) over S, i.e. ζ(s) is
transcendental over C and hence over C(s) by eliminating s.
(Hilbert, Stadigh).

Carlitz (52) showed that IIIk := m
k
III (111) (k ≥ 0), (i.e. the functions

n 7→ nk) are alg. ind. over C.

Shapiro-Sparer showed that IIIk (k ∈ Z) are alg. ind. over the kernel
of any infinite set of basic derivations, hence over S.

By taking g = log and f = 111, we have Log IIIk , IIIk (k ∈ Z) are alg.
ind. over any infinite set of basic derivations, hence over S.

In fact, g 〈k〉(k ≥ 0) are alg. ind. over C if g(P) is infinite; and over S
if g(I) is infinite for any infinite I ⊆ P. E.g. σ〈k〉 are alg. ind. over S.
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Differential-Difference transcendence

Theorem (Shapiro-Sparer (85))

For any sequence (αi ) of complex numbers with distinct real parts, ,

{mαi ∂
j
L111 : i , j ≥ 0}

is algebraically independence over the ker ∆I for any infinite I ⊆ P.
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Differential-Difference transcendence

Theorem (Shapiro-Sparer (85), R-L-U (05))

For any sequence (αi ) of complex numbers with distinct real parts, and

any f supported at infinitely many primes,

{mαi ∂
j
Lf : i , j ≥ 0}

is algebraically independence over the ker ∆I for any infinite I ⊆ P.
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Differential-Difference transcendence

Theorem (Shapiro-Sparer (85), R-L-U (05), P (15))

For any sequence (αi ) of complex numbers with distinct real parts, and

any f ∈ A \ S,

{mαi ∂
j
Lf : i , j ≥ 0}

is algebraically independence over the ker ∆I for any infinite I ⊆ P.

Ideas.

Let the real part of αi be increasing. Given an infinite I ⊆ [supp f ], choose
an increasing sequence (puv )(u,v)∈L from I such that each term is
sufficiently larger than the previous term to achieve

det
(

(muv puv )
αi (log(muv puv ))

j
)

6= 0
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Applications

Ostrowski (20): ζ(s) does not satisfy any nontrivial algebraic
differential-difference equation over C(s).
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Morgan Ward (54): If (Un) is a “non-degenerate” 2nd linear integral
recurrence, then {Un} is not finitely generated.
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The fibonacci (Lucas, . . . ) zeta function does not satisfy any
nontrivial algebraic differential-difference equation over C(s).
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Applications

Ostrowski (20): ζ(s) does not satisfy any nontrivial algebraic
differential-difference equation over C(s).

Take m
αi ∂

j
L111←→ (−1)jζ(j)(s − αi ). Ostrowski’s result follows.

Morgan Ward (54): If (Un) is a “non-degenerate” 2nd linear integral
recurrence, then {Un} is not finitely generated.

The fibonacci (Lucas, . . . ) zeta function does not satisfy any
nontrivial algebraic differential-difference equation over C(s).

The same is true with “algebraic” replaced by “holomorphic” using a
theorem of Axel Reich (84). Steuding (08) (Fibonacci), Komatsu (09)
(Lucas).
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Non-continuous derivation?

Any non-continuous derivation of A?
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Non-continuous derivation?

Any non-continuous derivation of A? I don’t know.

Any derivation is continuous with any I-adic topology.

But the norm topology is not A0-adic, e.g. (ep) is null but not even
in A2

0.

Shapiro (72) constructed a non-zero D derivation of F that kill every
en. Since F is the fraction field of A, D|A cannot be zeroand so it
cannot be continuous since the en generate A topologically.

However, it is unclear to us that D|A maps A into itself.
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Linear Independence

K-L-R (12): f1, · · · , fn ∈ A is linearly independent over C iff
W∂L

(f1, . . . , fn) 6= 0.
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Linear Independence

K-L-R (12): f1, · · · , fn ∈ A is linearly independent over C iff
W∂L

(f1, . . . , fn) 6= 0.

Their proof involves formulas of values of Wronskian.

We give a softer proof using: f1, . . . , fn in a differential field (F , D) is
linearly independent over kerF D iff WD(fff ) 6= 0.

A subtle point: Need to show that kerF ∂L = C.

e.g. ker ∂Ω = C but ep/eq ∈ kerF ∂Ω.
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