A GENERALIZATION OF ROSENFELD'S LEMMA

Sally Morrison October 22, 2005

0. Terminology and Notation. Throughout this talk, k is a differential field of characteristic zero under a set $\Delta = \{\delta_1, \ldots, \delta_m\}$ of commuting derivations, and $k\{y_1, \ldots, y_n\}$ is the differential polynomial ring in n differential indeterminates over k. We denote by Θ the set of derivative operators generated by Δ : that is, Θ is the free commutative monoid generated by $\delta_1, \ldots, \delta_m$, so that an element of Θ has form $\delta_1^{k_1} \delta_2^{k_2} \ldots \delta_m^{k_m}$. Put

$$\Theta Y = \{\theta y_i | \theta \in \Theta, 1 < i < n\}.$$

Then ΘY is algebraically independent over k, $k\{y_1, \ldots, y_n\}$ and $k[\Theta Y]$ are equal as algebras, and for each i $(1 \le i \le n)$ and each $\delta \in \Delta$, $\delta(\theta y_i) = (\delta \theta) y_i$.

We fix a differential ranking of ΘY ; this means roughly that the set

$$\{u^k : u \in \Theta Y, k \in \mathbb{N}\}$$

has been well-ordered in a manner compatible with the derivation.

For each $f \in k\{y_1, \ldots, y_n\} \setminus k$, the <u>leader</u> of f, denoted u_f , is the highest ranked element of ΘY that appears in f, and d_f is the highest degree to which u_f appears in f. Thus we may write

$$f = I_f u_f^{d_f} + T_f,$$

where $deg_{u_f}(T_f) < d_f$ and where u_f does not appear in I_f . The polynomial I_f is called the [initial] of f, and the polynomial $S_f := \partial f/\partial u_f$ is called the [separant] of f. If θ is in $\Theta \setminus \{1\}$, then θf is linear in its leader $u_{\theta f}$, which is equal to θu_f ; and $I_{\theta f} = S_{\theta f} = S_f$, whence

$$\theta f = S_f \theta u_f + T_{\theta f},$$

where θu does not appear in S_f or in $T_{\theta f}$.

Given a subset P and a multiplicative subset M of $k\{y_1, \ldots, y_n\}$, we denote by [P] and $\{P\}$ the differential ideal and the radical differential ideal, respectively,

generated by P. The ideal $[P]: M^{\infty}$ is the contraction of the differential ideal generated by P in the localized ring $M^{-1}k\{y_1,\ldots,y_n\}$. That is,

$$[P]: M^{\infty} = \{g \in k\{y_1, \dots, y_n\} : mg \in [P] \text{ for some } m \in M\}$$

1. Rosenfeld's Lemma.

Given a finite subset P of $k\{y_1, \ldots, y_n\}$, we are interested in ways of "computing" $\{P\}$ it in various senses. A crucial step in any such computation is to reduce the problem to a similar problem for a finitely generated ideal in a polynomial ring in finitely many variables. The vehicle for doing so in the partial differential case is a result known as Rosenfeld's Lemma.

Rosenfeld's Lemma. Let A be a coherent autoreduced subset of the differential polynomial ring $k\{y_1,\ldots,y_n\}$, and let $g\in[A]:H_A^\infty$. If g is partially reduced with respect to A, then $g\in(A):H_A^\infty$.

The practical contribution of Rosenfeld's lemma to computational mathematics is suggested by the following equivalent statement: Let A be a coherent autoreduced subset. Let U be any subset of ΘY that contains the variables appearing A but no proper derivatives of the leaders of the elements of A. Then

$$[A]: H_A^{\infty} \cap k[U] = (A): H_A^{\infty}.$$

<u>Comment</u>. The fact that A is *autoreduced* means that it is "differentially triangular and reduced" in the following sense: the leaders of the elements of A are all distinct, no proper derivative of a leader of an element of A appears in any other element of A, and, should the leader of an element of A appear somewhere in another element of A, it does so to a lower degree.

The fact that g is partially reduced with respect to A means that no proper derivative of an element of A appears in g.

Of course ΘA , which is the set we're really concerned with, need *not* be triangular-not, at least, in the partial case. We'll define *coherence* later. It will turn out to substitute for the lack of triangularity of $\Theta(A)$

Our generalization of Rosenfeld's Lemma will involve modifying each of the three hypotheses *autoreduced*, *partially reduced*, and *coherent*.

Example. Put a differential ranking on $k\{u, v, w\}$ in any way such that $u < \delta_1 w$ and $v < \delta_2 w$. Put

$$A = \{f_1, f_2\} = \{\delta_1 w - u, \delta_2 w - v\}.$$

Clearly A is autoreduced. Of course ΘA is not triangular. For example, the two differential polynomials

$$\delta_2 f_1 = \delta_1 \delta_2 w - \delta_2 u$$
$$\delta_1 f_2 = \delta_1 \delta_2 w - \delta_1 v$$

have the same leader. Furthermore, letting U be the set consisting of the derivatives of the variables of order less than 2, we see that the "integrability condition" $\delta_2 f_1 - \delta_1 f_2 = \delta_1 v - \delta_2 u$ is in $[A]: H_A^{\infty} \cap k[U]$ but it is *not* in $(A): H_A^{\infty}$. This is NOT GOOD.

Interlude. What is an "integrability" or "compatibility" condition anyway?

2. Generalization of partially reduced and autoreduced. Let P be a finite subset of $k\{y_1, \ldots, y_n\} \setminus k$.

<u>Definition</u>. g is <u>semi-reduced</u> with respect to P if no leader of an element of $\Theta P \setminus P$ appears in g.

Remark. In the case that P is (partially) autoreduced, "semi-reduced" is equivalent to "partially reduced", although in general it is a weaker condition.

Example. In $k\{y\}$, let $P = \{y, \delta y\}$, $g = \delta y$. Then g is semi-reduced but not partially reduced with respect to P.

<u>Definition</u>. A subset P of $k\{y_1, \ldots, y_n\}$ is Δ -complete if each element of P is semi-reduced with respect to P.

That is: if $f, g \in P$ and if θu_f appears in g, then θf is itself already in P.

<u>Proposition.</u> If P is Δ -complete, then every element of H_P is semi-reduced with respect to P.

<u>Proof.</u> Let $p \in P$. No leader of an element of $\Theta P \setminus P$ appears in p, so certainly such a leader cannot appear in I_p or S_p .

3. Computing the Δ -completion.

Let $P \subset k\{y_1, \ldots, y_n\} \setminus k$, and let $F \subset \Theta P$. There is a smallest Δ -complete set $Comp^{\Delta}(F)$ such that

$$F \subset Comp^{\Delta}(F) \subset \Theta(F),$$

whence

$$[F] = [Comp^{\Delta}(F)]$$
 and $H_F = H_{Comp^{\Delta}(F)}$.

 $Comp^{\Delta}(F)$ and be computed by the following algorithm.

Input: A finite subset F of ΘP Output: $C = Comp^{\Delta}(F)$ A := FREPEAT $S := \Theta F \setminus A$ $B := \emptyset$ $FOR each <math>a \in A \text{ and } s \in S$ $\text{IF } u_s \text{ appears in } a \text{ THEN } B = B \cup \{s\}$ $A := A \cup B$ UNTIL $B = \emptyset$.

In short, if A is not Δ -complete, take any offending θa and replace A by $A \cup \{\theta a\}$.

It is easy to see $Comp^{\Delta}(F)$ exists and that the algorithm does the right thing, but we must show that it terminates.

Example. Let $k\{u, y, z\}$ be the ordinary differential polynomial with derivation δ , and put an elimination ranking on $k\{u, y, z\}$ so that for all i, j, k we have

$$\delta^i u < \delta^j y < \delta^k z.$$

Denoting derivatives by subscripts (e.g. $\delta^2 u = u_2$), let

$$F = P = \{u, y + u_3, z + y + y_2, z_1\}$$

Denote by A_i and B_i the values of A and B after the ith iteration. From the algorithm we obtain

$$B_{1} = \{u_{3}, y_{2} + u_{5}, \boxed{z_{1}} + y_{1} + y_{3}\}$$

$$B_{2} = \{u_{5}, y_{1} + u_{4}, \boxed{y_{3}} + u_{6}\}$$

$$B_{3} = \{u_{4}, \boxed{u_{6}}\}$$

$$B_{4} = \emptyset.$$

Thus

$$Comp^{\Delta}(P) = P \cup B_1 \cup B_2 \cup B_3.$$

<u>PROOF OF TERMINATION</u>. Denote by A_i and B_i the values of A and B after the ith iteration. Then $A_0 = F$ and $B_0 = \emptyset$. For $i \ge 1$, we have

$$B_i = \{ s \in \Theta(F) \setminus A_{i-1} : u_s \text{ appears in } A_{i-1} \}$$

 $A_i = A_{i-1} \cup B_i$.

<u>Lemma</u>. Let $i \geq 2$ and let $s \in B_i$. Then

- (a) u_s does not appear in any element of A_{i-2} .
- (b) u_s appears in some element of B_{i-1} .
- (c) u_s is not the leader of any element of B_{i-1} .

<u>Proof.</u> Let $s \in \Theta(F) \setminus F$ and suppose that u_s appears in an element of A_{i-2} . Using in succession the definitions of B_{i-1} , A_{i-1} and B_i , we have:

$$u_s$$
 appears in an element of $A_{i-2} \Rightarrow s \in A_{i-2} \cup B_{i-1}$
 $\Rightarrow s \in A_{i-1}$
 $\Rightarrow s \notin B_i$.

Thus (a) holds. (b) follows immediately, since, by definition of B_i , u_s appears in an element of $A_{i-1} = A_{i-2} \cup B_{i-1}$. Finally, (c) follows from (a) and the definition of B_{i-1} .

Now let m_i be an element of B_i ($i \ge 2$) of maximum rank. By parts (b) and (c) of the Lemma, u_{m_i} appears in an element b_{i-1} of B_{i-1} , and $u_{m_i} \ne u_{b_{i-1}}$, whence $u_{m_i} < u_{b_{i-1}} \le u_{m_{i-1}}$.

Thus $(u_{m_i})_{i\geq 1}$ is a strictly decreasing sequence. So $B_i=\emptyset$ for sufficiently large $i\in\mathbb{N}$, and the algorithm terminates.

4. Coherence.

Let A be an autoreduced subset of $k\{y_1, \ldots, y_n\}$, and let H_A be the multiplicative subset generated by the initials and separants of the elements of A.

Rosenfeld defines coherence as follows:

Definition.

1. Let $f, f' \in A$. If u_f and $u_{f'}$ are derivatives of the same differential indeterminate, there is a smallest common derivative, $u_{f,f'}$ of u_f and $u_{f'}$. Let θf and $\theta' f'$ be the unique derivatives of f and f' such that $u_{f,f'} = u_{\theta f} = u_{\theta' f'}$. The S^{Δ} -polynomial of f and f' is

$$S^{\Delta}(f, f') = S_{f'}\theta f - S_f\theta' f'$$

2. The set A is coherent if

$$S^{\Delta}(f, f') \in \Theta(A)_{(u_{f f'})} : H_A^{\infty}$$

whenever $f, f' \in \Theta A$.

Note that $u_{f,f'}$ always gets eliminated—that is, it doesn't appear in $S^{\Delta}(f,f')$, since

$$S^{\Delta}(f, f') = S_{f'}(S_f u_{f, f'} + T_{\theta f}) - S_f(S'_f u_{f, f'} + T_{\theta' f'})$$

= $S_{f'} T_{\Theta f} - S_f T_{\theta' f'}$

Thus, putting $U = \Theta(Y)_{(u_{f,f'})}$, we have

$$S^{\Delta}(f, f') \in [A] : H_A^{\infty} \cap k[U].$$

To say that A is coherent means that also $S^{\Delta}(f, f')$ is in the (in general smaller) ideal $(\Theta(A)_{(u_{f,f'})}): H^{\infty}$ of k[U].

Example. Put a differential ranking on $k\{u, v, w\}$ in any way such that $u < \delta_1 w$ and $v < \delta_2 w$. Put

$$A = \{f_1, f_2\} = \{ \delta_1 w - u, \delta_2 w - v \}.$$

We have $S^{\Delta}(f, f') = \delta_2 f - \delta_1 f' = \delta_1 v - \delta_1 u \notin (A)_{(\delta_1 \delta_2 w)}$, so A is not coherent.

Rosenfeld's Lemma again. Let U be any subset of ΘY that contains the variables appearing A but no proper derivatives of the leaders of the elements of A. Then

$$[A]: H_A^{\infty} \cap k[U] = (A): H_A^{\infty}.$$

Roughly speaking, Rosenfeld's Lemma says that <u>all</u> "integrability" conditions are generated by the finitely many S^{Δ} -polynomials.

5. Generalization of Coherence.

Let P be a finite subset of $k\{y_1,\ldots,y_n\}$, let M be a multiplicative subset of $k\{y_1,\ldots,y_n\}$, and assume that $H_P\subset M$

<u>Definition</u>. Let $A \subset \Theta P \setminus P$. The set A is <u>\Delta</u>-coherent relative to P and M if

$$S^{\Delta}(f, f') \in (\Theta P)_{(u_{f, f'})} : M^{\infty}$$

whenever $f, f' \in \Theta A$.

<u>Proposition.</u> In the above notation, A is Δ -coherent relative to P and M if and only if

$$S^{\Delta}(f, f') \in (\Theta P)_{(u_{f, f'})} : M^{\infty}$$

whenever $f, f' \in A$.

So determining whether A is relatively Δ -coherent requires only a finite number of computations. Given A, furthermore, there is an algorithm to compute a set $Coh_M(A)$ and a multiplicative set N containing M such that $A \subset Coh_M(A) \subset \Theta P \setminus P$ and $Coh_M(A)$ is coherent relative to P and N.

<u>'Triangulation' Lemma.</u> Let $A \subset \Theta(P) \setminus P$, and suppose that A is Δ -coherent relative to P and M. Let $g \in A$ and suppose that

$$g = \sum_{i=1}^{r} g_i \theta_i p_i,$$

where $\theta_i p_i \in A$ and $u_{\theta_i p_i} = v$ $(1 \le i \le r)$. Then $g \in (\theta_r p_r, \Theta(P)_{(v)}) : M^{\infty}$.

<u>Proof.</u> For each i $(1 \le i \le r)$ we have

$$S^{\Delta}(\theta_i p_i, \theta_r p_r) = S_r \theta_i p_i - S_i \theta_r p_r,$$

whence

$$S_r \theta_i p_i = S^{\Delta}(\theta_i p_i, \theta_r p_r) + S_i \theta_r p_r$$

 $\in (A_{(v)}, \theta_r p_r).$

Since $S_r \in M$,

$$g \in (\Theta(P)_{(v)}, \theta p_r) : M^{\infty}.$$

6. Generalization of Rosenfeld's Lemma.

<u>The Problem</u>. Let $P \subset k\{y_1, \ldots, y_n\}$ and let M be a multiplicative set containing S_P . Suppose that $\Theta P \setminus P$ is Δ -coherent relative to P and M. I want to find another finite subset C of $k\{y_1, \ldots, y_n\}$ such that (i) [C] = [P], (ii) $H_P = H_C$, (iii) $\Theta C \setminus C$ is Δ -coherent relative to C and M, and (iv) letting U be the set of variables of ΘY actually occurring in C, we have

$$[P]: M^{\infty} \cap k[U] = [C]: M^{\infty} \cap k[U] = (C): M^{\infty}.$$

I claim that $C = Comp^{\Delta}(P)$ fills the bill.

<u>Theorem.</u> Let $P \subset k\{y_1, \ldots, y_n\}$ and let M be a multiplicative set containing S_P . Suppose that $\Theta P \setminus P$ is Δ -coherent relative to P and M and that each element of M is semi-reduced with respect to P. Let $g \in [P] : M^{\infty}$. Then:

- (a) If g is semi-reduced with respect to $Comp^{\Delta}(P)$, then $g \in (Comp^{\Delta}(P)) : M^{\infty}$. Equivalently,
- (b) If P is Δ -complete, and if $g \in [P]: M^{\infty}$ is semi-reduced with respect to P, then $g \in (P): M^{\infty}$.

Remark. For our purpose, (a) suggests that Rosenfeld's "auto-reduced" hypothesis may actually be counterproductive. If you start out with a set P that is (partially) auto-reduced, you can <u>un</u>-partially reduce it until finally

$$[Comp^{\Delta}(P)]: M^{\infty} \cap k[U] = (Comp^{\Delta}(P)): M^{\infty}$$

for appropriate U.

Proof.

Put $C = Comp^{\Delta}(P)$. Then [C] = [P] and $S_C = S_P$. Also $\Theta C \setminus C$ is Δ -coherent with respect to C and M because

$$\Theta C \setminus C \subset \Theta P \setminus P \subset \Theta P$$

Thus we may as well assume in (a) that P is Δ -complete; that is, we need only prove (b).

There is a smallest element of ΘY , call it v, such that

$$g \in (P \cup \Theta(P)_{[v]}) : M^{\infty}.$$

Then for some $m \in M$, $p_i \in P$, and $g_i \in k\{y_1, \ldots, y_n\}$ $(1 \le i \le s)$, we have

$$mg = \sum_{i=1}^{r} g_i \theta_i p_i + \sum_{i=r+1}^{s} g_i \theta_i p_i,$$

where $v = u_{\theta_i p_i}$ $(1 \le i \le r)$ and $\theta_i p_i \in P \cup \Theta(P)_{(v)}$ $(r+1 \le i \le s)$. We may and do assume that $\theta_i p_i \in \Theta(P)_{(v)}$ $(r+1 \le i \le s)$. If v is small enough—for instance if v is the smallest leader of an element of P—then $\Theta(P)_{[v]} \subset P$, so $g \in (P) : M^{\infty}$ as desired.

Suppose for a contradiction that $\Theta(P)_{[v]} \not\subset P$. By minimality of v, some $\theta_i p_i$ $(1 \leq i \leq r)$ is not in P. It follows from the Δ -completeness of P that no $\theta_i p_i$ $(1 \leq i \leq r)$ is in P. So by the Triangulation Lemma, $g \in (\Theta(P)_{(v)}, \theta_r p_r) : M^{\infty}$. That is, we have an equation

$$m'g = g_r \theta_r p_r + \sum_{i'=1}^{s'} g_j' \theta_j' p_j',$$

with each $\theta'_i p'_i \in P \cup \Theta(P)_{(v)}$. We may write $\theta p_r = S_r v + T$, where $T \in (\Theta(P)_{(v)})$. Under the substitution

$$v = \frac{-T}{S_r},$$

 $\theta_r p_r$ vanishes and g_r and each g_j' is replaced by a quotient whose numerator is in $k\{y_1,\ldots,y_n\}$ and whose denominator is a power of S_r . Everything else is unaffected. So making this substitution and clearing denominators shows that

$$g \in (P \cup \Theta(P)_{(v)}) : M^{\infty},$$

contradicting the minimality of v. We conclude that $\Theta(P)_{[v]} \subset P$, and therefore that $g \in (P) : M^{\infty}$.