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0. Terminology and Notation. Throughout this talk, k is a differential field
of characteristic zero under a set ∆ = {δ1, . . . , δm} of commuting derivations, and
k{y1, . . . , yn} is the differential polynomial ring in n differential indeterminates over
k. We denote by Θ the set of derivative operators generated by ∆: that is, Θ is the
free commutative monoid generated by δ1, . . . , δm, so that an element of Θ has form
δk1
1 δk2

2 . . . δkm
m . Put

ΘY = {θyi|θ ∈ Θ, 1 ≤ i ≤ n}.

Then ΘY is algebraically independent over k, k{y1, . . . , yn} and k[ΘY ] are equal as
algebras, and for each i (1 ≤ i ≤ n) and each δ ∈ ∆, δ(θyi) = (δθ)yi.

We fix a differential ranking of ΘY ; this means roughly that the set

{uk : u ∈ ΘY, k ∈ N}

has been well-ordered in a manner compatible with the derivation.
For each f ∈ k{y1, . . . , yn} \ k, the leader of f , denoted uf , is the highest

ranked element of ΘY that appears in f , and df is the highest degree to which uf

appears in f . Thus we may write

f = Ifu
df

f + Tf ,

where deguf
(Tf ) < df and where uf does not appear in If . The polynomial If is

called the initial of f , and the polynomial Sf := ∂f/∂uf is called the separant

of f . If θ is in Θ \ {1}, then θf is linear in its leader uθf , which is equal to θuf ;
and Iθf = Sθf = Sf , whence

θf = Sfθuf + Tθf ,

where θu does not appear in Sf or in Tθf .
Given a subset P and a multiplicative subset M of k{y1, . . . , yn}, we denote by

[P ] and {P} the differential ideal and the radical differential ideal , respectively,
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generated by P . The ideal [P ] : M∞ is the contraction of the differential ideal
generated by P in the localized ring M−1k{y1, . . . , yn}. That is,

[P ] : M∞ = {g ∈ k{y1, . . . , yn} : mg ∈ [P ] for some m ∈ M}

1. Rosenfeld’s Lemma.
Given a finite subset P of k{y1, . . . , yn}, we are interested in ways of “computing”

{P} it in various senses. A crucial step in any such computation is to reduce the
problem to a similar problem for a finitely generated ideal in a polynomial ring in
finitely many variables. The vehicle for doing so in the partial differential case is a
result known as Rosenfeld’s Lemma.

Rosenfeld’s Lemma. Let A be a coherent autoreduced subset of the differential
polynomial ring k{y1, . . . , yn}, and let g ∈ [A] : H∞

A . If g is partially reduced with
respect to A, then g ∈ (A) : H∞

A .
The practical contribution of Rosenfeld’s lemma to computational mathematics

is suggested by the following equivalent statement: Let A be a coherent autoreduced
subset. Let U be any subset of ΘY that contains the variables appearing A but no
proper derivatives of the leaders of the elements of A. Then

[A] : H∞
A ∩ k[U ] = (A) : H∞

A .

Comment. The fact that A is autoreduced means that it is “differentially triangular
and reduced” in the following sense: the leaders of the elements of A are all distinct,
no proper derivative of a leader of an element of A appears in any other element of
A, and, should the leader of an element of A appear somewhere in another element
of A, it does so to a lower degree.

The fact that g is partially reduced with respect to A means that no proper
derivative of an element of A appears in g.

Of course ΘA, which is the set we’re really concerned with, need not be triangular–
not, at least, in the partial case. We’ll define coherence later. It will turn out to
substitute for the lack of triangularity of Θ(A) �

Our generalization of Rosenfeld’s Lemma will involve modifying each of the three
hypotheses autoreduced, partially reduced, and coherent.

Example. Put a differential ranking on k{u, v, w} in any way such that u < δ1w
and v < δ2w. Put

A = {f1 , f2} = { δ1w − u , δ2w − v }.
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Clearly A is autoreduced. Of course ΘA is not triangular. For example, the two
differential polynomials

δ2f1 = δ1δ2w − δ2u

δ1f2 = δ1δ2w − δ1v

have the same leader. Furthermore, letting U be the set consisting of the derivatives
of the variables of order less than 2, we see that the “integrability condition” δ2f1−
δ1f2 = δ1v − δ2u is in [A] : H∞

A ∩ k[U ] but it is not in (A) : H∞
A . This is NOT

GOOD.

Interlude. What is an “integrability” or “compatibility” condition anyway ?

2. Generalization of partially reduced and autoreduced. Let P be a finite
subset of k{y1, . . . , yn} \ k.

Definition. g is semi-reduced with respect to P if no leader of an element of
ΘP \ P appears in g.

Remark. In the case that P is (partially) autoreduced, “semi-reduced” is equivalent
to “partially reduced”, although in general it is a weaker condition.

Example. In k{y}, let P = {y, δy}, g = δy. Then g is semi-reduced but not
partially reduced with respect to P .

Definition. A subset P of k{y1, . . . , yn} is ∆-complete if each element of P is
semi-reduced with respect to P .

That is: if f, g ∈ P and if θuf appears in g, then θf is itself already in P .

Proposition. If P is ∆-complete, then every element of HP is semi-reduced with
respect to P .

Proof. Let p ∈ P . No leader of an element of ΘP \P appears in p, so certainly such
a leader cannot appear in Ip or Sp. �

3. Computing the ∆-completion.
Let P ⊂ k{y1, . . . , yn} \ k, and let F ⊂ ΘP . There is a smallest ∆-complete set

Comp∆(F ) such that

F ⊂ Comp∆(F ) ⊂ Θ(F ),

whence

[F ] = [Comp∆(F )] and HF = HComp∆(F ).

Comp∆(F ) and be computed by the following algorithm.
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Input: A finite subset F of ΘP
Output: C = Comp∆(F )
A := F
REPEAT

S := ΘF \A
B := ∅
FOR each a ∈ A and s ∈ S

IF us appears in a THEN B = B ∪ {s}
A := A ∪B

UNTIL B = ∅. �

In short, if A is not ∆-complete, take any offending θa and replace A by A∪{θa}.

It is easy to see Comp∆(F ) exists and that the algorithm does the right thing,
but we must show that it terminates.

Example. Let k{u, y, z} be the ordinary differential polynomial with derivation δ,
and put an elimination ranking on k{u, y, z} so that for all i, j, k we have

δiu <δjy < δkz.

Denoting derivatives by subscripts (e.g. δ2u = u2), let

F = P = {u , y + u3 , z + y + y2 , z1}

Denote by Ai and Bi the values of A and B after the ith iteration. From the
algorithm we obtain

B1 = {u3 , y2 + u5 , z1 + y1 + y3}
B2 = {u5 , y1 + u4 , y3 + u6}

B3 = {u4 , u6 }
B4 = ∅.

Thus

Comp∆(P ) = P ∪B1 ∪B2 ∪B3.

PROOF OF TERMINATION. Denote by Ai and Bi the values of A and B after
the ith iteration. Then A0 = F and B0 = ∅. For i ≥ 1, we have

Bi = {s ∈ Θ(F ) \Ai−1 : us appears in Ai−1}
Ai = Ai−1 ∪Bi.
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Lemma. Let i ≥ 2 and let s ∈ Bi. Then
(a) us does not appear in any element of Ai−2.
(b) us appears in some element of Bi−1.
(c) us is not the leader of any element of Bi−1.

Proof. Let s ∈ Θ(F ) \F and suppose that us appears in an element of Ai−2. Using
in succession the definitions of Bi−1, Ai−1 and Bi, we have:

us appears in an element of Ai−2 ⇒ s ∈ Ai−2 ∪Bi−1

⇒ s ∈ Ai−1

⇒ s 6∈ Bi.

Thus (a) holds. (b) follows immediately, since, by definition of Bi, us appears in
an element of Ai−1 = Ai−2 ∪ Bi−1. Finally, (c) follows from (a) and the definition
of Bi−1. �

Now let mi be an element of Bi (i ≥ 2) of maximum rank. By parts (b) and (c)
of the Lemma, umi appears in an element bi−1 of Bi−1, and umi 6= ubi−1

, whence
umi < ubi−1

≤ umi−1 .
Thus (umi)i≥1 is a strictly decreasing sequence.. So Bi = ∅ for sufficiently large

i ∈ N, and the algorithm terminates. �

4. Coherence.
Let A be an autoreduced subset of k{y1, . . . , yn}, and let HA be the multiplicative

subset generated by the initials and separants of the elements of A.
Rosenfeld defines coherence as follows:

Definition.

1. Let f, f ′ ∈ A. If uf and uf ′ are derivatives of the same differential indetermi-
nate, there is a smallest common derivative, uf,f ′ of uf and uf ′ . Let θf and
θ′f ′ be the unique derivatives of f and f ′ such that uf,f ′ = uθf = uθ′f ′ . The

S∆-polynomial of f and f ′ is

S∆(f, f ′) = Sf ′θf − Sfθ′f ′

2. The set A is coherent if

S∆(f, f ′) ∈ Θ(A)(uf,f ′ )
: H∞

A

whenever f, f ′ ∈ ΘA. �
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Note that uf,f ′ always gets eliminated—that is, it doesn’t appear in S∆(f, f ′),
since

S∆(f, f ′) = Sf ′(Sfuf,f ′ + Tθf )− Sf (S′fuf,f ′ + Tθ′f ′)

= Sf ′TΘf − SfTθ′f ′

Thus, putting U = Θ(Y )(uf,f ′ )
, we have

S∆(f, f ′) ∈ [A] : H∞
A ∩ k[U ].

To say that A is coherent means that also S∆(f, f ′) is in the (in general smaller)
ideal (Θ(A)(uf,f ′ )

) : H∞ of k[U ].

Example. Put a differential ranking on k{u, v, w} in any way such that u < δ1w
and v < δ2w. Put

A = {f1 , f2} = { δ1w − u , δ2w − v }.

We have S∆(f, f ′) = δ2f − δ1f
′ = δ1v − δ1u 6∈ (A)(δ1δ2w), so A is not coherent.

Rosenfeld’s Lemma again. Let U be any subset of ΘY that contains the variables
appearing A but no proper derivatives of the leaders of the elements of A. Then

[A] : H∞
A ∩ k[U ] = (A) : H∞

A .

Roughly speaking, Rosenfeld’s Lemma says that all “integrability” conditions
are generated by the finitely many S∆-polynomials.

5. Generalization of Coherence.
Let P be a finite subset of k{y1, . . . , yn}, let M be a multiplicative subset of

k{y1, . . . , yn}, and assume that HP ⊂ M

Definition. Let A ⊂ ΘP \ P . The set A is ∆-coherent relative to P and M if

S∆(f, f ′) ∈ (ΘP )(uf,f ′ )
: M∞

whenever f, f ′ ∈ ΘA .

Proposition. In the above notation, A is ∆-coherent relative to P and M if and
only if

S∆(f, f ′) ∈ (ΘP )(uf,f ′ )
: M∞

whenever f, f ′ ∈ A .
So determining whether A is relatively ∆-coherent requires only a finite number

of computations. Given A, furthermore, there is an algorithm to compute a set
CohM (A) and a multiplicative set N containing M such that A ⊂ CohM (A) ⊂
ΘP \ P and CohM (A) is coherent relative to P and N .
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‘Triangulation’ Lemma. Let A ⊂ Θ(P ) \ P , and suppose that A is ∆-coherent
relative to P and M . Let g ∈ A and suppose that

g =
r∑

i=1

giθipi,

where θipi ∈ A and uθipi
= v (1 ≤ i ≤ r). Then g ∈ (θrpr , Θ(P )(v)) : M∞.

Proof. For each i (1 ≤ i ≤ r) we have

S∆(θipi, θrpr) = Srθipi − Siθrpr,

whence

Srθipi = S∆(θipi, θrpr) + Siθrpr

∈ (A(v) , θpr).

Since Sr ∈ M ,

g ∈ (Θ(P )(v) , θpr) : M∞.

�

6. Generalization of Rosenfeld’s Lemma.

The Problem. Let P ⊂ k{y1, . . . , yn} and let M be a multiplicative set containing
SP . Suppose that ΘP \P is ∆-coherent relative to P and M . I want to find another
finite subset C of k{y1, . . . , yn} such that (i) [C] = [P ], (ii) HP = HC , (iii) ΘC \ C
is ∆-coherent relative to C and M , and (iv) letting U be the set of variables of ΘY
actually occurring in C, we have

[P ] : M∞ ∩ k[U ] = [C] : M∞ ∩ k[U ] = (C) : M∞ .

I claim that C = Comp∆(P ) fills the bill.

Theorem. Let P ⊂ k{y1, . . . , yn} and let M be a multiplicative set containing SP .
Suppose that ΘP \ P is ∆-coherent relative to P and M and that each element of
M is semi-reduced with respect to P . Let g ∈ [P ] : M∞. Then:

(a) If g is semi-reduced with respect to Comp∆(P ), then g ∈ (Comp∆(P )) : M∞.
Equivalently,
(b) If P is ∆-complete, and if g ∈ [P ] : M∞ is semi-reduced with respect to P ,

then g ∈ (P ) : M∞.
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Remark. For our purpose, (a) suggests that Rosenfeld’s “auto-reduced” hypothesis
may actually be counterproductive. If you start out with a set P that is (partially)
auto-reduced, you can un-partially reduce it until finally

[Comp∆(P )] : M∞ ∩ k[U ] = (Comp∆(P )) : M∞

for appropriate U .

Proof.
Put C = Comp∆(P ). Then [C] = [P ] and SC = SP . Also ΘC \C is ∆-coherent

with respect to C and M because

ΘC \ C ⊂ ΘP \ P ⊂ ΘP

Thus we may as well assume in (a) that P is ∆-complete; that is, we need only
prove (b).

There is a smallest element of ΘY , call it v, such that

g ∈ (P ∪Θ(P )[v]) : M∞.

Then for some m ∈ M , pi ∈ P , and gi ∈ k{y1, . . . , yn} (1 ≤ i ≤ s), we have

mg =
r∑

i=1

giθipi +
s∑

i=r+1

giθipi,

where v = uθipi
(1 ≤ i ≤ r) and θipi ∈ P ∪ Θ(P )(v) (r + 1 ≤ i ≤ s). We may and

do assume that θipi ∈ Θ(P )(v) (r + 1 ≤ i ≤ s). If v is small enough—for instance if
v is the smallest leader of an element of P—then Θ(P )[v] ⊂ P , so g ∈ (P ) : M∞ as
desired.

Suppose for a contradiction that Θ(P )[v] 6⊂ P . By minimality of v, some θipi

(1 ≤ i ≤ r) is not in P . It follows from the ∆-completeness of P that no θipi

(1 ≤ i ≤ r) is in P . So by the Triangulation Lemma, g ∈ (Θ(P )(v), θrpr) : M∞.
That is, we have an equation

m′g = grθrpr +
s′∑

i′=1

g′jθ
′
jp
′
j ,

with each θ′ip
′
i ∈ P ∪Θ(P )(v). We may write θpr = Srv + T , where T ∈ (Θ(P )(v)).

Under the substitution

v =
−T

Sr
,
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θrpr vanishes and gr and each g′j is replaced by a quotient whose numerator is in
k{y1, . . . , yn} and whose denominator is a power of Sr. Everything else is unaffected.
So making this substitution and clearing denominators shows that

g ∈ (P ∪Θ(P )(v)) : M∞,

contradicting the minimality of v. We conclude that Θ(P )[v] ⊂ P , and therefore
that g ∈ (P ) : M∞. �
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