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Overview

1 Integro-Differential Category:
Brief general survey following [JSC08].

2 Integro-Differential Polynomials:
Joint work with G. Regensburger [ISSAC08].

3 Free Integro-Differential Algebras:
Joint work with Li Guo and G. Regensburger [JPAA13].

4 Towards Integro-Differential Fractions:
Ongoing work with F. Lemaire, F. Boulier
and G. Regensburger [ISSAC13].
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Outline

1 Integro-Differential Category

2 Integro-Differential Polynomials
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Rota-Baxter Algebras

Definition ([Baxter1960], [Guo2012])

Let K be a unital commutative ring and fix λ ∈ K.
Then a Rota-Baxter algebra over K with weight λ is an associative
K-algebra F together with a K-linear operator

r
: F → F satisfying

(
r
f)(
r
g) =

r
[f (
r
g)] +

r
[(
r
f) g] + λ

r
(fg).

Such an operator
r
is called a Rota-Baxter operator of weight λ.

In this talk we mostly impose several restrictions:
Field K
Commutative algebra F
Weight λ = 0

Baxter axiom: (
r
f)(
r
g) =

r
f
r
g +

r
g
r
f

Primary example: F = C∞(R) with
r

=
r x

0
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Combining with Derivations

Definition ([JSC08],[SFB11])

Let F be an algebra over a field K. If (F , ∂) is a differential algebra,r
: F → F a K-linear section of ∂ and the differential Baxter axiom

(
r
f ′)(

r
g′) +

r
(fg)′ = (

r
f ′)g + f(

r
g′)

is satisfied, we call (F , ∂,
r

) an integro-differential algebra.

Immediate consequences:
Evaluation E , 1−

r
∂ is a multiplicative projector

Constant functions C = ker(∂) = im(E) ≤ F
Initialized functions I = im(

r
) = ker(E) ≤ F C u I = F

Standard example: F = C∞(R) with ∂ = d
dx ,
r

=
r x

0

Evaluation f 7→ f(0)

Constant functions C = R

Initialized functions I = {f ∈ F | f(0) = 0}
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Examples of Integro-Differential Algebras

Usual function spaces C[x] ≤ Cω(R) ≤ C∞(R)
with ∂f = df

dx and
r
f =

r x
0f(ξ) dξ

Analytic functions on simply connected domain D ⊆ C
Holonomic functions (D-finite power series)

Exponential polynomials K[x, eCx] with
r

=
r x

0
r
xkeλx = (−1)k+1 k!

λk+1 +
∑k

i=0
(−1)i ki

λi+1 xk−ieλx (λ 6= 0)
r
xk = xk+1

k+1

Laurent polynomials K[x, 1
x , log x] with

r
=
r x

1
r
xm logn x = (−1)n+1 n!

(m+1)n+1 +
∑n

k=0
(−1)knk

(m+1)k+1x
m+1 logn−k x (m 6= 1)

r
x−1 logn x = 1

n+1 logn+1 x

Matrices Fn×n with componentwise ∂,
r
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Partial Integro-Differential Algebras

Definition
We call (F , ∂) ordinary if dimK C = 1 and partial otherwise.

Nice properties of ordinary integro-differential algebras:
Integral C-linear
Evaluation E character, I an augmentation ideal
Polynomials K[x] ≤ F and ker(∂n) = [1, . . . , xn−1]

Examples of partial integro-differential algebras:

F = C∞(R2) with C = {g(x− y) | g ∈ C∞(R)}
∂f = ∂f

∂x + ∂f
∂y

r
f =

r x
0f(ξ, ξ − x+ y) dt

F = K[x, y] with C = K[y]

∂ = ∂x
r

=
r x

0
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Polynomials K[x] ≤ F and ker(∂n) = [1, . . . , xn−1]

Examples of partial integro-differential algebras:

F = C∞(R2) with C = {g(x− y) | g ∈ C∞(R)}
∂f = ∂f

∂x + ∂f
∂y

r
f =

r x
0f(ξ, ξ − x+ y) dt

F = K[x, y] with C = K[y]

∂ = ∂x
r

=
r x

0
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Are Constant Functions Constant?

Definition
Combining a differential algebra (F , ∂) and a Baxter algebra (F ,

r
)

via ∂ ◦
r

= 1F yields a differential Rota-Baxter algebra.
Is this the same as an integro-differential algebra?

The following statements are equivalent:
1 Differential Baxter axiom
2 Integration by parts

r
fg = f

r
g −

r
f ′
r
g

3 Evaluation variant
r
fg′ = fg − E(f)E(g)−

r
f ′g

4 Differential Rota-Baxter algebra and C-linearity of
r

5 Projector E multiplicative
6 Ideal I � F

Counter-Example for Condition (4): F = R[x], R = K[y]/y4

∂f = df
dx and

r
f =

r x
0f(ξ) dξ + f(0, 0) y2
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Hurwitz Series

K arbitrary field having zero or positive characteristic
Naive approach to differentiation/integration fails:

∂xp = p xp−1 = 0 and
r
xp−1 = ???

Hurwitz series H(K) = KN with

(an) · (bn) =
(∑n

i=0

(
n
i

)
aibn−i

)
n

∂ (a0, a1, a2, . . . ) = (a1, a2, . . . )r
(a0, a1, . . . ) = (0, a0, a1, . . . )

The Hurwitz series form an integro-differential algebra
in arbitrary characteristic [Keigher1997].

Like C∞(R) and Cω(R) they are saturated [KeigherPritchard2000].

For characteristic zero, K[[z]] ∼= H(K) via
∑∞

n=0 anz
n 7→ (n! an).
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Integro-Differential and Other Categories

Category DiffK : Objects (F , ∂),
morphisms ϕ : (F , ∂)→ (F̄ , ∂̄) satisfy ϕ ◦ ∂ = ∂̄ ◦ ϕ.
Category RBK : Objects (F ,

r
),

morphisms ϕ : (F ,
r

)→ (F̄ ,−
r

) means ϕ ◦
r

= −
r
◦ ϕ.

Category DRBK : Objects (F , ∂,
r

), morphisms as before.
Full subcategory IntDiffK .

Example of a functor

Matn : ˜IntDiffK → ˜IntDiffK ,F 7→ Fn×n

What is the free object of IntDiffK?
What is the polynomial object of IntDiffK?
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Differential versus Integro-Differential Polynomials

Take (F , ∂) ∈ DiffK .
 Differential polynomials (F{u}, ∂) ∈ DiffK .

“Everything you can write with u,+, ·, ∂ and coeffs f ∈ F .”
(x2(exu2)′u′′3 + xu′2)e−x → x2u2u′′3 + 2x2uu′u′′3 + xe−xu′2

Normal forms evident from chain/product rule.
Differential monomials uα ≡ uα0

0 uα1
1 · · ·uαnn , α ∈ N(ω).

Take (F , ∂,
r

) ∈ IntDiffK .
 Integro-differential polynomials (F{u}, ∂,

r
) ∈ IntDiffK .

“Everything you can write with u,+, ·, ∂,
rrr
and coeffs f ∈ F .”

xuu′2
r
x2
r
xuu′u′′′2(

r
x2u′′u′′′4 ·

r
xu2u′3u′′

r
x3uu′′2)→ ?

r
u′ → u− u(0) = u−EEE(u)

↖↖↖Scope! ↗↗↗

Normal forms not evident due to loops from integration by parts.
Integro-differential monomials?
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Integro-Differential Polynomials: Two Approaches

Universal Algebra: General polynomial domains in varieties.
Tensor Product: Free object via shuffle algebra, then coproduct.

We will start with the first, which is more “symbolic computation”.
The second is more general (free object over any differential algebra).

Conventions:
We use u(0) as an abbreviation for E(u).
Staggered scope of integrals f0

r
f1

r
f2

r
· · · for saving parens.

Corresponds to f0 ⊗ f1 ⊗ f2 ⊗ · · · in tensor algebra.
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Varieties in Universal Algebra

A variety V = (Σ, E) consists of
Signature Σ, specifying symbols and and their arity,
Laws E of the form L = R with L,R built over Σ and variables.

Examples: (Non)Abelian Groups or Lattices

Σ =
· 2−1 1
2 1 0 or Σ =

u t
2 2 E = usual axioms

(Non)Commutative rings (with unit)

Σ =
+ − 0 · 1
2 1 0 2 0 E = usual axioms

(Non)Commutative K-algebras

Expand Σ by λ·
1 for each λ ∈ K E = usual axioms

Differential & integro-differential algebras

Expand Σ by ∂
r

1 1 E = as above
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Polynomial Algebras in Varieties

Proposition
Let V = (Σ, E) be a variety (category) and X a set of variables.
The term algebra TΣ(X) and the free algebra FV(X) := TΣ(X)/≡E
are both algebras in V. Usual characterizations of TΣ(X) and FV(X).

Corresponding polynomial algebra over coefficient algebra A ∈ V
defined as AV [X] := TΣ(A ∪X)/≡E,A.

Usual substitution homomorphism works [Lausch-Noebauer1973].

Proposition
Let V be a variety, A ∈ V and X a set of variables. Then AV [X] ∈ V and
for any B ∈ V with maps ϕ1 : A→ B and ϕ2 : X → B there is unique
homomorphism ϕ : AV [X]→ B extending ϕ1 and ϕ2.

Moreover, we have the coproduct AV [X] = AqV FV(X).
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Examples of Polynomial Algebras

Take the varieties V considered earlier:

Groups: (3 1 2)gh2g−1(2 1)h−1(1 2 3)hg ∈ (S3, ·)V [g, h]

Lattices: max(min(x, 3),min(y, 2), x) ∈ (R,min,max)V [x, y]

Commutative Rings/Algebras: KV [X] = K[X]

Noncommutative Rings: (3i+ 2k)u(2i− 5j)v2 ∈ HV [u, v]

Noncommutative Algebras: KV [X] = K〈X〉
Differential Algebras: (F , ∂)V [u] = F{u}
Integro-Differential Algebras: (F , ∂,

r
, E)V [u] =: F{u}

So we have defined integro-differential polynomials.
However, for computation we need canonical forms!
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Canonical Forms for Integro-Differential Polynomials

Since FV [u] = TΣ/≡E,F we need C ⊆ TΣ such that
(∀T ∈ TΣ)(∃!C ∈ C) T ≡E,F C,

and of course a computable canonical simplifier T 7→ C.

Lemma
Every integro-differential polynomial in F{u} can be represented by a
finite sum of terms of the form

f u(0)αuβ
r
f1u

γ1
r
· · ·
r
fnu

γn

with f ∈ F and α, β, γ1, . . . , γn ∈ N(ω). Also n = 0 is allowed.

For example, (
r
u) · (

r
u′2) =

r
u
r
u′2 +

r
u′2
r
u via Rota-Baxter axiom.

However, these terms are not canonical:
r
fu′ = fu−

r
f ′u− f(0)u(0).

We will banish
r
fu′.
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Functional Differential Monomials

Definition

A differential monomial uβ = uβ0
0 u

β1
1 · · ·u

βn
n (βn 6= 0) is called

quasilinear if n > 0, βn = 1, and functional otherwise.

Theorem
The set C of K-linear combinations of terms

b u(0)αuβ
r
b1u

γ1uγ1uγ1
r
· · ·
r
bnu

γn
nu
γn
nu
γn
n

with functional uγ1 , . . . , uγnuγ1 , . . . , uγnuγ1 , . . . , uγn and K-basis elements b, b1, . . . , bn ∈ F
constitutes a system of canonical forms.

Canonical simplifier: Banish quasilinear monomials via Rota-Baxter axiom.
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Integro-Differential Structure

Multiplication in F{u} given by shuffle product.

Definition of derivation ∂∂∂ straightforward (Leibniz rule, section axiom).

Note that u(0)α is constant, as needed for initial conditions.

Proposition
The constants of F{u} form the subring consisting of

∑
α cαu(0)α

with constants cα in F .

Integral on b u(0)αuβ
r
b1u

γ1
r
· · ·
r
bnu

γn︸ ︷︷ ︸
J

defined recursively by:

If uβ is constant then
rrr
b u(0)αuβJ := u(0)α(

r
F b)J − u(0)α

rrr
(
r
F b)J

′.

If uβ = V uβkk uk+1 is quasilinear then set s = βk + 1 and definerrr
b u(0)αuβJ := b u(0)αV uskJ − u(0)α

rrr
(bVJ)′usk − (bV uαuskJ)(0).

If uβ is functional then
rrr
b u(0)αuβJ := u(0)α

r
buβJ .

If (F , ∂,
r

) is computable, then so is (F{u}, ∂∂∂,
rrr

).
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Free Integro-Differential Algebras

Free integro-differential algebra F{u} if F = K, ∂ = 0.

Can pull out b, b1, . . . , bn ∈ K, only monomials inside.

Conversely, recover polynomials via F{u} = F qK{u}.
Note that here q is more complex than ⊗.

Would like more intrinsic description of K{u}.

A
ι

��

ι̃

��?
??

??
??

F
j

//___ F̃

Proposition
Let A be a commutative differential K-algebra of weight λ. Then there is
a free integro-differential algebra F of weight λ on AAA with a canonical
differential morphism ι : A → F . This means for any integro-differential
algebra F̃ with differential morphism ι̃ : A → F̃ there is a unique integro-
differential morphism j : F → F̃ with j ◦ ι = ι̃.

Existence follows via the free Rota-Baxter algebra.

Special case F = (K{u}, ∂,
r

) for A = (K{u}, ∂) with ∂K = 0.
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Free Rota-Baxter and Shuffle Algebra (Weight Zero)

The free Rota-Baxter algebra on a commutative algebra A is given
by Ш(A) := A⊗Ш+(A) with

r
f := 1⊗ f and the shuffle algebra

Ш+(A) :=
⊕
k≥0

A⊗k with shuffle product Ш.

The shuffle product of a=a1⊗a2⊗···⊗am=a1⊗ā and b=b1⊗b2⊗···⊗bn=b1⊗b̄ is

aШ b =


a1 ⊗ b+ b1 ⊗ (a1 Ш b̄) if m = 1, n > 1,
a1 ⊗ (āШ b1) + b1 ⊗ a if m > 1, n = 1,
a1 ⊗ (āШ b) + b1 ⊗ (aШ b̄) otherwise,

and reduces to the scalar product if m = 0 or n = 0.

Explicit description via shuffles is aШ b =
∑

σ∈S(m,n)S(m,n)S(m,n)

σ(a⊗ b).

Caveat: (a0 ⊗ a) (b0 ⊗ b) = (a0b0 ⊗ aШ b) in Ш(A) = A⊗Ш+(A).
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Existence of Free Integro-Differential Algebras

We call (F , ∂,
r

) a differential Rota-Baxter algebra
if (F , ∂) is a differential algebra,
and (F ,

r
) is a Rota-Baxter algebra

with the relation ∂ ◦
r

= 1F .

Clearly Ш(K{u}, ∂) is the free differential Rota-Baxter algebra on u.

However, it is not the free integro-differential algebra since
E(uv) = E(u)E(v) (∗)

does not hold.

Way out? Let J be the differential Rota-Baxter ideal generated by (∗).
Then (K{u}, ∂,

r
) = Ш(K{u}, ∂)/J .

Again the problem is: How to do this constructively?

Markus Rosenkranz Integro-Differential Polynomials



Existence of Free Integro-Differential Algebras

We call (F , ∂,
r

) a differential Rota-Baxter algebra
if (F , ∂) is a differential algebra,

and (F ,
r

) is a Rota-Baxter algebra
with the relation ∂ ◦

r
= 1F .

Clearly Ш(K{u}, ∂) is the free differential Rota-Baxter algebra on u.

However, it is not the free integro-differential algebra since
E(uv) = E(u)E(v) (∗)

does not hold.

Way out? Let J be the differential Rota-Baxter ideal generated by (∗).
Then (K{u}, ∂,

r
) = Ш(K{u}, ∂)/J .

Again the problem is: How to do this constructively?

Markus Rosenkranz Integro-Differential Polynomials



Existence of Free Integro-Differential Algebras

We call (F , ∂,
r

) a differential Rota-Baxter algebra
if (F , ∂) is a differential algebra,
and (F ,

r
) is a Rota-Baxter algebra

with the relation ∂ ◦
r

= 1F .

Clearly Ш(K{u}, ∂) is the free differential Rota-Baxter algebra on u.

However, it is not the free integro-differential algebra since
E(uv) = E(u)E(v) (∗)

does not hold.

Way out? Let J be the differential Rota-Baxter ideal generated by (∗).
Then (K{u}, ∂,

r
) = Ш(K{u}, ∂)/J .

Again the problem is: How to do this constructively?

Markus Rosenkranz Integro-Differential Polynomials



Existence of Free Integro-Differential Algebras

We call (F , ∂,
r

) a differential Rota-Baxter algebra
if (F , ∂) is a differential algebra,
and (F ,

r
) is a Rota-Baxter algebra

with the relation ∂ ◦
r

= 1F .

Clearly Ш(K{u}, ∂) is the free differential Rota-Baxter algebra on u.

However, it is not the free integro-differential algebra since
E(uv) = E(u)E(v) (∗)

does not hold.

Way out? Let J be the differential Rota-Baxter ideal generated by (∗).
Then (K{u}, ∂,

r
) = Ш(K{u}, ∂)/J .

Again the problem is: How to do this constructively?

Markus Rosenkranz Integro-Differential Polynomials



Existence of Free Integro-Differential Algebras

We call (F , ∂,
r

) a differential Rota-Baxter algebra
if (F , ∂) is a differential algebra,
and (F ,

r
) is a Rota-Baxter algebra

with the relation ∂ ◦
r

= 1F .

Clearly Ш(K{u}, ∂) is the free differential Rota-Baxter algebra on u.

However, it is not the free integro-differential algebra since
E(uv) = E(u)E(v) (∗)

does not hold.

Way out? Let J be the differential Rota-Baxter ideal generated by (∗).
Then (K{u}, ∂,

r
) = Ш(K{u}, ∂)/J .

Again the problem is: How to do this constructively?

Markus Rosenkranz Integro-Differential Polynomials



Existence of Free Integro-Differential Algebras

We call (F , ∂,
r

) a differential Rota-Baxter algebra
if (F , ∂) is a differential algebra,
and (F ,

r
) is a Rota-Baxter algebra

with the relation ∂ ◦
r

= 1F .

Clearly Ш(K{u}, ∂) is the free differential Rota-Baxter algebra on u.

However, it is not the free integro-differential algebra since
E(uv) = E(u)E(v) (∗)

does not hold.

Way out? Let J be the differential Rota-Baxter ideal generated by (∗).
Then (K{u}, ∂,

r
) = Ш(K{u}, ∂)/J .

Again the problem is: How to do this constructively?

Markus Rosenkranz Integro-Differential Polynomials



Existence of Free Integro-Differential Algebras

We call (F , ∂,
r

) a differential Rota-Baxter algebra
if (F , ∂) is a differential algebra,
and (F ,

r
) is a Rota-Baxter algebra

with the relation ∂ ◦
r

= 1F .

Clearly Ш(K{u}, ∂) is the free differential Rota-Baxter algebra on u.

However, it is not the free integro-differential algebra since
E(uv) = E(u)E(v) (∗)

does not hold.

Way out?

Let J be the differential Rota-Baxter ideal generated by (∗).
Then (K{u}, ∂,

r
) = Ш(K{u}, ∂)/J .

Again the problem is: How to do this constructively?

Markus Rosenkranz Integro-Differential Polynomials



Existence of Free Integro-Differential Algebras

We call (F , ∂,
r

) a differential Rota-Baxter algebra
if (F , ∂) is a differential algebra,
and (F ,

r
) is a Rota-Baxter algebra

with the relation ∂ ◦
r

= 1F .

Clearly Ш(K{u}, ∂) is the free differential Rota-Baxter algebra on u.

However, it is not the free integro-differential algebra since
E(uv) = E(u)E(v) (∗)

does not hold.

Way out? Let J be the differential Rota-Baxter ideal generated by (∗).

Then (K{u}, ∂,
r

) = Ш(K{u}, ∂)/J .

Again the problem is: How to do this constructively?

Markus Rosenkranz Integro-Differential Polynomials



Existence of Free Integro-Differential Algebras

We call (F , ∂,
r

) a differential Rota-Baxter algebra
if (F , ∂) is a differential algebra,
and (F ,

r
) is a Rota-Baxter algebra

with the relation ∂ ◦
r

= 1F .

Clearly Ш(K{u}, ∂) is the free differential Rota-Baxter algebra on u.

However, it is not the free integro-differential algebra since
E(uv) = E(u)E(v) (∗)

does not hold.

Way out? Let J be the differential Rota-Baxter ideal generated by (∗).
Then (K{u}, ∂,

r
) = Ш(K{u}, ∂)/J .

Again the problem is: How to do this constructively?

Markus Rosenkranz Integro-Differential Polynomials



Existence of Free Integro-Differential Algebras

We call (F , ∂,
r

) a differential Rota-Baxter algebra
if (F , ∂) is a differential algebra,
and (F ,

r
) is a Rota-Baxter algebra

with the relation ∂ ◦
r

= 1F .

Clearly Ш(K{u}, ∂) is the free differential Rota-Baxter algebra on u.

However, it is not the free integro-differential algebra since
E(uv) = E(u)E(v) (∗)

does not hold.

Way out? Let J be the differential Rota-Baxter ideal generated by (∗).
Then (K{u}, ∂,

r
) = Ш(K{u}, ∂)/J .

Again the problem is: How to do this constructively?

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .

We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .

We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .

We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.

Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}

Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Regular Differential Algebras

Recall: Let f : M → N be a linear map and consider f̄ : N →M .
We call f̄ an inner inverse if f ◦ f̄ ◦ f = f .
We call f̄ an outer inverse if f̄ ◦ f ◦ f̄ = f̄ .
We call f̄ a quasi-inverse if it is both inner and outer.

The map f is called regular if it has an inner (⇒ outer) inverse.
Quasi-inverse f̄ determined by NT u im f = N and MJ u im f = M .

Definition
A differential algebra (A, ∂) is called regular if ∂ is a regular map.
A quasi-inverse ∂̄ is called a quasi-antiderivative.

Example: A = C(x)

NT =

{
k∑
i=1

γi
x−αi

∣∣∣ γi ∈ C}

MJ =

{
r +

k∑
i=1

ni∑
j=1

γij
(x−αi)j

∣∣∣ r ∈ xC[x], γij ∈ C

}
Example: A = K{u}

NT = K[uβ | β is functional]

MJ = K[uβ | β 6= 0]

Markus Rosenkranz Integro-Differential Polynomials



Construction of Free Integro-Differential Algebras

Let (A, ∂) be a regular differential algebra with AT := ker ∂̄. Take λ = 0.
Must build on a modified shuffle algebra:

ШT (A) := A⊗Ш+(AT ) =
⊕
k≥0

A⊗A⊗kT

Let Aε be a replica of A with K-isomorphism ε : A → Aε.
Define Ā := Aε ⊗ШT (A).
Declare

r
linear over Aε.

For f ∈ A ⊂ШT (A) set
r
f := ∂̄f − ε(∂̄f) + 1⊗ fT .

Recursively set
r

(f ⊗ f̄) := (∂̄f)⊗ f̄ −
r

(∂̄f · f̄) + 1⊗ fT ⊗ f̄ .

Theorem
For any regular differential algebra A, the above algebra (Ā, ∂,

r
)

yields the free integro-differential algebra on (A, ∂).

Note: Get Ā = (K{u}, ∂,
r

) since A = (K{u}, ∂) is always regular.
Regularity automatic over fields K.
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Note: Get Ā = (K{u}, ∂,
r

) since A = (K{u}, ∂) is always regular.
Regularity automatic over fields K.

Markus Rosenkranz Integro-Differential Polynomials



Construction of Free Integro-Differential Algebras

Let (A, ∂) be a regular differential algebra with AT := ker ∂̄. Take λ = 0.
Must build on a modified shuffle algebra:

ШT (A) := A⊗Ш+(AT ) =
⊕
k≥0

A⊗A⊗kT

Let Aε be a replica of A with K-isomorphism ε : A → Aε.
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Another Perspective on Integro-Differential Polynomials

Consider the following examples of q =
r
p:

For p = 2uu′ we obtain q = u2 − u(0)2. So p is a first integral.
For p = u′2 we get q =

r
u′2, so p is non-integrable.

However, for p = 2uu′u′′ the result is q = uu′2 − u(0)u′(0)2 −
r
u′3,

so this is partially integrable.
In general,

r
decomposes (F , ∂) linearly into im(∂) and a canonical

complement FT . So
r
p = q − q(0) +

r
r means p = ∂q + r.

This is one “division step” that can be repeated:

p = ∂(∂q2 + r1) + r0 = ∂2q2 + ∂r1 + r0

= ∂nrn + · · ·+ ∂r1 + r0

Now all r0, r1, . . . , rn are non-integrable.
Moreover, they are plain differential polynomials if p is.

Idea: Generalize this to multiple derivations and fractions.
(First step towards integro-differential fractions. But . . . )
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Field of Differential Fractions

Definition
Let (K; ∂1, . . . , ∂m) be a differential field and u = (u1, . . . , un) be
indeterminates. Then the differential fraction field K〈u〉 is the total
fraction field of K{u} with derivations ∂1, . . . , ∂m

For computational purposes (BLAD) we take K = Q(x1, . . . , xm).
Write U = {u1, . . . , un} for indeterminates and ΘU for derivatives.
Choose a ranking on ΘU .

Definition
The leader of F ∈ K〈u〉 \K is the highest v ∈ ΘU with ∂F/∂v 6= 0.
For F ∈ K the leader is 1 by convention. We write v = ld(F ).

This definition works also if P and Q are not in lowest terms so we have
for example ld(uu′/u′) = u.

As expected if P and Q have distinct leaders:
→ ld(F ) = highest v ∈ ΘU with degv(P ) > 0 or degv(Q) > 0.
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Initial and Separant

Definition
Let F = P/Q ∈ K〈u〉 be given with v = ld(F ). Then we define
the separant sep(F ) := ∂F/∂v and the initial in(F ) := lcv(P )/lcv(Q).

As usual for F = P/Q we set:
Quotient degree: degv(F ) := degv(P )− degv(Q)

Comparative rank: rk(F ) :=
(
ld(F ),degv(F )

)
, per lex order

Multiple degree-zero ranks (unlike differential polynomials):
F = (u+ 1)/u, F̃ = (u′ + 1)/u′ → rk(F ) = (u, 0) < rk(F̃ ) = (u′, 0)

Proposition
Let F ∈ K〈u〉 \K. Then sep(F ) and in(F ) are of lower rank than F .

The derivatives satisfy ld(∂F ) = ∂ ld(F ) =: v and lcv(∂F ) = in(F ).
Writing ∂F = P/Q, one has degv(P ) = 1 and degv(Q) = 0.
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Comparative rank: rk(F ) :=
(
ld(F ),degv(F )

)
, per lex order

Multiple degree-zero ranks (unlike differential polynomials):

F = (u+ 1)/u, F̃ = (u′ + 1)/u′ → rk(F ) = (u, 0) < rk(F̃ ) = (u′, 0)

Proposition
Let F ∈ K〈u〉 \K. Then sep(F ) and in(F ) are of lower rank than F .

The derivatives satisfy ld(∂F ) = ∂ ld(F ) =: v and lcv(∂F ) = in(F ).
Writing ∂F = P/Q, one has degv(P ) = 1 and degv(Q) = 0.
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Integration of Differential Fractions

We assume K = Q(x) for x = (x1, . . . , xm).
Derivations ∂1, . . . , ∂m such that ∂i(xj) = δij .
Indeterminates u = (u1, . . . , un).

Proposition
Given FFF ∈ K〈u〉 \K and an independent variable xkxkxk, there are differential
fractions QQQ,RRR ∈ K〈u〉 such that F = ∂kQ+R with ∂kQ and R having
rank lower than or equal to F . Moreover, R vanishes iff F ∈ ∂k(K〈u〉).

Algorithm

Proposition
Given FFF ∈ K〈u〉 \K and an independent variable xkxkxk, there is a list
[W0,W1, . . . ,Ws][W0,W1, . . . ,Ws][W0,W1, . . . ,Ws] such that F = W0 + ∂kW1 + · · ·+ ∂skWs with Ws 6= 0
and W0, ∂kW1, . . . , ∂

s
kWs having rank lower than or equal to F .

Moreover, W0 = W1 = · · ·Wi = 0 iff F ∈ ∂i+1
k (K〈u〉).

Algorithm
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Integration Algorithm (Basic Version)

integrate(F, xk) ; R,Q
Q, R := 0, 0

while F 6= 0 do {invariant: F0 = F + ∂kQ + R}
if F ∈ K then

Q̄, R̄ := integrate_func(F, xk)

Q := Q + Q̄

R := R + R̄

F := 0

else if numF ∈ K then
R := R + F

F := 0

else
(v, w) :=

(
ld(numF ), ld(denF )

)
if denF 6∈ K ∧ v ≤ w then

R := R + F

F := 0

else if ordk(v) = 0 then∑
imi := numF {monomial sum}

H :=
∑(

mi | degv(mi) > 0
)

R := R +H/denF

F := F −H/denF

else if degv(numF ) ≥ 2 then∑
imi := numF {monomial sum}

H :=
∑(

mi | degv(mi) > 1
)

R := R +H/denF

F := F −H/denF

else
∂ku := v

F̄ := lcv(numF )/denF
if ∃t>udegt(numF̄ ) > 0 then∑

imi := numF̄ {monomial sum}
H :=

∑(
mi | ∃t>udegt(mi) > 0

)
R := R + (H/denF̄ )v

F := F − (H/denF̄ )v

else if ∃t>udegt(denF̄ ) > 0 then
R := R + F

F := 0

else
Q̄, R̄ := integrate_func(F̄ , v)

R := R + R̄v

Q := Q + Q̄

F := F − ∂kQ̄− R̄v
end if

end if
end if

end while
return R,Q

Back
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Integration Algorithm (Iterated Version)

integrate(F, xk) ; L
L := []
R := F
while R 6∈ K do

W, R := integrate(R, xk)
L := L :: W

end while
if R 6= 0 then

L := L :: R
end if
return L Forward
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Example in System Identification

State variables x1, x2: Concentration of drug in compartment 1, 2

Output variable (for simplicity): y = x1

Michaelis-Menten law:
ẋ1 = −k1x1 + k2x2 − Ve x1/(x1 + ke)
ẋ2 = k1x1 − k2x2

Elimination ranking x1, x2 � y for input/output equation:
(y + ke)

2 ytt + (k1 + k2)(y + ke)
2yt + keVe(yt + y2 + key) = 0

Worksheet

Integration yields alternative equation:
d2

dt2
y +

d

dt

(k1 + k2)(y2 − k2
e)− keVe

y + ke
+
k2Vey

y + ke
= 0

Potentially better behaved numerics.
Conclusion
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Calculations in Maple

> Ring := DifferentialRing (
derivations = [t],
blocks = [y,[x1,x2],[k1(),k2(),ke(),Ve()]]):

> S := [ x1[t] = -k1*x1 + k2*x2 - (Ve*x1)/(ke+x1),
x2[t] = k1*x1 - k2*x2, y = x1];

Ve x1
S := [x1[t] = -k1 x1 + k2 x2 - -------,

ke + x1
x2[t] = k1 x1 - k2 x2, y = x1]

> ideal := RosenfeldGroebner
(S, Ring, basefield = field

(generators = [k1,k2,ke,Ve])):

> io_ideal := RosenfeldGroebner (ideal[1],
blocks = [[x1,x2],y,[k1(),k2(),ke(),Ve()]]):

> io_eq := Equations
(io_ideal, leader = derivative(y))[1];

2 2
io_eq := y[t, t] y + 2 y[t, t] y ke + y[t, t] ke

2 2
+ y[t] y k1 + y[t] y k2 + 2 y[t] y k1 ke

2 2
+ 2 y[t] y k2 ke + y[t] k1 ke + y[t] k2 ke

2
+ y[t] ke Ve + y k2 Ve + y k2 ke Ve

> integrate (io_eq / Initial (io_eq, Ring), t, Ring);
2 2 2 2

y k2 Ve y k1 + y k2 - k1 ke - k2 ke - ke Ve
[-------, ---------------------------------------, y]
y + ke y + ke

Back
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Summary and Future Work

What has been achieved:

Integro-differential polynomials (ordinary, scalar)
Free object (regular differential algebras)
Integration of differential fractions (general case)

What needs to be done:
Generalize integro-differential polynomials (partial, system)
Clarify coproduct of integro-differential algebras
Quasi-antiderivative for differential fractions

THANK YOU
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