A Differential Algebra Approach to Linear Boundary Problems

Markus Rosenkranz

 $\langle M.Rosenkranz@kent.ac.uk \rangle$

School of Mathematics, Statistics and Actuarial Science University of Kent, United Kingdom

Kolchin Seminar in Differential Algebra 7 July 2014

We acknowledge support from EPSRC First Grant EP/I037474/1.

 Abstract Boundary Problems: Joint work with G. Regensburger [AMPA09] and N. Phisanbut [CASC13].

< 77 ∣

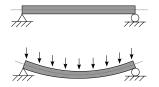
- Abstract Boundary Problems: Joint work with G. Regensburger [AMPA09] and N. Phisanbut [CASC13].
- **Ordinary Integro-Differential Operators:**

Initiated in [JSC05] with B. Buchberger and H.W. Engl [AA03]. Continued in collaboration with G. Regensburger [JSC08, SFB11].

< (1)

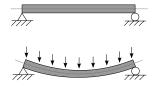
- Abstract Boundary Problems: Joint work with G. Regensburger [AMPA09] and N. Phisanbut [CASC13].
- Ordinary Integro-Differential Operators: Initiated in [JSC05] with B. Buchberger and H.W. Engl [AA03]. Continued in collaboration with G. Regensburger [JSC08, SFB11].
- O Partial Integro-Differential Operators:

Beginnings with G. Regensburger and L. Tec in [CASC09]. New development with N. Phisanbut [CASC13]. Ongoing work.



Thin beam, plane cross sections Elastic modulus E, Moment of area I

Normalized horizontal coordinate $x \in [0, 1]$ Deflection u(x), Load q(x)

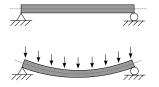


Thin beam, plane cross sections Elastic modulus E, Moment of area I

Normalized horizontal coordinate $x \in [0, 1]$ Deflection u(x), Load q(x)

Euler-Bernoulli Equation: $\frac{d^2}{dx^2}(EI\frac{d^2u}{dx^2}) = q(x)$

< (1)

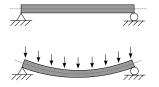


Thin beam, plane cross sections Elastic modulus E, Moment of area I

Normalized horizontal coordinate $x \in [0, 1]$ Deflection u(x), Load q(x)

Euler-Bernoulli Equation: $\frac{d^2}{dx^2}(EI\frac{d^2u}{dx^2}) = q(x)$

Simply supported left/right end: u(0) = u''(0) = 0 and u(1) = u''(1) = 0

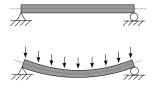


Thin beam, plane cross sections Elastic modulus E, Moment of area I

Normalized horizontal coordinate $x \in [0, 1]$ Deflection u(x), Load q(x)

Euler-Bernoulli Equation: $\frac{d^2}{dx^2}(EI\frac{d^2u}{dx^2}) = q(x)$

Simply supported left/right end: u(0) = u''(0) = 0 and u(1) = u''(1) = 0[Free left end: u'''(0) = u''(0) = 0]



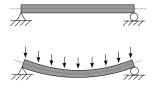
Thin beam, plane cross sections Elastic modulus E, Moment of area I

Normalized horizontal coordinate $x \in [0, 1]$ Deflection u(x), Load q(x)

Euler-Bernoulli Equation: $\frac{d^2}{dx^2}(EI\frac{d^2u}{dx^2}) = q(x)$

Simply supported left/right end: u(0) = u''(0) = 0 and u(1) = u''(1) = 0 [Free left end: u'''(0) = u''(0) = 0]

Hypothesis: Homogeneous beam, $f \triangleq q/(EI)$



Thin beam, plane cross sections Elastic modulus E, Moment of area I

Normalized horizontal coordinate $x \in [0, 1]$ Deflection u(x), Load q(x)

Euler-Bernoulli Equation: $\frac{d^2}{dx^2}(EI\frac{d^2u}{dx^2}) = q(x)$

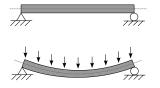
Simply supported left/right end: u(0) = u''(0) = 0 and u(1) = u''(1) = 0[Free left end: u'''(0) = u''(0) = 0]

Hypothesis: Homogeneous beam, $f \triangleq q/(EI)$

Boundary Problem:

$$u''' = f$$

 $u(0) = u''(0) = u(1) = u''(1) = 0$



Thin beam, plane cross sections Elastic modulus E, Moment of area I

Normalized horizontal coordinate $x \in [0, 1]$ Deflection u(x), Load q(x)

Euler-Bernoulli Equation: $\frac{d^2}{dx^2}(EI\frac{d^2u}{dx^2}) = q(x)$

Simply supported left/right end: u(0) = u''(0) = 0 and u(1) = u''(1) = 0[Free left end: u'''(0) = u''(0) = 0]

Hypothesis: Homogeneous beam, $f \triangleq q/(EI)$

Boundary Problem:

$$u''' = f$$

 $u(0) = u''(0) = u(1) = u''(1) = 0$

Classically $u \in C^4[0,1]$.

• Deflection $u_{\xi}(x)$ for normalized point loads $f = \delta_{\xi}$ bei $\xi \in [0,1]$

- Deflection $u_{\xi}(x)$ for normalized point loads $f = \delta_{\xi}$ bei $\xi \in [0,1]$
- Total deflection as superposition of $u_{\xi}(x)$ weighted by $f(\xi)$

- Deflection $u_{\xi}(x)$ for normalized point loads $f = \delta_{\xi}$ bei $\xi \in [0,1]$
- Total deflection as superposition of $u_{\xi}(x)$ weighted by $f(\xi)$
- Hence $u(x) = \int_0^1 g(x,\xi) f(\xi) d\xi$

Analytic Method

Superposition Principle:

- Deflection $u_{\xi}(x)$ for normalized point loads $f = \delta_{\xi}$ bei $\xi \in [0, 1]$
- Total deflection as superposition of $u_{\xi}(x)$ weighted by $f(\xi)$
- Hence $u(x) = \int_0^1 u_{\xi}(x) f(\xi) d\xi$
- Green's function $g(x,\xi) \triangleq u_{\xi}(x)$

- Deflection $u_{\xi}(x)$ for normalized point loads $f = \delta_{\xi}$ bei $\xi \in [0,1]$
- Total deflection as superposition of $u_{\xi}(x)$ weighted by $f(\xi)$

• Hence
$$u(x) = \int_0^1 g(x,\xi) f(\xi) d\xi$$

• Green's function $g(x,\xi) \triangleq u_{\xi}(x)$

Solution for simply supported Euler-Bernoulli beam:

$$g(x,\xi) = \begin{cases} \frac{1}{3}x\xi - \frac{1}{6}\xi^3 - \frac{1}{2}x^2\xi + \frac{1}{6}x\xi^3 + \frac{1}{6}x^3\xi & \text{für } 0 \le \xi \le x \le 1, \\ \frac{1}{3}x\xi - \frac{1}{2}x\xi^2 - \frac{1}{6}x^3 + \frac{1}{6}x\xi^3 + \frac{1}{6}x^3\xi & \text{für } 0 \le x \le \xi \le 1 \end{cases}$$

Question: How does differential algebra help in finding this solution?

Markus Rosenkranz Differential Algebra for Boundary Problems

Basic view of differential algebra: $\mathcal{F} = C^{\infty}(0, 1)$ is a differential ring.

Basic view of differential algebra: $\mathcal{F} = C^{\infty}(0, 1)$ is a differential ring.

 $\partial\colon \mathcal{F}\to \mathcal{F}, \quad \partial(u+v)=\partial(u)+\partial(v) \text{ and } \partial(uv)=\partial(u)v+r\partial(v)$

< 77 ∣

Basic view of differential algebra: $\mathcal{F} = C^{\infty}(0, 1)$ is a differential ring. $\partial : \mathcal{F} \to \mathcal{F}, \quad \partial(u+v) = \partial(u) + \partial(v) \text{ and } \partial(uv) = \partial(u)v + r\partial(v)$ For $u \in \mathcal{F}$ we have $u' \triangleq \partial(u) \in \mathcal{F}$ but no u(0) or u'(0).

Basic view of differential algebra: $\mathcal{F} = C^{\infty}(0, 1)$ is a differential ring.

$$\partial\colon \mathcal{F}\to \mathcal{F}, \quad \partial(u+v)=\partial(u)+\partial(v) \text{ and } \partial(uv)=\partial(u)v+r\partial(v)$$

For $u \in \mathcal{F}$ we have $u' \triangleq \partial(u) \in \mathcal{F}$ but no u(0) or u'(0). Which other algebraic structure can we find in $(C^{\infty}[0,1],\partial)$?

Basic view of differential algebra: $\mathcal{F} = C^{\infty}(0,1)$ is a differential ring. $\partial: \mathcal{F} \to \mathcal{F}, \quad \partial(u+v) = \partial(u) + \partial(v)$ and $\partial(uv) = \partial(u)v + r\partial(v)$ For $u \in \mathcal{F}$ we have $u' \triangleq \partial(u) \in \mathcal{F}$ but no u(0) or u'(0). Which other algebraic structure can we find in $(C^{\infty}[0,1],\partial)$? Short answer:

• Point evaluations = multiplicative linear functionals on \mathcal{F} .

Basic view of differential algebra: $\mathcal{F} = C^{\infty}(0,1)$ is a differential ring. $\partial : \mathcal{F} \to \mathcal{F}, \quad \partial(u+v) = \partial(u) + \partial(v)$ and $\partial(uv) = \partial(u)v + r\partial(v)$ For $u \in \mathcal{F}$ we have $u' \triangleq \partial(u) \in \mathcal{F}$ but no u(0) or u'(0).

Which other algebraic structure can we find in $(C^{\infty}[0,1],\partial)$?

Short answer:

- Point evaluations = multiplicative linear functionals on \mathcal{F} .
- Linked to differential structure via integration (Rota-Baxter ring).

Basic view of differential algebra: $\mathcal{F} = C^{\infty}(0, 1)$ is a differential ring.

 $\partial\colon \mathcal{F}\to \mathcal{F}, \quad \partial(u+v)=\partial(u)+\partial(v) \text{ and } \partial(uv)=\partial(u)v+r\partial(v)$

For $u \in \mathcal{F}$ we have $u' \triangleq \partial(u) \in \mathcal{F}$ but no u(0) or u'(0). Which other algebraic structure can we find in $(C^{\infty}[0,1],\partial)$?

Short answer:

- Point evaluations = multiplicative linear functionals on \mathcal{F} .
- Linked to differential structure via integration (Rota-Baxter ring).
- Evaluation/Integration: Two sides of a single coin:

Basic view of differential algebra: $\mathcal{F} = C^{\infty}(0, 1)$ is a differential ring.

 $\partial\colon \mathcal{F}\to \mathcal{F}, \quad \partial(u+v)=\partial(u)+\partial(v) \text{ and } \partial(uv)=\partial(u)v+r\partial(v)$

For $u \in \mathcal{F}$ we have $u' \triangleq \partial(u) \in \mathcal{F}$ but no u(0) or u'(0). Which other algebraic structure can we find in $(C^{\infty}[0,1],\partial)$?

Short answer:

- Point evaluations = multiplicative linear functionals on \mathcal{F} .
- Linked to differential structure via integration (Rota-Baxter ring).
- Evaluation/Integration: Two sides of a single coin:

▷ INTEGRO-DIFFERENTIAL ALGEBRA

Basic view of differential algebra: $\mathcal{F} = C^{\infty}(0, 1)$ is a differential ring.

 $\partial\colon \mathcal{F}\to \mathcal{F}, \quad \partial(u+v)=\partial(u)+\partial(v) \text{ and } \partial(uv)=\partial(u)v+r\partial(v)$

For $u \in \mathcal{F}$ we have $u' \triangleq \partial(u) \in \mathcal{F}$ but no u(0) or u'(0). Which other algebraic structure can we find in $(C^{\infty}[0,1],\partial)$?

Short answer:

- Point evaluations = multiplicative linear functionals on \mathcal{F} .
- Linked to differential structure via integration (Rota-Baxter ring).
- Evaluation/Integration: Two sides of a single coin:

▷ INTEGRO-DIFFERENTIAL ALGEBRA

... and the rest is Linear Algebra.

Ordinary Integro-Differential Operators

Partial Integro-Differential Operators

< (1)

< 合)

Let \mathcal{F}, \mathcal{G} be fixed (infinite-dimensional) vector spaces.

Let \mathcal{F}, \mathcal{G} be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) boundary problem is a pair (T, \mathcal{B}) where $T: \mathcal{F} \to \mathcal{G}$ is an epimorphism and $\mathcal{B} \leq \mathcal{F}^*$ is orthogonally closed.

Let \mathcal{F}, \mathcal{G} be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) **boundary problem** is a pair (T, \mathcal{B}) where $T: \mathcal{F} \to \mathcal{G}$ is an epimorphism and $\mathcal{B} \leq \mathcal{F}^*$ is orthogonally closed. We call T the "differential operator" and \mathcal{B} the "boundary space" of the problem.

Let \mathcal{F}, \mathcal{G} be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) **boundary problem** is a pair (T, \mathcal{B}) where $T: \mathcal{F} \to \mathcal{G}$ is an epimorphism and $\mathcal{B} \leq \mathcal{F}^*$ is orthogonally closed. We call T the "differential operator" and \mathcal{B} the "boundary space" of the problem.

Galois connection $\mathbb{P}(\mathcal{F}) \rightleftharpoons \overline{\mathbb{P}}(\mathcal{F}^*)$

Let \mathcal{F}, \mathcal{G} be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) **boundary problem** is a pair (T, \mathcal{B}) where $T: \mathcal{F} \to \mathcal{G}$ is an epimorphism and $\mathcal{B} \leq \mathcal{F}^*$ is orthogonally closed. We call T the "differential operator" and \mathcal{B} the "boundary space" of the problem.

Galois connection $\mathbb{P}(\mathcal{F}) \rightleftharpoons \overline{\mathbb{P}}(\mathcal{F}^*)$

$$\mathcal{A} \leq \mathcal{F} \quad \mapsto \quad \mathcal{A}^{\perp} := \left\{ \, \beta \in \mathcal{F}^* \, \big| \, \beta(f) = 0 \text{ for all } f \in \mathcal{A} \, \right\}$$

Let \mathcal{F}, \mathcal{G} be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) **boundary problem** is a pair (T, \mathcal{B}) where $T: \mathcal{F} \to \mathcal{G}$ is an epimorphism and $\mathcal{B} \leq \mathcal{F}^*$ is orthogonally closed. We call T the "differential operator" and \mathcal{B} the "boundary space" of the problem.

 $\begin{array}{ll} \text{Galois connection } \mathbb{P}(\mathcal{F}) \rightleftarrows \overline{\mathbb{P}}(\mathcal{F}^*) \\ \mathcal{A} \leq \mathcal{F} & \mapsto & \mathcal{A}^{\perp} := \left\{ \left. \beta \in \mathcal{F}^* \right| \beta(f) = 0 \text{ for all } f \in \mathcal{A} \right. \right\} \\ \mathcal{B} \leq \mathcal{F}^* & \mapsto & \mathcal{B}^{\perp} := \left\{ \left. f \in \mathcal{F} \right| \beta(f) = 0 \text{ for all } \beta \in \mathcal{B} \right. \right\} \end{array}$

• 7 •

Let \mathcal{F}, \mathcal{G} be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) **boundary problem** is a pair (T, \mathcal{B}) where $T: \mathcal{F} \to \mathcal{G}$ is an epimorphism and $\mathcal{B} \leq \mathcal{F}^*$ is orthogonally closed. We call T the "differential operator" and \mathcal{B} the "boundary space" of the problem.

$$\begin{array}{ll} \mbox{Galois connection } \mathbb{P}(\mathcal{F}) \rightleftarrows \mathbb{P}(\mathcal{F}^*) \\ \mathcal{A} \le \mathcal{F} & \mapsto & \mathcal{A}^{\perp} := \left\{ \left. \beta \in \mathcal{F}^* \right| \beta(f) = 0 \mbox{ for all } f \in \mathcal{A} \right. \right\} \\ \mathcal{B} \le \mathcal{F}^* & \mapsto & \mathcal{B}^{\perp} := \left\{ \left. f \in \mathcal{F} \right| \beta(f) = 0 \mbox{ for all } \beta \in \mathcal{B} \right. \right\} \end{array}$$

We call $\mathcal{B} \leq \mathcal{F}^*$ orthogonally closed if $\mathcal{B}^{\perp \perp} = \mathcal{B}$.

Let \mathcal{F}, \mathcal{G} be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) **boundary problem** is a pair (T, \mathcal{B}) where $T: \mathcal{F} \to \mathcal{G}$ is an epimorphism and $\mathcal{B} \leq \mathcal{F}^*$ is orthogonally closed. We call T the "differential operator" and \mathcal{B} the "boundary space" of the problem.

$$\begin{array}{ll} \mbox{Galois connection } \mathbb{P}(\mathcal{F}) \rightleftarrows \mathbb{P}(\mathcal{F}^*) \\ \mathcal{A} \le \mathcal{F} & \mapsto & \mathcal{A}^{\perp} := \left\{ \left. \beta \in \mathcal{F}^* \right| \beta(f) = 0 \mbox{ for all } f \in \mathcal{A} \right. \right\} \\ \mathcal{B} \le \mathcal{F}^* & \mapsto & \mathcal{B}^{\perp} := \left\{ \left. f \in \mathcal{F} \right| \beta(f) = 0 \mbox{ for all } \beta \in \mathcal{B} \right. \right\} \end{array}$$

We call $\mathcal{B} \leq \mathcal{F}^*$ orthogonally closed if $\mathcal{B}^{\perp \perp} = \mathcal{B}$. Note that all $\mathcal{A} \leq \mathcal{F}$ are orthogonally closed.

Let \mathcal{F}, \mathcal{G} be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) **boundary problem** is a pair (T, \mathcal{B}) where $T: \mathcal{F} \to \mathcal{G}$ is an epimorphism and $\mathcal{B} \leq \mathcal{F}^*$ is orthogonally closed. We call T the "differential operator" and \mathcal{B} the "boundary space" of the problem.

$$\begin{array}{ll} \mbox{Galois connection } \mathbb{P}(\mathcal{F}) \rightleftarrows \mathbb{P}(\mathcal{F}^*) \\ \mathcal{A} \le \mathcal{F} & \mapsto & \mathcal{A}^{\perp} := \left\{ \left. \beta \in \mathcal{F}^* \right| \beta(f) = 0 \mbox{ for all } f \in \mathcal{A} \right. \right\} \\ \mathcal{B} \le \mathcal{F}^* & \mapsto & \mathcal{B}^{\perp} := \left\{ \left. f \in \mathcal{F} \right| \beta(f) = 0 \mbox{ for all } \beta \in \mathcal{B} \right. \right\} \end{array}$$

We call $\mathcal{B} \leq \mathcal{F}^*$ orthogonally closed if $\mathcal{B}^{\perp\perp} = \mathcal{B}$. Note that all $\mathcal{A} \leq \mathcal{F}$ are orthogonally closed.

 $\bar{\mathbb{P}}(\mathcal{F}^*)$ = Orthogonally closed subspaces of \mathcal{F}^* :

Let \mathcal{F}, \mathcal{G} be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) **boundary problem** is a pair (T, \mathcal{B}) where $T: \mathcal{F} \to \mathcal{G}$ is an epimorphism and $\mathcal{B} \leq \mathcal{F}^*$ is orthogonally closed. We call T the "differential operator" and \mathcal{B} the "boundary space" of the problem.

$$\begin{array}{ll} \mbox{Galois connection } \mathbb{P}(\mathcal{F}) \rightleftarrows \bar{\mathbb{P}}(\mathcal{F}^*) \\ \mathcal{A} \le \mathcal{F} & \mapsto & \mathcal{A}^{\perp} := \left\{ \left. \beta \in \mathcal{F}^* \right| \beta(f) = 0 \mbox{ for all } f \in \mathcal{A} \right. \right\} \\ \mathcal{B} \le \mathcal{F}^* & \mapsto & \mathcal{B}^{\perp} := \left\{ \left. f \in \mathcal{F} \right| \beta(f) = 0 \mbox{ for all } \beta \in \mathcal{B} \right. \right\} \end{array}$$

We call $\mathcal{B} \leq \mathcal{F}^*$ orthogonally closed if $\mathcal{B}^{\perp\perp} = \mathcal{B}$. Note that all $\mathcal{A} \leq \mathcal{F}$ are orthogonally closed.

 $\overline{\mathbb{P}}(\mathcal{F}^*)$ = Orthogonally closed subspaces of \mathcal{F}^* :

• Complete complemented modular lattice, isomorphic to $\mathbb{P}(\mathcal{F})$

Let \mathcal{F}, \mathcal{G} be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) **boundary problem** is a pair (T, \mathcal{B}) where $T: \mathcal{F} \to \mathcal{G}$ is an epimorphism and $\mathcal{B} \leq \mathcal{F}^*$ is orthogonally closed. We call T the "differential operator" and \mathcal{B} the "boundary space" of the problem.

$$\begin{array}{ll} \mbox{Galois connection } \mathbb{P}(\mathcal{F}) \rightleftarrows \mathbb{P}(\mathcal{F}^*) \\ \mathcal{A} \leq \mathcal{F} & \mapsto & \mathcal{A}^{\perp} := \left\{ \left. \beta \in \mathcal{F}^* \right| \beta(f) = 0 \mbox{ for all } f \in \mathcal{A} \right. \right\} \\ \mathcal{B} \leq \mathcal{F}^* & \mapsto & \mathcal{B}^{\perp} := \left\{ \left. f \in \mathcal{F} \right| \beta(f) = 0 \mbox{ for all } \beta \in \mathcal{B} \right. \right\} \end{array}$$

We call $\mathcal{B} \leq \mathcal{F}^*$ orthogonally closed if $\mathcal{B}^{\perp\perp} = \mathcal{B}$. Note that all $\mathcal{A} \leq \mathcal{F}$ are orthogonally closed.

 $\bar{\mathbb{P}}(\mathcal{F}^*)$ = Orthogonally closed subspaces of \mathcal{F}^* :

- Complete complemented modular lattice, isomorphic to $\mathbb{P}(\mathcal{F})$
- Contains finite dimensional sublattice.

A boundary problem (T, \mathcal{F}) is called regular if $\mathcal{B}^{\perp} \dotplus \ker T = \mathcal{F}$.

Regularity and Green's Operators

Definition

A boundary problem (T, \mathcal{F}) is called regular if $\mathcal{B}^{\perp} \dotplus \ker T = \mathcal{F}$.

Equivalent to requiring that

$$Tu = f$$

$$\beta(u) = 0 \ (\beta \in \mathcal{B})$$

has a unique solution $u \in \mathcal{F}$ for every $f \in \mathcal{G}$.

Regularity and Green's Operators

Definition

A boundary problem (T, \mathcal{F}) is called regular if $\mathcal{B}^{\perp} \dotplus \ker T = \mathcal{F}$.

Equivalent to requiring that

$$Tu = f$$

$$\beta(u) = 0 \ (\beta \in \mathcal{B})$$

has a unique solution $u \in \mathcal{F}$ for every $f \in \mathcal{G}$.

Hence define Green's operator $G: \mathcal{G} \to \mathcal{F}$ by Gf = u.

Regularity and Green's Operators

Definition

A boundary problem (T, \mathcal{F}) is called regular if $\mathcal{B}^{\perp} \dotplus \ker T = \mathcal{F}$.

Equivalent to requiring that

$$Tu = f$$

$$\beta(u) = 0 \ (\beta \in \mathcal{B})$$

has a unique solution $u \in \mathcal{F}$ for every $f \in \mathcal{G}$.

Hence define Green's operator $G: \mathcal{G} \to \mathcal{F}$ by Gf = u. This means TG = 1 and $\operatorname{im} G = \mathcal{B}^{\perp}$.

A boundary problem (T, \mathcal{F}) is called regular if $\mathcal{B}^{\perp} \dotplus \ker T = \mathcal{F}$.

Equivalent to requiring that

$$Tu = f$$

$$\beta(u) = 0 \ (\beta \in \mathcal{B})$$

has a unique solution $u \in \mathcal{F}$ for every $f \in \mathcal{G}$.

Hence define Green's operator $G: \mathcal{G} \to \mathcal{F}$ by Gf = u. This means TG = 1 and $\operatorname{im} G = \mathcal{B}^{\perp}$. We write $(T, \mathcal{B})^{-1}$ for G.

For
$$(T_1, \mathcal{B}_1)$$
 and (T_2, \mathcal{B}_2) with $\mathcal{F} \xrightarrow{T_2} \mathcal{G} \xrightarrow{T_1} \mathcal{H}$ define

$$(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T_1 T_2, T_2^*(\mathcal{B}_1) + \mathcal{B}_2),$$

which is again a boundary problem.

For
$$(T_1, \mathcal{B}_1)$$
 and (T_2, \mathcal{B}_2) with $\mathcal{F} \xrightarrow{T_2} \mathcal{G} \xrightarrow{T_1} \mathcal{H}$ define

$$(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T_1 T_2, T_2^*(\mathcal{B}_1) + \mathcal{B}_2),$$

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's operator is G_2G_1 .

For
$$(T_1, \mathcal{B}_1)$$
 and (T_2, \mathcal{B}_2) with $\mathcal{F} \xrightarrow{T_2} \mathcal{G} \xrightarrow{T_1} \mathcal{H}$ define

$$(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T_1 T_2, T_2^*(\mathcal{B}_1) + \mathcal{B}_2),$$

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's operator is G_2G_1 . In other words, we have

$$((T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2))^{-1} = (T_2, \mathcal{B}_2)^{-1} \cdot (T_1, \mathcal{B}_1)^{-1}.$$

For
$$(T_1, \mathcal{B}_1)$$
 and (T_2, \mathcal{B}_2) with $\mathcal{F} \xrightarrow{T_2} \mathcal{G} \xrightarrow{T_1} \mathcal{H}$ define

$$(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T_1 T_2, T_2^*(\mathcal{B}_1) + \mathcal{B}_2),$$

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's operator is G_2G_1 . In other words, we have

$$((T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2))^{-1} = (T_2, \mathcal{B}_2)^{-1} \cdot (T_1, \mathcal{B}_1)^{-1}.$$

Moreover, the sum $T_2^*(\mathcal{B}_1) + \mathcal{B}_2$ is direct.

For
$$(T_1, \mathcal{B}_1)$$
 and (T_2, \mathcal{B}_2) with $\mathcal{F} \xrightarrow{T_2} \mathcal{G} \xrightarrow{T_1} \mathcal{H}$ define

$$(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T_1 T_2, T_2^*(\mathcal{B}_1) + \mathcal{B}_2),$$

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's operator is G_2G_1 . In other words, we have

$$((T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2))^{-1} = (T_2, \mathcal{B}_2)^{-1} \cdot (T_1, \mathcal{B}_1)^{-1}.$$

Moreover, the sum $T_2^*(\mathcal{B}_1) + \mathcal{B}_2$ is direct.

Therefore (for fixed base field):

• All boundary problems form a category \mathbf{BnProb} with $\mathcal{F} \xrightarrow{(T,\mathcal{B})} \mathcal{G}$.

For
$$(T_1, \mathcal{B}_1)$$
 and (T_2, \mathcal{B}_2) with $\mathcal{F} \xrightarrow{T_2} \mathcal{G} \xrightarrow{T_1} \mathcal{H}$ define

$$(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T_1 T_2, T_2^*(\mathcal{B}_1) + \mathcal{B}_2),$$

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's operator is G_2G_1 . In other words, we have

$$((T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2))^{-1} = (T_2, \mathcal{B}_2)^{-1} \cdot (T_1, \mathcal{B}_1)^{-1}.$$

Moreover, the sum $T_2^*(\mathcal{B}_1) + \mathcal{B}_2$ is direct.

Therefore (for fixed base field):

- All boundary problems form a category **BnProb** with $\mathcal{F} \xrightarrow{(T,\mathcal{B})} \mathcal{G}$.
- Regular boundary problems subcategory BnProb*.

For
$$(T_1, \mathcal{B}_1)$$
 and (T_2, \mathcal{B}_2) with $\mathcal{F} \xrightarrow{T_2} \mathcal{G} \xrightarrow{T_1} \mathcal{H}$ define

$$(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T_1 T_2, T_2^*(\mathcal{B}_1) + \mathcal{B}_2),$$

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's operator is G_2G_1 . In other words, we have

$$((T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2))^{-1} = (T_2, \mathcal{B}_2)^{-1} \cdot (T_1, \mathcal{B}_1)^{-1}.$$

Moreover, the sum $T_2^*(\mathcal{B}_1) + \mathcal{B}_2$ is direct.

Therefore (for fixed base field):

- All boundary problems form a category **BnProb** with $\mathcal{F} \xrightarrow{(T,\mathcal{B})} \mathcal{G}$.
- Regular boundary problems subcategory \mathbf{BnProb}^* .
- Monoids $\mathbf{BnProb}(\mathcal{F})$ and $\mathbf{BnProb}^*(\mathcal{F})$.

A dual problem is a pair (\mathcal{S}, G) where $G: \mathcal{G} \to \mathcal{F}$ is a monomorphism and $\mathcal{S} \leq \mathcal{F}$ is arbitrary.

A dual problem is a pair (S, G) where $G: \mathcal{G} \to \mathcal{F}$ is a monomorphism and $S \leq \mathcal{F}$ is arbitrary. It is regular if $S \neq \operatorname{im} G = \mathcal{F}$.

A dual problem is a pair (\mathcal{S}, G) where $G: \mathcal{G} \to \mathcal{F}$ is a monomorphism and $\mathcal{S} \leq \mathcal{F}$ is arbitrary. It is regular if $\mathcal{S} + \operatorname{im} G = \mathcal{F}$.

Green's operator $T := (S, G)^{-1}$ defined by TG = 1, ker T = S.

A dual problem is a pair (\mathcal{S}, G) where $G: \mathcal{G} \to \mathcal{F}$ is a monomorphism and $\mathcal{S} \leq \mathcal{F}$ is arbitrary. It is regular if $\mathcal{S} + \operatorname{im} G = \mathcal{F}$.

Green's operator $T := (\mathcal{S}, G)^{-1}$ defined by TG = 1, ker $T = \mathcal{S}$. Dual composition $(K_2, G_2) \cdot (K_1, G_1) = (K_2 + G_2(K_1), G_2G_1)$.

A dual problem is a pair (\mathcal{S}, G) where $G: \mathcal{G} \to \mathcal{F}$ is a monomorphism and $\mathcal{S} \leq \mathcal{F}$ is arbitrary. It is regular if $\mathcal{S} + \operatorname{im} G = \mathcal{F}$.

Green's operator $T := (\mathcal{S}, G)^{-1}$ defined by TG = 1, ker $T = \mathcal{S}$. Dual composition $(K_2, G_2) \cdot (K_1, G_1) = (K_2 + G_2(K_1), G_2G_1)$.

Categories **DuProb** and **DuProb**^{*}.

A dual problem is a pair (\mathcal{S}, G) where $G: \mathcal{G} \to \mathcal{F}$ is a monomorphism and $\mathcal{S} \leq \mathcal{F}$ is arbitrary. It is regular if $\mathcal{S} + \operatorname{im} G = \mathcal{F}$.

Green's operator $T := (\mathcal{S}, G)^{-1}$ defined by TG = 1, ker $T = \mathcal{S}$. Dual composition $(K_2, G_2) \cdot (K_1, G_1) = (K_2 + G_2(K_1), G_2G_1)$.

Categories **DuProb** and **DuProb**^{*}.

Proposition

The contravariant functor $(T, \mathcal{F}) \mapsto (\ker T, (T, \mathcal{B})^{-1})$ together with its inverse $(\mathcal{S}, G) \mapsto ((\mathcal{S}, G)^{-1}, \operatorname{im}^{\perp} G)$ establishes an isomorphism of categories **BnProb**^{*} \cong (**DuProb**^{*})^{op}.

< 合?)

For a regular boundary problem (T, \mathcal{F}) , the Green's operator is given by $G = (1 - P)T^{\Diamond}$ where P is the projector onto ker T along \mathcal{B}^{\perp} and T^{\Diamond} is an arbitrary right inverse of T.

For a regular boundary problem (T, \mathcal{F}) , the Green's operator is given by $G = (1 - P)T^{\Diamond}$ where P is the projector onto ker T along \mathcal{B}^{\perp} and T^{\Diamond} is an arbitrary right inverse of T.

For a regular dual problem (\mathcal{S}, G) , the Green's operator is given by $T = G^{\Diamond}(1-P)$ where P is the projector onto \mathcal{S} along im G and G^{\Diamond} is an arbitrary left inverse of G.

For a regular boundary problem (T, \mathcal{F}) , the Green's operator is given by $G = (1 - P)T^{\Diamond}$ where P is the projector onto ker T along \mathcal{B}^{\perp} and T^{\Diamond} is an arbitrary right inverse of T.

For a regular dual problem (\mathcal{S}, G) , the Green's operator is given by $T = G^{\Diamond}(1-P)$ where P is the projector onto \mathcal{S} along im G and G^{\Diamond} is an arbitrary left inverse of G.

If $\dim \mathcal{B} < \infty$ or $\dim \mathcal{S} < \infty$ then:

For a regular boundary problem (T, \mathcal{F}) , the Green's operator is given by $G = (1 - P)T^{\Diamond}$ where P is the projector onto ker T along \mathcal{B}^{\perp} and T^{\Diamond} is an arbitrary right inverse of T.

For a regular dual problem (\mathcal{S}, G) , the Green's operator is given by $T = G^{\Diamond}(1-P)$ where P is the projector onto \mathcal{S} along im G and G^{\Diamond} is an arbitrary left inverse of G.

If $\dim \mathcal{B} < \infty$ or $\dim \mathcal{S} < \infty$ then:

•
$$\mathcal{B} = [\beta_1, \dots, \beta_n]$$
 and ker $T = [u_1, \dots, u_n]$:

For a regular boundary problem (T, \mathcal{F}) , the Green's operator is given by $G = (1 - P)T^{\Diamond}$ where P is the projector onto ker T along \mathcal{B}^{\perp} and T^{\Diamond} is an arbitrary right inverse of T.

For a regular dual problem (\mathcal{S}, G) , the Green's operator is given by $T = G^{\Diamond}(1-P)$ where P is the projector onto \mathcal{S} along im G and G^{\Diamond} is an arbitrary left inverse of G.

If $\dim \mathcal{B} < \infty$ or $\dim \mathcal{S} < \infty$ then:

• $\mathcal{B} = [\beta_1, \dots, \beta_n]$ and ker $T = [u_1, \dots, u_n]$: Regularity \Leftrightarrow Evaluation matrix $\beta(u) = [\beta_i(u_j)] \in \operatorname{GL}_n(K)$

For a regular boundary problem (T, \mathcal{F}) , the Green's operator is given by $G = (1 - P)T^{\Diamond}$ where P is the projector onto ker T along \mathcal{B}^{\perp} and T^{\Diamond} is an arbitrary right inverse of T.

For a regular dual problem (\mathcal{S}, G) , the Green's operator is given by $T = G^{\Diamond}(1-P)$ where P is the projector onto \mathcal{S} along im G and G^{\Diamond} is an arbitrary left inverse of G.

If $\dim \mathcal{B} < \infty$ or $\dim \mathcal{S} < \infty$ then:

• $\mathcal{B} = [\beta_1, \dots, \beta_n]$ and ker $T = [u_1, \dots, u_n]$: Regularity \Leftrightarrow Evaluation matrix $\beta(u) = [\beta_i(u_j)] \in \operatorname{GL}_n(K)$ Projector $P = u \cdot \beta(u)^{-1} \cdot \beta$

For a regular boundary problem (T, \mathcal{F}) , the Green's operator is given by $G = (1 - P)T^{\Diamond}$ where P is the projector onto ker T along \mathcal{B}^{\perp} and T^{\Diamond} is an arbitrary right inverse of T.

For a regular dual problem (\mathcal{S}, G) , the Green's operator is given by $T = G^{\Diamond}(1-P)$ where P is the projector onto \mathcal{S} along im G and G^{\Diamond} is an arbitrary left inverse of G.

If $\dim \mathcal{B} < \infty$ or $\dim \mathcal{S} < \infty$ then:

- $\mathcal{B} = [\beta_1, \dots, \beta_n]$ and ker $T = [u_1, \dots, u_n]$: Regularity \Leftrightarrow Evaluation matrix $\beta(u) = [\beta_i(u_j)] \in \operatorname{GL}_n(K)$ Projector $P = u \cdot \beta(u)^{-1} \cdot \beta$
- Analogous for dual problem:

For a regular boundary problem (T, \mathcal{F}) , the Green's operator is given by $G = (1 - P)T^{\Diamond}$ where P is the projector onto ker T along \mathcal{B}^{\perp} and T^{\Diamond} is an arbitrary right inverse of T.

For a regular dual problem (\mathcal{S}, G) , the Green's operator is given by $T = G^{\Diamond}(1-P)$ where P is the projector onto \mathcal{S} along im G and G^{\Diamond} is an arbitrary left inverse of G.

If $\dim \mathcal{B} < \infty$ or $\dim \mathcal{S} < \infty$ then:

- $\mathcal{B} = [\beta_1, \dots, \beta_n]$ and ker $T = [u_1, \dots, u_n]$: Regularity \Leftrightarrow Evaluation matrix $\beta(u) = [\beta_i(u_j)] \in \operatorname{GL}_n(K)$ Projector $P = u \cdot \beta(u)^{-1} \cdot \beta$
- Analogous for dual problem: $\operatorname{im}^{\perp} G = [\beta_1, \dots, \beta_n] \text{ and } \mathcal{S} = [u_1, \dots, u_n]$

Let $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ and $T = T_1T_2$ a factorization into epimorphisms. Then $(T, \mathcal{B}) = (T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2)$ is a factorization in \mathbf{BnProb}^* iff $\mathcal{B}_1 = H_2^*(\mathcal{B} \cap K_2^{\perp})$ with $K_2 := \ker T_2$ and $T_2H_2 = 1$

and $\mathcal{B}_2 \leq \mathcal{B}$ is orthogonally closed such that $\mathcal{B} = (\mathcal{B} \cap K_2^{\perp}) \dotplus \mathcal{B}_2$. In that case, $G_1 = T_2G$.

Let $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ and $T = T_1T_2$ a factorization into epimorphisms. Then $(T, \mathcal{B}) = (T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2)$ is a factorization in \mathbf{BnProb}^* iff $\mathcal{B}_1 = H_2^*(\mathcal{B} \cap K_2^{\perp})$ with $K_2 := \ker T_2$ and $T_2H_2 = 1$ and $\mathcal{B}_2 \leq \mathcal{B}$ is orthogonally closed such that $\mathcal{B} = (\mathcal{B} \cap K_2^{\perp}) \dotplus \mathcal{B}_2$.

In that case, $G_1 = T_2 G$.

For fixed $T = T_1T_2$:

Let $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ and $T = T_1T_2$ a factorization into epimorphisms. Then $(T, \mathcal{B}) = (T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2)$ is a factorization in \mathbf{BnProb}^* iff $\mathcal{B}_1 = H_2^*(\mathcal{B} \cap K_2^{\perp})$ with $K_2 := \ker T_2$ and $T_2H_2 = 1$ and $\mathcal{B}_2 \leq \mathcal{B}$ is orthogonally closed such that $\mathcal{B} = (\mathcal{B} \cap K_2^{\perp}) \dotplus \mathcal{B}_2$. In that case, $G_1 = T_2G$.

For fixed $T = T_1T_2$:

 $\{\mathcal{B}_2 \mid (T_2, \mathcal{B}_2) \in \mathbf{BnProb}^*\} \quad \longleftrightarrow \quad \{L_2 \mid K_2 \dotplus L_2 = \ker T\}$

Let $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ and $T = T_1T_2$ a factorization into epimorphisms. Then $(T, \mathcal{B}) = (T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2)$ is a factorization in \mathbf{BnProb}^* iff $\mathcal{B}_1 = H_2^*(\mathcal{B} \cap K_2^{\perp})$ with $K_2 := \ker T_2$ and $T_2H_2 = 1$ and $\mathcal{B}_2 \leq \mathcal{B}$ is orthogonally closed such that $\mathcal{B} = (\mathcal{B} \cap K_2^{\perp}) \dotplus \mathcal{B}_2$. In that case, $G_1 = T_2G$.

For fixed $T = T_1T_2$:

$$\begin{aligned} \{ \mathcal{B}_2 \mid (T_2, \mathcal{B}_2) \in \mathbf{BnProb}^* \} & \longleftrightarrow & \{ L_2 \mid K_2 \dotplus L_2 = \ker T \} \\ \mathcal{B}_2 & \mapsto & \mathcal{B}_2^{\perp} \cap \ker T \\ \mathcal{B} \cap L_2^{\perp} & \leftarrow & L_2 \end{aligned}$$

Incarnations of Boundary Problems

Generic boundary problem (T, \mathcal{B}) ,

< 合)

Incarnations of Boundary Problems

Generic boundary problem (T, \mathcal{B}) , regularity \Leftrightarrow unique solvability of:

[Semi-Inhomogeneous] Boundary Problem:

Tu = f
$\beta(u) = 0$

Signal Operator = [Semi-Inhomogeneous] Green's Operator $G: f \mapsto u$

[Semi-Inhomogeneous] Boundary Problem:

Signal Operator = [Semi-Inhomogeneous] Green's Operator $G: f \mapsto u$

Semi-Homogeneous Boundary Problem:

$$Tu = 0$$

$$\beta(u) = B(\beta)$$

State Operator = Semi-Homogeneous Green's Operator $H: B \mapsto u$

[Semi-Inhomogeneous] Boundary Problem:

Tu = f $\beta(u) = 0$ Signal Operator = [Semi-Inhomogeneous] Green's Operator $G: f \mapsto u$

Semi-Homogeneous Boundary Problem:

Tu = 0 $\beta(u) = B(\beta)$ State Operator = Semi-Homogeneous Green's Operator $H: B \mapsto u$

Fully Inhomogeneous Boundary Problem:

Tu = f
$\beta(u) = B(\beta)$

Full Operator = Fully Inhomogeneous Green's Operator $F: (f, B) \mapsto u$

[Semi-Inhomogeneous] Boundary Problem:

Tu = f
$\beta(u) = 0$

Signal Operator = [Semi-Inhomogeneous] Green's Operator $G: f \mapsto u$

Semi-Homogeneous Boundary Problem:

Tu = 0 $\beta(u) = B(\beta)$ State Operator = Semi-Homogeneous Green's Operator $H: B \mapsto u$

Fully Inhomogeneous Boundary Problem:

Tu = f
$\beta(u) = B(\beta)$

Full Operator = Fully Inhomogeneous Green's Operator $F: (f, B) \mapsto u$

Fully Homogeneous Boundary Problem:

Tu = 0

Trivial: u = 0

Assume $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ given:

Assume $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ given:

• Boundary basis $(\beta_i \mid i \in I)$ such that $\mathcal{B} = [\beta_i \mid i \in I]$ Linear span + orthogonal closure

Assume $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ given:

- Boundary basis $(\beta_i \mid i \in I)$ such that $\mathcal{B} = [\beta_i \mid i \in I]$ Linear span + orthogonal closure
- Trace map trc: $\mathcal{F} \to \mathcal{B}^*$ sends $f \in \mathcal{F}$ to $\beta \mapsto \beta(f)$

Assume $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ given:

- Boundary basis $(\beta_i \mid i \in I)$ such that $\mathcal{B} = [\beta_i \mid i \in I]$ Linear span + orthogonal closure
- Trace map trc: $\mathcal{F} \to \mathcal{B}^*$ sends $f \in \mathcal{F}$ to $\beta \mapsto \beta(f)$
- Boundary data $B \in \mathcal{B}' := \operatorname{im}(\operatorname{trc})$

Assume $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ given:

- Boundary basis $(\beta_i \mid i \in I)$ such that $\mathcal{B} = [\beta_i \mid i \in I]$ Linear span + orthogonal closure
- Trace map trc: $\mathcal{F} \to \mathcal{B}^*$ sends $f \in \mathcal{F}$ to $\beta \mapsto \beta(f)$
- Boundary data $B \in \mathcal{B}' := \operatorname{im}(\operatorname{trc})$
- Boundary values $\overline{B} := B(\beta_i)_{i \in I} \in K^I$

Assume $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ given:

- Boundary basis $(\beta_i \mid i \in I)$ such that $\mathcal{B} = [\beta_i \mid i \in I]$ Linear span + orthogonal closure
- Trace map trc: $\mathcal{F} \to \mathcal{B}^*$ sends $f \in \mathcal{F}$ to $\beta \mapsto \beta(f)$
- Boundary data $B \in \mathcal{B}' := \operatorname{im}(\operatorname{trc})$
- Boundary values $\overline{B} := B(\beta_i)_{i \in I} \in K^I$

 $\begin{array}{ccc} \text{Boundary Data} & \xrightarrow{\text{Boundary Basis } (\beta_i)_{i \in I}} & \text{Boundary Values} \\ B \in \mathcal{B}' & & \overline{B} \in K^I \\ \text{basis-free} & & \text{basis-dependent} \end{array}$

Assume $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ given:

- Boundary basis $(\beta_i \mid i \in I)$ such that $\mathcal{B} = [\beta_i \mid i \in I]$ Linear span + orthogonal closure
- Trace map trc: $\mathcal{F} \to \mathcal{B}^*$ sends $f \in \mathcal{F}$ to $\beta \mapsto \beta(f)$
- Boundary data $B \in \mathcal{B}' := \operatorname{im}(\operatorname{trc})$
- Boundary values $\overline{B} := B(\beta_i)_{i \in I} \in K^I$

 $\begin{array}{ccc} \text{Boundary Data} & \xrightarrow{\text{Boundary Basis } (\beta_i)_{i \in I}} & \text{Boundary Values} \\ B \in \mathcal{B}' & & \overline{B} \in K^I \\ \text{basis-free} & & \text{basis-dependent} \end{array}$

Lemma

Let $\mathcal{B} \leq \mathcal{F}^*$ be a boundary space with boundary basis $(\beta_i \in I)$. If for any $B_1, B_2 \in \mathcal{B}'$ one has $\overline{B}_1 = \overline{B}_2$ then also $B_1 = B_2$. In particular, the trace f^* of $f \in \mathcal{F}$ depends only on $\overline{f^*} = \beta_i(f)_{i \in I} \in K^I$.

07

An interpolator for \mathcal{B} is a section $\mathcal{B}^{\Diamond} \colon \mathcal{B}' \to \mathcal{F}$ of trc: $\mathcal{F} \to \mathcal{B}'$.

An interpolator for \mathcal{B} is a section $\mathcal{B}^{\Diamond} : \mathcal{B}' \to \mathcal{F}$ of trc: $\mathcal{F} \to \mathcal{B}'$. Relative to $(\beta_i \mid i \in I)$, it is given by a map $K^I \to \mathcal{F}$.

An interpolator for \mathcal{B} is a section $\mathcal{B}^{\Diamond} : \mathcal{B}' \to \mathcal{F}$ of trc: $\mathcal{F} \to \mathcal{B}'$. Relative to $(\beta_i \mid i \in I)$, it is given by a map $K^I \to \mathcal{F}$. Boundary values $\overline{B} \in K^I \rightsquigarrow$ boundary data $B \in \mathcal{B}'$ via $B(\beta) := \beta(\mathcal{B}^{\Diamond}\overline{B})$.

An interpolator for \mathcal{B} is a section $\mathcal{B}^{\Diamond} : \mathcal{B}' \to \mathcal{F}$ of trc: $\mathcal{F} \to \mathcal{B}'$. Relative to $(\beta_i \mid i \in I)$, it is given by a map $K^I \to \mathcal{F}$. Boundary values $\overline{B} \in K^I \rightsquigarrow$ boundary data $B \in \mathcal{B}'$ via $B(\beta) := \beta(\mathcal{B}^{\Diamond}\overline{B})$.

Theorem

Let $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ be given. Then $G = (1 - P) T^{\Diamond}$ and $H = P\mathcal{B}^{\Diamond}$, hence $F = (1 - P) T^{\Diamond} \oplus P\mathcal{B}^{\Diamond}$, where P projects onto ker T along \mathcal{B}^{\perp} .

An interpolator for \mathcal{B} is a section $\mathcal{B}^{\Diamond} : \mathcal{B}' \to \mathcal{F}$ of trc: $\mathcal{F} \to \mathcal{B}'$. Relative to $(\beta_i \mid i \in I)$, it is given by a map $K^I \to \mathcal{F}$. Boundary values $\overline{B} \in K^I \rightsquigarrow$ boundary data $B \in \mathcal{B}'$ via $B(\beta) := \beta(\mathcal{B}^{\Diamond}\overline{B})$.

Theorem

Let $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ be given. Then $G = (1 - P) T^{\Diamond}$ and $H = P \mathcal{B}^{\Diamond}$, hence $F = (1 - P) T^{\Diamond} \oplus P \mathcal{B}^{\Diamond}$, where P projects onto ker T along \mathcal{B}^{\perp} .

Usually more realistic to compute P from H:

An interpolator for \mathcal{B} is a section $\mathcal{B}^{\Diamond} : \mathcal{B}' \to \mathcal{F}$ of trc: $\mathcal{F} \to \mathcal{B}'$. Relative to $(\beta_i \mid i \in I)$, it is given by a map $K^I \to \mathcal{F}$. Boundary values $\overline{B} \in K^I \rightsquigarrow$ boundary data $B \in \mathcal{B}'$ via $B(\beta) := \beta(\mathcal{B}^{\Diamond}\overline{B})$.

Theorem

Let $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ be given. Then $G = (1 - P) T^{\Diamond}$ and $H = P \mathcal{B}^{\Diamond}$, hence $F = (1 - P) T^{\Diamond} \oplus P \mathcal{B}^{\Diamond}$, where P projects onto ker T along \mathcal{B}^{\perp} .

Usually more realistic to compute P from H:

Proposition

Let $(T, \mathcal{B}) \in \mathbf{BnProb}^*$ be given. Then $\operatorname{trc}|_{\ker T}$ is bijective with state operator H as inverse, and the kernel projector is $P = H \circ \operatorname{trc}$.

Given a forcing function
$$f(x) \in C^{\infty}[a, b]$$
 and
boundary data $(\rho, \sigma) \in \mathbb{R}^2$,
find solution $u(x) \in C^{\infty}[a, b]$ such that

$$u'' = f,$$

 $u(a) + u(b) = \rho, u'(b) - u(b) = \sigma.$

< 日)

Given a forcing function
$$f(x) \in C^{\infty}[a, b]$$
 and
boundary data $(\rho, \sigma) \in \mathbb{R}^2$,
find solution $u(x) \in C^{\infty}[a, b]$ such that

$$u'' = f,$$

 $u(a) + u(b) = \rho, u'(b) - u(b) = \sigma.$

Key elements:

• Function space $\mathcal{F} = C^{\infty}[a, b]$

Given a forcing function
$$f(x) \in C^{\infty}[a, b]$$
 and
boundary data $(\rho, \sigma) \in \mathbb{R}^2$,
find solution $u(x) \in C^{\infty}[a, b]$ such that

$$u'' = f,$$

 $u(a) + u(b) = \rho, u'(b) - u(b) = \sigma.$

Key elements:

- Function space $\mathcal{F} = C^{\infty}[a, b]$
- Boundary space $\mathcal{B} = [L + R, RD R]$, $I = \{1, 2\}$

Given a forcing function
$$f(x) \in C^{\infty}[a, b]$$
 and
boundary data $(\rho, \sigma) \in \mathbb{R}^2$,
find solution $u(x) \in C^{\infty}[a, b]$ such that

$$u'' = f,$$

 $u(a) + u(b) = \rho, u'(b) - u(b) = \sigma.$

Key elements:

- Function space $\mathcal{F} = C^{\infty}[a, b]$
- Boundary space $\mathcal{B} = [L + R, RD R]$, $I = \{1, 2\}$
- Boundary basis $(\beta_i \mid i \in I)$ with $\beta_1 = L + R, \beta_2 = RD R$

Given a forcing function
$$f(x) \in C^{\infty}[a, b]$$
 and
boundary data $(\rho, \sigma) \in \mathbb{R}^2$,
find solution $u(x) \in C^{\infty}[a, b]$ such that

$$u'' = f,$$

 $u(a) + u(b) = \rho, u'(b) - u(b) = \sigma.$

Key elements:

- Function space $\mathcal{F} = C^{\infty}[a, b]$
- Boundary space $\mathcal{B} = [L + R, RD R]$, $I = \{1, 2\}$
- Boundary basis $(\beta_i \mid i \in I)$ with $\beta_1 = L + R, \beta_2 = RD R$
- Boundary data $B = (L + R \mapsto \rho, RD R \mapsto \sigma) \in \mathcal{B}'$

Given a forcing function
$$f(x) \in C^{\infty}[a, b]$$
 and
boundary data $(\rho, \sigma) \in \mathbb{R}^2$,
find solution $u(x) \in C^{\infty}[a, b]$ such that

$$u'' = f,$$

 $u(a) + u(b) = \rho, u'(b) - u(b) = \sigma.$

Key elements:

- Function space $\mathcal{F} = C^{\infty}[a, b]$
- Boundary space $\mathcal{B} = [L + R, RD R]$, $I = \{1, 2\}$
- Boundary basis $(\beta_i \mid i \in I)$ with $\beta_1 = L + R, \beta_2 = RD R$
- Boundary data $B = (L + R \mapsto \rho, RD R \mapsto \sigma) \in \mathcal{B}'$
- Boundary values $\overline{B} = (\rho, \sigma) \in \mathbb{R}^I$

Given a forcing function $f(x) \in C^{\infty}[a, b]$ and boundary data $(\rho, \sigma) \in \mathbb{R}^2$, find solution $u(x) \in C^{\infty}[a, b]$ such that

$$u'' = f,$$

$$u(a) + u'(b) = \rho + \sigma, u(b) - u'(b) = -\sigma.$$

Key elements:

- Function space $\mathcal{F} = C^{\infty}[a, b]$
- Boundary space $\mathcal{B} = [L + R, RD R]$, $I = \{1, 2\}$
- Boundary basis $(\beta_i \mid i \in I)$ with $\beta_1 = L + R, \beta_2 = RD R$
- Boundary data $B = (L + R \mapsto \rho, RD R \mapsto \sigma) \in \mathcal{B}'$
- Boundary values $\overline{B} = (\rho, \sigma) \in \mathbb{R}^I$

Given a forcing function $f(x) \in C^{\infty}[a, b]$ and boundary data $(\rho, \sigma) \in \mathbb{R}^2$, find solution $u(x) \in C^{\infty}[a, b]$ such that

$$u'' = f,$$

$$u(a) + u'(b) = \rho + \sigma, u(b) - u'(b) = -\sigma.$$

Key elements:

- Function space $\mathcal{F} = C^{\infty}[a, b]$
- Boundary space $\mathcal{B} = [L + RD, R RD]$, $I = \{1, 2\}$
- New basis $(\gamma_i \mid i \in I)$ with $\gamma_1 = L + RD, \gamma_2 = R RD$
- Boundary data $B = (L + R \mapsto \rho, RD R \mapsto \sigma) \in \mathcal{B}'$
- Boundary values $\overline{B} = (\rho, \sigma) \in \mathbb{R}^I$

Given a forcing function $f(x) \in C^{\infty}[a, b]$ and boundary data $(\rho, \sigma) \in \mathbb{R}^2$, find solution $u(x) \in C^{\infty}[a, b]$ such that

$$u'' = f,$$

$$u(a) + u'(b) = \rho + \sigma, u(b) - u'(b) = -\sigma.$$

Key elements:

- Function space $\mathcal{F} = C^{\infty}[a, b]$
- Boundary space $\mathcal{B} = [L + RD, R RD]$, $I = \{1, 2\}$
- New basis $(\gamma_i \mid i \in I)$ with $\gamma_1 = L + RD, \gamma_2 = R RD$
- Boundary data $B = (L + RD \mapsto \rho + \sigma, R RD \mapsto -\sigma) \in \mathcal{B}'$
- Boundary values $\overline{B} = (\rho, \sigma) \in \mathbb{R}^I$

Given a forcing function $f(x) \in C^{\infty}[a, b]$ and boundary data $(\rho, \sigma) \in \mathbb{R}^2$, find solution $u(x) \in C^{\infty}[a, b]$ such that

$$u'' = f,$$

$$u(a) + u'(b) = \rho + \sigma, u(b) - u'(b) = -\sigma.$$

Key elements:

- Function space $\mathcal{F} = C^{\infty}[a, b]$
- Boundary space $\mathcal{B} = [L + RD, R RD]$, $I = \{1, 2\}$
- New basis $(\gamma_i \mid i \in I)$ with $\gamma_1 = L + RD, \gamma_2 = R RD$
- Boundary data $B = (L + RD \mapsto \rho + \sigma, R RD \mapsto -\sigma) \in \mathcal{B}'$
- New values $\overline{C} = (\tilde{\rho}, \tilde{\sigma}) = (\rho + \sigma, -\sigma) \in \mathbb{R}^{I}$

Given a forcing function
$$f(x) \in C^{\infty}[a, b]$$
 and
boundary data $(\rho, \sigma) \in \mathbb{R}^2$,
find solution $u(x) \in C^{\infty}[a, b]$ such that

$$u'' = f,$$

 $u(a) + u(b) = \rho, u'(b) - u(b) = \sigma.$

Key elements:

- Function space $\mathcal{F} = C^{\infty}[a, b]$
- Boundary space $\mathcal{B} = [L + R, RD R]$, $I = \{1, 2\}$
- Boundary basis $(\beta_i \mid i \in I)$ with $\beta_1 = L + R, \beta_2 = RD R$
- Boundary data $B = (L + R \mapsto \rho, RD R \mapsto \sigma) \in \mathcal{B}'$
- Boundary values $\overline{B} = (\rho, \sigma) \in \mathbb{R}^I$

LPDE Example: Cauchy Problem

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0, x, y) = f_1(x, y), \quad u_t(0, x, y) = f_2(x, y)$$

LPDE Example: Cauchy Problem

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0, x, y) = f_1(x, y), \quad u_t(0, x, y) = f_2(x, y)$$

Key elements:

• Function space $\mathcal{F} = C^{\omega}(\mathbb{R}^3)$

LPDE Example: Cauchy Problem

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0, x, y) = f_1(x, y), \quad u_t(0, x, y) = f_2(x, y)$$

Key elements:

- Function space $\mathcal{F} = C^{\omega}(\mathbb{R}^3)$
- Boundary space $\mathcal{B} = [E_{0,x,y}, E_{0,x,y}D_t \mid (x,y) \in \mathbb{R}^2]$, $I = \mathbb{R}^2 \sqcup \mathbb{R}^2$

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0, x, y) = f_1(x, y), \quad u_t(0, x, y) = f_2(x, y)$$

Key elements:

- Function space $\mathcal{F} = C^{\omega}(\mathbb{R}^3)$
- Boundary space $\mathcal{B} = [E_{0,x,y}, E_{0,x,y}D_t \mid (x,y) \in \mathbb{R}^2]$, $I = \mathbb{R}^2 \sqcup \mathbb{R}^2$
- Boundary basis $(\beta_i \mid i \in I)$ with $\beta_{(x,y),1} = E_{0,x,y}$, $\beta_{(x,y),2} = E_{0,x,y}D_t$

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0, x, y) = f_1(x, y), \quad u_t(0, x, y) = f_2(x, y)$$

Key elements:

- Function space $\mathcal{F} = C^{\omega}(\mathbb{R}^3)$
- Boundary space $\mathcal{B} = [E_{0,x,y}, E_{0,x,y}D_t \mid (x,y) \in \mathbb{R}^2]$, $I = \mathbb{R}^2 \sqcup \mathbb{R}^2$
- Boundary basis $(\beta_i \mid i \in I)$ with $\beta_{(x,y),1} = E_{0,x,y}$, $\beta_{(x,y),2} = E_{0,x,y}D_t$

• Boundary data
$$B = (E_{0,x,y} \mapsto f_1(x,y), E_{0,x,y}D_t \mapsto f_2(x,y)) \in \mathcal{B}'$$

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0, x, y) = f_1(x, y), \quad u_t(0, x, y) = f_2(x, y)$$

Key elements:

- Function space $\mathcal{F} = C^{\omega}(\mathbb{R}^3)$
- Boundary space $\mathcal{B} = [E_{0,x,y}, E_{0,x,y}D_t \mid (x,y) \in \mathbb{R}^2]$, $I = \mathbb{R}^2 \sqcup \mathbb{R}^2$
- Boundary basis $(\beta_i \mid i \in I)$ with $\beta_{(x,y),1} = E_{0,x,y}$, $\beta_{(x,y),2} = E_{0,x,y}D_t$

• Boundary data
$$B = (E_{0,x,y} \mapsto f_1(x,y), E_{0,x,y}D_t \mapsto f_2(x,y)) \in \mathcal{B}'$$

• Boundary values $\overline{B} = (f_1, f_2) \in \mathbb{R}^I$

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0,0,y) = f_1(0,y), u_x(0,x,y) = f_{1x}(x,y), u_t(0,x,y) = f_2(x,y)$$

Key elements:

- Function space $\mathcal{F} = C^{\omega}(\mathbb{R}^3)$
- Boundary space $\mathcal{B} = [E_{0,x,y}, E_{0,x,y}D_t \mid (x,y) \in \mathbb{R}^2]$, $I = \mathbb{R}^2 \sqcup \mathbb{R}^2$
- Boundary basis $(\beta_i \mid i \in I)$ with $\beta_{(x,y),1} = E_{0,x,y}$, $\beta_{(x,y),2} = E_{0,x,y}D_t$

• Boundary data
$$B = (E_{0,x,y} \mapsto f_1(x,y), E_{0,x,y}D_t \mapsto f_2(x,y)) \in \mathcal{B}'$$

• Boundary values $\overline{B} = (f_1, f_2) \in \mathbb{R}^I$

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0,0,y) = f_1(0,y), u_x(0,x,y) = f_{1x}(x,y), u_t(0,x,y) = f_2(x,y)$$

Key elements:

- Function space $\mathcal{F} = C^{\omega}(\mathbb{R}^3)$
- $\mathcal{B} = [\underline{E_{0,0,y}}, \underline{E_{0,x,y}}D_x, E_{0,x,y}D_t \mid (x,y) \in \mathbb{R}^2], I = \mathbb{R} \sqcup \mathbb{R}^2 \sqcup \mathbb{R}^2$
- Boundary basis $(\beta_i \mid i \in I)$ with $\beta_{(x,y),1} = E_{0,x,y}$, $\beta_{(x,y),2} = E_{0,x,y}D_t$

• Boundary data
$$B = (E_{0,x,y} \mapsto f_1(x,y), E_{0,x,y}D_t \mapsto f_2(x,y)) \in \mathcal{B}'$$

• Boundary values $\overline{B} = (f_1, f_2) \in \mathbb{R}^I$

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0, 0, y) = f_1(0, y), u_x(0, x, y) = f_{1x}(x, y), u_t(0, x, y) = f_2(x, y)$$

Key elements:

- Function space $\mathcal{F} = C^{\omega}(\mathbb{R}^3)$
- $\mathcal{B} = [\underline{E_{0,0,y}}, \underline{E_{0,x,y}}D_x, E_{0,x,y}D_t \mid (x,y) \in \mathbb{R}^2], I = \mathbb{R} \sqcup \mathbb{R}^2 \sqcup \mathbb{R}^2$
- New basis $\gamma_{y,1} = E_{0,0,y}$, $\gamma_{(x,y),2} = E_{0,x,y}D_x$, $\gamma_{(x,y),3} = E_{0,x,y}D_t$

• Boundary data
$$B = (E_{0,x,y} \mapsto f_1(x,y), E_{0,x,y}D_t \mapsto f_2(x,y)) \in \mathcal{B}'$$

• Boundary values $\overline{B} = (f_1, f_2) \in \mathbb{R}^I$

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0, 0, y) = f_1(0, y), u_x(0, x, y) = f_{1x}(x, y), u_t(0, x, y) = f_2(x, y)$$

Key elements:

- Function space $\mathcal{F} = C^{\omega}(\mathbb{R}^3)$
- $\mathcal{B} = [\underline{E_{0,0,y}}, \underline{E_{0,x,y}}D_x, E_{0,x,y}D_t \mid (x,y) \in \mathbb{R}^2], I = \mathbb{R} \sqcup \mathbb{R}^2 \sqcup \mathbb{R}^2$
- New basis $\gamma_{y,1} = E_{0,0,y}$, $\gamma_{(x,y),2} = E_{0,x,y}D_x$, $\gamma_{(x,y),3} = E_{0,x,y}D_t$
- Boundary data $B = (E_{0,0,y} \mapsto f_1(0,y), E_{0,x,y}D_x \mapsto f_{1x}(x,y), E_{0,x,y}D_t \mapsto f_2(x,y)) \in \mathcal{B}'$
- Boundary values $\overline{B} = (f_1, f_2) \in \mathbb{R}^I$

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0, 0, y) = f_1(0, y), u_x(0, x, y) = f_{1x}(x, y), u_t(0, x, y) = f_2(x, y)$$

Key elements:

- Function space $\mathcal{F} = C^{\omega}(\mathbb{R}^3)$
- $\mathcal{B} = [\underline{E_{0,0,y}}, \underline{E_{0,x,y}}D_x, E_{0,x,y}D_t \mid (x,y) \in \mathbb{R}^2], I = \mathbb{R} \sqcup \mathbb{R}^2 \sqcup \mathbb{R}^2$
- New basis $\gamma_{y,1} = E_{0,0,y}$, $\gamma_{(x,y),2} = E_{0,x,y}D_x$, $\gamma_{(x,y),3} = E_{0,x,y}D_t$
- Boundary data $B = (E_{0,0,y} \mapsto f_1(0,y), E_{0,x,y}D_x \mapsto f_{1x}(x,y), E_{0,x,y}D_t \mapsto f_2(x,y)) \in \mathcal{B}'$
- New values $\overline{C} = (g_1, g_2, g_3) = (f_1(0, y), f_{1x}(x, y), f_2(x, y)) \in \mathbb{R}^I$

Given a forcing function $f(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ and Cauchy data $f_1(x, y), f_2(x, y) \in C^{\omega}(\mathbb{R}^2)$, find solution $u(t, x, y) \in C^{\omega}(\mathbb{R}^3)$ such that

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f$$

$$u(0, x, y) = f_1(x, y), \quad u_t(0, x, y) = f_2(x, y)$$

Key elements:

- Function space $\mathcal{F} = C^{\omega}(\mathbb{R}^3)$
- Boundary space $\mathcal{B} = [E_{0,x,y}, E_{0,x,y}D_t \mid (x,y) \in \mathbb{R}^2]$, $I = \mathbb{R}^2 \sqcup \mathbb{R}^2$
- Boundary basis $(\beta_i \mid i \in I)$ with $\beta_{(x,y),1} = E_{0,x,y}$, $\beta_{(x,y),2} = E_{0,x,y}D_t$

• Boundary data
$$B = (E_{0,x,y} \mapsto f_1(x,y), E_{0,x,y}D_t \mapsto f_2(x,y)) \in \mathcal{B}'$$

• Boundary values $\overline{B} = (f_1, f_2) \in \mathbb{R}^I$

2 Ordinary Integro-Differential Operators

Partial Integro-Differential Operators

Let (\mathcal{F}, ∂) be a (noncommutative) differential algebra over a field K. A K-linear operation $\int : \mathcal{F} \to \mathcal{F}$ is called an integral operator for ∂ if $\partial \circ \int = 1_{\mathcal{F}}$ and the differential Rota-Baxter axiom $(\int f')(\int g') + \int (fg)' = (\int f')g + f(\int g')$

is satisfied. Then $(\mathcal{F}, \partial, \int)$ is an integro-differential algebra.

Let (\mathcal{F}, ∂) be a (noncommutative) differential algebra over a field K. A K-linear operation $\int : \mathcal{F} \to \mathcal{F}$ is called an integral operator for ∂ if $\partial \circ \int = 1_{\mathcal{F}}$ and the differential Rota-Baxter axiom $(\int f')(\int g') + \int (fg)' = (\int f')g + f(\int g')$ is satisfied. Then $(\mathcal{F}, \partial, \int)$ is an integro-differential algebra.

Examples of integro-differential algebras:

•
$$\mathcal{F} = C^{\infty}(\mathbb{R}^n), \ \partial u = u_{x_i}, \ \int u = \int_0^{x_i} u(\xi) \, d\xi,$$

Let (\mathcal{F}, ∂) be a (noncommutative) differential algebra over a field K. A K-linear operation $\int : \mathcal{F} \to \mathcal{F}$ is called an integral operator for ∂ if $\partial \circ \int = 1_{\mathcal{F}}$ and the differential Rota-Baxter axiom $(\int f')(\int g') + \int (fg)' = (\int f')g + f(\int g')$ is satisfied. Then $(\mathcal{F}, \partial, \int)$ is an integro-differential algebra.

Examples of integro-differential algebras:

•
$$\mathcal{F} = C^{\infty}(\mathbb{R}^n), \ \partial u = u_{x_i}, \ \int u = \int_0^{x_i} u(\xi) \, d\xi$$
, partial for $n > 1$

Let (\mathcal{F}, ∂) be a (noncommutative) differential algebra over a field K. A K-linear operation $\int : \mathcal{F} \to \mathcal{F}$ is called an integral operator for ∂ if $\partial \circ \int = 1_{\mathcal{F}}$ and the differential Rota-Baxter axiom $(\int f')(\int g') + \int (fg)' = (\int f')g + f(\int g')$ is satisfied. Then $(\mathcal{F}, \partial, \int)$ is an integro-differential algebra.

Examples of integro-differential algebras:

•
$$\mathcal{F} = C^{\infty}(\mathbb{R}^n), \ \partial u = u_{x_i}, \ \int u = \int_0^{x_i} u(\xi) \, d\xi, \text{ partial for } n > 1$$

• $\mathcal{F} = C^{\omega}(D), \ \partial u = u', \ \int u = \int_0^z u(z) \, dz$

Let (\mathcal{F}, ∂) be a (noncommutative) differential algebra over a field K. A K-linear operation $\int : \mathcal{F} \to \mathcal{F}$ is called an integral operator for ∂ if $\partial \circ \int = 1_{\mathcal{F}}$ and the differential Rota-Baxter axiom $(\int f')(\int g') + \int (fg)' = (\int f')g + f(\int g')$ is satisfied. Then $(\mathcal{F}, \partial, \int)$ is an integro-differential algebra.

Examples of integro-differential algebras:

•
$$\mathcal{F} = C^{\infty}(\mathbb{R}^n), \ \partial u = u_{x_i}, \ \int u = \int_0^{x_i} u(\xi) \, d\xi, \text{ partial for } n > 1$$

• $\mathcal{F} = C^{\omega}(D), \ \partial u = u', \ \int u = \int_0^z u(z) \, dz$

• Holonomic functions $\subset K[[x]]$

Let (\mathcal{F}, ∂) be a (noncommutative) differential algebra over a field K. A K-linear operation $\int : \mathcal{F} \to \mathcal{F}$ is called an integral operator for ∂ if $\partial \circ \int = 1_{\mathcal{F}}$ and the differential Rota-Baxter axiom $(\int f')(\int g') + \int (fg)' = (\int f')g + f(\int g')$ is satisfied. Then $(\mathcal{F}, \partial, \int)$ is an integro-differential algebra.

Examples of integro-differential algebras:

•
$$\mathcal{F} = C^{\infty}(\mathbb{R}^n), \ \partial u = u_{x_i}, \ \int u = \int_0^{x_i} u(\xi) \, d\xi$$
, partial for $n > 1$

•
$$\mathcal{F} = C^{\omega}(D), \ \partial u = u', \ \int u = \int_0^z u(z) \, dz$$

- Holonomic functions $\subset K[[x]]$
- Matrix rings $(\mathcal{F}^{n \times n}, \partial, \int)$,

Let (\mathcal{F}, ∂) be a (noncommutative) differential algebra over a field K. A K-linear operation $\int : \mathcal{F} \to \mathcal{F}$ is called an integral operator for ∂ if $\partial \circ \int = 1_{\mathcal{F}}$ and the differential Rota-Baxter axiom $(\int f')(\int g') + \int (fg)' = (\int f')g + f(\int g')$ is satisfied. Then $(\mathcal{F}, \partial, \int)$ is an integro-differential algebra.

Examples of integro-differential algebras:

•
$$\mathcal{F} = C^{\infty}(\mathbb{R}^n), \ \partial u = u_{x_i}, \ \int u = \int_0^{x_i} u(\xi) \, d\xi$$
, partial for $n > 1$

•
$$\mathcal{F} = C^{\omega}(D), \ \partial u = u', \ \int u = \int_0^z u(z) \, dz$$

- Holonomic functions $\subset K[[x]]$
- Matrix rings $(\mathcal{F}^{n \times n}, \ \partial, \int)$,
- Adjunctions $K[x], K[x, e^x], K[x, \frac{1}{x}, \log x]$

Alternative Characterizations

< 合?)

Let (\mathcal{F}, ∂) be a differential algebra and \int a section of ∂ . Then the following statements are equivalent:

() The structure $(\mathcal{F}, \int, \partial)$ is an integro-differential algebra.

- **()** The structure $(\mathcal{F}, \int, \partial)$ is an integro-differential algebra.
- $e e = E(fg) = E(f) E(g) \text{ for } E := 1_{\mathcal{F}} \int \circ \partial.$

- **()** The structure $(\mathcal{F}, \int, \partial)$ is an integro-differential algebra.
- $O We have <math>E(fg) = E(f) E(g) \text{ for } E := 1_{\mathcal{F}} \int \circ \partial.$
- We have J(f J(g)) = f J(g), J(J(f) g) = J(f) g for $J := \int \circ \partial$.

- **O** The structure $(\mathcal{F}, \int, \partial)$ is an integro-differential algebra.
- $\textbf{O} We have <math>E(fg) = E(f) E(g) \text{ for } E := 1_{\mathcal{F}} \int \circ \partial.$
- **③** We have J(f J(g)) = f J(g), J(J(f)g) = J(f)g for $J := \int \circ \partial$.
- One has $\mathcal{I} := \operatorname{im} \int \trianglelefteq \mathcal{F}$ while $\mathcal{C} := \ker \partial \le \mathcal{F}$.

- **O** The structure $(\mathcal{F}, \int, \partial)$ is an integro-differential algebra.
- $O We have <math>E(fg) = E(f) E(g) \text{ for } E := 1_{\mathcal{F}} \int \circ \partial.$
- **3** We have J(f J(g)) = f J(g), J(J(f) g) = J(f) g for $J := \int \circ \partial$.
- One has $\mathcal{I} := \operatorname{im} \int \trianglelefteq \mathcal{F}$ while $\mathcal{C} := \ker \partial \le \mathcal{F}$.
- **③** Integration by parts $\int (f' \int g) = f \int g \int f g$, and opposite.

- **O** The structure $(\mathcal{F}, \int, \partial)$ is an integro-differential algebra.
- $\textbf{O} \text{ We have } E(fg) = E(f) E(g) \text{ for } E := 1_{\mathcal{F}} \int \circ \partial.$
- We have J(f J(g)) = f J(g), J(J(f) g) = J(f) g for $J := \int \circ \partial$.
- One has $\mathcal{I} := \operatorname{im} \int \trianglelefteq \mathcal{F}$ while $\mathcal{C} := \ker \partial \le \mathcal{F}$.
- **③** Integration by parts $\int (f' \int g) = f \int g \int f g$, and opposite.
- We have $(\int f)(\int g) = \int (f \int g) + \int (g \int f)$, and \int is C-linear.

Let (\mathcal{F}, ∂) be a differential algebra and \int a section of ∂ . Then the following statements are equivalent:

- **O** The structure $(\mathcal{F}, \int, \partial)$ is an integro-differential algebra.
- $\textbf{O} We have <math>E(fg) = E(f) E(g) \text{ for } E := 1_{\mathcal{F}} \int \circ \partial.$
- We have J(f J(g)) = f J(g), J(J(f) g) = J(f) g for $J := \int \circ \partial$.
- One has $\mathcal{I} := \operatorname{im} \int \trianglelefteq \mathcal{F}$ while $\mathcal{C} := \ker \partial \le \mathcal{F}$.
- **③** Integration by parts $\int (f' \int g) = f \int g \int f g$, and opposite.
- We have $(\int f)(\int g) = \int (f \int g) + \int (g \int f)$, and \int is C-linear.
- The structure (\mathcal{F}, \int) in (6) is called Rota-Baxter-Algebra.

67

- **O** The structure $(\mathcal{F}, \int, \partial)$ is an integro-differential algebra.
- $\textbf{O} We have <math>E(fg) = E(f) E(g) \text{ for } E := 1_{\mathcal{F}} \int \circ \partial.$
- **③** We have J(f J(g)) = f J(g), J(J(f) g) = J(f) g for $J := \int \circ \partial$.
- One has $\mathcal{I} := \operatorname{im} \int \trianglelefteq \mathcal{F}$ while $\mathcal{C} := \ker \partial \le \mathcal{F}$.
- **③** Integration by parts $\int (f' \int g) = f \int g \int f g$, and opposite.
- We have $(\int f)(\int g) = \int (f \int g) + \int (g \int f)$, and \int is C-linear.
- The structure (\mathcal{F}, \int) in (6) is called Rota-Baxter-Algebra.
- We always have $\mathcal{F} = \mathcal{C} + \mathcal{I}$ since $1_{\mathcal{F}} = E + J$.

Let (\mathcal{F}, ∂) be a differential algebra and \int a section of ∂ . Then the following statements are equivalent:

- **O** The structure $(\mathcal{F}, \int, \partial)$ is an integro-differential algebra.
- $\textbf{O} \text{ We have } E(fg) = E(f) E(g) \text{ for } E := 1_{\mathcal{F}} \int \circ \partial.$
- **③** We have J(f J(g)) = f J(g), J(J(f) g) = J(f) g for $J := \int \circ \partial$.
- One has $\mathcal{I} := \operatorname{im} \int \trianglelefteq \mathcal{F}$ while $\mathcal{C} := \ker \partial \le \mathcal{F}$.
- **③** Integration by parts $\int (f' \int g) = f \int g \int f g$, and opposite.
- We have $(\int f)(\int g) = \int (f \int g) + \int (g \int f)$, and \int is C-linear.
 - The structure (\mathcal{F}, \int) in (6) is called Rota-Baxter-Algebra.
 - We always have $\mathcal{F} = \mathcal{C} \dotplus \mathcal{I}$ since $1_{\mathcal{F}} = E + J$.
 - In $\mathcal{F} = C^{\infty}(\mathbb{R})$ have E(f) = f(0), so $\mathcal{C} = \mathbb{R}$, $\mathcal{I} = \{f \mid f(0) = 0\}$.

07

- **O** The structure $(\mathcal{F}, \int, \partial)$ is an integro-differential algebra.
- $\textbf{O} \text{ We have } E(fg) = E(f) E(g) \text{ for } E := 1_{\mathcal{F}} \int \circ \partial.$
- We have J(f J(g)) = f J(g), J(J(f) g) = J(f) g for $J := \int \circ \partial$.
- One has $\mathcal{I} := \operatorname{im} \int \trianglelefteq \mathcal{F}$ while $\mathcal{C} := \ker \partial \le \mathcal{F}$.
- **③** Integration by parts $\int (f' \int g) = f \int g \int f g$, and opposite.
- We have $(\int f)(\int g) = \int (f \int g) + \int (g \int f)$, and \int is C-linear.
- The structure (\mathcal{F}, \int) in (6) is called Rota-Baxter-Algebra.
- We always have $\mathcal{F} = \mathcal{C} \dotplus \mathcal{I}$ since $1_{\mathcal{F}} = E + J$.
- In $\mathcal{F} = C^{\infty}(\mathbb{R})$ have E(f) = f(0), so $\mathcal{C} = \mathbb{R}$, $\mathcal{I} = \{f \mid f(0) = 0\}$.
- Ordinary \mathcal{F} : Characters $\varphi \in \mathcal{F}^{\bullet} \leftrightarrow$ Integrals \int_{φ} for ∂ .

Univariate Operator Ring

Definition and Theorem

Let $(\mathcal{F}, \partial, \int)$ be an ordinary integro-differential algebra. Then the ring of integro-differential operators $\mathcal{F}[\partial, \int]$ is the *K*-algebra generated by $\{\partial, \int\} \cup \mathcal{F} \cup \mathcal{F}^{\bullet}$ modulo the Gröbner basis below.

Definition and Theorem

Let $(\mathcal{F}, \partial, \int)$ be an ordinary integro-differential algebra. Then the ring of integro-differential operators $\mathcal{F}[\partial, \int]$ is the *K*-algebra generated by $\{\partial, \int\} \cup \mathcal{F} \cup \mathcal{F}^{\bullet}$ modulo the Gröbner basis below.

Definition and Theorem

Let $(\mathcal{F}, \partial, \int)$ be an ordinary integro-differential algebra. Then the ring of integro-differential operators $\mathcal{F}[\partial, \int]$ is the *K*-algebra generated by $\{\partial, \int\} \cup \mathcal{F} \cup \mathcal{F}^{\bullet}$ modulo the Gröbner basis below.

Proposition

One has $\mathcal{F}[\partial, \int] = \mathcal{F}[\partial] \dotplus \mathcal{F}[\int] \dotplus (\mathcal{F}^{\bullet})$, and the evaluation ideal (\mathcal{F}^{\bullet}) is generated by $|\mathcal{F}^{\bullet})$ as a left \mathcal{F} -module.

The normal forms of Stieltjes conditions $|\mathcal{F}^{\bullet})$ are linear combinations of local conditions $\varphi \partial^i$ and global conditions $\varphi \int f$.

The normal forms of Stieltjes conditions $|\mathcal{F}^{\bullet})$ are linear combinations of local conditions $\varphi \partial^i$ and global conditions $\varphi \int f$.

• Example for $\mathcal{F} = C^{\infty}(\mathbb{R})$ ist $u \mapsto u(0) - u(1) + \int_0^2 \xi^2 u(\xi) d\xi$.

The normal forms of Stieltjes conditions $|\mathcal{F}^{\bullet})$ are linear combinations of local conditions $\varphi \partial^i$ and global conditions $\varphi \int f$.

- Example for $\mathcal{F} = C^{\infty}(\mathbb{R})$ ist $u \mapsto u(0) u(1) + \int_0^2 \xi^2 u(\xi) d\xi$.
- Stieltjes conditions appear in (some) applications.

< (1)

The normal forms of Stieltjes conditions $|\mathcal{F}^{\bullet})$ are linear combinations of local conditions $\varphi \partial^i$ and global conditions $\varphi \int f$.

- Example for $\mathcal{F} = C^{\infty}(\mathbb{R})$ ist $u \mapsto u(0) u(1) + \int_0^2 \xi^2 u(\xi) d\xi$.
- Stieltjes conditions appear in (some) applications.
- More importantly, they are inherently motivated (see below).

The normal forms of Stieltjes conditions $|\mathcal{F}^{\bullet})$ are linear combinations of local conditions $\varphi \partial^i$ and global conditions $\varphi \int f$.

- Example for $\mathcal{F} = C^{\infty}(\mathbb{R})$ ist $u \mapsto u(0) u(1) + \int_0^2 \xi^2 u(\xi) d\xi$.
- Stieltjes conditions appear in (some) applications.
- More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:

The normal forms of Stieltjes conditions $|\mathcal{F}^{\bullet})$ are linear combinations of local conditions $\varphi \partial^i$ and global conditions $\varphi \int f$.

- Example for $\mathcal{F} = C^{\infty}(\mathbb{R})$ ist $u \mapsto u(0) u(1) + \int_0^2 \xi^2 u(\xi) d\xi$.
- Stieltjes conditions appear in (some) applications.
- More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:

• Only two evaluations L, R.

The normal forms of Stieltjes conditions $|\mathcal{F}^{\bullet})$ are linear combinations of local conditions $\varphi \partial^i$ and global conditions $\varphi \int f$.

- Example for $\mathcal{F} = C^{\infty}(\mathbb{R})$ ist $u \mapsto u(0) u(1) + \int_0^2 \xi^2 u(\xi) d\xi$.
- Stieltjes conditions appear in (some) applications.
- More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:

Only two evaluations L, R.
Only two evaluations L, R.

The normal forms of Stieltjes conditions $|\mathcal{F}^{\bullet})$ are linear combinations of local conditions $\varphi \partial^i$ and global conditions $\varphi \int f$.

- Example for $\mathcal{F} = C^{\infty}(\mathbb{R})$ ist $u \mapsto u(0) u(1) + \int_0^2 \xi^2 u(\xi) d\xi$.
- Stieltjes conditions appear in (some) applications.
- More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:

- **Only two evaluations** L, R. **Only two evaluations** L, R.
- Oerivation order below that of differential equation.

The normal forms of Stieltjes conditions $|\mathcal{F}^{\bullet})$ are linear combinations of local conditions $\varphi \partial^i$ and global conditions $\varphi \int f$.

- Example for $\mathcal{F} = C^{\infty}(\mathbb{R})$ ist $u \mapsto u(0) u(1) + \int_0^2 \xi^2 u(\xi) d\xi$.
- Stieltjes conditions appear in (some) applications.
- More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:

- Only two evaluations L, R.
 Only two evaluations L, R.
- Oerivation order below that of differential equation.

Biintegro-differential algebras $(\mathcal{F}, \partial, A = \int_L, B = -\int_R)$:

The normal forms of Stieltjes conditions $|\mathcal{F}^{\bullet})$ are linear combinations of local conditions $\varphi \partial^i$ and global conditions $\varphi \int f$.

- Example for $\mathcal{F} = C^{\infty}(\mathbb{R})$ ist $u \mapsto u(0) u(1) + \int_0^2 \xi^2 u(\xi) d\xi$.
- Stieltjes conditions appear in (some) applications.
- More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:

- **Only two evaluations** L, R. **Only two evaluations** L, R.
- Oerivation order below that of differential equation.

Biintegro-differential algebras $(\mathcal{F}, \partial, A = \int_L, B = -\int_R)$:

• Adjoint operators A and B relative to $\langle f|g \rangle := (A+B)f$.

The normal forms of Stieltjes conditions $|\mathcal{F}^{\bullet})$ are linear combinations of local conditions $\varphi \partial^i$ and global conditions $\varphi \int f$.

- Example for $\mathcal{F} = C^{\infty}(\mathbb{R})$ ist $u \mapsto u(0) u(1) + \int_0^2 \xi^2 u(\xi) d\xi$.
- Stieltjes conditions appear in (some) applications.
- More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:

- **Only two evaluations** L, R. **Only two evaluations** L, R.
- Oerivation order below that of differential equation.

Biintegro-differential algebras $(\mathcal{F}, \partial, A = \int_L, B = -\int_R)$:

- Adjoint operators A and B relative to $\langle f|g \rangle := (A+B)f$.
- In $\mathcal{F} = C^{\infty}[a, b]$ we have $A = \int_0^x$ and $B = \int_x^1$.

A (concrete) boundary problem is a pair (T, \mathcal{B}) with $T \in \mathcal{F}[\partial]$ a monic differential operator and $\mathcal{B} \leq \mathcal{F}^*$ a boundary space of Stieltjes conditions.

A (concrete) boundary problem is a pair (T, \mathcal{B}) with $T \in \mathcal{F}[\partial]$ a monic differential operator and $\mathcal{B} \leq \mathcal{F}^*$ a boundary space of Stieltjes conditions.

• Concrete boundary problems form a submonoid of $\mathbf{BnProb}(\mathcal{F})$.

A (concrete) boundary problem is a pair (T, \mathcal{B}) with $T \in \mathcal{F}[\partial]$ a monic differential operator and $\mathcal{B} \leq \mathcal{F}^*$ a boundary space of Stieltjes conditions.

- Concrete boundary problems form a submonoid of $\mathbf{BnProb}(\mathcal{F})$.
- Regularity implies $\operatorname{ord} T = \dim \mathcal{B}$, matrix test applicable.

A (concrete) boundary problem is a pair (T, \mathcal{B}) with $T \in \mathcal{F}[\partial]$ a monic differential operator and $\mathcal{B} \leq \mathcal{F}^*$ a boundary space of Stieltjes conditions.

- Concrete boundary problems form a submonoid of $\mathbf{BnProb}(\mathcal{F})$.
- Regularity implies $\operatorname{ord} T = \dim \mathcal{B}$, matrix test applicable.
- Concrete regular problems submonoid of $\mathbf{BnProb}^*(\mathcal{F})$.

< (1)

A (concrete) boundary problem is a pair (T, \mathcal{B}) with $T \in \mathcal{F}[\partial]$ a monic differential operator and $\mathcal{B} \leq \mathcal{F}^*$ a boundary space of Stieltjes conditions.

- Concrete boundary problems form a submonoid of $\mathbf{BnProb}(\mathcal{F})$.
- Regularity implies $\operatorname{ord} T = \dim \mathcal{B}$, matrix test applicable.
- Concrete regular problems submonoid of $\mathbf{BnProb}^*(\mathcal{F})$.
- Distinguish regular from well-posed.

A (concrete) boundary problem is a pair (T, \mathcal{B}) with $T \in \mathcal{F}[\partial]$ a monic differential operator and $\mathcal{B} \leq \mathcal{F}^*$ a boundary space of Stieltjes conditions.

- Concrete boundary problems form a submonoid of $\mathbf{BnProb}(\mathcal{F})$.
- Regularity implies $\operatorname{ord} T = \dim \mathcal{B}$, matrix test applicable.
- Concrete regular problems submonoid of $\mathbf{BnProb}^*(\mathcal{F})$.
- Distinguish regular from well-posed.

Theorem

Relative to a given fundamental system u_1, \ldots, u_n of T, we can compute the **Green's operator** of (T, \mathcal{B}) as an element of $\mathcal{F}[\partial, \int]$.

A (concrete) boundary problem is a pair (T, \mathcal{B}) with $T \in \mathcal{F}[\partial]$ a monic differential operator and $\mathcal{B} \leq \mathcal{F}^*$ a boundary space of Stieltjes conditions.

- Concrete boundary problems form a submonoid of $\mathbf{BnProb}(\mathcal{F})$.
- Regularity implies $\operatorname{ord} T = \dim \mathcal{B}$, matrix test applicable.
- Concrete regular problems submonoid of $\mathbf{BnProb}^*(\mathcal{F})$.
- Distinguish regular from well-posed.

Theorem

Relative to a given fundamental system u_1, \ldots, u_n of T, we can compute the Green's operator of (T, \mathcal{B}) as an element of $\mathcal{F}[\partial, \int]$.

Two-point problems: Normal form of $G \cong$ **Green's function** $g(x,\xi)$

$$Gf = \int_{a}^{b} g(x,\xi) f(\xi) d\xi$$

Recall previous two-point problem (taking a = 0, b = 1 for simplicity):

$$u'' = f$$

 $u(0) + u(1) = \rho, u'(1) - u(1) = \sigma$

< 🗗 >

Recall previous two-point problem (taking a = 0, b = 1 for simplicity):

$$u'' = f u(0) + u(1) = \rho, u'(1) - u(1) = \sigma$$

Underlying boundary problem $(D^2, [L + R, RD - R])$

Recall previous two-point problem (taking a = 0, b = 1 for simplicity):

$$u'' = f$$

 $u(0) + u(1) = \rho, u'(1) - u(1) = \sigma$

Underlying boundary problem $(D^2, [L + R, RD - R])$ Kernel projector P = (R - RD) + X(L - R + 2RD)

Recall previous two-point problem (taking a = 0, b = 1 for simplicity):

$$u'' = f$$

 $u(0) + u(1) = \rho, u'(1) - u(1) = \sigma$

Underlying boundary problem $(D^2, [L + R, RD - R])$ Kernel projector P = (R - RD) + X(L - R + 2RD)

Green's operator $G = (1 - P)A^2 = BX - XB - XAX - XBX$

Recall previous two-point problem (taking a = 0, b = 1 for simplicity):

$$u'' = f$$

 $u(0) + u(1) = \rho, u'(1) - u(1) = \sigma$

Underlying boundary problem $(D^2, [L + R, RD - R])$ Kernel projector P = (R - RD) + X(L - R + 2RD)

Green's operator $G = (1 - P)A^2 = BX - XB - XAX - XBX$

Green's function
$$g(x,\xi) = \begin{cases} -x\xi & \text{if } \xi \le x \\ \xi - x - x\xi & \text{if } \xi \ge x \end{cases}$$

Recall previous two-point problem (taking a = 0, b = 1 for simplicity):

$$u'' = f$$

 $u(0) + u(1) = \rho, u'(1) - u(1) = \sigma$

Underlying boundary problem $(D^2, [L + R, RD - R])$ Kernel projector P = (R - RD) + X(L - R + 2RD)

Green's operator $G = (1 - P)A^2 = BX - XB - XAX - XBX$

Green's function
$$g(x,\xi) = \begin{cases} -x\xi & \text{if } \xi \leq x \\ \xi - x - x\xi & \text{if } \xi \geq x \end{cases}$$

For completeness:

• Semi-homogeneous Green's operator $H(\rho, \sigma) = (\rho + 2\sigma)x - \sigma$

Recall previous two-point problem (taking a = 0, b = 1 for simplicity):

$$u'' = f$$

 $u(0) + u(1) = \rho, u'(1) - u(1) = \sigma$

Underlying boundary problem $(D^2, [L + R, RD - R])$ Kernel projector P = (R - RD) + X(L - R + 2RD)

Green's operator $G = (1 - P)A^2 = BX - XB - XAX - XBX$

Green's function
$$g(x,\xi) = \begin{cases} -x\xi & \text{if } \xi \leq x \\ \xi - x - x\xi & \text{if } \xi \geq x \end{cases}$$

For completeness:

- Semi-homogeneous Green's operator $H(\rho,\sigma)=(\rho+2\sigma)x-\sigma$
- For LODEs, determining H is trivial (assuming fundamental system).

$$(T, \mathcal{B}) = (D^3 - e^x D^2 - 2D^2 - D + e^x + 2, [L, R, RD])$$

$$(T, \mathcal{B}) = (D^3 - e^x D^2 - 2D^2 - D + e^x + 2, [L, R, RD])$$

Classical Notation:

$$u''' - (e^x + 2) u'' - u' + (e^x + 2) u(x) = f$$

$$u(0) = u(1) = u'(1) = 0$$

$$(T, \mathcal{B}) = (D^3 - e^x D^2 - 2D^2 - D + e^x + 2, [L, R, RD])$$

Classical Notation:

$$u''' - (e^x + 2) u'' - u' + (e^x + 2) u(x) = f$$

$$u(0) = u(1) = u'(1) = 0$$

Green's Operator:

$$G = (e^{e^x - x} - e^{e^x}) B (e^{-e^x} + 2e^{-e}e(x)) + \sinh(x) B (1 + 2e(x)) + (2e^{e^x - e}(e^{-x} - 1) - (e^{-x})^2 e^{-x} + 2\sinh(x)) A e(x)$$

< ♂

$$(T, \mathcal{B}) = (D^3 - e^x D^2 - 2D^2 - D + e^x + 2, [L, R, RD])$$

Classical Notation:

$$u''' - (e^x + 2) u'' - u' + (e^x + 2) u(x) = f$$

$$u(0) = u(1) = u'(1) = 0$$

Green's Operator:

$$G = (e^{e^x - x} - e^{e^x}) B (e^{-e^x} + 2e^{-e}e(x)) + \sinh(x) B (1 + 2e(x)) + (2e^{e^x - e}(e^{-x} - 1) - (e - 1)^2 e^{-x} + 2\sinh(x)) A e(x)$$

Green's Function: $g(x,\xi) =$

$$= \begin{cases} \left(2e^{e^x-e}(e^{-x}-1) - (e-1)^2 e^{-x} + 2\sinh(x)\right) e^{2\xi} e(\xi) \\ \left(e^{e^x-x} - e^{e^x}\right) \left(e^{-e^{\xi}} + 2e^{-e}e(\xi)\right) + \sinh(x) e^{2\xi} \left(1 + 2e(\xi)\right) \\ e(t) := -\frac{1}{2} \left(\frac{e^t-1}{e^{-1}}\right)^2 \end{cases}$$

• 7

Factorization can always be lifted.

Factorization can always be lifted.

Simplest Example:

 $(D^2, [L, R]) = (D, [F]) \cdot (D, [L])$ with $F := \int_a^b dx$

Factorization can always be lifted.

Simplest Example:

$$(D^{2}, [L, R]) = (D, [F]) \cdot (D, [L]) \text{ with } F := \int_{a}^{b}$$

or
$$u'' = f$$
$$u(a) = u(b) = 0 = u' = f$$
$$\int_{a}^{b} u(\xi) \, d\xi = 0 \cdot u(a) = 0$$

Factorization can always be lifted.

Simplest Example:

 $(D^2, [L, R]) = (D, [F]) \cdot (D, [L])$ with $F := \int_a^b$

or
$$u'' = f$$

 $u(a) = u(b) = 0$ $=$ $u' = f$
 $\int_a^b u(\xi) d\xi = 0$ \cdot $u' = f$
 $u(a) = 0$

Fourth-Order Example (Kamke 4.2):

 $(D^4 + 4, [L, R, LD, RD]) = (D^2 - 2i, [Fe^{(i-1)x}, Fe^{(1-i)x}]) \cdot (D^2 + 2i, [L, R])$

Factorization can always be lifted.

Simplest Example:

 $(D^2,[L,R])=(D,[F])\cdot(D,[L])$ with $F:=\int_a^b$

or
$$u'' = f$$

 $u(a) = u(b) = 0$ $=$ $u' = f$
 $\int_a^b u(\xi) d\xi = 0$ \cdot $u' = f$
 $u(a) = 0$

Fourth-Order Example (Kamke 4.2):

$$(D^{4} + 4, [L, R, LD, RD]) = (D^{2} - 2i, [Fe^{(i-1)x}, Fe^{(1-i)x}]) \cdot (D^{2} + 2i, [L, R])$$

or

$$\begin{array}{c} u''' + 4u = f \\ u(a) = u(b) = u'(a) = u'(b) = 0 \end{array} = \\ \\ u'' - 2i \, u = f \\ \int_{a}^{b} e^{(i-1)\xi} u(\xi) \, d\xi = \int_{a}^{b} e^{(1-i)\xi} u(\xi) \, d\xi = 0 \end{array} \cdot \begin{array}{c} u'' + 2i \, u = f \\ u(a) = u(b) = 0 \end{array}$$

• 7 •

Ordinary Integro-Differential Operators

Operational Integro-Differential Operators

< (1)

Basic Example: Smooth Functions

• For simplicity first omit $\partial_x, \partial_y, \ldots$; only consider \int^x, \int^y, \ldots

< 合)

Basic Example: Smooth Functions

- For simplicity first omit $\partial_x, \partial_y, \ldots$; only consider \int^x, \int^y, \ldots
- Admit all smooth functions $f(x, y, ...) \in \mathcal{F}$ to be operated on.

- For simplicity first omit $\partial_x, \partial_y, \ldots$; only consider \int^x, \int^y, \ldots
- Admit all smooth functions $f(x, y, ...) \in \mathcal{F}$ to be operated on.
- Take multipliers g(x, y, ...) from a suitably nice subalgebra $\mathcal{G} \subseteq \mathcal{F}$.

- For simplicity first omit $\partial_x, \partial_y, \ldots$; only consider \int^x, \int^y, \ldots
- Admit all smooth functions $f(x, y, ...) \in \mathcal{F}$ to be operated on.
- Take multipliers g(x, y, ...) from a suitably nice subalgebra $\mathcal{G} \subseteq \mathcal{F}$.
- Allow all substitutions $f(x, y, ...) \mapsto f(ax + by, cx + dy, ...)$ for $a, b, c, d \in \mathbb{R}$.

- For simplicity first omit $\partial_x, \partial_y, \ldots$; only consider \int^x, \int^y, \ldots
- Admit all smooth functions $f(x, y, ...) \in \mathcal{F}$ to be operated on.
- Take multipliers g(x, y, ...) from a suitably nice subalgebra $\mathcal{G} \subseteq \mathcal{F}$.
- Allow all substitutions $f(x, y, ...) \mapsto f(ax + by, cx + dy, ...)$ for $a, b, c, d \in \mathbb{R}$.

For convenience view ${\mathcal F}$ as filtered algebra

$$\mathcal{F} = \bigcup_{n=0}^{\infty} \mathcal{F}_n := \bigcup_{n=0}^{\infty} C^{\infty}(\mathbb{R}^n)$$

with $C^{\infty}(\mathbb{R}^0) := \mathbb{R}$ and natural injections $C^{\infty}(\mathbb{R}^n) \hookrightarrow C^{\infty}(\mathbb{R}^{n+1})$.

- For simplicity first omit $\partial_x, \partial_y, \ldots$; only consider \int^x, \int^y, \ldots
- Admit all smooth functions $f(x, y, ...) \in \mathcal{F}$ to be operated on.
- Take multipliers g(x, y, ...) from a suitably nice subalgebra $\mathcal{G} \subseteq \mathcal{F}$.
- Allow all substitutions $f(x, y, ...) \mapsto f(ax + by, cx + dy, ...)$ for $a, b, c, d \in \mathbb{R}$.

For convenience view ${\mathcal F}$ as filtered algebra

$$\mathcal{F} = \bigcup_{n=0}^{\infty} \mathcal{F}_n := \bigcup_{n=0}^{\infty} C^{\infty}(\mathbb{R}^n)$$

with $C^{\infty}(\mathbb{R}^0) := \mathbb{R}$ and natural injections $C^{\infty}(\mathbb{R}^n) \hookrightarrow C^{\infty}(\mathbb{R}^{n+1})$.

Similarly use filtered monoid

$$\mathcal{M}(\mathbb{R}) = \bigcup_{n=1}^{\infty} \mathcal{M}_n(\mathbb{R})$$

where $\mathcal{M}_n(\mathbb{R})$ are near-identity matrices with injections $M \hookrightarrow \begin{pmatrix} I_n & 0 \\ 0 & 1 \end{pmatrix}$.

Write $\int^{x_i} : \mathcal{F} \to \mathcal{F}$ for Rota-Baxter operator $f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots) \mapsto \int_0^{x_i} f(x_1, \dots, x_{i-1}, \xi, x_{i+1}, \dots) d\xi.$

Write
$$\int^{x_i} : \mathcal{F} \to \mathcal{F}$$
 for Rota-Baxter operator
 $f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots) \mapsto \int_0^{x_i} f(x_1, \dots, x_{i-1}, \xi, x_{i+1}, \dots) d\xi.$

Given $M \in \mathcal{M}(\mathbb{R})$ write $M^*f =: g$ with

$$g(x_1, x_2, \dots) := f\Big(\sum_i M_{1i} x_i, \sum_i M_{2i} x_i, \dots\Big),$$

for contravariant monoid action $\mathcal{M}(\mathbb{R})\times\mathcal{F}\to\mathcal{F}$ via algebra morphisms.

Write
$$\int^{x_i} : \mathcal{F} \to \mathcal{F}$$
 for Rota-Baxter operator
 $f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots) \mapsto \int_0^{x_i} f(x_1, \dots, x_{i-1}, \xi, x_{i+1}, \dots) d\xi.$

Given $M \in \mathcal{M}(\mathbb{R})$ write $M^*f =: g$ with

$$g(x_1, x_2, \dots) := f\Big(\sum_i M_{1i} x_i, \sum_i M_{2i} x_i, \dots\Big),$$

for contravariant monoid action $\mathcal{M}(\mathbb{R}) \times \mathcal{F} \to \mathcal{F}$ via algebra morphisms. Hence note $(MN)^* = N^*M^*$.

Write
$$\int^{x_i} : \mathcal{F} \to \mathcal{F}$$
 for Rota-Baxter operator
 $f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots) \mapsto \int_0^{x_i} f(x_1, \dots, x_{i-1}, \xi, x_{i+1}, \dots) d\xi.$

Given $M \in \mathcal{M}(\mathbb{R})$ write $M^*f =: g$ with

$$g(x_1, x_2, \dots) := f\left(\sum_i M_{1i} x_i, \sum_i M_{2i} x_i, \dots\right),$$

for contravariant monoid action $\mathcal{M}(\mathbb{R})\times\mathcal{F}\to\mathcal{F}$ via algebra morphisms.

Hence note $(MN)^* = N^*M^*$. But what about $\int^{x_i} M^*$?

< (1)

Notation for Special Matrices

Evaluation at x_i :

$$E_i = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & 0 \leftarrow i \end{pmatrix}$$

Notation for Special Matrices

 $E_i = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \\ & & 0 \leftarrow i \end{pmatrix}$ Evaluation at x_i : Transvection for $v \in K^{n-1}$: $T_i(v) = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & 1 & & & \\ v_1 & \cdots & v_{i-1} & 1 & v_{i+1} & \cdots & v_n \\ & & 1 & & \\ & & & & 1 \end{pmatrix}$

Notation for Special Matrices

Markus Rosenkranz Differential Algebra for Boundary Problems

An ascending K-algebra (\mathcal{F}_n) is called substitutive if it has a straight contravariant monoid action of $\mathcal{M}(K)$ such that $M^*(\mathcal{F}_n) \subseteq \mathcal{F}_n$ for all $M \in \mathcal{M}_n(K)$ and $E_n^*(\mathcal{F}_n) \subseteq \mathcal{F}_{n-1}$. We write $\mathcal{F} = \varinjlim \mathcal{F}_n$.

An ascending K-algebra (\mathcal{F}_n) is called substitutive if it has a straight contravariant monoid action of $\mathcal{M}(K)$ such that $M^*(\mathcal{F}_n) \subseteq \mathcal{F}_n$ for all $M \in \mathcal{M}_n(K)$ and $E_n^*(\mathcal{F}_n) \subseteq \mathcal{F}_{n-1}$. We write $\mathcal{F} = \varinjlim \mathcal{F}_n$.

In detail $*: \mathcal{M}(K) \to \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{F})$ with $I^* = 1_{\mathcal{F}}, (MN)^* = N^*M^*$.

An ascending K-algebra (\mathcal{F}_n) is called substitutive if it has a straight contravariant monoid action of $\mathcal{M}(K)$ such that $M^*(\mathcal{F}_n) \subseteq \mathcal{F}_n$ for all $M \in \mathcal{M}_n(K)$ and $E_n^*(\mathcal{F}_n) \subseteq \mathcal{F}_{n-1}$. We write $\mathcal{F} = \varinjlim \mathcal{F}_n$.

In detail $*: \mathcal{M}(K) \to \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{F})$ with $I^* = 1_{\mathcal{F}}, (MN)^* = N^*M^*$. Straightness means $M^*f = M^*_{\mathcal{I}n}f$ for all $M \in \mathcal{M}(K)$ and $f \in \mathcal{F}_n$.

An ascending K-algebra (\mathcal{F}_n) is called substitutive if it has a straight contravariant monoid action of $\mathcal{M}(K)$ such that $M^*(\mathcal{F}_n) \subseteq \mathcal{F}_n$ for all $M \in \mathcal{M}_n(K)$ and $E_n^*(\mathcal{F}_n) \subseteq \mathcal{F}_{n-1}$. We write $\mathcal{F} = \varinjlim \mathcal{F}_n$.

In detail $*: \mathcal{M}(K) \to \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{F})$ with $I^* = 1_{\mathcal{F}}, (MN)^* = N^*M^*$. Straightness means $M^*f = M_{\lrcorner n}^*f$ for all $M \in \mathcal{M}(K)$ and $f \in \mathcal{F}_n$.

Define dependence hierarchy:

 $\mathcal{F}_{\alpha} = \{ f \in \mathcal{F} \mid \pi^* f \in \mathcal{F}_k \} \text{ for } \alpha = (\alpha_1, \dots, \alpha_k) \subset \mathbb{N}$

An ascending K-algebra (\mathcal{F}_n) is called substitutive if it has a straight contravariant monoid action of $\mathcal{M}(K)$ such that $M^*(\mathcal{F}_n) \subseteq \mathcal{F}_n$ for all $M \in \mathcal{M}_n(K)$ and $E_n^*(\mathcal{F}_n) \subseteq \mathcal{F}_{n-1}$. We write $\mathcal{F} = \varinjlim \mathcal{F}_n$.

In detail $*: \mathcal{M}(K) \to \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{F})$ with $I^* = 1_{\mathcal{F}}, (MN)^* = N^*M^*$. Straightness means $M^*f = M_{_n}^*f$ for all $M \in \mathcal{M}(K)$ and $f \in \mathcal{F}_n$.

Define dependence hierarchy:

$$\begin{aligned} \mathcal{F}_{\alpha} &= \{ f \in \mathcal{F} \mid \pi^* f \in \mathcal{F}_k \} \text{ for } \alpha = (\alpha_1, \ldots, \alpha_k) \subset \mathbb{N} \\ \mathcal{F}_{\alpha} &= \bigcup_{n=1}^{\infty} \mathcal{F}_{(\alpha_1, \ldots, \alpha_n)} \text{ for arbitrary } \alpha \subseteq \mathbb{N} \text{ by monotonicity} \end{aligned}$$

An ascending K-algebra (\mathcal{F}_n) is called substitutive if it has a straight contravariant monoid action of $\mathcal{M}(K)$ such that $M^*(\mathcal{F}_n) \subseteq \mathcal{F}_n$ for all $M \in \mathcal{M}_n(K)$ and $E_n^*(\mathcal{F}_n) \subseteq \mathcal{F}_{n-1}$. We write $\mathcal{F} = \varinjlim \mathcal{F}_n$.

In detail $*: \mathcal{M}(K) \to \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{F})$ with $I^* = 1_{\mathcal{F}}, (MN)^* = N^*M^*$. Straightness means $M^*f = M_{\lrcorner n}^*f$ for all $M \in \mathcal{M}(K)$ and $f \in \mathcal{F}_n$.

Define dependence hierarchy:

$$\mathcal{F}_{\alpha} = \{ f \in \mathcal{F} \mid \pi^* f \in \mathcal{F}_k \} \text{ for } \alpha = (\alpha_1, \dots, \alpha_k) \subset \mathbb{N}$$
$$\mathcal{F}_{\alpha} = \bigcup_{n=1}^{\infty} \mathcal{F}_{(\alpha_1, \dots, \alpha_n)} \text{ for arbitrary } \alpha \subseteq \mathbb{N} \text{ by monotonicity}$$
$$\longrightarrow \text{ Complete complemented lattice:}$$

$$\begin{array}{l} (\mathcal{F}_{\alpha}) \text{ with } \mathcal{F}_{\alpha} \sqcup \mathcal{F}_{\beta} = \mathcal{F}_{\alpha \cup \beta}, \ \mathcal{F}_{\alpha} \sqcap \mathcal{F}_{\beta} = \mathcal{F}_{\alpha \cap \beta} \\ \mathcal{F}_{\emptyset} = K, \ \mathcal{F}_{\mathbb{N}} = \mathcal{F}, \ \mathcal{F}'_{\alpha} = \mathcal{F}_{\mathbb{N} \setminus \alpha} \end{array}$$

< 合い

Recall that $(\mathcal{F}, \partial, \int)$ was called ordinary if $\ker(\partial) = K$.

Recall that $(\mathcal{F}, \partial, \int)$ was called ordinary if $\ker(\partial) = K$. Now call a Rota-Baxter algebra (\mathcal{F}, P) ordinary

• if P is injective

Recall that $(\mathcal{F}, \partial, \int)$ was called ordinary if ker $(\partial) = K$. Now call a Rota-Baxter algebra (\mathcal{F}, P) ordinary

- if P is injective
- and $\operatorname{im}(P) \dotplus K = \mathcal{F}$.

Recall that $(\mathcal{F}, \partial, \int)$ was called ordinary if ker $(\partial) = K$. Now call a Rota-Baxter algebra (\mathcal{F}, P) ordinary

- if P is injective
- and $\operatorname{im}(P) \dotplus K = \mathcal{F}$.

Then one can expand to canonical (\mathcal{F}, d, P) .

Recall that $(\mathcal{F}, \partial, \int)$ was called ordinary if ker $(\partial) = K$. Now call a Rota-Baxter algebra (\mathcal{F}, P) ordinary

- if P is injective
- and $\operatorname{im}(P) \dotplus K = \mathcal{F}$.

Then one can expand to canonical (\mathcal{F}, d, P) .

Lemma

Let (\mathcal{F}, P) be an ordinary Rota-Baxter algebra over K. Then $x \mapsto P(1)$ defines an embedding $(K[x], \int_0^x) \hookrightarrow (\mathcal{F}, P)$ of Rota-Baxter algebras.

A hierarchical Rota-Baxter algebra $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ consists of a substitutive *K*-algebra (\mathcal{F}_n) and commuting Rota-Baxter operators \int^{x_n} that satisfy the following axioms:

• We have $\int^{x_n} \mathcal{F}_m \subseteq \mathcal{F}_m$ and $\int^{x_n} \tilde{\mathcal{M}}_m^* = \tilde{\mathcal{M}}_m^* \int^{x_n}$ for $n \leq m$.

A hierarchical Rota-Baxter algebra $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ consists of a substitutive *K*-algebra (\mathcal{F}_n) and commuting Rota-Baxter operators \int^{x_n} that satisfy the following axioms:

• We have $\int^{x_n} \mathcal{F}_m \subseteq \mathcal{F}_m$ and $\int^{x_n} \tilde{\mathcal{M}}_m^* = \tilde{\mathcal{M}}_m^* \int^{x_n}$ for $n \leq m$.

Solution Every $(\mathcal{F}_n, \int^{x_n})$ is an ordinary Rota-Baxter algebra over \mathcal{F}_{n-1} .

A hierarchical Rota-Baxter algebra $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ consists of a substitutive *K*-algebra (\mathcal{F}_n) and commuting Rota-Baxter operators \int^{x_n} that satisfy the following axioms:

• We have $\int^{x_n} \mathcal{F}_m \subseteq \mathcal{F}_m$ and $\int^{x_n} \tilde{\mathcal{M}}_m^* = \tilde{\mathcal{M}}_m^* \int^{x_n}$ for $n \leq m$. • Every $(\mathcal{F}_n, \int^{x_n})$ is an ordinary Rota-Baxter algebra over \mathcal{F}_{n-1} .

• We have $\tau^* \int^{x_i} = \int^{x_j} \tau^*$ for the transposition $\tau = (i j)$.

A hierarchical Rota-Baxter algebra $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ consists of a substitutive *K*-algebra (\mathcal{F}_n) and commuting Rota-Baxter operators \int^{x_n} that satisfy the following axioms:

• We have
$$\int^{x_n} \mathcal{F}_m \subseteq \mathcal{F}_m$$
 and $\int^{x_n} \tilde{\mathcal{M}}_m^* = \tilde{\mathcal{M}}_m^* \int^{x_n}$ for $n \leq m$.

② Every $(\mathcal{F}_n, \int^{x_n})$ is an ordinary Rota-Baxter algebra over \mathcal{F}_{n-1} .

• We have $\tau^* \int^{x_i} = \int^{x_j} \tau^*$ for the transposition $\tau = (i j)$.

The three substitution rules are satisfied (notation as before):

$$\int_{1}^{x} \lambda^{*} = \lambda^{-1} \lambda^{*} \int_{1}^{x} T_{x}(e_{i})^{*} = (1 - E_{x}^{*}) T_{x}(e_{i})^{*} \int_{1}^{x} T_{x}(e_{i})^{*} = (1 - E_{x}^{*}) T_{x}(e_{i})^{*} \int_{1}^{x} g L_{x}(e_{j-1})^{*} \int_{1}^{x} L_{x}(e_{j-1})^{*} \int_{1}^{x} F_{x}(e_{j-1})^{*} \int_{1}^{x} \overline{g} L_{j}(v')^{*} (I_{n} \oplus e_{j})^{*} \left(L_{x}(e_{j-1})^{*} \int_{1}^{x} L_{x}(e_{j-1})^{*} \right) \int_{1}^{x} \overline{g} L_{j}(v')^{*}$$

A hierarchical Rota-Baxter algebra $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ consists of a substitutive *K*-algebra (\mathcal{F}_n) and commuting Rota-Baxter operators \int^{x_n} that satisfy the following axioms:

• We have
$$\int^{x_n} \mathcal{F}_m \subseteq \mathcal{F}_m$$
 and $\int^{x_n} \tilde{\mathcal{M}}_m^* = \tilde{\mathcal{M}}_m^* \int^{x_n}$ for $n \leq m$.

Solution Sector $(\mathcal{F}_n, \int^{x_n})$ is an ordinary Rota-Baxter algebra over \mathcal{F}_{n-1} .

• We have $\tau^* \int^{x_i} = \int^{x_j} \tau^*$ for the transposition $\tau = (i j)$.

The three substitution rules are satisfied (notation as before):

$$\int_{1}^{x} \lambda^{*} = \lambda^{-1} \lambda^{*} \int_{1}^{x} T_{x}(e_{i})^{*} = (1 - E_{x}^{*}) T_{x}(e_{i})^{*} \int_{1}^{x} T_{x}(e_{i-1})^{*} \int_{1}^{x$$

Crucial example: $C^{\infty}(\mathbb{R}^{\infty})$

A hierarchical Rota-Baxter algebra $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ consists of a substitutive *K*-algebra (\mathcal{F}_n) and commuting Rota-Baxter operators \int^{x_n} that satisfy the following axioms:

• We have
$$\int^{x_n} \mathcal{F}_m \subseteq \mathcal{F}_m$$
 and $\int^{x_n} \tilde{\mathcal{M}}_m^* = \tilde{\mathcal{M}}_m^* \int^{x_n}$ for $n \leq m$.

Solution Sector $(\mathcal{F}_n, \int^{x_n})$ is an ordinary Rota-Baxter algebra over \mathcal{F}_{n-1} .

• We have $\tau^* \int^{x_i} = \int^{x_j} \tau^*$ for the transposition $\tau = (i j)$.

The three substitution rules are satisfied (notation as before):

$$\int_{1}^{x} \lambda^{*} = \lambda^{-1} \lambda^{*} \int_{1}^{x} T_{x}(e_{i})^{*} = (1 - E_{x}^{*}) T_{x}(e_{i})^{*} \int_{1}^{x} T_{x}(e_{i-1})^{*} \int_{1}^{x$$

Crucial example: $C^{\infty}(\mathbb{R}^{\infty})$

 \rightarrow Some subalgebras: $C^{\omega}(\mathbb{R}^{\infty})$, holonomics, $K[x_1, x_2, \dots]$

A hierarchical Rota-Baxter algebra $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ consists of a substitutive *K*-algebra (\mathcal{F}_n) and commuting Rota-Baxter operators \int^{x_n} that satisfy the following axioms:

• We have
$$\int^{x_n} \mathcal{F}_m \subseteq \mathcal{F}_m$$
 and $\int^{x_n} \tilde{\mathcal{M}}_m^* = \tilde{\mathcal{M}}_m^* \int^{x_n}$ for $n \leq m$.

Solution Every $(\mathcal{F}_n, \int^{x_n})$ is an ordinary Rota-Baxter algebra over \mathcal{F}_{n-1} .

• We have $\tau^* \int^{x_i} = \int^{x_j} \tau^*$ for the transposition $\tau = (i j)$.

The three substitution rules are satisfied (notation as before):

$$\int_{1}^{x} \lambda^{*} = \lambda^{-1} \lambda^{*} \int_{1}^{x} T_{x}(e_{i})^{*} = (1 - E_{x}^{*}) T_{x}(e_{i})^{*} \int_{1}^{x} T_{x}(e_{i-1})^{*} \int_{1}^{x$$

Crucial example: $C^{\infty}(\mathbb{R}^{\infty})$

- ightarrow Some subalgebras: $C^{\omega}(\mathbb{R}^{\infty})$, holonomics, $K[x_1,x_2,\dots]$
- \rightarrow Exponential polynomials $K[x_1, x_2, \dots, e^{\lambda x_1}, e^{\lambda x_2}, \dots \mid \lambda \in K]$

Verification of the Horizontal and Vertical Rule

$$\int^{x_1} T^* f(x_1, x_2, x_3, \dots) = \int_0^{x_1} f(\xi + x_j, x_2, x_3, \dots) d\xi = \int_{x_j}^{x_1 + x_j} f(\bar{\xi}, x_2, x_3, \dots) d\bar{\xi}$$
$$= \int_0^{x_1 + x_j} f(\xi, x_2, x_3, \dots) d\xi - \int_0^{x_j} f(\xi, x_2, x_3, \dots) d\xi$$
$$= (1 - E_x^*) T^* \int^{x_1} f(x_1, x_2, x_3, \dots)$$

Verification of the Horizontal and Vertical Rule

$$\int^{x_1} T^* f(x_1, x_2, x_3, \dots) = \int_0^{x_1} f(\xi + x_j, x_2, x_3, \dots) d\xi = \int_{x_j}^{x_1 + x_j} f(\bar{\xi}, x_2, x_3, \dots) d\bar{\xi}$$
$$= \int_0^{x_1 + x_j} f(\xi, x_2, x_3, \dots) d\xi - \int_0^{x_j} f(\xi, x_2, x_3, \dots) d\xi$$
$$= (1 - E_x^*) T^* \int^{x_1} f(x_1, x_2, x_3, \dots)$$

$$\begin{split} L_{j}(v')^{*} \int^{x_{1}} g(x_{1}) L_{x}(e_{j-1}+v)^{*} \int^{x_{1}} f(x_{1},\ldots,x_{n}) \\ &= L_{j}(v')^{*} \int^{x_{1}}_{0} g(\eta) \int^{\eta}_{0} f(\xi,x_{2\ldots j-1},x_{j}+\eta,x_{j+1\ldots n}+v_{j+1\ldots n}\eta) \, d\xi \, d\eta \\ &= L_{j}(v')^{*} \int^{x_{1}}_{0} \int^{x_{1}+x_{j}}_{\xi+x_{j}} g(\bar{\eta}-x_{j}) \, f(\xi,x_{2\ldots j-1},\bar{\eta},x_{j+1\ldots n}+v_{j+1\ldots n}(\bar{\eta}-x_{j})) \, d\bar{\eta} \, d\xi \\ &= \int^{x_{1}}_{0} \int^{x_{1}+x_{j}}_{\xi+x_{j}} \bar{g}(\eta,x_{j}) \, f(\xi,x_{2\ldots j-1},\eta,x_{j+1\ldots n}+v_{j+1\ldots n}\eta) \, d\eta \, d\xi \\ &= \int^{x_{1}}_{0} \int^{x_{1}+x_{j}}_{0} \ldots \, d\eta \, d\xi - \int^{x_{1}}_{0} \int^{\xi+x_{j}}_{0} \ldots \, d\eta \, d\xi \end{split}$$

Simple Properties

• For any
$$\alpha = (\alpha_1, \dots, \alpha_k)$$
, there is an embedding
 $\iota_{\alpha} \colon K[X_{\alpha_1}, \dots, X_{\alpha_k}] \hookrightarrow \mathcal{F}_{\alpha}$
 $X_{\alpha_j} \mapsto x_{\alpha_j} := \int^{x_{\alpha_j}} 1$,
and we have $\pi^* p(x_{\alpha_1}, \dots, x_{\alpha_k}) = p(x_{\pi(\alpha_1)}, \dots, x_{\pi(\alpha_k)})$ for all
permutations π of $(\alpha_1, \dots, \alpha_k)$.

particular, all $\int^{x_i} : \mathcal{F}_{(i)} \to \mathcal{F}_{(i)}$ are conjugates of $\int^{x_1} : \mathcal{F}_1 \to \mathcal{F}_1$ and hence ordinary Rota-Baxter operators.

hence ordinary Rota-Baxter operators.

• We have
$$\int^{x_n} cf = c \int^{x_n} f$$
 for all $c \in \mathcal{F}'_{(n)}$ and $f \in \mathcal{F}$. In particular, $\int^{x_n} c = cx_n$.

hence ordinary Rota-Baxter operators.

• We have
$$\int^{x_n} cf = c \int^{x_n} f$$
 for all $c \in \mathcal{F}'_{(n)}$ and $f \in \mathcal{F}$. In particular, $\int^{x_n} c = cx_n$.

• The embedding ι_{α} of Item (1) is a homomorphism of Rota-Baxter algebras in the sense that $\iota_{\alpha} \circ \int_{0}^{X_{\alpha_{j}}} = \int_{0}^{x_{\alpha_{j}}} \circ \iota_{\alpha}$ for $j = 1, \ldots, k$.

hence ordinary Rota-Baxter operators.

• We have
$$\int^{x_n} cf = c \int^{x_n} f$$
 for all $c \in \mathcal{F}'_{(n)}$ and $f \in \mathcal{F}$. In particular, $\int^{x_n} c = cx_n$.

• The embedding ι_{α} of Item (1) is a homomorphism of Rota-Baxter algebras in the sense that $\iota_{\alpha} \circ \int_{0}^{X_{\alpha_{j}}} = \int_{0}^{x_{\alpha_{j}}} \circ \iota_{\alpha}$ for $j = 1, \ldots, k$.

If $M \in \mathcal{M}(K)$ vanishes in the *i*-th column, then $M^*(\mathcal{F}) \subset \mathcal{F}'_{(i)}$.

We have
$$\int^{x_n} cf = c \int^{x_n} f$$
 for all $c \in \mathcal{F}'_{t-2}$ and $f \in \mathcal{F}$

We have
$$\int^{x_n} cf = c \int^{x_n} f$$
 for all $c \in \mathcal{F}'_{(n)}$ and $f \in \mathcal{F}$. In particular, $\int^{x_n} c = cx_n$.

- The embedding ι_{α} of Item (1) is a homomorphism of Rota-Baxter algebras in the sense that $\iota_{\alpha} \circ \int_{0}^{X_{\alpha_{j}}} = \int_{0}^{x_{\alpha_{j}}} \circ \iota_{\alpha}$ for $j = 1, \ldots, k$.
- If $M \in \mathcal{M}(K)$ vanishes in the *i*-th column, then $M^*(\mathcal{F}) \subset \mathcal{F}'_{(i)}$.

• We have
$$E_i^* \int^{x_i} = 0$$
 for all $i > 0$.

Induced hierarchy of ordinary (\mathcal{F}_1, \int) :

Induced hierarchy of ordinary (\mathcal{F}_1, \int) :

• Ascending algebra $(\mathcal{G}_n,\int^{x_n})_{n\in\mathbb{N}}$

Induced hierarchy of ordinary (\mathcal{F}_1, \int) :

- Ascending algebra $(\mathcal{G}_n,\int^{x_n})_{n\in\mathbb{N}}$
- Algebras $\mathcal{G}_n := \mathcal{G}^{\otimes n}$ with $f_1 \otimes \cdots \otimes f_n \mapsto f_1 \otimes \cdots \otimes f_n \otimes 1$

Induced hierarchy of ordinary (\mathcal{F}_1, \int) :

- Ascending algebra $(\mathcal{G}_n,\int^{x_n})_{n\in\mathbb{N}}$
- Algebras $\mathcal{G}_n := \mathcal{G}^{\otimes n}$ with $f_1 \otimes \cdots \otimes f_n \mapsto f_1 \otimes \cdots \otimes f_n \otimes 1$
- Rota-Baxter operators $\int^{x_n} := 1^{\otimes (n-1)} \otimes \int$

Induced hierarchy of ordinary (\mathcal{F}_1, \int) :

- Ascending algebra $(\mathcal{G}_n, \int^{x_n})_{n \in \mathbb{N}}$
- Algebras $\mathcal{G}_n := \mathcal{G}^{\otimes n}$ with $f_1 \otimes \cdots \otimes f_n \mapsto f_1 \otimes \cdots \otimes f_n \otimes 1$
- Rota-Baxter operators $\int^{x_n} := 1^{\otimes (n-1)} \otimes \int$

Definition

Let $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ be a hierarchical Rota-Baxter algebra over a field K. A substitutive ordinary integro-differential algebra (\mathcal{G}_1, \int) over K is called an **admissible coefficient domain** if its induced hierarchy $(\mathcal{G}_n, \int^{x_n})_{n \in \mathbb{N}}$ is a hierarchical integro-differential subalgebra of $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$.

Induced hierarchy of ordinary (\mathcal{F}_1, \int) :

- Ascending algebra $(\mathcal{G}_n, \int^{x_n})_{n \in \mathbb{N}}$
- Algebras $\mathcal{G}_n := \mathcal{G}^{\otimes n}$ with $f_1 \otimes \cdots \otimes f_n \mapsto f_1 \otimes \cdots \otimes f_n \otimes 1$
- Rota-Baxter operators $\int^{x_n} := 1^{\otimes (n-1)} \otimes \int$

Definition

Let $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ be a hierarchical Rota-Baxter algebra over a field K. A substitutive ordinary integro-differential algebra (\mathcal{G}_1, \int) over K is called an **admissible coefficient domain** if its induced hierarchy $(\mathcal{G}_n, \int^{x_n})_{n \in \mathbb{N}}$ is a hierarchical integro-differential subalgebra of $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$.

Minimal example $K[x] = K[x_1, x_2, ...]$ for any (\mathcal{F}, \int)

Induced hierarchy of ordinary (\mathcal{F}_1, \int) :

- Ascending algebra $(\mathcal{G}_n, \int^{x_n})_{n \in \mathbb{N}}$
- Algebras $\mathcal{G}_n := \mathcal{G}^{\otimes n}$ with $f_1 \otimes \cdots \otimes f_n \mapsto f_1 \otimes \cdots \otimes f_n \otimes 1$
- Rota-Baxter operators $\int^{x_n} := 1^{\otimes (n-1)} \otimes \int$

Definition

Let $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ be a hierarchical Rota-Baxter algebra over a field K. A substitutive ordinary integro-differential algebra (\mathcal{G}_1, \int) over K is called an **admissible coefficient domain** if its induced hierarchy $(\mathcal{G}_n, \int^{x_n})_{n \in \mathbb{N}}$ is a hierarchical integro-differential subalgebra of $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$.

Minimal example $K[x] = K[x_1, x_2, ...]$ for any (\mathcal{F}, \int) Important for applications: $K[x, e^{Kx}] \subset C^{\infty}(\mathbb{R}^{\infty})$

Can expand every $g \in \mathcal{G}$ as

$$g = \sum_{k=1}^{r} g_{k,1} \cdots g_{k,n}$$

with $g_{k,i} \in \mathcal{G}_{(i)}$ for $i \in \{1, \ldots, n\}$.

Can expand every $g \in \mathcal{G}$ as

$$g = \sum_{k=1}^{r} g_{k,1} \cdots g_{k,n}$$

with $g_{k,i} \in \mathcal{G}_{(i)}$ for $i \in \{1, \ldots, n\}$.

Use some kind of Sweedler notation:

Can expand every $g \in \mathcal{G}$ as

$$g = \sum_{k=1}^{r} g_{k,1} \cdots g_{k,n}$$

with $g_{k,i} \in \mathcal{G}_{(i)}$ for $i \in \{1, \dots, n\}$.

Use some kind of Sweedler notation:

• Abbreviate the $g_{1,i}, g_{2,i}, \ldots \in \mathcal{G}_{(i)}$ by $g_{(i)}$ with implied summation.

Can expand every $g \in \mathcal{G}$ as

$$g = \sum_{k=1}^{r} g_{k,1} \cdots g_{k,n}$$

with $g_{k,i} \in \mathcal{G}_{(i)}$ for $i \in \{1, \ldots, n\}$.

Use some kind of Sweedler notation:

• Abbreviate the $g_{1,i}, g_{2,i}, \ldots \in \mathcal{G}_{(i)}$ by $g_{(i)}$ with implied summation.

• Hence expansion is $g = g_{(1)} \cdots g_{(n)}$.

Can expand every $g \in \mathcal{G}$ as

$$g = \sum_{k=1}^{r} g_{k,1} \cdots g_{k,n}$$

with $g_{k,i} \in \mathcal{G}_{(i)}$ for $i \in \{1, \ldots, n\}$.

Use some kind of Sweedler notation:

- Abbreviate the $g_{1,i}, g_{2,i}, \ldots \in \mathcal{G}_{(i)}$ by $g_{(i)}$ with implied summation.
- Hence expansion is $g = g_{(1)} \cdots g_{(n)}$.
- More generally, $g_{k,(\alpha)} := g_{k,\alpha_1} \cdots g_{k,\alpha_r}$ so that $g = g_{(1)}g_{(1)'}$ etc.

Can expand every $g \in \mathcal{G}$ as

$$g = \sum_{k=1}^{r} g_{k,1} \cdots g_{k,n}$$

with $g_{k,i} \in \mathcal{G}_{(i)}$ for $i \in \{1, \ldots, n\}$.

Use some kind of Sweedler notation:

- Abbreviate the $g_{1,i}, g_{2,i}, \ldots \in \mathcal{G}_{(i)}$ by $g_{(i)}$ with implied summation.
- Hence expansion is $g = g_{(1)} \cdots g_{(n)}$.
- More generally, $g_{k,(\alpha)} := g_{k,\alpha_1} \cdots g_{k,\alpha_r}$ so that $g = g_{(1)}g_{(1)'}$ etc.
- Abbreviate shifted factors by $(i j)^* g_{1,i}, (i j)^* g_{2,i}, \ldots \in \mathcal{G}_{(j)}$ by $g_{(i:j)}$.

Can expand every $g \in \mathcal{G}$ as

$$g = \sum_{k=1}^{r} g_{k,1} \cdots g_{k,n}$$

with $g_{k,i} \in \mathcal{G}_{(i)}$ for $i \in \{1, \ldots, n\}$.

Use some kind of Sweedler notation:

- Abbreviate the $g_{1,i}, g_{2,i}, \ldots \in \mathcal{G}_{(i)}$ by $g_{(i)}$ with implied summation.
- Hence expansion is $g = g_{(1)} \cdots g_{(n)}$.
- More generally, $g_{k,(\alpha)}:=g_{k,\alpha_1}\cdots g_{k,\alpha_r}$ so that $g=g_{(1)}g_{(1)'}$ etc.
- Abbreviate shifted factors by $(i j)^* g_{1,i}, (i j)^* g_{2,i}, \ldots \in \mathcal{G}_{(j)}$ by $g_{(i:j)}$.
- Similarly, $(i j)^* g_{1,(i)'}, (i j)^* g_{1,(i)'}, \ldots \in \mathcal{G}_{(j)'}$ written as $g_{(i:j)'}$.

Let $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ be a hierarchical Rota-Baxter algebra over a field K, and let \mathcal{G}_1 be an admissible coefficient domain for \mathcal{F} . Then for $M \in \mathcal{M}_n$ and $g \in \mathcal{G}_1$ with $g(x_j) := (1 \ j)^* g$ and $j \in \{1, \ldots, n\}$ we have $\int^{x_j} g(x_j) M^* = \begin{cases} M_{ij}^{-1} \tilde{g}_{(1:j)'} (1 - E_j^*) \tilde{M}^* \int^{x_i} \hat{M}_{ij}^* (\tilde{g}_{(1:i)}) L_i(l)^* & \text{if } i \neq \infty, \\ (\int^{x_j} g(x_j)) M^* & \text{othw.} \end{cases}$

By definition $i = \min\{k \mid M_{kj} \neq 0\}$, with $\tilde{M} \in \mathcal{M}_n$ and $l \in K_{n-i}$ by one sweep of Gaussian elminiation if the minimum exists, and by convention $i = \infty$ otherwise. Moreover, $\tilde{g} = M_{i\bullet}^* g$ and $\hat{M}_{ij} = d_{i,1/M_{ij}}$.

Let $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ be a hierarchical Rota-Baxter algebra over a field K, and let \mathcal{G}_1 be an admissible coefficient domain for \mathcal{F} . Then for i < j and arbitrary vectors $v \in K^{n-i}$, $w \in K^{n-j}$ and functions $g, h \in \mathcal{G}_1$ with $g(x_i) := (1 i)^* g$ and $h(x_j) := (1 j)^* h$ we have $\int^{x_j} h(x_j) L_j(w)^* \int^{x_i} g(x_i) L_i(v)^* = (1 - E_j^*) \int^{x_i} g(x_i) L_i(v')^* \int^{x_j} h(x_j) L_j(w)$ with $v' = L_{j-i}^{-1}(w) v \in K^{n-i}$ as earlier.

Let $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ be a hierarchical Rota-Baxter algebra over a field K, and let \mathcal{G}_1 be an admissible coefficient domain for \mathcal{F} . Then for $i \in \mathbb{N}$ and arbitrary vectors $v, w \in K^{n-i}$ with $w \neq 0$ we have

$$w_k \int^{x_i} h(x_i) L_i(w)^* \int^{x_i} g(x_i) L_i(v)^* = L_k^{-1}(w')^* \sigma^*(\bar{h}_{(n+1)}) \times \left(L_i(\bar{w})^* \int^{x_i} \tilde{h}_{(1:k)'} L_i(v')^* - \int^{x_i} \tilde{h}_{(1:k)'} L_i(v' + \bar{w})^* \right) \int^{x_k} \tilde{h}_{(1:k)} L_k(w')^*$$

where $\bar{h} := (e_k/w_k - e_{n+1}/w_k)^* h = h_{(k)}h_{(n+1)} \in \mathcal{F}_{(k,n+1)}$ with slack transposition $\sigma := (k \ n+1)$, and $\tilde{h} := L_i(v')^*_{k\bullet}(1 \ k)^* \bar{h}_{(k)} \in \mathcal{G}_{(i,k)}$. The remaining notation is as earlier.

Definition

Let (\mathcal{G}_1, \int) be an ordinary integro-differential algebra over a field K with induced hiearchy $(\mathcal{G}_n, \int^{x_n})_{n \in \mathbb{N}}$. Then the ring of partial integral operators over \mathcal{G} is defined as the quotient of the K-algebra

$$\mathcal{G}[\int] = \mathcal{G} \amalg_K K[\mathcal{M}]^* \amalg_K K[A] / \cong$$

with the congruence \cong given below.

$$\begin{split} & M^*g \cong (M \cdot g) \, M^* & M^*A_i \cong 0 \quad \text{if } M_{i\bullet} = 0 \\ & A_jg(x_i) \cong g(x_i)A_j & A_ig(x_j) \cong g(x_j)A_i \\ & A_jg(x_j)M^* \cong M_{ij}^{-1}\,\tilde{g}_{(1:j)'}(1-E_j^*)\tilde{M}^*A_i\hat{M}_{ij}^*\left(\tilde{g}_{(1:i)}\right)L_i(l)^* & \text{if } i := \min\{k \mid M_{kj} \neq 0\} \neq \infty \\ & A_jg(x_j)M^* \cong \left(\int^{x_j}g(x_j)\right)M^* & \text{if } i := \min\{k \mid M_{kj} \neq 0\} = \infty \\ & A_jh(x_j)L_j(w)^*A_ig(x_i)L_i(v)^* \cong (1-E_j^*) \, A_ig(x_i)L_i(v')^*A_jh(x_j)L_j(w)^* \\ & A_ih(x_i) \, L_i(w)^*A_ig(x_i) \, L_i(v)^* \cong w_k^{-1}L_k^{-1}(w')^*\sigma^*(\bar{h}_{(n+1)}) \times \\ & \times \left(L_i(\bar{w})^*A_i\tilde{h}_{(1:k)'}L_i(v')^* - A_i\tilde{h}_{(1:k)'}L_i(v' + \bar{w})^*\right)A_k\tilde{h}_{(1:k)}L_k(w')^* \\ & A_jg(x_j)A_j \cong \left(\int^{x_j}g(x_j)\right)A_j - A_j\left(\int^{x_j}g(x_j)\right) \end{split}$$

67

Let $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ be a hierarchical Rota-Baxter algebra over a field K, and let \mathcal{G}_1 be an admissible coefficient domain for \mathcal{F} . Then the natural action $\mathcal{G}[\int] \times \mathcal{F} \to \mathcal{F}$ induced by $g \cdot f = gf$, $M^* \cdot f = M^*(f)$ and $A_i \cdot f = \int^{x_i} f$ is well-defined.

Let $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ be a hierarchical Rota-Baxter algebra over a field K, and let \mathcal{G}_1 be an admissible coefficient domain for \mathcal{F} . Then the natural action $\mathcal{G}[\int] \times \mathcal{F} \to \mathcal{F}$ induced by $g \cdot f = gf$, $M^* \cdot f = M^*(f)$ and $A_i \cdot f = \int^{x_i} f$ is well-defined.

This follows from the propositions given above.

Let $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ be a hierarchical Rota-Baxter algebra over a field K, and let \mathcal{G}_1 be an admissible coefficient domain for \mathcal{F} . Then the natural action $\mathcal{G}[\int] \times \mathcal{F} \to \mathcal{F}$ induced by $g \cdot f = gf$, $M^* \cdot f = M^*(f)$ and $A_i \cdot f = \int^{x_i} f$ is well-defined.

This follows from the propositions given above.

Now introduce a suitable term order on underlying word monoid.

Let $(\mathcal{F}_n, \int^{x_n})_{n \in \mathbb{N}}$ be a hierarchical Rota-Baxter algebra over a field K, and let \mathcal{G}_1 be an admissible coefficient domain for \mathcal{F} . Then the natural action $\mathcal{G}[\int] \times \mathcal{F} \to \mathcal{F}$ induced by $g \cdot f = gf$, $M^* \cdot f = M^*(f)$ and $A_i \cdot f = \int^{x_i} f$ is well-defined.

This follows from the propositions given above.

Now introduce a suitable term order on underlying word monoid.

Theorem

Let (\mathcal{G}_1, \int) be an ordinary integro-differential algebra over a field K. Orienting the rules of the Table from left to right, one obtains a Noetherian reduction system.

< 合)

• Line integrator of index i is $A_i b(x_i) L_i(v)^*$ with $v \in K^{n-1}$ and a basis element $b \in \mathcal{G}_1$.

< 合)

- Line integrator of index i is $A_i b(x_i) L_i(v)^*$ with $v \in K^{n-1}$ and a basis element $b \in \mathcal{G}_1$.
- Volume integrator is a word of the form b M*J₁ ··· J_r for line integrators J₁,..., J_r with indices i₁ < ··· < i_r and M* ∈ M(K)* with M_{i1}• ≠ 0 if r > 0.

< 日)

- Line integrator of index i is $A_i b(x_i) L_i(v)^*$ with $v \in K^{n-1}$ and a basis element $b \in \mathcal{G}_1$.
- Volume integrator is a word of the form b M*J₁ ··· J_r for line integrators J₁,..., J_r with indices i₁ < ··· < i_r and M* ∈ M(K)* with M_{i1}• ≠ 0 if r > 0.

Easy to check: The volume integrators span $\mathcal{G}[\int]$ over K.

- Line integrator of index i is $A_i b(x_i) L_i(v)^*$ with $v \in K^{n-1}$ and a basis element $b \in \mathcal{G}_1$.
- Volume integrator is a word of the form b M*J₁ ··· J_r for line integrators J₁,..., J_r with indices i₁ < ··· < i_r and M* ∈ M(K)* with M_{i1}• ≠ 0 if r > 0.

Easy to check: The volume integrators span $\mathcal{G}[\int]$ over K.

Conjecture: They are linearly independent over K.

- Line integrator of index i is $A_i b(x_i) L_i(v)^*$ with $v \in K^{n-1}$ and a basis element $b \in \mathcal{G}_1$.
- Volume integrator is a word of the form b M*J₁ ··· J_r for line integrators J₁,..., J_r with indices i₁ < ··· < i_r and M* ∈ M(K)* with M_{i1}• ≠ 0 if r > 0.

<u>Easy to check</u>: The volume integrators span $\mathcal{G}[\int]$ over K. Conjecture: They are linearly independent over K.

Then we have a system of canonical forms.

< (1)

< 合?)

Assume $(\mathcal{F}_n, \int^{x_n}, \partial_{x_n})$ is hierarchical integro-differential algebra.

Assume $(\mathcal{F}_n, \int^{x_n}, \partial_{x_n})$ is hierarchical integro-differential algebra. Add indeterminates D_n for action of ∂_{x_n} , impose the relations:

Assume $(\mathcal{F}_n, \int^{x_n}, \partial_{x_n})$ is hierarchical integro-differential algebra. Add indeterminates D_n for action of ∂_{x_n} , impose the relations:

$D_i M^* = \sum_k M_{ik} M^* D_k$	$D_i D_j = D_j D_i$	
$D_i f(x_i) = f(x_i) D_i + f'(x_i)$	$D_i f(x_j) = f(x_j) D_i$	
$D_i A_i = 1$	$D_i A_j = A_j D_i$	
$A_i f(x_i) L_i(v)^* D_i = \left(f(x_i) - A_i f'_i(x_i) - f_i(0) E_i^* \right) L_i(v)^* - \sum_{j>i} v_j A_i f(x_i) L_i(v)^* D_j$		

Assume $(\mathcal{F}_n, \int^{x_n}, \partial_{x_n})$ is hierarchical integro-differential algebra. Add indeterminates D_n for action of ∂_{x_n} , impose the relations:

$$\begin{split} D_i M^* &= \sum_k M_{ik} M^* D_k & D_i D_j = D_j D_i \\ D_i f(x_i) &= f(x_i) D_i + f'(x_i) & D_i f(x_j) = f(x_j) D_i \\ D_i A_i &= 1 & D_i A_j = A_j D_i \\ A_i f(x_i) L_i(v)^* D_i &= \left(f(x_i) - A_i f'_i(x_i) - f_i(0) E_i^* \right) L_i(v)^* - \sum_{j > i} v_j A_i f(x_i) L_i(v)^* D_j \end{split}$$

Canonical forms similar but with certain D^{α} on the right.

Cauchy problem:

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f,$$

$$u(0, x, y) = f_1(x, y), \quad u_t(0, x, y) = f_2(x, y)$$

Cauchy problem:

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f, u(0, x, y) = f_1(x, y), \quad u_t(0, x, y) = f_2(x, y)$$

Signal and state operators:

$$Gf(t, x, y) = \int_0^t \int_0^\sigma f(\tau, x + 2t - 2\tau, y - 3t - 3\tau + 6\sigma) \, d\tau \, d\sigma.$$

$$H(f_1, f_2) = f_1(x + 2t, y - 3t) + \int_0^t (f_2 - 2D_x f_1 + 3D_y f_1)(x + 2t, y - 3t + 6\tau) \, d\tau$$

Cauchy problem:

$$u_{tt} - 4 u_{tx} + 4 u_{xx} - 9 u_{yy} = f,$$

$$u(0, x, y) = f_1(x, y), \quad u_t(0, x, y) = f_2(x, y)$$

Signal and state operators:

$$Gf(t, x, y) = \int_0^t \int_0^\sigma f(\tau, x + 2t - 2\tau, y - 3t - 3\tau + 6\sigma) \, d\tau \, d\sigma.$$

$$H(f_1, f_2) = f_1(x + 2t, y - 3t) + \int_0^t (f_2 - 2D_x f_1 + 3D_y f_1)(x + 2t, y - 3t + 6\tau) \, d\tau$$

Factor problems:

$$u_t - 2 u_x \pm 3 u_y = f,$$

 $u(0, x, y) = f^{\pm}(x, y).$

$$\begin{aligned} H^{\pm}f^{\pm}(t,x,y) &= f^{\pm}(x+2t,y\mp 3t) \\ G^{\pm}f(t,x,y) &= \int_{0}^{t} f(\tau,x+2t-2\tau,y\mp 3t\pm 3\tau) \, d\tau \end{aligned}$$

< 合)

Unbounded wave equation:

< 🗗 I

Unbounded wave equation:

 $(D_{tt} - D_{xx}, [L_t, L_t D_t]) = (D_t - D_x, [L_t]) \cdot (D_t + D_x, [L_t])$

Unbounded wave equation:

$$(D_{tt} - D_{xx}, [L_t, L_t D_t]) = (D_t - D_x, [L_t]) \cdot (D_t + D_x, [L_t])$$

or
$$\begin{bmatrix} u_{tt} - u_{xx} = f \\ u(x, 0) = u_t(x, 0) = 0 \end{bmatrix} = \begin{bmatrix} u_t - u_x = f \\ u(x, 0) = 0 \end{bmatrix} \cdot \begin{bmatrix} u_t + u_x = f \\ u(x, 0) = 0 \end{bmatrix}$$

Unbounded wave equation:

$$(D_{tt} - D_{xx}, [L_t, L_t D_t]) = (D_t - D_x, [L_t]) \cdot (D_t + D_x, [L_t])$$

or
$$u_{tt} - u_{xx} = f$$
$$u(x, 0) = u_t(x, 0) = 0$$
$$= u_t - u_x = f$$
$$u(x, 0) = 0$$
$$\cdot u_t + u_x = f$$
$$u(x, 0) = 0$$

Green's Operator: $G = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} A_x \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}^*$

< 🗗 I

Unbounded wave equation:

$$(D_{tt} - D_{xx}, [L_t, L_t D_t]) = (D_t - D_x, [L_t]) \cdot (D_t + D_x, [L_t])$$

or
$$\begin{bmatrix} u_{tt} - u_{xx} = f \\ u(x,0) = u_t(x,0) = 0 \end{bmatrix} = \begin{bmatrix} u_t - u_x = f \\ u(x,0) = 0 \end{bmatrix} \cdot \begin{bmatrix} u_t + u_x = f \\ u(x,0) = 0 \end{bmatrix}$$

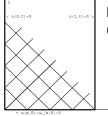
Green's Operator: $G = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} A_x \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ -1/2 & 1/2 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ 1/2 & 1/2 \end{pmatrix}^*$

Unbounded wave equation:

$$(D_{tt} - D_{xx}, [L_t, L_t D_t]) = (D_t - D_x, [L_t]) \cdot (D_t + D_x, [L_t])$$

or
$$\boxed{u_{tt} - u_{xx} = f}{u(x, 0) = u_t(x, 0) = 0} = \boxed{u_t - u_x = f}{u(x, 0) = 0} \cdot \boxed{u_t + u_x = f}{u(x, 0) = 0}$$

Green's Operator:
$$G = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} A_x \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ -1/2 & 1/2 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ 1/2 & 1/2 \end{pmatrix}^*$$

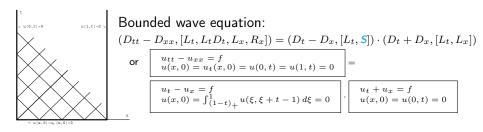


Unbounded wave equation:

$$(D_{tt} - D_{xx}, [L_t, L_t D_t]) = (D_t - D_x, [L_t]) \cdot (D_t + D_x, [L_t])$$

or
$$\begin{bmatrix} u_{tt} - u_{xx} = f \\ u(x,0) = u_t(x,0) = 0 \end{bmatrix} = \begin{bmatrix} u_t - u_x = f \\ u(x,0) = 0 \end{bmatrix} \cdot \begin{bmatrix} u_t + u_x = f \\ u(x,0) = 0 \end{bmatrix}$$

Green's Operator:
$$G = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} A_x \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ -1/2 & 1/2 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ 1/2 & 1/2 \end{pmatrix}^*$$



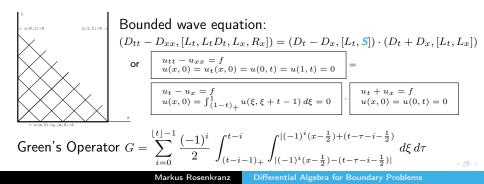
< 🗗 I

Unbounded wave equation:

$$(D_{tt} - D_{xx}, [L_t, L_t D_t]) = (D_t - D_x, [L_t]) \cdot (D_t + D_x, [L_t])$$

or
$$\begin{bmatrix} u_{tt} - u_{xx} = f \\ u(x,0) = u_t(x,0) = 0 \end{bmatrix} = \begin{bmatrix} u_t - u_x = f \\ u(x,0) = 0 \end{bmatrix} \cdot \begin{bmatrix} u_t + u_x = f \\ u(x,0) = 0 \end{bmatrix}$$

Green's Operator:
$$G = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} A_x \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ -1/2 & 1/2 \end{pmatrix}^* A_x \begin{pmatrix} 1 & 0 \\ 1/2 & 1/2 \end{pmatrix}^*$$



< 合)

 $u_{tt} - u_{xx} = f$ $u(x, 0) = u_t(x, 0) = u(0, t) = u(1, t) = 0$

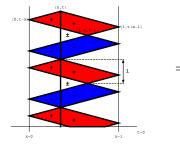
$$\begin{aligned} u_t - u_x &= f \\ u(x,0) &= \int_{(1-t)_+}^1 u(\xi,\xi+t-1) \, d\xi = 0 \end{aligned} .$$

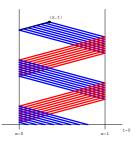
=

$$u_t + u_x = f$$
$$u(x, 0) = u(0, t) = 0$$

 $u_{tt} - u_{xx} = f$ $u(x, 0) = u_t(x, 0) = u(0, t) = u(1, t) = 0$

$$u_t - u_x = f \\ u(x,0) = \int_{(1-t)_+}^1 u(\xi,\xi+t-1) \, d\xi = 0 \quad \cdot \quad u_t + u_x = f \\ u(x,0) = u(0,t) = 0$$





 $u_{tt} - u_{xx} = f$ $u(x, 0) = u_t(x, 0) = u(0, t) = u(1, t) = 0$ $u_t - u_x = f$ $u_t + u_r = f$ $u(x,0) = \int_{(1-t)_{+}}^{1} u(\xi,\xi+t-1) \, d\xi = 0$ u(x, 0) = u(0, t) = 0(x,t) (0,t-x (x,t) t+x-1)

 $\begin{aligned} G_1 f(x,t) &= \int_{(x-t)_+}^x f(\xi,\xi-x+t) \, d\xi \\ G_2 f(x,t) &= \int_x^{x+t} (-1)^{\lfloor \eta \rfloor} f(\frac{1}{2} + (-1)^{\lfloor \eta \rfloor} (\operatorname{frac}(\eta) - \frac{1}{2}), x+t-\eta) \, d\eta \end{aligned}$

t=0

x=0

(日)

x=1 t=0

Ordinary Integro-Differential Operators

Partial Integro-Differential Operators

< (1)

< 🗗 I

Summary and Future Work

What has been achieved:

• Algebraic theory for linear boundary problems

- Algebraic theory for linear boundary problems
- Operator algebras for integration

< 🗗 I

• Algebraic theory for linear boundary problems

Markus Rosenkranz

- Operator algebras for integration
- Algorithms for LODE case

- Algebraic theory for linear boundary problems
- Operator algebras for integration
- Algorithms for LODE case

What needs to be done:

< 🗗 I

- Algebraic theory for linear boundary problems
- Operator algebras for integration
- Algorithms for LODE case

What needs to be done:

• Green's operators for classes of LPDEs

- Algebraic theory for linear boundary problems
- Operator algebras for integration
- Algorithms for LODE case

What needs to be done:

- Green's operators for classes of LPDEs
- Discrete analogs

- Algebraic theory for linear boundary problems
- Operator algebras for integration
- Algorithms for LODE case

What needs to be done:

- Green's operators for classes of LPDEs
- Discrete analogs
- Nonlinear boundary problems?

- Algebraic theory for linear boundary problems
- Operator algebras for integration
- Algorithms for LODE case

What needs to be done:

- Green's operators for classes of LPDEs
- Discrete analogs
- Nonlinear boundary problems?

THANK YOU

(**7**)

References I

- G. Regensburger, M. Rosenkranz. An algebraic foundation for factoring linear boundary problems. *Ann. Mat. Pura Appl. (4)*, 188(1):123–151, 2009.
- M. Rosenkranz, B. Buchberger, H.W. Engl.

Solving linear boundary value problems via non commutative Gröbner bases. *Appl. Anal*, 82(7):655–675, 2003.

M. Rosenkranz.

A new symbolic method for solving linear two-point boundary value problems on the level of operators. *J. Symbolic Comput*, 39(2):171–199, 2005.

M. Rosenkranz, G. Regensburger.

Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. *J. Symbolic Comput*, 43(8):515–544, 2008.

(**7**)

References II

- M. Rosenkranz, G. Regensburger, L. Tec, B. Buchberger.
 A symbolic myframework for operations on linear boundary problems.
 In *Proceedings of CASC'09*, Springer LNCS:5743, 2009.
- M. Rosenkranz, G. Regensburger, L. Tec, B. Buchberger. Symbolic analysis for boundary problems: From rewriting to parametrized Gröbner bases. In U. Langer, P. Paule, *Numerical and Symbolic Scientific Computing: Progress and Prospects*, Springer, 2011.

M. Rosenkranz, N. Phisanbut.

A symbolic approach to boundary problems for linear partial differential equations: Applications to the completely reducible case of the Cauchy problem with constant coefficients. *Proceedings of CASC'13*, Springer LNCS:8136, 2013.

- 1. Overview
- 2. Classical Beam Deflection
- 3. Analytic Method
- 4. Connecting Differential Algebra with Boundary Values
- 5. Abstract Boundary Problems
- 6. Regularity and Green's Operators
- 7. Composition of Boundary Problems
- 8. Dual Boundary Problems
- 9. Determination of Green's Operators
- **10. Factorization of Boundary Problems**
- 11. Incarnations of Boundary Problems
- 12. Boundary Data and Boundary Values
- 13. Interpolator and Green's Operators
- 14. LODE Example: Two-Point Boundary Problem
- 15. LPDE Example: Cauchy Problem
- 16. Integro-Differential Algebras
- 17. Alternative Characterizations
- 18. Univariate Operator Ring
- 19. Stieltjes Conditions versus Two-Point Conditions
- 20. Concrete Boundary Problems for LODEs
- 21. LODE Example Revisited
- 22. Third-Order Example
- 23. Factorization of Ordinary Boundary Problems

- 24. Basic Example: Smooth Functions
- 25. Action of Integrals and Substitutions
- 26. Notation for Special Matrices
- 27. Substitutive Algebras
- 28. Ordinary Rota-Baxter Algebras
- 29. Hierarchical Rota-Baxter Algebras
- 30. Verification of the Horizontal and Vertical Rule
- **31. Simple Properties**
- 32. Admissible Coefficient Algebras
- 33. Coalgebra Structure for Coefficients
- 34. Normalization of General Line Integrators
- 35. Ordering of General Line Integrators
- 36. Coalescence of General Line Integrators
- 37. The Operator Ring
- 38. Natural Action and Termination
- 39. Conjectured Canonical Forms
- 40. Additional Rules for Derivations
- 41. LPDE Example Revisited
- 42. Factorization Examples for LPDEs
- 43. Geometric Interpretation
- 44. Summary and Future Work
- 45. References I
- 46. References II