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Overview

1 Abstract Boundary Problems:
Joint work with G. Regensburger [AMPA09]
and N. Phisanbut [CASC13].

2 Ordinary Integro-Differential Operators:
Initiated in [JSC05] with B. Buchberger and H.W. Engl [AA03].
Continued in collaboration with G. Regensburger [JSC08, SFB11].

3 Partial Integro-Differential Operators:
Beginnings with G. Regensburger and L. Tec in [CASC09].
New developement with N. Phisanbut [CASC13]. Ongoing work.
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Classical Beam Deflection

Thin beam, plane cross sections
Elastic modulus E, Moment of area I

Normalized horizontal coordinate x ∈ [0, 1]
Deflection u(x), Load q(x)

Euler-Bernoulli Equation: d2

dx2
(EI d

2u
dx2

) = q(x)

Simply supported left/right end: u(0) = u′′(0) = 0 and u(1) = u′′(1) = 0
[Free left end: u′′′(0) = u′′(0) = 0]

Hypothesis: Homogeneous beam, f , q/(EI)

Boundary Problem:

u′′′′ = f
u(0) = u′′(0) = u(1) = u′′(1) = 0

Classically u ∈ C4[0, 1].
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Analytic Method

Superposition Principle:

Deflection uξ(x) for normalized point loads f = δξ bei ξ ∈ [0, 1]

Total deflection as superposition of uξ(x) weighted by f(ξ)

Hence u(x) =
r 1

0 g(x, ξ) f(ξ) dξ

Green’s function g(x, ξ), uξ(x)

Solution for simply supported Euler-Bernoulli beam:

g(x, ξ) =

{
1
3 xξ −

1
6 ξ

3 − 1
2 x

2ξ + 1
6 xξ

3 + 1
6 x

3ξ für 0 ≤ ξ ≤ x ≤ 1,

1
3 xξ −

1
2 xξ

2 − 1
6 x

3 + 1
6 xξ

3 + 1
6 x

3ξ für 0 ≤ x ≤ ξ ≤ 1

Question: How does differential algebra help in finding this solution?
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Connecting Differential Algebra with Boundary Values

Basic view of differential algebra: F = C∞(0, 1) is a differential ring.

∂ : F → F , ∂(u+ v) = ∂(u) + ∂(v) and ∂(uv) = ∂(u)v + r∂(v)

For u ∈ F we have u′ , ∂(u) ∈ F but no u(0) or u′(0).
Which other algebraic structure can we find in (C∞[0, 1], ∂)?

Short answer:
Point evaluations = multiplicative linear functionals on F .
Linked to differential structure via integration (Rota-Baxter ring).
Evaluation/Integration: Two sides of a single coin:

� INTEGRO-DIFFERENTIAL ALGEBRA

. . . and the rest is Linear Algebra.
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Abstract Boundary Problems

Let F ,G be fixed (infinite-dimensional) vector spaces.

Definition
An (abstract) boundary problem is a pair (T,B) where T : F → G is an
epimorphism and B ≤ F∗ is orthogonally closed. We call T the
“differential operator” and B the “boundary space” of the problem.

Galois connection P(F)� P̄(F∗)
A ≤ F 7→ A⊥ :=

{
β ∈ F∗

∣∣ β(f) = 0 for all f ∈ A
}

B ≤ F∗ 7→ B⊥ :=
{
f ∈ F

∣∣ β(f) = 0 for all β ∈ B
}

We call B ≤ F∗ orthogonally closed if B⊥⊥ = B.
Note that all A ≤ F are orthogonally closed.

P̄(F∗) = Orthogonally closed subspaces of F∗:
Complete complemented modular lattice, isomorphic to P(F)

Contains finite dimensional sublattice.
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Regularity and Green’s Operators

Definition

A boundary problem (T,F) is called regular if B⊥ u kerT = F .

Equivalent to requiring that

Tu = f
β(u) = 0 (β ∈ B)

has a unique solution u ∈ F for every f ∈ G.

Hence define Green’s operator G : G → F by Gf = u.
This means TG = 1 and imG = B⊥.
We write (T,B)−1 for G.
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Composition of Boundary Problems

For (T1,B1) and (T2,B2) with F T2−→ G T1−→ H define

(T1,B1) · (T2,B2) = (T1T2, T
∗
2 (B1) + B2),

which is again a boundary problem.

Proposition
The composition of regular boundary problems is regular, and its Green’s
operator is G2G1. In other words, we have(

(T1,B1) · (T2,B2)
)−1

= (T2,B2)−1 · (T1,B1)−1.

Moreover, the sum T ∗2 (B1) + B2 is direct.

Therefore (for fixed base field):

All boundary problems form a category BnProb with F (T,B)−→ G.
Regular boundary problems subcategory BnProb∗.
Monoids BnProb(F) and BnProb∗(F).

Markus Rosenkranz Differential Algebra for Boundary Problems



Composition of Boundary Problems

For (T1,B1) and (T2,B2) with F T2−→ G T1−→ H define

(T1,B1) · (T2,B2) = (T1T2, T
∗
2 (B1) + B2),

which is again a boundary problem.

Proposition
The composition of regular boundary problems is regular, and its Green’s
operator is G2G1.

In other words, we have(
(T1,B1) · (T2,B2)

)−1
= (T2,B2)−1 · (T1,B1)−1.

Moreover, the sum T ∗2 (B1) + B2 is direct.

Therefore (for fixed base field):

All boundary problems form a category BnProb with F (T,B)−→ G.
Regular boundary problems subcategory BnProb∗.
Monoids BnProb(F) and BnProb∗(F).

Markus Rosenkranz Differential Algebra for Boundary Problems



Composition of Boundary Problems

For (T1,B1) and (T2,B2) with F T2−→ G T1−→ H define

(T1,B1) · (T2,B2) = (T1T2, T
∗
2 (B1) + B2),

which is again a boundary problem.

Proposition
The composition of regular boundary problems is regular, and its Green’s
operator is G2G1. In other words, we have(

(T1,B1) · (T2,B2)
)−1

= (T2,B2)−1 · (T1,B1)−1.

Moreover, the sum T ∗2 (B1) + B2 is direct.

Therefore (for fixed base field):

All boundary problems form a category BnProb with F (T,B)−→ G.
Regular boundary problems subcategory BnProb∗.
Monoids BnProb(F) and BnProb∗(F).

Markus Rosenkranz Differential Algebra for Boundary Problems



Composition of Boundary Problems

For (T1,B1) and (T2,B2) with F T2−→ G T1−→ H define

(T1,B1) · (T2,B2) = (T1T2, T
∗
2 (B1) + B2),

which is again a boundary problem.

Proposition
The composition of regular boundary problems is regular, and its Green’s
operator is G2G1. In other words, we have(

(T1,B1) · (T2,B2)
)−1

= (T2,B2)−1 · (T1,B1)−1.

Moreover, the sum T ∗2 (B1) + B2 is direct.

Therefore (for fixed base field):

All boundary problems form a category BnProb with F (T,B)−→ G.
Regular boundary problems subcategory BnProb∗.
Monoids BnProb(F) and BnProb∗(F).

Markus Rosenkranz Differential Algebra for Boundary Problems



Composition of Boundary Problems

For (T1,B1) and (T2,B2) with F T2−→ G T1−→ H define

(T1,B1) · (T2,B2) = (T1T2, T
∗
2 (B1) + B2),

which is again a boundary problem.

Proposition
The composition of regular boundary problems is regular, and its Green’s
operator is G2G1. In other words, we have(

(T1,B1) · (T2,B2)
)−1

= (T2,B2)−1 · (T1,B1)−1.

Moreover, the sum T ∗2 (B1) + B2 is direct.

Therefore (for fixed base field):

All boundary problems form a category BnProb with F (T,B)−→ G.

Regular boundary problems subcategory BnProb∗.
Monoids BnProb(F) and BnProb∗(F).

Markus Rosenkranz Differential Algebra for Boundary Problems



Composition of Boundary Problems

For (T1,B1) and (T2,B2) with F T2−→ G T1−→ H define

(T1,B1) · (T2,B2) = (T1T2, T
∗
2 (B1) + B2),

which is again a boundary problem.

Proposition
The composition of regular boundary problems is regular, and its Green’s
operator is G2G1. In other words, we have(

(T1,B1) · (T2,B2)
)−1

= (T2,B2)−1 · (T1,B1)−1.

Moreover, the sum T ∗2 (B1) + B2 is direct.

Therefore (for fixed base field):

All boundary problems form a category BnProb with F (T,B)−→ G.
Regular boundary problems subcategory BnProb∗.

Monoids BnProb(F) and BnProb∗(F).

Markus Rosenkranz Differential Algebra for Boundary Problems



Composition of Boundary Problems

For (T1,B1) and (T2,B2) with F T2−→ G T1−→ H define

(T1,B1) · (T2,B2) = (T1T2, T
∗
2 (B1) + B2),

which is again a boundary problem.

Proposition
The composition of regular boundary problems is regular, and its Green’s
operator is G2G1. In other words, we have(

(T1,B1) · (T2,B2)
)−1

= (T2,B2)−1 · (T1,B1)−1.

Moreover, the sum T ∗2 (B1) + B2 is direct.

Therefore (for fixed base field):

All boundary problems form a category BnProb with F (T,B)−→ G.
Regular boundary problems subcategory BnProb∗.
Monoids BnProb(F) and BnProb∗(F).

Markus Rosenkranz Differential Algebra for Boundary Problems



Dual Boundary Problems

Definition
A dual problem is a pair (S, G) where G : G → F is a monomorphism
and S ≤ F is arbitrary.

It is regular if S u imG = F .

Green’s operator T := (S, G)−1 defined by TG = 1, kerT = S.
Dual composition (K2, G2) · (K1, G1) = (K2 +G2(K1), G2G1).

Categories DuProb and DuProb∗.

Proposition

The contravariant functor (T,F) 7→ (kerT, (T,B)−1) together with its
inverse (S, G) 7→ ((S, G)−1, im⊥G) establishes an isomorphism of
categories BnProb∗ ∼= (DuProb∗)op.
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Determination of Green’s Operators

Proposition
For a regular boundary problem (T,F), the Green’s operator is given
by G = (1− P )T♦ where P is the projector onto kerT along B⊥ and T♦

is an arbitrary right inverse of T .

For a regular dual problem (S, G), the Green’s operator is given
by T = G♦(1− P ) where P is the projector onto S along imG and G♦ is
an arbitrary left inverse of G.

If dimB <∞ or dimS <∞ then:
B = [β1, . . . , βn] and kerT = [u1, . . . , un]:
Regularity ⇔ Evaluation matrix β(u) = [βi(uj)] ∈ GLn(K)
Projector P = u · β(u)−1 · β
Analogous for dual problem:
im⊥G = [β1, . . . , βn] and S = [u1, . . . , un]
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Factorization of Boundary Problems

Theorem
Let (T,B) ∈ BnProb∗ and T = T1T2 a factorization into epimorphisms.
Then (T,B) = (T1,B1) · (T2,B2) is a factorization in BnProb∗ iff
B1 = H∗2 (B ∩K⊥2 ) with K2 := kerT2 and T2H2 = 1

and B2 ≤ B is orthogonally closed such that B = (B ∩K⊥2 )u B2.
In that case, G1 = T2G.

For fixed T = T1T2:

{B2 | (T2,B2) ∈ BnProb∗} ←→ {L2 | K2 u L2 = kerT}
B2 7→ B⊥2 ∩ kerT

B ∩ L⊥2 ←[ L2
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Incarnations of Boundary Problems

Generic boundary problem (T,B), regularity ⇔ unique solvability of:

[Semi-Inhomogeneous] Boundary Problem:

Tu = f
β(u) = 0

Signal Operator = [Semi-Inhomogeneous] Green’s Operator
G : f 7→ u

Semi-Homogeneous Boundary Problem:

Tu = 0
β(u) = B(β)

State Operator = Semi-Homogeneous Green’s Operator
H : B 7→ u

Fully Inhomogeneous Boundary Problem:

Tu = f
β(u) = B(β)

Full Operator = Fully Inhomogeneous Green’s Operator
F : (f,B) 7→ u

Fully Homogeneous Boundary Problem:

Tu = 0
β(u) = 0

Trivial: u = 0
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Boundary Data and Boundary Values

Assume (T,B) ∈ BnProb∗ given:

Boundary basis (βi | i ∈ I) such that B = [βi | i ∈ I]
Linear span + orthogonal closure
Trace map trc : F → B∗ sends f ∈ F to β 7→ β(f)

Boundary data B ∈ B′ := im(trc)

Boundary values B := B(βi)i∈I ∈ KI

Boundary Data
Boundary Basis (βi)i∈I−−−−−−−−−−−−−−→ Boundary Values

B ∈ B′ B ∈ KI

basis-free basis-dependent

Lemma
Let B ≤ F∗ be a boundary space with boundary basis (βi |∈ I). If for
any B1, B2 ∈ B′ one has B1 = B2 then also B1 = B2. In particular, the
trace f∗ of f ∈ F depends only on f∗ = βi(f)i∈I ∈ KI .
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Interpolator and Green’s Operators

Definition

An interpolator for B is a section B♦ : B′ → F of trc : F → B′.

Relative to (βi | i ∈ I), it is given by a map KI → F .
Boundary values B ∈ KI  boundary data B ∈ B′ via B(β) := β(B♦B).

Theorem

Let (T,B) ∈ BnProb∗ be given. Then G = (1− P )T♦ and H = PB♦,
hence F = (1− P )T♦ ⊕ PB♦, where P projects onto kerT along B⊥.

Usually more realistic to compute P from H:

Proposition
Let (T,B) ∈ BnProb∗ be given. Then trc |kerT is bijective with state
operator H as inverse, and the kernel projector is P = H ◦ trc.
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(x) ∈ C∞[a, b] and
boundary data (ρ, σ) ∈ R2,

find solution u(x) ∈ C∞[a, b] such that

u′′ = f,
u(a) + u(b) = ρ, u′(b)− u(b) = σ.

Key elements:
Function space F = C∞[a, b]

Boundary space B = [L+R,RD −R], I = {1, 2}
Boundary basis (βi | i ∈ I) with β1 = L+R, β2 = RD −R
Boundary data B = (L+R 7→ ρ,RD −R 7→ σ) ∈ B′

Boundary values B = (ρ, σ) ∈ RI
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LPDE Example: Cauchy Problem

Given a forcing function f(t, x, y) ∈ Cω(R3) and
Cauchy data f1(x, y), f2(x, y) ∈ Cω(R2),

find solution u(t, x, y) ∈ Cω(R3) such that

utt − 4utx + 4uxx − 9uyy = f
u(0, x, y) = f1(x, y), ut(0, x, y) = f2(x, y)

Key elements:
Function space F = Cω(R3)

Boundary space B = [E0,x,y, E0,x,yDt | (x, y) ∈ R2], I = R2 tR2

Boundary basis (βi | i ∈ I) with β(x,y),1 = E0,x,y, β(x,y),2 = E0,x,yDt

Boundary data B = (E0,x,y 7→ f1(x, y),
E0,x,yDt 7→ f2(x, y)) ∈ B′

Boundary values B = (f1, f2) ∈ RI
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Integro-Differential Algebras

Definition
Let (F , ∂) be a (noncommutative) differential algebra over a field K.
A K-linear operation

r
: F → F is called an integral operator for ∂

if ∂ ◦
r

= 1F and the differential Rota-Baxter axiom
(
r
f ′)(

r
g′) +

r
(fg)′ = (

r
f ′)g + f(

r
g′)

is satisfied. Then (F , ∂,
r

) is an integro-differential algebra.

Examples of integro-differential algebras:
F = C∞(Rn), ∂u = uxi ,

r
u =

r xi
0 u(ξ) dξ, partial for n > 1

F = Cω(D), ∂u = u′,
r
u =

r z
0u(z) dz

Holonomic functions ⊂ K[[x]]

Matrix rings (Fn×n, ∂,
r

),
Adjunctions K[x],K[x, ex],K[x, 1

x , log x]
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Alternative Characterizations

Proposition

Let (F , ∂) be a differential algebra and
r
a section of ∂. Then the

following statements are equivalent:
1 The structure (F ,

r
, ∂) is an integro-differential algebra.

2 We have E(fg) = E(f)E(g) for E := 1F −
r
◦ ∂.

3 We have J(f J(g)) = f J(g), J(J(f) g) = J(f) g for J :=
r
◦ ∂.

4 One has I := im
r
E F while C := ker ∂ ≤ F .

5 Integration by parts
r

(f ′
r
g) = f
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Univariate Operator Ring

Definition and Theorem
Let (F , ∂,

r
) be an ordinary integro-differential algebra. Then the ring of

integro-differential operators F [∂,
r

] is the K-algebra generated
by {∂,

r
} ∪ F ∪ F• modulo the Gröbner basis below.

f̃f → f̃ · f ∂f → f∂ + f∂
r
f
r
→ f

r r
−
r
f

r

ϕ̃ϕ → ϕ ∂ϕ → 0
r
f∂ → f −

r
f∂ − fE E

ϕf → fϕ ϕ ∂
r
→ 1

r
fϕ → f

r
ϕ

Proposition

One has F [∂,
r

] = F [∂]u F [
r

]u (F•), and the evaluation ideal (F•) is
generated by | F•) as a left F-module.
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Stieltjes Conditions versus Two-Point Conditions

Proposition
The normal forms of Stieltjes conditions | F•) are linear combinations of
local conditions ϕ∂i and global conditions ϕ

r
f .

Example for F = C∞(R) ist u 7→ u(0)− u(1) +
r 2

0 ξ
2 u(ξ) dξ.

Stieltjes conditions appear in (some) applications.
More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:
1 Only two evaluations L,R. 2 No global parts.
3 Derivation order below that of differential equation.

Biintegro-differential algebras (F , ∂, A =
r
L, B = −

r
R):

Adjoint operators A and B relative to 〈f |g〉 := (A+B)f .
In F = C∞[a, b] we have A =

r x
0 and B =

r 1
x.
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More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:
1 Only two evaluations L,R. 2 No global parts.
3 Derivation order below that of differential equation.

Biintegro-differential algebras (F , ∂, A =
r
L, B = −

r
R):

Adjoint operators A and B relative to 〈f |g〉 := (A+B)f .
In F = C∞[a, b] we have A =

r x
0 and B =

r 1
x.
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Concrete Boundary Problems for LODEs

Definition
A (concrete) boundary problem is a pair (T,B) with T ∈ F [∂] a monic
differential operator and B ≤ F∗ a boundary space of Stieltjes conditions.

Concrete boundary problems form a submonoid of BnProb(F).
Regularity implies ordT = dimB, matrix test applicable.
Concrete regular problems submonoid of BnProb∗(F).
Distinguish regular from well-posed.

Theorem
Relative to a given fundamental system u1, . . . , un of T , we can compute
the Green’s operator of (T,B) as an element of F [∂,

r
].

Two-point problems: Normal form of G ∼= Green’s function g(x, ξ)

Gf =

∫ b

a
g(x, ξ) f(ξ) dξ
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LODE Example Revisited

Recall previous two-point problem (taking a = 0, b = 1 for simplicity):

u′′ = f
u(0) + u(1) = ρ, u′(1)− u(1) = σ

Underlying boundary problem (D2, [L+R,RD −R])
Kernel projector P = (R−RD) +X(L−R+ 2RD)

Green’s operator G = (1− P )A2 = BX −XB −XAX −XBX

Green’s function g(x, ξ) =

{
−xξ if ξ ≤ x
ξ − x− xξ if ξ ≥ x

For completeness:

Semi-homogeneous Green’s operator H(ρ, σ) = (ρ+ 2σ)x− σ
For LODEs, determining H is trivial (assuming fundamental system).
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Third-Order Example

(T,B) = (D3 − exD2 − 2D2 −D + ex + 2, [L,R,RD])

Classical Notation:

u′′′ − (ex + 2)u′′ − u′ + (ex + 2)u(x) = f
u(0) = u(1) = u′(1) = 0

Green’s Operator:

G =
(
ee
x−x − eex

)
B
(
e−e

x
+ 2e−ee(x)

)
+ sinh(x)B

(
1 + 2e(x)

)
+
(
2ee

x−e(e−x − 1)− (e− 1)2 e−x + 2 sinh(x)
)
Ae(x)

Green’s Function: g(x, ξ) =

=

{(
2ee

x−e(e−x − 1)− (e− 1)2 e−x + 2 sinh(x)
)
e2ξ e(ξ)(

ee
x−x − eex

)(
e−e

ξ
+ 2e−ee(ξ)

)
+ sinh(x) e2ξ

(
1 + 2e(ξ)

)
e(t) := −1

2

(
et−1
e−1

)2
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Factorization of Ordinary Boundary Problems

Factorization can always be lifted.

Simplest Example:
(D2, [L,R]) = (D, [F ]) · (D, [L]) with F :=

r b
a

or u′′ = f

u(a) = u(b) = 0
=

u′ = fr b
au(ξ) dξ = 0

·
u′ = f

u(a) = 0

Fourth-Order Example (Kamke 4.2):
(D4 + 4, [L,R,LD,RD]) = (D2 − 2i, [Fe(i−1)x, F e(1−i)x]) · (D2 + 2i, [L,R])

or u′′′′ + 4u = f
u(a) = u(b) = u′(a) = u′(b) = 0

=

u′′ − 2i u = fr b
ae

(i−1)ξu(ξ) dξ =
r b
ae

(1−i)ξu(ξ) dξ = 0
·

u′′ + 2i u = f

u(a) = u(b) = 0
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Basic Example: Smooth Functions

For simplicity first omit ∂x, ∂y, . . . ; only consider
r x
,
r y
, . . . .

Admit all smooth functions f(x, y, . . . ) ∈ F to be operated on.
Take multipliers g(x, y, . . . ) from a suitably nice subalgebra G ⊆ F .
Allow all substitutions f(x, y, . . . ) 7→ f(ax+ by, cx+ dy, . . . )
for a, b, c, d ∈ R.

For convenience view F as filtered algebra

F =
∞⋃
n=0

Fn :=
∞⋃
n=0

C∞(Rn)

with C∞(R0) := R and natural injections C∞(Rn) ↪→ C∞(Rn+1).

Similarly use filtered monoid

M(R) =
∞⋃
n=1

Mn(R)

whereMn(R) are near-identity matrices with injections M ↪→
(
In 0
0 1

)
.
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Allow all substitutions f(x, y, . . . ) 7→ f(ax+ by, cx+ dy, . . . )
for a, b, c, d ∈ R.

For convenience view F as filtered algebra

F =
∞⋃
n=0

Fn :=
∞⋃
n=0

C∞(Rn)

with C∞(R0) := R and natural injections C∞(Rn) ↪→ C∞(Rn+1).

Similarly use filtered monoid

M(R) =
∞⋃
n=1

Mn(R)

whereMn(R) are near-identity matrices with injections M ↪→
(
In 0
0 1

)
.
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Action of Integrals and Substitutions

Write
r xi : F → F for Rota-Baxter operator

f(x1, . . . , xi−1, xi, xi+1, . . . ) 7→
∫ xi

0
f(x1, . . . , xi−1, ξ, xi+1, . . . ) dξ.

Given M ∈M(R) write M∗f =: g with

g(x1, x2, . . . ) := f
(∑

iM1ixi,
∑

iM2ixi, . . .
)
,

for contravariant monoid actionM(R)×F → F via algebra morphisms.

Hence note (MN)∗ = N∗M∗. But what about
r xiM∗?
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Notation for Special Matrices

Evaluation at xiii : Ei =


1

. . .
1

0← i← i← i



Transvection for vvv ∈ Kn−1 : Ti(v) =



1

. . .
1

v1v1v1 · · ·· · ·· · · vi−1vi−1vi−1 1 vi+1vi+1vi+1 · · ·· · ·· · · vnvnvn
1

. . .



Eliminant for www ∈ Kn−i : Li(w) =



1

. . .
1

1
wi+1wi+1wi+1 1

...

...

...
. . .

wnwnwn 1
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Substitutive Algebras

Definition
An ascending K-algebra (Fn) is called substitutive if it has a straight
contravariant monoid action ofM(K) such that M∗(Fn) ⊆ Fn for
all M ∈Mn(K) and E∗n(Fn) ⊆ Fn−1. We write F = lim−→Fn.

In detail ∗ : M(K)→ HomAlg(F) with I∗ = 1F , (MN)∗ = N∗M∗.
Straightness means M∗f = M∗ynf for all M ∈M(K) and f ∈ Fn.

Define dependence hierarchy:
Fα = {f ∈ F | π∗f ∈ Fk} for α = (α1, . . . , αk) ⊂ N
Fα =

⋃∞
n=1F(α1,...,αn) for arbitrary α ⊆ N by monotonicity

−→ Complete complemented lattice:
(Fα) with Fα t Fβ = Fα∪β , Fα u Fβ = Fα∩β
F∅ = K, FN = F , F ′α = FN\α

Markus Rosenkranz Differential Algebra for Boundary Problems



Substitutive Algebras

Definition
An ascending K-algebra (Fn) is called substitutive if it has a straight
contravariant monoid action ofM(K) such that M∗(Fn) ⊆ Fn for
all M ∈Mn(K) and E∗n(Fn) ⊆ Fn−1. We write F = lim−→Fn.

In detail ∗ : M(K)→ HomAlg(F) with I∗ = 1F , (MN)∗ = N∗M∗.
Straightness means M∗f = M∗ynf for all M ∈M(K) and f ∈ Fn.

Define dependence hierarchy:
Fα = {f ∈ F | π∗f ∈ Fk} for α = (α1, . . . , αk) ⊂ N
Fα =

⋃∞
n=1F(α1,...,αn) for arbitrary α ⊆ N by monotonicity

−→ Complete complemented lattice:
(Fα) with Fα t Fβ = Fα∪β , Fα u Fβ = Fα∩β
F∅ = K, FN = F , F ′α = FN\α

Markus Rosenkranz Differential Algebra for Boundary Problems



Substitutive Algebras

Definition
An ascending K-algebra (Fn) is called substitutive if it has a straight
contravariant monoid action ofM(K) such that M∗(Fn) ⊆ Fn for
all M ∈Mn(K) and E∗n(Fn) ⊆ Fn−1. We write F = lim−→Fn.

In detail ∗ : M(K)→ HomAlg(F) with I∗ = 1F , (MN)∗ = N∗M∗.

Straightness means M∗f = M∗ynf for all M ∈M(K) and f ∈ Fn.

Define dependence hierarchy:
Fα = {f ∈ F | π∗f ∈ Fk} for α = (α1, . . . , αk) ⊂ N
Fα =

⋃∞
n=1F(α1,...,αn) for arbitrary α ⊆ N by monotonicity

−→ Complete complemented lattice:
(Fα) with Fα t Fβ = Fα∪β , Fα u Fβ = Fα∩β
F∅ = K, FN = F , F ′α = FN\α

Markus Rosenkranz Differential Algebra for Boundary Problems



Substitutive Algebras

Definition
An ascending K-algebra (Fn) is called substitutive if it has a straight
contravariant monoid action ofM(K) such that M∗(Fn) ⊆ Fn for
all M ∈Mn(K) and E∗n(Fn) ⊆ Fn−1. We write F = lim−→Fn.

In detail ∗ : M(K)→ HomAlg(F) with I∗ = 1F , (MN)∗ = N∗M∗.
Straightness means M∗f = M∗ynf for all M ∈M(K) and f ∈ Fn.

Define dependence hierarchy:
Fα = {f ∈ F | π∗f ∈ Fk} for α = (α1, . . . , αk) ⊂ N
Fα =

⋃∞
n=1F(α1,...,αn) for arbitrary α ⊆ N by monotonicity

−→ Complete complemented lattice:
(Fα) with Fα t Fβ = Fα∪β , Fα u Fβ = Fα∩β
F∅ = K, FN = F , F ′α = FN\α

Markus Rosenkranz Differential Algebra for Boundary Problems



Substitutive Algebras

Definition
An ascending K-algebra (Fn) is called substitutive if it has a straight
contravariant monoid action ofM(K) such that M∗(Fn) ⊆ Fn for
all M ∈Mn(K) and E∗n(Fn) ⊆ Fn−1. We write F = lim−→Fn.

In detail ∗ : M(K)→ HomAlg(F) with I∗ = 1F , (MN)∗ = N∗M∗.
Straightness means M∗f = M∗ynf for all M ∈M(K) and f ∈ Fn.

Define dependence hierarchy:
Fα = {f ∈ F | π∗f ∈ Fk} for α = (α1, . . . , αk) ⊂ N

Fα =
⋃∞
n=1F(α1,...,αn) for arbitrary α ⊆ N by monotonicity

−→ Complete complemented lattice:
(Fα) with Fα t Fβ = Fα∪β , Fα u Fβ = Fα∩β
F∅ = K, FN = F , F ′α = FN\α

Markus Rosenkranz Differential Algebra for Boundary Problems



Substitutive Algebras

Definition
An ascending K-algebra (Fn) is called substitutive if it has a straight
contravariant monoid action ofM(K) such that M∗(Fn) ⊆ Fn for
all M ∈Mn(K) and E∗n(Fn) ⊆ Fn−1. We write F = lim−→Fn.

In detail ∗ : M(K)→ HomAlg(F) with I∗ = 1F , (MN)∗ = N∗M∗.
Straightness means M∗f = M∗ynf for all M ∈M(K) and f ∈ Fn.

Define dependence hierarchy:
Fα = {f ∈ F | π∗f ∈ Fk} for α = (α1, . . . , αk) ⊂ N
Fα =

⋃∞
n=1F(α1,...,αn) for arbitrary α ⊆ N by monotonicity

−→ Complete complemented lattice:
(Fα) with Fα t Fβ = Fα∪β , Fα u Fβ = Fα∩β
F∅ = K, FN = F , F ′α = FN\α

Markus Rosenkranz Differential Algebra for Boundary Problems



Substitutive Algebras

Definition
An ascending K-algebra (Fn) is called substitutive if it has a straight
contravariant monoid action ofM(K) such that M∗(Fn) ⊆ Fn for
all M ∈Mn(K) and E∗n(Fn) ⊆ Fn−1. We write F = lim−→Fn.

In detail ∗ : M(K)→ HomAlg(F) with I∗ = 1F , (MN)∗ = N∗M∗.
Straightness means M∗f = M∗ynf for all M ∈M(K) and f ∈ Fn.

Define dependence hierarchy:
Fα = {f ∈ F | π∗f ∈ Fk} for α = (α1, . . . , αk) ⊂ N
Fα =

⋃∞
n=1F(α1,...,αn) for arbitrary α ⊆ N by monotonicity

−→ Complete complemented lattice:
(Fα) with Fα t Fβ = Fα∪β , Fα u Fβ = Fα∩β
F∅ = K, FN = F , F ′α = FN\α

Markus Rosenkranz Differential Algebra for Boundary Problems



Ordinary Rota-Baxter Algebras

Recall that (F , ∂,
r

) was called ordinary if ker(∂) = K.
Now call a Rota-Baxter algebra (F , P ) ordinary

if P is injective
and im(P )uK = F .

Then one can expand to canonical (F , d, P ).

Lemma
Let (F , P ) be an ordinary Rota-Baxter algebra over K. Then x 7→ P (1)
defines an embedding (K[x],

r x
0) ↪→ (F , P ) of Rota-Baxter algebras.
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Hierarchical Rota-Baxter Algebras

Definition

A hierarchical Rota-Baxter algebra (Fn,
r xn)n∈N consists of a

substitutive K-algebra (Fn) and commuting Rota-Baxter operators
r xn

that satisfy the following axioms:
1 We have

r xnFm ⊆ Fm and
r xnM̃∗m = M̃∗m

r xn for n ≤ m.

2 Every (Fn,
r xn) is an ordinary Rota-Baxter algebra over Fn−1.

3 We have τ∗
r xi =

r xjτ∗ for the transposition τ = (i j).
4 The three substitution rules are satisfied (notation as before):

r x
λ∗ = λ−1 λ∗

r x
r x
Tx(ei)

∗ = (1− E∗x)Tx(ei)
∗r x

r x
g Lx(ej−1 + v)∗

r x
= L−1

j (v′)∗(In ⊕ ej)∗
(
Lx(ej−1)∗

r x −
r x
Lx(ej−1)∗

)r xj ḡ Lj(v′)∗
Crucial example: C∞(R∞)

→ Some subalgebras: Cω(R∞), holonomics, K[x1, x2, . . . ]

→ Exponential polynomials K[x1, x2, . . . , e
λx1 , eλx2 , . . . | λ ∈ K]
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λx1 , eλx2 , . . . | λ ∈ K]

Markus Rosenkranz Differential Algebra for Boundary Problems



Hierarchical Rota-Baxter Algebras

Definition

A hierarchical Rota-Baxter algebra (Fn,
r xn)n∈N consists of a

substitutive K-algebra (Fn) and commuting Rota-Baxter operators
r xn

that satisfy the following axioms:
1 We have

r xnFm ⊆ Fm and
r xnM̃∗m = M̃∗m

r xn for n ≤ m.
2 Every (Fn,

r xn) is an ordinary Rota-Baxter algebra over Fn−1.
3 We have τ∗

r xi =
r xjτ∗ for the transposition τ = (i j).

4 The three substitution rules are satisfied (notation as before):
r x
λ∗ = λ−1 λ∗

r x
r x
Tx(ei)
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Verification of the Horizontal and Vertical Rule

r x1T ∗f(x1, x2, x3, . . . ) =

∫ x1

0
f(ξ + xj , x2, x3, . . . ) dξ =

∫ x1+xj

xj

f(ξ̄, x2, x3, . . . ) dξ̄

=

∫ x1+xj

0
f(ξ, x2, x3, . . . ) dξ −

∫ xj

0
f(ξ, x2, x3, . . . ) dξ

= (1− E∗x)T ∗
r x1f(x1, x2, x3, . . . )

Lj(v
′)∗

r x1g(x1)Lx(ej−1 + v)∗
r x1f(x1, . . . , xn)

= Lj(v
′)∗
∫ x1

0
g(η)

∫ η

0
f(ξ, x2...j−1, xj + η, xj+1...n + vj+1...nη) dξ dη

= Lj(v
′)∗
∫ x1

0

∫ x1+xj

ξ+xj

g(η̄ − xj) f(ξ, x2...j−1, η̄, xj+1...n + vj+1...n(η̄ − xj)) dη̄ dξ

=

∫ x1

0

∫ x1+xj

ξ+xj

ḡ(η, xj) f(ξ, x2...j−1, η, xj+1...n + vj+1...nη) dη dξ

=

∫ x1

0

∫ x1+xj

0
. . . dη dξ −

∫ x1

0

∫ ξ+xj

0
. . . dη dξ
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Simple Properties

1 For any α = (α1, . . . , αk), there is an embedding
ια : K[Xα1 , . . . , Xαk ] ↪→ Fα

Xαj 7→ xαj :=
r xαj 1,

and we have π∗p(xα1 , . . . , xαk) = p(xπ(α1), . . . , xπ(αk)) for all
permutations π of (α1, . . . , αk).

2 For π ∈ Sn and i ≤ n we have π∗
r xi =

r xjπ∗ with j := π(j). In
particular, all

r xi : F(i) → F(i) are conjugates of
r x1 : F1 → F1 and

hence ordinary Rota-Baxter operators.
3 We have

r xncf = c
r xnf for all c ∈ F ′(n) and f ∈ F . In particular,

r xnc = cxn.
4 The embedding ια of Item (1) is a homomorphism of Rota-Baxter

algebras in the sense that ια ◦
r Xαj

0 =
r xαj ◦ ια for j = 1, . . . , k.

5 If M ∈M(K) vanishes in the i-th column, then M∗(F) ⊂ F ′(i).
6 We have E∗i

r xi = 0 for all i > 0.
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Admissible Coefficient Algebras

Induced hierarchy of ordinary (F1,
r

):
Ascending algebra (Gn,

r xn)n∈N

Algebras Gn := G⊗n with f1 ⊗ · · · ⊗ fn 7→ f1 ⊗ · · · ⊗ fn ⊗ 1

Rota-Baxter operators
r xn := 1⊗(n−1) ⊗

r

Definition

Let (Fn,
r xn)n∈N be a hierarchical Rota-Baxter algebra over a field K.

A substitutive ordinary integro-differential algebra (G1,
r

) over K is called
an admissible coefficient domain if its induced hierarchy (Gn,

r xn)n∈N
is a hierarchical integro-differential subalgebra of (Fn,

r xn)n∈N.

Minimal example K[x] = K[x1, x2, . . . ] for any (F ,
r

)

Important for applications: K[x, eKx] ⊂ C∞(R∞)
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Coalgebra Structure for Coefficients

Can expand every g ∈ G as

g =

r∑
k=1

gk,1 · · · gk,n

with gk,i ∈ G(i) for i ∈ {1, . . . , n}.

Use some kind of Sweedler notation:
Abbreviate the g1,i, g2,i, . . . ∈ G(i) by g(i) with implied summation.
Hence expansion is g = g(1) · · · g(n).
More generally, gk,(α) := gk,α1 · · · gk,αr so that g = g(1)g(1)′ etc.
Abbreviate shifted factors by (i j)∗g1,i, (i j)

∗g2,i, . . . ∈ G(j) by g(i:j).
Similarly, (i j)∗g1,(i)′ , (i j)

∗g1,(i)′ , . . . ∈ G(j)′ written as g(i:j)′ .
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Use some kind of Sweedler notation:
Abbreviate the g1,i, g2,i, . . . ∈ G(i) by g(i) with implied summation.
Hence expansion is g = g(1) · · · g(n).
More generally, gk,(α) := gk,α1 · · · gk,αr so that g = g(1)g(1)′ etc.

Abbreviate shifted factors by (i j)∗g1,i, (i j)
∗g2,i, . . . ∈ G(j) by g(i:j).

Similarly, (i j)∗g1,(i)′ , (i j)
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Normalization of General Line Integrators

Proposition

Let (Fn,
r xn)n∈N be a hierarchical Rota-Baxter algebra over a field K,

and let G1 be an admissible coefficient domain for F . Then for M ∈Mn

and g ∈ G1 with g(xj) := (1 j)∗g and j ∈ {1, . . . , n} we have

r xjg(xj)M
∗ =

{
M−1
ij g̃(1:j)′(1− E∗j )M̃∗

r xiM̂∗ij
(
g̃(1:i)

)
Li(l)

∗ if i 6=∞,(r xjg(xj)
)
M∗ othw.

By definition i = min{k |Mkj 6= 0}, with M̃ ∈Mn and l ∈ Kn−i
by one sweep of Gaussian elminiation if the minimum exists, and by
convention i =∞ otherwise. Moreover, g̃ = M∗i•g and M̂ij = di,1/Mij

.
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Ordering of General Line Integrators

Proposition

Let (Fn,
r xn)n∈N be a hierarchical Rota-Baxter algebra over a field K,

and let G1 be an admissible coefficient domain for F . Then for i < j and
arbitrary vectors v ∈ Kn−i, w ∈ Kn−j and functions g, h ∈ G1

with g(xi) := (1 i)∗g and h(xj) := (1 j)∗h we have
r xjh(xj)Lj(w)∗

r xig(xi)Li(v)∗ = (1−E∗j )
r xig(xi)Li(v

′)∗
r xjh(xj)Lj(w)∗,

with v′ = L−1
j−i(w) v ∈ Kn−i as earlier.
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Coalescence of General Line Integrators

Proposition

Let (Fn,
r xn)n∈N be a hierarchical Rota-Baxter algebra over a field K,

and let G1 be an admissible coefficient domain for F . Then for i ∈ N and
arbitrary vectors v, w ∈ Kn−i with w 6= 0 we have

wk
r xih(xi)Li(w)∗

r xig(xi)Li(v)∗ = L−1
k (w′)∗σ∗(h̄(n+1))×

×
(
Li(w̄)∗

r xi h̃(1:k)′Li(v
′)∗ −

r xi h̃(1:k)′Li(v
′ + w̄)∗

)r xk h̃(1:k)Lk(w
′)∗

where h̄ := (ek/wk − en+1/wk)
∗h = h(k)h(n+1) ∈ F(k,n+1) with slack

transposition σ := (k n+ 1), and h̃ := Li(v
′)∗k•(1 k)∗h̄(k) ∈ G(i,k).

The remaining notation is as earlier.
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The Operator Ring

Definition
Let (G1,

r
) be an ordinary integro-differential algebra over a field K with

induced hiearchy (Gn,
r xn)n∈N. Then the ring of partial integral

operators over G is defined as the quotient of the K-algebra

G[
r

] = G qKK[M]∗ qKK[A]
/
∼=

with the congruence ∼= given below.

M∗g ∼= (M · g)M∗ M∗Ai ∼= 0 if Mi• = 0

Ajg(xi) ∼= g(xi)Aj Aig(xj) ∼= g(xj)Ai

Ajg(xj)M
∗ ∼= M−1

ij g̃(1:j)′ (1− E∗j )M̃∗AiM̂∗ij
(
g̃(1:i)

)
Li(l)

∗ if i := min{k |Mkj 6= 0} 6=∞

Ajg(xj)M
∗ ∼=

(r xj g(xj))M∗ if i := min{k |Mkj 6= 0} =∞

Ajh(xj)Lj(w)∗Aig(xi)Li(v)∗ ∼= (1− E∗j )Aig(xi)Li(v
′)∗Ajh(xj)Lj(w)∗

Aih(xi)Li(w)∗Aig(xi)Li(v)∗ ∼= w−1
k L−1

k (w′)∗σ∗(h̄(n+1))×

×
(
Li(w̄)∗ Aih̃(1:k)′Li(v

′)∗ −Aih̃(1:k)′Li(v′ + w̄)∗
)
Akh̃(1:k)Lk(w′)∗

Ajg(xj)Aj ∼=
(r xj g(xj))Aj −Aj(r xj g(xj))
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Natural Action and Termination

Proposition

Let (Fn,
r xn)n∈N be a hierarchical Rota-Baxter algebra over a field K,

and let G1 be an admissible coefficient domain for F . Then the natural
action G[

r
]×F → F induced by g · f = gf , M∗ · f = M∗(f)

and Ai · f =
r xif is well-defined.

This follows from the propositions given above.

Now introduce a suitable term order on underlying word monoid.

Theorem
Let (G1,

r
) be an ordinary integro-differential algebra over a field K.

Orienting the rules of the Table from left to right, one obtains a
Noetherian reduction system.
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Conjectured Canonical Forms

Line integrator of index i is Aib(xi)Li(v)∗ with v ∈ Kn−1

and a basis element b ∈ G1.
Volume integrator is a word of the form bM∗J1 · · · Jr for line
integrators J1, . . . , Jr with indices i1 < · · · < ir and M∗ ∈M(K)∗

with Mi1• 6= 0 if r > 0.

Easy to check: The volume integrators span G[
r

] over K.
Conjecture: They are linearly independent over K.

Then we have a system of canonical forms.
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Additional Rules for Derivations

Assume (Fn,
r xn , ∂xn) is hierarchical integro-differential algebra.

Add indeterminates Dn for action of ∂xn , impose the relations:

DiM
∗ =

∑
kMikM

∗Dk DiDj = DjDi

Dif(xi) = f(xi)Di + f ′(xi) Dif(xj) = f(xj)Di

DiAi = 1 DiAj = AjDi

Aif(xi)Li(v)∗Di =
(
f(xi)−Aif ′i(xi)− fi(0)E∗i

)
Li(v)∗ −

∑
j>i vj Aif(xi)Li(v)∗Dj

Canonical forms similar but with certain Dα on the right.
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LPDE Example Revisited

Cauchy problem:

utt − 4utx + 4uxx − 9uyy = f,
u(0, x, y) = f1(x, y), ut(0, x, y) = f2(x, y)

Signal and state operators:

Gf (t, x, y) =
r t
0

r σ
0
f(τ, x+ 2t− 2τ, y − 3t− 3τ + 6σ) dτ dσ.

H(f1, f2) = f1(x+2t, y−3t)+
r t
0

(f2−2Dxf1+3Dyf1)(x+2t, y−3t+6τ) dτ

Factor problems:

ut − 2ux ± 3uy = f,
u(0, x, y) = f±(x, y).

H±f± (t, x, y) = f±(x+ 2t, y ∓ 3t)

G±f (t, x, y) =
r t
0
f(τ, x+ 2t− 2τ, y ∓ 3t± 3τ) dτ
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Factorization Examples for LPDEs

Unbounded wave equation:
(Dtt −Dxx, [Lt, LtDt]) = (Dt −Dx, [Lt]) · (Dt +Dx, [Lt])

or utt − uxx = f
u(x, 0) = ut(x, 0) = 0

=
ut − ux = f
u(x, 0) = 0

· ut + ux = f
u(x, 0) = 0

Green’s Operator: G =
(

1 0
−1 1

)
Ax
(

1 0
2 1

)∗
Ax
(

1 0
−1 1

)∗
=
( 1 0

1/2 1/2

)∗
Ax
(

1 0
−1 2

)∗ · ( 1 0
−1/2 1/2

)∗
Ax
(

1 0
1 2

)∗

x

t

� uHx,0L=utHx,0L=0

� uH0,tL=0 uH1,tL=0 � Bounded wave equation:

(Dtt −Dxx, [Lt, LtDt, Lx, Rx]) = (Dt −Dx, [Lt,S]) · (Dt +Dx, [Lt, Lx])

or utt − uxx = f
u(x, 0) = ut(x, 0) = u(0, t) = u(1, t) = 0

=

ut − ux = f

u(x, 0) =
r 1
(1−t)+

u(ξ, ξ + t− 1) dξ = 0 ·
ut + ux = f

u(x, 0) = u(0, t) = 0

Green’s Operator G =

btc−1∑
i=0

(−1)i

2

∫ t−i

(t−i−1)+

∫ |(−1)i(x− 1
2
)+(t−τ−i− 1

2
)

|(−1)i(x− 1
2
)−(t−τ−i− 1

2
)|
dξ dτ
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Geometric Interpretation

utt − uxx = f

u(x, 0) = ut(x, 0) = u(0, t) = u(1, t) = 0 =

ut − ux = f

u(x, 0) =
r 1
(1−t)+

u(ξ, ξ + t− 1) dξ = 0 ·
ut + ux = f

u(x, 0) = u(0, t) = 0

t=0
x=0 x=1

Hx,tL

H0,t-xL

H1,t+x-1L
H1-x,t-1L

+

-

+

-

+

+

-

+

-

+

±

±

1 =

t=0
x=0 x=1

Hx,tL

G1f(x, t) =
∫ x
(x−t)+

f(ξ, ξ − x+ t) dξ

G2f(x, t) =
∫ x+t
x (−1)bηc f

(
1
2

+ (−1)bηc(frac(η)− 1
2

), x+ t− η
)
dη
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