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Q Abstract Boundary Problems:
Joint work with G. Regensburger [AMPAQ9]
and N. Phisanbut [CASC13].
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Q Abstract Boundary Problems:
Joint work with G. Regensburger [AMPAQ9]
and N. Phisanbut [CASC13].

Q@ Ordinary Integro-Differential Operators:
Initiated in [JSCO5] with B. Buchberger and H.W. Engl [AA03].
Continued in collaboration with G. Regensburger [JSC08, SFB11].

© Partial Integro-Differential Operators:
Beginnings with G. Regensburger and L. Tec in [CASCO09].
New developement with N. Phisanbut [CASC13]. Ongoing work.
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Classical Beam Deflection
H Thin beam, plane cross sections

Elastic modulus E, Moment of area

v TR v Normalized horizontal coordinate x € [0, 1]

M Deflection u(z), Load ¢(x)
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Classical Beam Deflection
H Thin beam, plane cross sections

Elastic modulus E, Moment of area

Normalized horizontal coordinate = € [0, 1]

v v
Yy § 1
M Deflection u(z), Load ¢(z)

Euler-Bernoulli Equation: %(EI 327;“) =q(z)
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Classical Beam Deflection
H Thin beam, plane cross sections

Elastic modulus E, Moment of area I
BNy v Normalized horizontal coordinate = € [0, 1]
M Deflection u(z), Load ¢(x)
Euler-Bernoulli Equation: %(EI gi ) =q(z)

Simply supported left/right end: u(0) = «”(0) = 0 and u(1) = u"(1) =0
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Classical Beam Deflection
H Thin beam, plane cross sections

Elastic modulus E, Moment of area I
BNy v Normalized horizontal coordinate = € [0, 1]
M Deflection u(z), Load ¢(x)
Euler-Bernoulli Equation: %(EI gi ) =q(z)
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Classical Beam Deflection
H Thin beam, plane cross sections

Elastic modulus E, Moment of area I
BNy v Normalized horizontal coordinate = € [0, 1]
M Deflection u(z), Load ¢(x)
Euler-Bernoulli Equation: %(EI gi ) =q(z)
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Classical Beam Deflection
H Thin beam, plane cross sections

Elastic modulus E, Moment of area I
BNy v Normalized horizontal coordinate = € [0, 1]
M Deflection u(z), Load ¢(x)
Euler-Bernoulli Equation: %(EI gi ) =q(z)

Simply supported Ieft/rlght end: u(0) =u”(0) =0 and u(l) =u"(1) =0
[Free left end: «”(0) = u”(0) = 0]

Hypothesis: Homogeneous beam, f = q/(EI)
Boundary Problem:
ul/// — f

u(0) =u"(0) =u(l) =u"(1) =0
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Classical Beam Deflection
H Thin beam, plane cross sections

Elastic modulus E, Moment of area I
BNy v Normalized horizontal coordinate = € [0, 1]
M Deflection u(z), Load ¢(x)
Euler-Bernoulli Equation: %(EI gi ) =q(z)

Simply supported Ieft/rlght end: u(0) =u”(0) =0 and u(l) =u"(1) =0
[Free left end: «”(0) = u”(0) = 0]

Hypothesis: Homogeneous beam, f = q/(EI)
Boundary Problem:

ul/// — f

u(0) =u"(0) =u(l) =u"(1) =0

Classically u € C*[0, 1].
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Analytic Method

Superposition Principle:
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Analytic Method

Superposition Principle:

o Deflection ug(z) for normalized point loads f = d¢ bei & € [0, 1]
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Analytic Method

Superposition Principle:
o Deflection u¢(z) for normalized point loads f = d¢ bei & € [0, 1]
o Total deflection as superposition of u¢(x) weighted by f(&)

Markus Rosenkranz Differential Algebra for Boundary Problems



Analytic Method

Superposition Principle:
o Deflection u¢(z) for normalized point loads f = d¢ bei & € [0, 1]
o Total deflection as superposition of u¢(x) weighted by f(&)

o Hence u(z) = f(ll g(x, &) f(§) d§
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Analytic Method

Superposition Principle:
o Deflection u¢(z) for normalized point loads f = d¢ bei & € [0, 1]
o Total deflection as superposition of u¢(x) weighted by f(&)
o Hence u(x) = [que(w) £(£) d¢
o Green’s function g(z,£) £ ug(z)
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Analytic Method

Superposition Principle:
o Deflection u¢(z) for normalized point loads f = d¢ bei & € [0, 1]
o Total deflection as superposition of u¢(x) weighted by f(&)

@ Hence u(z) = f(l) g(x, &) f(§) d§

o Green’s function g(z,£) £ ug(z)

Solution for simply supported Euler-Bernoulli beam:
g(mg)_ %w&—%f3—%x2§+%m§3+%x3f furOgggxgl’
’ gal—ta —fad 4 fa + a3 firo<az<¢<1

Question: How does differential algebra help in finding this solution?
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Connecting Differential Algebra with Boundary Values

Markus Rosenkranz Differential Algebra for Boundary Problems



Connecting Differential Algebra with Boundary Values

Basic view of differential algebra: F = C>°(0,1) is a differential ring.
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Connecting Differential Algebra with Boundary Values

Basic view of differential algebra: F = C>°(0,1) is a differential ring.
0:F—F, Ou+v)=0(u)+ 9d(v)and d(uv) = d(u)v + rd(v)
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Connecting Differential Algebra with Boundary Values

Basic view of differential algebra: F = C>°(0,1) is a differential ring.
0:F—F, Ou+v)=0(u)+ 9d(v)and d(uv) = d(u)v + rd(v)
For u € F we have v’ £ 9(u) € F but no u(0) or v/(0).
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Connecting Differential Algebra with Boundary Values

Basic view of differential algebra: F = C>°(0,1) is a differential ring.
0:F—F, Ou+v)=0(u)+ 9d(v)and d(uv) = d(u)v + rd(v)

For u € F we have v’ £ 9(u) € F but no u(0) or v/(0).
Which other algebraic structure can we find in (C*°[0, 1],0)7
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Connecting Differential Algebra with Boundary Values

Basic view of differential algebra: F = C>°(0,1) is a differential ring.
0:F—F, Ou+v)=0(u)+ 9d(v)and d(uv) = d(u)v + rd(v)

For u € F we have v’ £ 9(u) € F but no u(0) or v/(0).
Which other algebraic structure can we find in (C*°[0, 1],0)7

Short answer:

o Point evaluations = multiplicative linear functionals on F.
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Connecting Differential Algebra with Boundary Values

Basic view of differential algebra: F = C>°(0,1) is a differential ring.
0:F—F, Ou+v)=0(u)+ 9d(v)and d(uv) = d(u)v + rd(v)
For u € F we have v’ £ 9(u) € F but no u(0) or v/(0).
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o Linked to differential structure via integration (Rota-Baxter ring).

o Evaluation/Integration: Two sides of a single coin:
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Connecting Differential Algebra with Boundary Values

Basic view of differential algebra: F = C>°(0,1) is a differential ring.
0:F—F, Ou+v)=0(u)+ 9d(v)and d(uv) = d(u)v + rd(v)

For u € F we have v’ £ 9(u) € F but no u(0) or v/(0).
Which other algebraic structure can we find in (C*°[0, 1],0)7

Short answer:
o Point evaluations = multiplicative linear functionals on F.
o Linked to differential structure via integration (Rota-Baxter ring).

o Evaluation/Integration: Two sides of a single coin:

> INTEGRO-DIFFERENTIAL ALGEBRA
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Connecting Differential Algebra with Boundary Values

Basic view of differential algebra: F = C>°(0,1) is a differential ring.
0:F—F, Ou+v)=0(u)+ 9d(v)and d(uv) = d(u)v + rd(v)

For u € F we have v’ £ 9(u) € F but no u(0) or v/(0).
Which other algebraic structure can we find in (C*°[0, 1],0)7

Short answer:
o Point evaluations = multiplicative linear functionals on F.
o Linked to differential structure via integration (Rota-Baxter ring).
o Evaluation/Integration: Two sides of a single coin:

> INTEGRO-DIFFERENTIAL ALGEBRA

...and the rest is Linear Algebra.
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@ Abstract Boundary Problems
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Abstract Boundary Problems
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Abstract Boundary Problems

Let F, G be fixed (infinite-dimensional) vector spaces.

Markus Rosenkranz Differential Algebra for Boundary Problems



Abstract Boundary Problems

Let F, G be fixed (infinite-dimensional) vector spaces.

An (abstract) boundary problem is a pair (T, B) where T: F — G is an
epimorphism and B < F* is orthogonally closed.
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Abstract Boundary Problems

Let F, G be fixed (infinite-dimensional) vector spaces.

An (abstract) boundary problem is a pair (T, B) where T: F — G is an
epimorphism and B < F* is orthogonally closed. We call T" the

“differential operator” and B the “boundary space” of the problem.
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Abstract Boundary Problems

Let F, G be fixed (infinite-dimensional) vector spaces.

Definition
An (abstract) boundary problem is a pair (T, B) where T: F — G is an
epimorphism and B < F* is orthogonally closed. We call T" the
“differential operator” and B the “boundary space” of the problem.

Galois connection P(F) = P(F*)
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Abstract Boundary Problems

Let F, G be fixed (infinite-dimensional) vector spaces.

Definition
An (abstract) boundary problem is a pair (T, B) where T: F — G is an
epimorphism and B < F* is orthogonally closed. We call T" the
“differential operator” and B the “boundary space” of the problem.

Galois connection P(F) = P(F*)
A<SF = Ab={peF |B(f)=0forall feA}
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Abstract Boundary Problems

Let F, G be fixed (infinite-dimensional) vector spaces.

Definition
An (abstract) boundary problem is a pair (T, B) where T: F — G is an
epimorphism and B < F* is orthogonally closed. We call T" the
“differential operator” and B the “boundary space” of the problem.

Galois connection P(F) = P(F*)
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Abstract Boundary Problems

Let F, G be fixed (infinite-dimensional) vector spaces.

Definition
An (abstract) boundary problem is a pair (T, B) where T: F — G is an
epimorphism and B < F* is orthogonally closed. We call T" the
“differential operator” and B the “boundary space” of the problem.

Galois connection P(F) = P(F*)
A<F — .AL::{ﬁe]:*‘,é’(f):OforalleA}
B<F v BL={fecF|B(f)=0foral B}

We call B < F* orthogonally closed if B+- = B.
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Abstract Boundary Problems

Let F, G be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) boundary problem is a pair (T, B) where T: F — G is an
epimorphism and B < F* is orthogonally closed. We call T" the
“differential operator” and B the “boundary space” of the problem.
Galois connection P(F) = P(F*)

A<F — AL :z{ﬁE]-'*‘,B(f)zOforalleA}

B<F* w— Br:={feF|B(f)=0forall B}

We call B < F* orthogonally closed if B+- = B.
Note that all A < F are orthogonally closed.
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Abstract Boundary Problems

Let F, G be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) boundary problem is a pair (T, B) where T: F — G is an
epimorphism and B < F* is orthogonally closed. We call T" the
“differential operator” and B the “boundary space” of the problem.
Galois connection P(F) = P(F*)

A<F — AL ::{ﬁe]:*‘,é’(f):OforalleA}

B<F* w— Br:={feF|B(f)=0forall B}

We call B < F* orthogonally closed if B+- = B.
Note that all A < F are orthogonally closed.

IP(F*) = Orthogonally closed subspaces of F*:
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Abstract Boundary Problems

Let F, G be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) boundary problem is a pair (T, B) where T: F — G is an
epimorphism and B < F* is orthogonally closed. We call T" the
“differential operator” and B the “boundary space” of the problem.
Galois connection P(F) = P(F*)

A<F — AL ::{ﬂe]:*‘ﬂ(f):OforalleA}

B<F* w— Br:={feF|B(f)=0forall B}

We call B < F* orthogonally closed if B+- = B.
Note that all A < F are orthogonally closed.

IP(F*) = Orthogonally closed subspaces of F*:

o Complete complemented modular lattice, isomorphic to IP(F)
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Abstract Boundary Problems

Let F, G be fixed (infinite-dimensional) vector spaces.

Definition

An (abstract) boundary problem is a pair (T, B) where T: F — G is an
epimorphism and B < F* is orthogonally closed. We call T" the
“differential operator” and B the “boundary space” of the problem.
Galois connection P(F) = P(F*)

A<F — AL ::{ﬂe]:*‘ﬂ(f):OforalleA}

B<F* w— Br:={feF|B(f)=0forall B}

We call B < F* orthogonally closed if B+- = B.
Note that all A < F are orthogonally closed.
IP(F*) = Orthogonally closed subspaces of F*:

o Complete complemented modular lattice, isomorphic to IP(F)

o Contains finite dimensional sublattice.
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Regularity and Green’s Operators

A boundary problem (T, F) is called regular if B+ + ker T = F.
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Regularity and Green’s Operators

A boundary problem (T, F) is called regular if B+ + ker T = F.

Equivalent to requiring that

Tu=f
B(u) =0 (B € B)

has a unique solution u € F for every f € G.
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Regularity and Green’s Operators

A boundary problem (T, F) is called regular if B+ + ker T = F.

Equivalent to requiring that

Tu=f
B(u) =0 (B € B)

has a unique solution u € F for every f € G.

Hence define Green'’s operator G: G — F by Gf = u.
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Regularity and Green’s Operators

A boundary problem (T, F) is called regular if B+ + ker T = F.

Equivalent to requiring that

Tu=f
B(u) =0 (B € B)

has a unique solution u € F for every f € G.

Hence define Green'’s operator G: G — F by Gf = u.
This means TG = 1 and im G = B+,
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Regularity and Green’s Operators

A boundary problem (T, F) is called regular if B+ + ker T = F.

Equivalent to requiring that

Tu=f
B(u) =0 (B € B)

has a unique solution u € F for every f € G.

Hence define Green'’s operator G: G — F by Gf = u.
This means TG = 1 and im G = B+,
We write (T, B)~! for G.
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Composition of Boundary Problems

For (T1, B1) and (Ty, Bs) with F 2 G 2% H define
(T, B1) - (T3, B2) = (1113, T5 (B1) + Ba),

which is again a boundary problem.
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Composition of Boundary Problems

For (T1, B1) and (Ty, Bs) with F 2 G 2% H define
(T, B1) - (T3, B2) = (1113, T5 (B1) + Ba),

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's
operator is GoG.
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Composition of Boundary Problems

For (T1, B1) and (Ty, Bs) with F 2 G 2% H define
(T, B1) - (T3, B2) = (1113, T5 (B1) + Ba),

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's
operator is GoG1. In other words, we have

((Tl,Bl) . (TQ,Bz))_l = (TQ,Bz)_l . (Tl,Bl)_l.
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Composition of Boundary Problems

For (T1, B1) and (Ty, Bs) with F 2 G 2% H define
(T, B1) - (T3, B2) = (1113, T5 (B1) + Ba),

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's
operator is GoG1. In other words, we have

(11, By) - (T2, B2)) ™ = (T2, Bo) ™!+ (11, By) .
Moreover, the sum T35 (B;) + Ba is direct.
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Composition of Boundary Problems

For (T1,B1) and (1%, By) with F 12, ¢ T 9 define
(T1, B1) - (T2, B2) = (T2, T3 (B1) + Ba),

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's
operator is GoG1. In other words, we have

(11, By) - (T2, B2)) ™ = (T2, Bo) ™" - (11, By) ™
Moreover, the sum T35 (B;) + Ba is direct.

Therefore (for fixed base field):

(1.B)

o All boundary problems form a category BnProb with 7 — G.
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Composition of Boundary Problems

For (T1,B1) and (1%, By) with F 12, ¢ T 9 define
(T1, B1) - (T2, B2) = (T2, T3 (B1) + Ba),

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's
operator is GoG1. In other words, we have

(11, By) - (T2, B2)) ™ = (T2, Bo) ™" - (11, By) ™
Moreover, the sum T35 (B;) + Ba is direct.

Therefore (for fixed base field):

(1.B)

o All boundary problems form a category BnProb with 7 — G.

o Regular boundary problems subcategory BnProb*.
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Composition of Boundary Problems

For (T1,B1) and (1%, By) with F 12, ¢ T 9 define
(T1, B1) - (T2, B2) = (T2, T3 (B1) + Ba),

which is again a boundary problem.

Proposition

The composition of regular boundary problems is regular, and its Green's
operator is GoG1. In other words, we have

(11, By) - (T2, B2)) ™ = (T2, Bo) ™" - (11, By) ™
Moreover, the sum T35 (B;) + Ba is direct.

Therefore (for fixed base field):

o All boundary problems form a category BnProb with ]-"( iy

g.
o Regular boundary problems subcategory BnProb*.
o Monoids BnProb(F) and BnProb*(F).
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Dual Boundary Problems

A dual problem is a pair (S,G) where G: G — F is a monomorphism
and S < F is arbitrary.
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Dual Boundary Problems

A dual problem is a pair (S,G) where G: G — F is a monomorphism
and S < F is arbitrary. Itis regular if S +im G = F.
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Dual Boundary Problems

Definition
A dual problem is a pair (S,G) where G: G — F is a monomorphism
and S < F is arbitrary. Itis regular if S +im G = F.

Green's operator T := (S, G) ! defined by TG = 1,kerT = S.
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Dual Boundary Problems

Definition
A dual problem is a pair (S,G) where G: G — F is a monomorphism
and S < F is arbitrary. Itis regular if S +im G = F.

Green's operator T := (S, G) ! defined by TG = 1,kerT = S.
Dual composition (K2, G2) - (K1,G1) = (K2 + Ga2(K1), G2Gh).
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Dual Boundary Problems

Definition

A dual problem is a pair (S,G) where G: G — F is a monomorphism
and § < F is arbitrary. It is regular if S +im G = F.

Green's operator T := (S, G) ! defined by TG = 1,kerT = S.
Dual composition (K2, G2) - (K1,G1) = (K2 + Ga2(K1), G2Gh).

Categories DuProb and DuProb*.
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Dual Boundary Problems

A dual problem is a pair (S,G) where G: G — F is a monomorphism
and § < F is arbitrary. It is regular if S +im G = F.

Green's operator T := (S, G) ! defined by TG = 1,kerT = S.
Dual composition (K2, G2) - (K1,G1) = (K2 + Ga2(K1), G2Gh).

Categories DuProb and DuProb*.

The contravariant functor (T, F) — (ker T, (T, B) 1) together with its
inverse (S,G) — ((S,G) !, im* G) establishes an isomorphism of
categories BnProb* = (DuProb*)°P.
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Determination of Green’s Operators
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Determination of Green’'s Operators

Proposition

For a regular boundary problem (7', F), the Green's operator is given
by G = (1 — P)T° where P is the projector onto kerT" along B+ and T
is an arbitrary right inverse of T.
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Determination of Green’'s Operators

Proposition

For a regular boundary problem (7', F), the Green's operator is given
by G = (1 — P)T° where P is the projector onto kerT" along B+ and T
is an arbitrary right inverse of T.

For a regular dual problem (S, G), the Green's operator is given
by T = G°(1 — P) where P is the projector onto S along im G and G? is
an arbitrary left inverse of G.
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Determination of Green’'s Operators

Proposition

For a regular boundary problem (7', F), the Green's operator is given
by G = (1 — P)T° where P is the projector onto kerT" along B+ and T
is an arbitrary right inverse of T.

For a regular dual problem (S, G), the Green's operator is given
by T = G°(1 — P) where P is the projector onto S along im G and G? is
an arbitrary left inverse of G.

If dim B < oo or dim S < oo then:
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Determination of Green’'s Operators

Proposition

For a regular boundary problem (7', F), the Green's operator is given
by G = (1 — P)T° where P is the projector onto kerT" along B+ and T
is an arbitrary right inverse of T.

For a regular dual problem (S, G), the Green's operator is given
by T = G°(1 — P) where P is the projector onto S along im G and G? is
an arbitrary left inverse of G.

If dim B < oo or dim S < oo then:
o B=[p1,...,B:) and ker T' = [uy, ..., upy):
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Determination of Green’'s Operators

Proposition

For a regular boundary problem (7', F), the Green's operator is given
by G = (1 — P)T° where P is the projector onto kerT" along B+ and T
is an arbitrary right inverse of T.

For a regular dual problem (S, G), the Green's operator is given
by T = G°(1 — P) where P is the projector onto S along im G and G? is
an arbitrary left inverse of G.

If dim B < oo or dim S < oo then:

o B=[p1,...,B:) and ker T' = [uy, ..., upy):
Regularity < Evaluation matrix 8(u) = [8;(u;)] € GLn(K)
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Determination of Green’'s Operators

Proposition

For a regular boundary problem (7', F), the Green's operator is given
by G = (1 — P)T° where P is the projector onto kerT" along B+ and T
is an arbitrary right inverse of T.

For a regular dual problem (S, G), the Green's operator is given
by T = G°(1 — P) where P is the projector onto S along im G and G? is
an arbitrary left inverse of G.

If dim B < oo or dimS < oo then:
o B=1[01,...,0n) and ker T = [uq,...,uy]:
Regularity < Evaluation matrix 8(u) = [8;(u;)] € GLn(K)
Projector P = u - B(u)~! - 8
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Determination of Green’'s Operators

Proposition

For a regular boundary problem (7', F), the Green's operator is given
by G = (1 — P)T° where P is the projector onto kerT" along B+ and T
is an arbitrary right inverse of T.

For a regular dual problem (S, G), the Green's operator is given
by T = G°(1 — P) where P is the projector onto S along im G and G¥ is
an arbitrary left inverse of G.

If dim B < oo or dim S < oo then:

o B=[p1,...,B:) and ker T' = [uy, ..., upy):
Regularity < Evaluation matrix 8(u) = [8;(u;)] € GLn(K)
Projector P =u - B(u)~!- 8

o Analogous for dual problem:
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Determination of Green’'s Operators

Proposition

For a regular boundary problem (7', F), the Green's operator is given
by G = (1 — P)T° where P is the projector onto kerT" along B+ and T
is an arbitrary right inverse of T.

For a regular dual problem (S, G), the Green's operator is given
by T = G°(1 — P) where P is the projector onto S along im G and G¥ is
an arbitrary left inverse of G.

If dim B < oo or dimS < oo then:
o B=1[01,...,0n) and ker T = [uq,...,uy]:
Regularity < Evaluation matrix 8(u) = [8;(u;)] € GLn(K)
Projector P = u - B(u)~! - 8
o Analogous for dual problem:
imt G =[B1,...,Bs] and S = [ug, ..., uy)
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Factorization of Boundary Problems

Let (T, B) € BnProb* and T' = T} T, a factorization into epimorphisms.
Then (T, B) = (11, B1) - (I3, B2) is a factorization in BnProb™ iff

B = H;(Bﬂ KQJ‘) with K9 :=ker Ty and ToHy = 1
and By < B is orthogonally closed such that B = (BN K5-) 4 Bs.
In that case, G1 = THG.
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Factorization of Boundary Problems

Let (T, B) € BnProb* and T' = T} T, a factorization into epimorphisms.
Then (T, B) = (11, B1) - (I3, B2) is a factorization in BnProb™ iff
Bi = H; (BN KQJ-) with K9 :=ker Ty and ToHy = 1
and By < B is orthogonally closed such that B = (BN K5-) 4 Bs.
In that case, G1 = THG.

For fixed T = T T5:
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Factorization of Boundary Problems

Let (T, B) € BnProb* and T' = T} T, a factorization into epimorphisms.
Then (T, B) = (11, B1) - (I3, B2) is a factorization in BnProb™ iff
Bi = H; (BN KQJ-) with K9 :=ker Ty and ToHy = 1
and By < B is orthogonally closed such that B = (BN K5-) 4 Bs.
In that case, G1 = THG.

For fixed T = T T5:

{Bg | (TQ,BQ) € BnProb*} — {L2 | Ky + Lo = kerT}
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Factorization of Boundary Problems

Let (T, B) € BnProb* and T' = T} T, a factorization into epimorphisms.
Then (T, B) = (11, B1) - (I3, B2) is a factorization in BnProb™ iff
Bi = H; (BN KQJ-) with K9 :=ker Ty and ToHy = 1
and By < B is orthogonally closed such that B = (BN K5-) 4 Bs.
In that case, G1 = THG.

For fixed T = T T5:

{Bg | (TQ,BQ) € BnProb*} — {L2 | Ky + Lo = kerT}

By +— By nkerT
BHL%‘ < L2
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Incarnations of Boundary Problems
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Incarnations of Boundary Problems

Generic boundary problem (7', ),
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Incarnations of Boundary Problems

Generic boundary problem (7', B), regularity < unique solvability of:
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Incarnations of Boundary Problems

Generic boundary problem (7', B), regularity < unique solvability of:

[Semi-Inhomogeneous] Boundary Problem:

Tu=f Signal Operator = [Semi-Inhomogeneous] Green’s Operator
B(u) =0 G:f—u
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Incarnations of Boundary Problems

Generic boundary problem (7', B), regularity < unique solvability of:

[Semi-Inhomogeneous] Boundary Problem:

Tu=f Signal Operator = [Semi-Inhomogeneous] Green’s Operator
B(u) =0 G:f—u

Semi-Homogeneous Boundary Problem:

Tu=0 State Operator = Semi-Homogeneous Green's Operator
B(u) = B(B) H:Bw—u
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Incarnations of Boundary Problems

Generic boundary problem (7', B), regularity < unique solvability of:

[Semi-Inhomogeneous] Boundary Problem:

Tu=f Signal Operator = [Semi-Inhomogeneous] Green’s Operator
B(u) =0 G:f—u

Semi-Homogeneous Boundary Problem:

Tu=0 State Operator = Semi-Homogeneous Green's Operator
B(u) = B(B) H:Bw—u

Fully Inhomogeneous Boundary Problem:

Tu=f Full Operator = Fully Inhomogeneous Green's Operator

Bu) = B(B) F:(f,B) = u
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Incarnations of Boundary Problems

Generic boundary problem (7', B), regularity < unique solvability of:

[Semi-Inhomogeneous] Boundary Problem:

Tu=f Signal Operator = [Semi-Inhomogeneous] Green’s Operator
B(u) =0 G:f—u

Semi-Homogeneous Boundary Problem:

Tu=0 State Operator = Semi-Homogeneous Green's Operator
B(u) = B(B) H:Bw—u

Fully Inhomogeneous Boundary Problem:

Tu=f Full Operator = Fully Inhomogeneous Green's Operator

Bu) = B(B) F:(f,B) = u

Fully Homogeneous Boundary Problem:

Tu=0 Trivial: u =10
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Boundary Data and Boundary Values

Assume (7', B) € BnProb* given:
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Boundary Data and Boundary Values

Assume (7', B) € BnProb* given:

o Boundary basis (8; | i € I) such that B=[3; | i € I]
Linear span + orthogonal closure
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Boundary Data and Boundary Values

Assume (7', B) € BnProb* given:

o Boundary basis (8; | i € I) such that B=[3; | i € I]
Linear span + orthogonal closure

o Trace map trc: F — B* sends f € F to 5+ B(f)
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Boundary Data and Boundary Values

Assume (7', B) € BnProb* given:

o Boundary basis (8; | i € I) such that B=[3; | i € I]
Linear span + orthogonal closure

o Trace map trc: F — B* sends f € F to 5+ B(f)
o Boundary data B € B’ := im(trc)
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Boundary Data and Boundary Values

Assume (7', B) € BnProb* given:

o Boundary basis (8; | i € I) such that B=[3; | i € I]
Linear span + orthogonal closure

o Trace map trc: F — B* sends f € F to 5+ B(f)
o Boundary data B € B’ := im(trc)
o Boundary values B := B(f;)icr € K
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Boundary Data and Boundary Values

Assume (7', B) € BnProb* given:

o Boundary basis (8; | i € I) such that B=[3; | i € I]
Linear span + orthogonal closure

o Trace map trc: F — B* sends f € F to 5+ B(f)
o Boundary data B € B’ := im(trc)
o Boundary values B := B(f;)icr € K

Boundary Basis (3;);
Boundary Data oundary Basis (Bi)ier, Boundary Values
BepB BeK!

basis-free basis-dependent
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Boundary Data and Boundary Values

Assume (7', B) € BnProb* given:

o Boundary basis (8; | i € I) such that B=[3; | i € I]
Linear span + orthogonal closure

o Trace map trc: F — B* sends f € F to 5+ B(f)
o Boundary data B € B’ := im(trc)
o Boundary values B := B(f;)icr € K

Boundary Basis (5i)iel\

Boundary Data Boundary Values
BepB BeK!
basis-free basis-dependent

Lemma

Let B < F* be a boundary space with boundary basis (5; |€ I). If for
any By, By € B one has B; = By then also By = Bs. In particular, the
trace f* of f € F depends only on f* = B;(f)ics € K.
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Interpolator and Green’s Operators

An interpolator for B is a section BY: B/ — F of trc: F — B'.
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Interpolator and Green’s Operators

An interpolator for B is a section BY: B/ — F of trc: F — B'.
Relative to (3; | i € I), it is given by a map K! — F.
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Interpolator and Green’s Operators

Definition

An interpolator for B is a section BY: B/ — F of trc: F — B'.
Relative to (3; | i € I), it is given by a map K! — F.

Boundary values B € K! ~ boundary data B € B’ via B(8) := 3(B°B).
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Interpolator and Green’s Operators

An interpolator for B is a section BY: B/ — F of trc: F — B.
Relative to (3; | i € I), it is given by a map K! — F.
Boundary values B € K! ~ boundary data B € B’ via B(8) := 3(B°B).

Let (T, B) € BnProb* be given. Then G = (1 — P)T% and H = PB°,
hence F' = (1 — P)T° @ PB°, where P projects onto ker T' along B*.
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Interpolator and Green’s Operators

An interpolator for B is a section BY: B/ — F of trc: F — B.
Relative to (3; | i € I), it is given by a map K! — F.
Boundary values B € K! ~ boundary data B € B’ via B(8) := 3(B°B).

Let (T, B) € BnProb* be given. Then G = (1 — P)T% and H = PB°,
hence F' = (1 — P)T° @ PB°, where P projects onto ker T' along B*.

Usually more realistic to compute P from H:
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Interpolator and Green’s Operators

An interpolator for B is a section BY: B/ — F of trc: F — B.
Relative to (3; | i € I), it is given by a map K! — F.
Boundary values B € K! ~ boundary data B € B’ via B(8) := 3(B°B).

Let (T, B) € BnProb* be given. Then G = (1 — P)T% and H = PB°,
hence F' = (1 — P)T° @ PB°, where P projects onto ker T' along B*.

Usually more realistic to compute P from H:

Let (7, B) € BnProb™ be given. Then trc |y 7 is bijective with state
operator H as inverse, and the kernel projector is P = H o trc.
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LODE Example: Two-Point Boundary Problem
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(z) € C*|[a,b] and
boundary data (p,o) € R2,

find solution u(z) € C*[a, b] such that
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(z) € C*|a,b] and
boundary data (p,o) € R2,

find solution u(z) € C*[a, b] such that

Key elements:
o Function space F = C*[a, b]
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(z) € C*|a,b] and
boundary data (p,o) € R2,

find solution u(z) € C*[a, b] such that

Key elements:
o Function space F = C*|[a, ]
o Boundary space B=[L+ R,RD — R|, I ={1,2}
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(z) € C*|a,b] and
boundary data (p,o) € R2,

find solution u(z) € C*[a, b] such that

Key elements:
o Function space F = C*|[a, ]
o Boundary space B=[L+ R,RD — R}, [ ={1,2}
o Boundary basis (§; | i € I) with 5y = L+ R, = RD — R
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(z) € C*|a,b] and
boundary data (p,o) € R2,

find solution u(z) € C*[a, b] such that

Key elements:
o Function space F = C*|[a, ]
o Boundary space B=[L+ R,RD — R}, [ ={1,2}
o Boundary basis (§; | i € I) with 5y = L+ R, = RD — R
o Boundarydata B=(L+ R+~ p,RD— R+~ o) e B
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(z) € C*|a,b] and
boundary data (p,o) € R2,

find solution u(z) € C*[a, b] such that

Key elements:

Function space F = C*[a, b

o Boundary space B=[L+ R,RD — R}, [ ={1,2}

o Boundary basis (§; | i € I) with 5y = L+ R, = RD — R
o Boundarydata B=(L+ R+~ p,RD— R+~ o) e B

o Boundary values B = (p,0) € R/

©
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(z) € C*|a,b] and
boundary data (p,o) € R2,

find solution u(z) € C*[a, b] such that

ul/ = f7
u(a) + v/ (b) = p+ o,u(b) — u'(b) = —o.

Key elements:

Function space F = C*[a, b

o Boundary space B=[L+ R,RD — R}, [ ={1,2}

o Boundary basis (§; | i € I) with 5y = L+ R, = RD — R
o Boundarydata B=(L+ R+~ p,RD— R+~ o) e B

o Boundary values B = (p,0) € R/

©
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(z) € C*|a,b] and
boundary data (p,o) € R2,

find solution u(z) € C*[a, b] such that

ul/ = f7
u(a) + v/ (b) = p+ o,u(b) — u'(b) = —o.

Key elements:

Function space F = C*[a, b

o Boundary space B=[L + RD,R — RD], I ={1,2}

o New basis (v; | i € I) with v = L+ RD v, = R — RD
o Boundarydata B=(L+ R+~ p,RD — R+~ o) e B

o Boundary values B = (p,0) € Rf

©
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(z) € C*|a,b] and
boundary data (p,o) € R2,

find solution u(z) € C*[a, b] such that

ul/ = f7
u(a) + v/ (b) = p+ o,u(b) — u'(b) = —o.

Key elements:

Function space F = C*[a, b

o Boundary space B=[L+ RD,R — RD], I ={1,2}

o New basis (v; | i € I) with v = L+ RD v, = R — RD

o Boundary data B= (L + RD s p+o,R—RD s —0) € B
o Boundary values B = (p,0) € Rf

©
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(z) € C*|a,b] and
boundary data (p,o) € R2,

find solution u(z) € C*[a, b] such that

ul/ = f7
u(a) + v/ (b) = p+ o,u(b) — u'(b) = —o.

Key elements:

Function space F = C*[a, b

o Boundary space B=[L+ RD,R — RD], I ={1,2}

o New basis (v; | i € I) with v = L+ RD v, = R — RD

o Boundary data B= (L + RD s p+o,R—RD s —0) € B
o New values C = (p,6) = (p+0,—0) € R!

©
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LODE Example: Two-Point Boundary Problem

Given a forcing function f(z) € C*|a,b] and
boundary data (p,o) € R2,

find solution u(z) € C*[a, b] such that

Key elements:

Function space F = C*[a, b

o Boundary space B=[L+ R,RD — R}, [ ={1,2}

o Boundary basis (§; | i € I) with 5y = L+ R, = RD — R
o Boundarydata B=(L+ R+~ p,RD— R+~ o) e B

o Boundary values B = (p,0) € R/

©
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LPDE Example: Cauchy Problem
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Ut — 4 Uy + 4 Uze — YUyy = f
u(O,a:,y) = fl(ajvy)v ut(O,m,y) = fQ(IE,y)
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Ut — 4 Uy + 4 Uze — YUyy = f
U(O,I‘,y) = fl(ajvy)v ut(O,m,y) = fQ(IE,y)

Key elements:
o Function space F = C*(R?)
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Ut — 4 Uy + 4 Uze — YUyy = f
U(O,I‘,y) = fl(ajvy)v ut(O,m,y) = f?(xvy)

Key elements:
o Function space F = C*(R?)
o Boundary space B = [Eq 4y, EozyD: | (z,y) € R?], I = RZUR?
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Ut — 4 Uy + 4 Uze — YUyy = f
U(O,I‘,y) = fl(ajvy)7 ut(O,m,y) = f2(xvy)

Key elements:
o Function space F = C*(R?)
o Boundary space B = [Eq 4y, EozyD: | (z,y) € R?], I = RZUR?
o Boundary basis (5; | i € I) with B, )1 = Eozy, Bay)2 = FowyDt
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Ut — 4 Uy + 4 Uze — YUyy = f
u(07$7y) = fl(a:vy)7 ut(oaxvy) = f2(xvy)

Key elements:
o Function space F = C*(R?)
o Boundary space B = [Eq 4y, EozyD: | (z,y) € R?], I = RZUR?
o Boundary basis (5; | i € I) with B, )1 = Eozy, Bay)2 = FowyDt
o Boundary data B = (Ey ;4 — fi(z,y),
EozyDi— fo(z,y)) € B
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Ut — 4 Uy + 4 Uze — YUyy = f
u(07$7y) = fl(a:vy)7 ut(oaxvy) = f2(xvy)

Key elements:
o Function space F = C*(R?)
o Boundary space B = [Eq 4y, EozyD: | (z,y) € R?], I = RZUR?
o Boundary basis (5; | i € I) with B, )1 = Eozy, Bay)2 = FowyDt
o Boundary data B = (Ey ;4 — fi(z,y),
EozyDi— fo(z,y)) € B
o Boundary values B = (f1, f2) € R!
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Upp — 4 Uty + 4 Uy — 9Uyy =f
u(0,0,y) = f1(0,9),ux(0,2,y) = f1z(2, ), u(0,2,y) = fa(z,y)

Key elements:
o Function space F = C*(R?)
o Boundary space B = [Eq 4y, EozyD: | (z,y) € R?], I = RZUR?
o Boundary basis (8; | i € I) with B, )1 = Eozy, Bay)2 = FowyDt
o Boundary data B = (Ey ;4 — fi(z,y),
EozyDi — fo(z,y)) € B
o Boundary values B = (f1, f2) € R!
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Upp — 4 Uty + 4 Uy — 9Uyy =f
u(0,0,y) = f1(0,9),ux(0,2,y) = f1z(2, ), u(0,2,y) = fa(z,y)

Key elements:
o Function space F = C*(R?)
o B=[Eooy,EosyDs, EozyDt | (z,y) € R?), I = RUR? UR?
o Boundary basis (8; | i € I) with B, )1 = Eozy, Bay)2 = FowyDt

o Boundary data B = (Ey ;4 — fi(z,y),
EO,w,yDt — f2(337y)) € B,
o Boundary values B = (f1, f2) € R!
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Upp — 4 Uty + 4 Uy — 9Uyy =f
’U,(0,0,y) = fl(O,y),ux(O,z,y) = flx(x7y)7ut(07m’y) = fQ(m’y)

Key elements:
o Function space F = C¥(RR3)
o B=[Eooy,EosyDs, EozyDt | (z,y) € R?), I = RUR? UR?
o New basis Yy,1 = Eo0,y, Vz,y),2 = Eoz,yDy, VNzw),3 = Eo ey Dy
o Boundary data B = (Ey ;4 — fi(z,y),
EozyDi — fo(z,y)) € B
o Boundary values B = (f1, f2) € R!
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Upp — 4 Uty + 4 Uy — 9Uyy =f
’U,(0,0,y) = fl(O,y),ux(O,z,y) = flx(xay)7ut(07mvy) = f2($,y)

Key elements:
o Function space F = C*(R?)
o B= [EO,O,y,EO,x,nya EO,m,yDt | (27, y) € RQ]' I=RU ]R'2 U RQ
o New basis vy,1 = Eo0,y, V(zy)2 = EozyDzi Yay),3 = EozyDt
o Boundary data B = (Eo0, — f1(0,4), Eo ey De — fra(z, ),
EouyDi = foz,y)) € B
o Boundary values B = (f1, f2) € R!
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Upp — 4 Uty + 4 Uy — 9Uyy =f
’U,(0,0,y) = fl(O,y),ux(O,z,y) = flx(xay)7ut(07mvy) = f2($,y)

Key elements:
o Function space F = C*(R?)
o B=[Eooy,EosyDs, EozyDt | (z,y) € R?), I = RUR? UR?
o New basis 7,1 = Eo,0,y, V(zw)2 = EozyDz Yey)3 = EozyDt
o Boundary data B = (Fo o+ [1(0,9), EozyDs — fra(z,y),
EozyDi— fo(z,y)) € B
o New values C = (g1, 92,93) = (f1(0,9), fiz(z,5), f2(z,y)) € Rf
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LPDE Example: Cauchy Problem

Given a forcing function f(t,z,y) € C“(R?) and
Cauchy data fi(z,), fao(z,y) € C*(R2),

find solution u(t, z,y) € C*(R?) such that

Ut — 4 Uy + 4 Uze — YUyy = f
u(07$7y) = fl(a:vy)7 ut(oaxvy) = f2(xvy)

Key elements:
o Function space F = C*(R?)
o Boundary space B = [Eq 4y, EozyD: | (z,y) € R?], I = RZUR?
o Boundary basis (5; | i € I) with B, )1 = Eozy, Bay)2 = FowyDt
o Boundary data B = (Ey ;4 — fi(z,y),
EozyDi— fo(z,y)) € B
o Boundary values B = (f1, f2) € R!
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@ Ordinary Integro-Differential Operators
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Integro-Differential Algebras

Definition
Let (F,0) be a (noncommutative) differential algebra over a field K.

A K-linear operation [: F — F is called an integral operator for 9
if do [ = 17 and the differential Rota-Baxter axiom

JNUg) + [(fg) =g+ f(Jg)

is satisfied. Then (F, 9, [) is an integro-differential algebra.
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Integro-Differential Algebras

Definition

Let (F,0) be a (noncommutative) differential algebra over a field K.
A K-linear operation [: F — F is called an integral operator for 9
if do [ = 17 and the differential Rota-Baxter axiom

JNUg) + [(fg) =g+ f(Jg)

is satisfied. Then (F, 9, [) is an integro-differential algebra.

Examples of integro-differential algebras:
o F=C>R"), Ou=uy,, [u= giu(f) dg,
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Integro-Differential Algebras

Definition

Let (F,0) be a (noncommutative) differential algebra over a field K.
A K-linear operation [: F — F is called an integral operator for 9
if do [ = 17 and the differential Rota-Baxter axiom

JNUg) + [(fg) =g+ f(Jg)

is satisfied. Then (F, 9, [) is an integro-differential algebra.

Examples of integro-differential algebras:
o F=C®R"), 0u = ug,, [u= [gu()d, partial forn>1
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Integro-Differential Algebras

Definition

Let (F,0) be a (noncommutative) differential algebra over a field K.
A K-linear operation [: F — F is called an integral operator for 9
if do [ = 17 and the differential Rota-Baxter axiom

JNUg) + [(fg) =g+ f(Jg)

is satisfied. Then (F, 9, [) is an integro-differential algebra.

Examples of integro-differential algebras:
o F=C®R"), 0u = ug,, [u= [gu()d, partial forn>1
o F=C¥D), ou=1, [u= [ju(z)dz
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Integro-Differential Algebras

Definition

Let (F,0) be a (noncommutative) differential algebra over a field K.
A K-linear operation [: F — F is called an integral operator for 9
if do [ = 17 and the differential Rota-Baxter axiom

JNUg) + [(fg) =g+ f(Jg)

is satisfied. Then (F, 9, [) is an integro-differential algebra.

Examples of integro-differential algebras:
o F=C®R"), 0u = ug,, [u= [gu()d, partial forn>1
o F=C¥D), ou=1, [u= [ju(z)dz
o Holonomic functions C K{[z]]
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Integro-Differential Algebras

Definition

Let (F,0) be a (noncommutative) differential algebra over a field K.
A K-linear operation [: F — F is called an integral operator for 9
if do [ = 17 and the differential Rota-Baxter axiom

JNUg) + [(fg) =g+ f(Jg)

is satisfied. Then (F, 9, [) is an integro-differential algebra.

Examples of integro-differential algebras:
o F=C®R"), 0u = ug,, [u= [gu()d, partial forn>1
o F=C¥D), ou=1, [u= [ju(z)dz
o Holonomic functions C K{[z]]
o Matrix rings (F™*", 9, [),
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Integro-Differential Algebras

Definition
Let (F,0) be a (noncommutative) differential algebra over a field K.

A K-linear operation [: F — F is called an integral operator for 9
if do [ = 17 and the differential Rota-Baxter axiom

JNUg) + [(fg) =g+ f(Jg)

is satisfied. Then (F, 9, [) is an integro-differential algebra.

Examples of integro-differential algebras:
o F=C®R"), 0u = ug,, [u= [gu()d, partial forn>1
o F=C¥D), ou=1, [u= [ju(z)dz
o Holonomic functions C K{[z]]
o Matrix rings (F™*", 9, [),
o Adjunctions K[z}, K[z, e"], K[z, 1, log ]
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Alternative Characterizations
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Alternative Characterizations

Let (F,0) be a differential algebra and [ a section of @. Then the
following statements are equivalent:

O The structure (F, [,0) is an integro-differential algebra.
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Alternative Characterizations

Let (F,0) be a differential algebra and [ a section of @. Then the
following statements are equivalent:

O The structure (F, [,0) is an integro-differential algebra.
Q We have E(fg) = E(f) E(g) for E:= 17 — [0 0.
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Alternative Characterizations

Let (F,0) be a differential algebra and [ a section of @. Then the
following statements are equivalent:

Q The structure (F, [, ) is an integro-differential algebra.
Q We have E(fg) = E(f) E(g) for E:= 17 — [0 0.

O We have J(f J(g)) = £ J(9), J(J(f) g) = J(f) g for J := [0 0.
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Alternative Characterizations

Let (F,0) be a differential algebra and [ a section of @. Then the
following statements are equivalent:

Q The structure (F, [, ) is an integro-differential algebra.
Q We have E(fg) = E(f) E(g) for E:= 17 — [0 0.

Q We have J(f J(g)) = fJ(9), J(J(f) g) = J(f) g for J := [ 0.
Q One has Z :=im | < F while C :=kerd < F.
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Alternative Characterizations

Let (F,0) be a differential algebra and [ a section of d. Then the
following statements are equivalent:

Q The structure (F, [, ) is an integro-differential algebra.

Q We have E(fg) = E(f) E(g) for E:= 17 — [0 0.

O We have J(f J(g)) = £ J(9), J(J(f) g) = J(f) g for J := [0 0.
Q One has Z :=im | < F while C :=kerd < F.

O Integration by parts [(f'[g) = f [g — [ fg, and opposite.
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Alternative Characterizations

Let (F,0) be a differential algebra and [ a section of d. Then the
following statements are equivalent:

Q The structure (F, [, ) is an integro-differential algebra.

Q We have E(fg) = E(f) E(g) for E:= 17 — [0 0.

O We have J(f J(g)) = £ J(9), J(J(f) g) = J(f) g for J := [0 0.
Q One has Z :=im | < F while C :=kerd < F.

O Integration by parts [(f'[g) = f [g — [ fg, and opposite.

O We have (J£)(fg) = [(f [9) + [(g [ ), and [ is C-linear.
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Alternative Characterizations

Let (F,0) be a differential algebra and [ a section of d. Then the
following statements are equivalent:

Q The structure (F, [, ) is an integro-differential algebra.

Q We have E(fg) = E(f) E(g) for E:= 17 — [0 0.

O We have J(f J(g)) = £ J(9), J(J(f) g) = J(f) g for J := [0 0.
Q One has Z :=im | < F while C :=kerd < F.

O Integration by parts [(f'[g) = f [g — [ fg, and opposite.

O We have (J£)(fg) = [(f [9) + [(g [ ), and [ is C-linear.

o The structure (F, [) in (6) is called Rota-Baxter-Algebra.
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Alternative Characterizations

Let (F,0) be a differential algebra and [ a section of d. Then the
following statements are equivalent:

Q The structure (F, [, ) is an integro-differential algebra.

Q We have E(fg) = E(f) E(g) for E:= 17 — [0 0.

O We have J(f J(g)) = £ J(9), J(J(f) g) = J(f) g for J := [0 0.
Q One has Z :=im | < F while C :=kerd < F.

O Integration by parts [(f'[g) = f [g — [ fg, and opposite.

O We have (J£)(fg) = [(f [9) + [(g [ ), and [ is C-linear.

o The structure (F, [) in (6) is called Rota-Baxter-Algebra.
o We always have F =C +Z since 1 = E + J.
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Alternative Characterizations

Let (F,0) be a differential algebra and [ a section of d. Then the
following statements are equivalent:

Q The structure (F, [, ) is an integro-differential algebra.

Q We have E(fg) = E(f) E(g) for E:= 17 — [0 0.

Q We have J(f J(g)) = £ J(9), J(J(f)g) = J(f) g for J i= [ 0 0.
Q One has Z :=im | < F while C :=kerd < F.

O Integration by parts [(f'[g) = f [g — [ fg, and opposite.

O We have ([£)(fg) = [(f [9) + J(g [ ). and [ is C-linear.

o The structure (F, [) in (6) is called Rota-Baxter-Algebra.

o We always have F =C + Z since 1 = E + J.
o In F=C>(R) have E(f) = f(0),soC=R,Z={f] f(0) =0}.
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Alternative Characterizations

Let (F,0) be a differential algebra and [ a section of d. Then the
following statements are equivalent:

Q The structure (F, [, ) is an integro-differential algebra.

Q We have E(fg) = E(f) E(g) for E:= 17 — [0 0.

O We have J(f J(g)) = £ J(9), J(J(f) g) = J(f) g for J := [0 0.
Q One has Z :=im | < F while C :=kerd < F.

O Integration by parts [(f'[g) = f [g — [ fg, and opposite.

O We have (f1)(f9) = J(f fg) + [(g [ ). and [ is C-linear.

o The structure (F, [) in (6) is called Rota-Baxter-Algebra.

o We always have F =C +Z since 1 = E + J.

o In F =C>(R) have E(f) = f(0),soC =R, Z={f| f(0) = 0}.
o Ordinary F: Characters ¢ € F* < Integrals f(p for 0.
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Univariate Operator Ring
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Univariate Operator Ring

Definition and Theorem

Let (F,0, [) be an ordinary integro-differential algebra. Then the ring of
integro-differential operators F[9, [] is the K-algebra generated
by {9, [} UF UF* modulo the Grébner basis below.
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Univariate Operator Ring

Definition and Theorem
Let (F,0, [) be an ordinary integro-differential algebra. Then the ring of
integro-differential operators F[9, [] is the K-algebra generated

by {9, [} UF UF* modulo the Grébner basis below.

ff = f-flof — fo+folfff — H[-[f
P = @ o — 0 ffo — f—[rP-fEE
of — ffelof — 1 Jfo — flo
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Univariate Operator Ring

Definition and Theorem

Let (F,0, [) be an ordinary integro-differential algebra. Then the ring of
integro-differential operators F[9, [] is the K-algebra generated
by {9, [} UF UF* modulo the Grébner basis below.

ff = f-flof — fo+folfff — H[-[f
P = @ o — 0 ffo — f—[rP-fEE
of — ffelof — 1 Jfo — flo

One has F[0, [] = F[9] + F[f] + (F*), and the evaluation ideal (F*) is
generated by | F*) as a left F-module.
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Stieltjes Conditions versus Two-Point Conditions
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Stieltjes Conditions versus Two-Point Conditions

The normal forms of Stieltjes conditions | F*) are linear combinations of
local conditions 9" and global conditions ¢ | f.
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Stieltjes Conditions versus Two-Point Conditions

The normal forms of Stieltjes conditions | F*) are linear combinations of
local conditions 9" and global conditions ¢ | f.

o Example for F = C®(R) ist u > u(0) — u(1) + [2 €2 u(€) de.
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Stieltjes Conditions versus Two-Point Conditions

The normal forms of Stieltjes conditions | F*) are linear combinations of
local conditions 9" and global conditions ¢ | f.

o Example for F = C®(R) ist u > u(0) — u(1) + [2 €2 u(€) de.

o Stieltjes conditions appear in (some) applications.
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Stieltjes Conditions versus Two-Point Conditions

The normal forms of Stieltjes conditions | F*) are linear combinations of
local conditions 9" and global conditions ¢ | f.

o Example for F = C®(R) ist u > u(0) — u(1) + [2 €2 u(€) de.
o Stieltjes conditions appear in (some) applications.

o More importantly, they are inherently motivated (see below).
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Stieltjes Conditions versus Two-Point Conditions

The normal forms of Stieltjes conditions | F*) are linear combinations of
local conditions 9" and global conditions ¢ | f.

o Example for F = C®(R) ist u > u(0) — u(1) + [2 €2 u(€) de.
o Stieltjes conditions appear in (some) applications.

o More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:
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Stieltjes Conditions versus Two-Point Conditions

The normal forms of Stieltjes conditions | F*) are linear combinations of
local conditions 9" and global conditions ¢ | f.

o Example for F = C®(R) ist u > u(0) — u(1) + [2 €2 u(€) de.
o Stieltjes conditions appear in (some) applications.

o More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:
Q Only two evaluations L, R.
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Stieltjes Conditions versus Two-Point Conditions

The normal forms of Stieltjes conditions | F*) are linear combinations of
local conditions 9" and global conditions ¢ | f.

o Example for F = C®(R) ist u > u(0) — u(1) + [2 €2 u(€) de.
o Stieltjes conditions appear in (some) applications.

o More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:
Q Only two evaluations L, R. Q No global parts.
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Stieltjes Conditions versus Two-Point Conditions

The normal forms of Stieltjes conditions | F*) are linear combinations of
local conditions 9" and global conditions ¢ | f.

o Example for F = C®(R) ist u > u(0) — u(1) + [2 €2 u(€) de.
o Stieltjes conditions appear in (some) applications.

o More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:
Q Only two evaluations L, R. Q No global parts.
Q Derivation order below that of differential equation.
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Stieltjes Conditions versus Two-Point Conditions

The normal forms of Stieltjes conditions | F*) are linear combinations of
local conditions 9" and global conditions ¢ | f.

o Example for F = C®(R) ist u > u(0) — u(1) + [2 €2 u(€) de.
o Stieltjes conditions appear in (some) applications.

o More importantly, they are inherently motivated (see below).

Classical two-point conditions as special case:
Q Only two evaluations L, R. Q No global parts.
Q Derivation order below that of differential equation.

Biintegro-differential algebras (F,0,A= [;,B=—[p):
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Stieltjes Conditions versus Two-Point Conditions

The normal forms of Stieltjes conditions | F*) are linear combinations of
local conditions 9" and global conditions ¢ | f.

o Example for F = C®(R) ist u > u(0) — u(1) + [2 €2 u(€) de.
o Stieltjes conditions appear in (some) applications.

o More importantly, they are inherently motivated (see below).
Classical two-point conditions as special case:

Q Only two evaluations L, R. Q No global parts.

Q Derivation order below that of differential equation.
Biintegro-differential algebras (F,0,A= [;,B=—[p):

o Adjoint operators A and B relative to (f|g) := (A+ B)f.
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Stieltjes Conditions versus Two-Point Conditions

The normal forms of Stieltjes conditions | F*) are linear combinations of
local conditions 9" and global conditions ¢ | f.

o Example for F = C®(R) ist u > u(0) — u(1) + [2 €2 u(€) de.

o Stieltjes conditions appear in (some) applications.

o More importantly, they are inherently motivated (see below).
Classical two-point conditions as special case:

Q Only two evaluations L, R. Q No global parts.

Q Derivation order below that of differential equation.

Biintegro-differential algebras (F,0,A= [;,B=—[p):
o Adjoint operators A and B relative to (f|g) := (A+ B)f.
o In F=C>[a,b] we have A= [ and B = [].
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Concrete Boundary Problems for LODEs
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Concrete Boundary Problems for LODEs

A (concrete) boundary problem is a pair (T, B) with T' € F[9] a monic
differential operator and B < F* a boundary space of Stieltjes conditions.
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Concrete Boundary Problems for LODEs

A (concrete) boundary problem is a pair (T, B) with T' € F[9] a monic
differential operator and B < F* a boundary space of Stieltjes conditions.

o Concrete boundary problems form a submonoid of BnProb(F).
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Concrete Boundary Problems for LODEs

A (concrete) boundary problem is a pair (T, B) with T' € F[9] a monic
differential operator and B < F* a boundary space of Stieltjes conditions.

o Concrete boundary problems form a submonoid of BnProb(F).
o Regularity implies ord T = dim B, matrix test applicable.
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Concrete Boundary Problems for LODEs

A (concrete) boundary problem is a pair (T, B) with T' € F[9] a monic
differential operator and B < F* a boundary space of Stieltjes conditions.

o Concrete boundary problems form a submonoid of BnProb(F).
o Regularity implies ord T = dim B, matrix test applicable.
o Concrete regular problems submonoid of BnProb™*(F).
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Concrete Boundary Problems for LODEs

A (concrete) boundary problem is a pair (T, B) with T' € F[9] a monic
differential operator and B < F* a boundary space of Stieltjes conditions.

Concrete boundary problems form a submonoid of BnProb(F).
Regularity implies ord T = dim B, matrix test applicable.
Concrete regular problems submonoid of BnProb™(F).
Distinguish regular from well-posed.

© 606 0 o
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Concrete Boundary Problems for LODEs

A (concrete) boundary problem is a pair (T, B) with T' € F[9] a monic
differential operator and B < F* a boundary space of Stieltjes conditions.

Concrete boundary problems form a submonoid of BnProb(F).
Regularity implies ord T = dim B, matrix test applicable.
Concrete regular problems submonoid of BnProb™(F).
Distinguish regular from well-posed.

Relative to a given fundamental system wuq,...,u, of T, we can compute
the Green’s operator of (T, B) as an element of F[9, ].

© 606 0 o
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Concrete Boundary Problems for LODEs

A (concrete) boundary problem is a pair (T, B) with T' € F[9] a monic
differential operator and B < F* a boundary space of Stieltjes conditions.

Concrete boundary problems form a submonoid of BnProb(F).
Regularity implies ord T = dim B, matrix test applicable.
Concrete regular problems submonoid of BnProb™(F).
Distinguish regular from well-posed.

Relative to a given fundamental system wuq,...,u, of T, we can compute
the Green’s operator of (T, B) as an element of F[9, ].

© 606 0 o

Two-point problems: Normal form of G = Green’s function g(z,§)
b
G = [ gl ) €)de
a



LODE Example Revisited

Recall previous two-point problem (taking a = 0,b =1 for simplicity):

U/Il — f
u(0) +u(l) = p, /(1) —u(l) =0
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LODE Example Revisited

Recall previous two-point problem (taking a = 0,b =1 for simplicity):

U/I/ — f
u(0) +u(l) = p, /(1) —u(l) =0

Underlying boundary problem (D2 [L + R, RD — R))

Markus Rosenkranz Differential Algebra for Boundary Problems



LODE Example Revisited

Recall previous two-point problem (taking a = 0,b =1 for simplicity):

UI/ — f
w(0) + u(l) = p,u/(1) —u(l) = o

Underlying boundary problem (D2 [L + R, RD — R))
Kernel projector P = (R — RD) + X(L — R+ 2RD)
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LODE Example Revisited

Recall previous two-point problem (taking a = 0,b =1 for simplicity):

u// — f
u(0) +u(l) = p, /(1) —u(l) =0

Underlying boundary problem (D2 [L + R, RD — R))
Kernel projector P = (R — RD) + X(L — R+ 2RD)

Green's operator G = (1 — P)A? = BX — XB — XAX — XBX
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LODE Example Revisited

Recall previous two-point problem (taking a = 0,b =1 for simplicity):

u// — f
u(0) +u(l) = p, /(1) —u(l) =0

Underlying boundary problem (D2 [L + R, RD — R))
Kernel projector P = (R — RD) + X(L — R+ 2RD)

Green's operator G = (1 — P)A? = BX — XB — XAX — XBX

—x€ iféE<uw

Green’s function g(z,¢) = { .
E—x—a€ fE>0
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LODE Example Revisited

Recall previous two-point problem (taking a = 0,b =1 for simplicity):

u// — f
u(0) +u(l) = p, /(1) —u(l) =0

Underlying boundary problem (D2 [L + R, RD — R))
Kernel projector P = (R — RD) + X(L — R+ 2RD)

Green's operator G = (1 — P)A? = BX — XB — XAX — XBX

—x€ iféE<uw

Green’s function g(z,¢) = { .
E—x—a€ fE>0

For completeness:

o Semi-homogeneous Green's operator H(p,0) = (p+20)x — o
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LODE Example Revisited

Recall previous two-point problem (taking a = 0,b =1 for simplicity):

u// — f
u(0) +u(l) = p, /(1) —u(l) =0

Underlying boundary problem (D2 [L + R, RD — R))

Kernel projector P = (R — RD) + X(L — R+ 2RD)

Green's operator G = (1 — P)A? = BX — XB — XAX — XBX
- if € <

Green’s function g(z,&) = 7 I f<e
E—x—xf fE>a

For completeness:

o Semi-homogeneous Green's operator H(p,0) = (p+20)x — o
o For LODEs, determining H is trivial (assuming fundamental system).
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Third-Order Example

(T,B) = (D3 — e*D? — 2D? — D + ¢* + 2, [L, R, RD))
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Third-Order Example

(T,B) = (D3 — e*D? — 2D? — D + ¢* + 2, [L, R, RD))

Classical Notation:

W —(e" +2)u" —u 4+ (e +2)u(z)=f
w(0) =u(l) =u'(1)=0
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Third-Order Example

(T,B) = (D3 — e*D? — 2D? — D + ¢* + 2, [L, R, RD))

Classical Notation:

W —(e" +2)u" —u 4+ (e +2)u(z)=f
w(0) =u(l) =u'(1)=0

Green’s Operator:
G=(e"""—e")B (e 42 “e(x )) + sinh(z) B (1 + 2e(z))
+ (2¢“¢(e™® — 1) — (e — 1)? e™® + 2sinh(z)) Ae(x)
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Third-Order Example

(T,B) = (D3 — e*D? — 2D? — D + ¢* + 2, [L, R, RD))

Classical Notation:

W= (e +2)u" —u + (e +2)u(z)=f
w(0) =u(l) =u'(1)=0

Green’s Operator:
G=(e"""—e")B (e 42 “e(x )) + sinh(z) B (1 + 2e(z))
+ (2¢“¢(e™® — 1) — (e — 1)? e™® + 2sinh(z)) Ae(x)

Green’s Function: g(z,£) =

_ {(2663:_6(6_“’ —1) — (e — 1)%e™" + 2sinh(z)) €2 e(¢)
(e“"m_m — eem) (e_e€ + 26_66(5)) + sinh(z) e (1 + 26(5))

e(t) = -4 (<=)”
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Factorization of Ordinary Boundary Problems

Factorization can always be lifted.
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Factorization of Ordinary Boundary Problems

Factorization can always be lifted.

Simplest Example:
(DL, R)) = (D, [F)) - (D, [L]) with F := [*
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Factorization of Ordinary Boundary Problems

Factorization can always be lifted

Simplest Example:

(D?,[L,R]) = (D, [F)) - (D, [L]) with F := ["

u = f i

f _
=u®)=0 | | [lu©)de=0 u(

or ()
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Factorization of Ordinary Boundary Problems

Factorization can always be lifted.

Simplest Example:
(DL, R)) = (D, [F)) - (D, [L]) with F := [*

or =1 w=, W=7

() u(b) =0 JPu@©de=0 || u(a

Fourth-Order Example (Kamke 4.2):
(D* +4,[L, R, LD, RD)) = (D* — 2i, [Fe'"~ V" Fe'=97]) . (D? 4 2i, [L, R])

Markus Rosenkranz Differential Algebra for Boundary Problems



Factorization of Ordinary Boundary Problems

Factorization can always be lifted.

Simplest Example:
(DL, R)) = (D, [F)) - (D, [L]) with F := [*

or =1 w=, W=7

() u(b) =0 JPu@©de=0 || u(a

Fourth-Order Example (Kamke 4.2):
(D* +4,[L, R, LD, RD)) = (D* — 2i, [Fe'"~ V" Fe'=97]) . (D? 4 2i, [L, R])

or ,LLIIII + 4,u — f _

u(a) = u(b) = u/(a) =u/'(b) =0

u’ —2iu=f u’ +2iu=f
Jleli=DEu(e)de = [Pe(-DEu(e)de =0 || wu(a) =u(b) =0
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© Partial Integro-Differential Operators
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Basic Example: Smooth Functions
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Basic Example: Smooth Functions

o For simplicity first omit 8,3y, .. .; only consider [*, (¥ ...,
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Basic Example: Smooth Functions

o For simplicity first omit 8,3y, .. .; only consider [*, (¥ ...,

o Admit all smooth functions f(z,y,...) € F to be operated on.
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Basic Example: Smooth Functions

o For simplicity first omit 8,3y, .. .; only consider [*, (¥ ...,
o Admit all smooth functions f(z,y,...) € F to be operated on.
o Take multipliers g(z,y,...) from a suitably nice subalgebra G C F.
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Basic Example: Smooth Functions

o For simplicity first omit 8,3y, .. .; only consider [*, (¥ ...,
o Admit all smooth functions f(z,y,...) € F to be operated on.
o Take multipliers g(z,y,...) from a suitably nice subalgebra G C F.

o Allow all substitutions f(z,y,...) — f(ax + by,cx +dy,...)
for a,b,c,d € RR.
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Basic Example: Smooth Functions

o For simplicity first omit 0, d,, .. .; only consider [*, [Y,....
o Admit all smooth functions f(z,y,...) € F to be operated on.
o Take multipliers g(z,y,...) from a suitably nice subalgebra G C F.

o Allow all substitutions f(z,y,...) — f(ax + by,cx +dy,...)
for a,b,c,d € RR.

For convenience view F as filtered algebra
F=F=JC>®m"
n=0 n=0

with C®°(R?) := R and natural injections C*°(RR") < C>°(R"™1).
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Basic Example: Smooth Functions

o For simplicity first omit 0, d,, .. .; only consider [*, [Y,....
o Admit all smooth functions f(z,y,...) € F to be operated on.
o Take multipliers g(z,y,...) from a suitably nice subalgebra G C F.

o Allow all substitutions f(z,y,...) — f(ax + by,cx +dy,...)
for a,b,c,d € RR.

For convenience view F as filtered algebra
F=F=JC>®m"
n=0 n=0
with C®°(R?) := R and natural injections C*°(RR") < C>°(R"™1).

Similarly use filtered monoid
o)
M(R) = J Mn(R)
n=1
where M,,(R) are near-identity matrices with injections M < (1 0).
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Action of Integrals and Substitutions
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Action of Integrals and Substitutions

Write fxl F — F for Rota-Baxter operator

z;
f(xla s L1, iy Lit1s - - ) = / f(xlw . . axi—lagaxi-‘rla B )d&
0
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Action of Integrals and Substitutions

Write le F — F for Rota-Baxter operator

z;
f(wla s L1, iy Lit1s - - ) = / f(xb' . . axi—lagaxi-i-la B )d&
0

Given M € M(R) write M*f =: g with
g(l‘l,SUQ, v ) = f(zz Mlimia Zz MZixia .. ')7

for contravariant monoid action M(R) x F — F via algebra morphisms.
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Action of Integrals and Substitutions

Write le F — F for Rota-Baxter operator

z;
f(wla s L1, iy Lit1s - - ) = / f(xb' . . axi—lagaxi-i-la B )d&
0

Given M € M(R) write M*f =: g with
g(l‘l,SUQ, v ) = f(zz Mlimia Zz MZixia .. ')7

for contravariant monoid action M(R) x F — F via algebra morphisms.

Hence note (M N)* = N*M*.
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Action of Integrals and Substitutions

Write le F — F for Rota-Baxter operator

z;
f(wla s L1, iy Lit1s - - ) = / f(xb' . . axi—lagaxi-i-la B )d§
0

Given M € M(R) write M*f =: g with
g(l‘l,SUQ, v ) = f(zz Mlimia Zz MZixia .. ')7

for contravariant monoid action M(R) x F — F via algebra morphisms.

Hence note (M N)* = N*M*. But what about [**M*?
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Notation for Special Matrices

1
Evaluation at x; : E; =

0«1
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Notation for Special Matrices

1
Evaluation at z; : E; =
1
0+
1
i n—1 1
Transvection for v € K D Ti(v) =
vy ccc Pi-1 1 w1 cce Un
1
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Notation for Special Matrices

Evaluation at z; :

Transvection for v € K"~ 1 :

Eliminant for w € K™~ :

B =

Ti(v) =

1
1
0«1
1
1
v ocec w1l 1w
1
1
1
1
wiy1 1
Wn

Un
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Substitutive Algebras
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Substitutive Algebras

Definition

An ascending K-algebra (F,,) is called substitutive if it has a straight
contravariant monoid action of M (K) such that M*(F,) C F, for
all M € M,,(K) and E}(F,) C Fp—1. We write F = ling .
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Substitutive Algebras

Definition

An ascending K-algebra (F,,) is called substitutive if it has a straight
contravariant monoid action of M (K) such that M*(F,) C F, for
all M € M,,(K) and E}(F,) C Fp—1. We write F = ling .

In detail *: M(K) — Homa(F) with I* = 15, (MN)* = N*M*.
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Substitutive Algebras

Definition

An ascending K-algebra (F,,) is called substitutive if it has a straight
contravariant monoid action of M (K) such that M*(F,) C F, for
all M € M,,(K) and E}(F,) C Fp—1. We write F = ling .

In detail +: M(K) — Homag(F) with I* = 15, (MN)* = N*M*.
Straightness means M*f = M* f for all M € M(K) and f € F,.
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Substitutive Algebras

Definition

An ascending K-algebra (F,,) is called substitutive if it has a straight

contravariant monoid action of M (K) such that M*(F,) C F, for

all M € M,,(K) and E}(F,) C Fp—1. We write F = ling .

In detail +: M(K) — Homag(F) with I* = 15, (MN)* = N*M*.

Straightness means M*f = M* f for all M € M(K) and f € F,.

Define dependence hierarchy:
Fo={feF|n*feF}fora=(as,...,a ) CN
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Substitutive Algebras

Definition

An ascending K-algebra (F,,) is called substitutive if it has a straight
contravariant monoid action of M (K) such that M*(F,) C F, for
all M € M,,(K) and E}(F,) C Fp—1. We write F = ling .
In detail +: M(K) — Homag(F) with I* = 15, (MN)* = N*M*.
Straightness means M*f = M* f for all M € M(K) and f € F,.
Define dependence hierarchy:
Fo={feF|n*feF}fora=(ay,...,ar) CN
Fo = Unz1 Flau,...,an) for arbitrary ot € N by monotonicity
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Substitutive Algebras

Definition

An ascending K-algebra (F,,) is called substitutive if it has a straight
contravariant monoid action of M (K) such that M*(F,) C F, for
all M € M,,(K) and E}(F,) C Fp—1. We write F = ling .

In detail +: M(K) — Homag(F) with I* = 15, (MN)* = N*M*.
Straightness means M*f = M* f for all M € M(K) and f € F,.

Define dependence hierarchy:
Fo={feF|n*feF}fora=(ay,...,ar) CN
Fo = Unz1 Flau,...,an) for arbitrary ot € N by monotonicity
— Complete complemented lattice:
(Fa) with Fo U Fg = Faup, Fa N Fs = Fanp
Fo=K, Fn =F, F, = Fn\a
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Ordinary Rota-Baxter Algebras
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Ordinary Rota-Baxter Algebras

Recall that (F, 9, [) was called ordinary if ker(9) = K.
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Ordinary Rota-Baxter Algebras

Recall that (F, 9, [) was called ordinary if ker(9) = K.
Now call a Rota-Baxter algebra (F, P) ordinary
o if P is injective
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Ordinary Rota-Baxter Algebras

Recall that (F, 9, [) was called ordinary if ker(9) = K.
Now call a Rota-Baxter algebra (F, P) ordinary

o if P is injective

o and im(P) + K = F.
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Ordinary Rota-Baxter Algebras

Recall that (F, 9, [) was called ordinary if ker(9) = K.
Now call a Rota-Baxter algebra (F, P) ordinary

o if P is injective

o and im(P) + K = F.
Then one can expand to canonical (F,d, P).
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Ordinary Rota-Baxter Algebras

Recall that (F, 9, [) was called ordinary if ker(9) = K.
Now call a Rota-Baxter algebra (F, P) ordinary

o if P is injective

o and im(P) + K = F.

Then one can expand to canonical (F,d, P).

Lemma

Let (F, P) be an ordinary Rota Baxter algebra over K. Then z — P(1)
defines an embedding (K[z], [) < (F, P) of Rota-Baxter algebras.
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Hierarchical Rota-Baxter Algebras

Definition

A hierarchical Rota-Baxter algebra (F,, fx")n@N consists of a
substitutive K-algebra (F,,) and commuting Rota-Baxter operators [*"
that satisfy the following axioms:

Q We have [ F,, C Fp, and [*" M}, = M5, [*" for n < m.

Markus Rosenkranz Differential Algebra for Boundary Problems



Hierarchical Rota-Baxter Algebras

Definition
A hierarchical Rota-Baxter algebra (F,, fx")n@N consists of a
substitutive K-algebra (F,,) and commuting Rota-Baxter operators [*"
that satisfy the following axioms:

Q We have [ F,, C Fp, and [*" M}, = M5, [*" for n < m.

Q Every (F,, ") is an ordinary Rota-Baxter algebra over F,,_;.

Markus Rosenkranz Differential Algebra for Boundary Problems



Hierarchical Rota-Baxter Algebras

Definition

A hierarchical Rota-Baxter algebra (F,, fx")n@N consists of a
substitutive K-algebra (F,,) and commuting Rota-Baxter operators [*"
that satisfy the following axioms:

Q We have [ F,, C Fp, and [*" M}, = M5, [*" for n < m.
Q Every (F,, ") is an ordinary Rota-Baxter algebra over F,,_;.
O We have 7* [** = ["7* for the transposition 7 = (i ).
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Hierarchical Rota-Baxter Algebras

A hierarchical Rota-Baxter algebra (F,, fx")n@N consists of a
substitutive K-algebra (F,,) and commuting Rota-Baxter operators [*"
that satisfy the following axioms:

Q We have [ F,, C Fp, and [*" M}, = M5, [*" for n < m.
Q Every (F,, ") is an ordinary Rota-Baxter algebra over F,,_;.
O We have 7* [** = ["7* for the transposition 7 = (i ).

Q The three substitution rules are satisfied (notation as before):

J‘z)\* — A_l A*J’z
S Taled) = (1= E3) Ta(es)" [*
JP9La(ej1+v)* [T = L7Y (V) (In @ &) (Lw(ej_1)*f$ - waw(ej_l)*>fwj§ L;(v')*
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Hierarchical Rota-Baxter Algebras

Definition

A hierarchical Rota-Baxter algebra (F,, fx")n@N consists of a
substitutive K-algebra (F,,) and commuting Rota-Baxter operators [*"
that satisfy the following axioms:

Q We have [ F,, C Fp, and [*" M}, = M5, [*" for n < m.
Q Every (F,, ") is an ordinary Rota-Baxter algebra over F,,_;.
O We have 7* [** = ["7* for the transposition 7 = (i ).
Q The three substitution rules are satisfied (notation as before):
J‘z)\* — A_l A*J’z
J Tule)” = (1 - E3) Te(e:)" [*
J¥9La(ej—1+v)*[* = L;l(v’)*(In Dej)* (Lw(ej_1)*f$ — waw(ej_l)*>fwj§ L;(v')*

Crucial example: C®(R%®)
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Hierarchical Rota-Baxter Algebras

Definition

A hierarchical Rota-Baxter algebra (F,, fx")n@N consists of a
substitutive K-algebra (F,,) and commuting Rota-Baxter operators [*"
that satisfy the following axioms:

Q We have [ F,, C Fp, and [*" M}, = M5, [*" for n < m.
Q Every (F,, ") is an ordinary Rota-Baxter algebra over F,,_;.
O We have 7* [** = ["7* for the transposition 7 = (i ).
Q The three substitution rules are satisfied (notation as before):
J‘z)\* — A_l A*J’z
J Tule)” = (1 - E3) Te(e:)" [*
J¥9La(ej—1+v)*[* = L;l(v’)*(In Dej)* (Lw(ej_1)*f$ — waw(ej_l)*>fwjg L;(v')*

Crucial example: C®(R%®)
— Some subalgebras: C“(IR*), holonomics, K[z, x2,...]
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Hierarchical Rota-Baxter Algebras

Definition

A hierarchical Rota-Baxter algebra (F,, fx")n@N consists of a
substitutive K-algebra (F,,) and commuting Rota-Baxter operators [*"
that satisfy the following axioms:

O We have [*"F,, C F, and [“" M, = M, [ for n < m.
Q Every (F,, ") is an ordinary Rota-Baxter algebra over F,,_;.
O We have 7* [** = ["7* for the transposition 7 = (i ).
Q The three substitution rules are satisfied (notation as before):
J‘z)\* — A71 A*J’z
J Tule)” = (1 - E3) Te(e:)" [*
J79 Lalej1 + )" J* = L7 (V) (In @ €5)" (Lalej-1)" [* = ["La(ej-1)") 5 L ()"

Crucial example: C®(R%®)
— Some subalgebras: C“(IR*), holonomics, K[z, x2,...]
— Exponential polynomials K[z1,xo,...,e’M1, e*2 |\ € K]
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Verification of the Horizontal and Vertical Rule
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Verification of the Horizontal and Vertical Rule

1 T+ _ _
leT*f(m,xz,m,...):/o f(g-q-x]-,a;g,zg,...)dg:/. f(& xo,x3,...)d¢E

T1+T; Tj
:/ f(£7m27m37~~~)d£_/ f(& z2,23,...)dE
0 0

=1 — ENT* [*' f(z1,22,235,...)
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Verification of the Horizontal and Vertical Rule

1 T+ _ _
fmT*f(m,xz,m,...):/o f(§+zj,a;2,x3,...)d§:/. f(& xo,x3,...)d¢E

a:1+a:j Tj
:/ f(ﬁymz,w?s,m)d&—/ f(& z2,23,...)dE
0 0

=1 — ENT* [*' f(z1,22,235,...)

) [Trg(z1) Le(ej—1 +0)* [T f(@1,. .., Tn)

- j<v’)*/ W [ f€a oy gt v ) de dn
ZH—Z, B B B B
/ /g (7 —x5) f(& @2, j—1, T, Tjg1..n + Vjt1..n (T — ;) dij dE

+z;

1
:/0 /5 y(n,x])f(ﬁ,wz G=1,M Tj41..m T Vj41.. n"])dnd§

r1 prita; z1 pétx;
:/ / ...dndg—/ / ...dndg
0 0 0 0
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Simple Properties

Q Forany a = (a1, ..., ), there is an embedding
ta: KXoy, Xay] = Fa
Xoj 7 Tg, 1= jm"‘f 1,
and we have mp(Ta,; .- Tay) = P(Tr(ar), - - > Tr(ay)) for all
permutations 7 of (a1, ..., ax).
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Simple Properties

Q Forany a = (a1, ..., ), there is an embedding
ta: KXoy, Xay] = Fa
Xoj = Lo, = jz“f 1,
and we have mp(Ta,; .- Tay) = P(Tr(ar), - - > Tr(ay)) for all
permutations 7 of (a,..., ).
Q For € S, and i <n we have 7* [ = [*7* with j := 7(j). In
particular, all [**: F; — F{;) are conjugates of [*': F; — F; and
hence ordinary Rota-Baxter operators.
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Simple Properties

Q Forany a = (a1, ..., ), there is an embedding
ta: K[Xay, - Xa,] = Fa
Xoj = Lo, = jzai 1,
and we have mp(Ta,; .- Tay) = P(Tr(ar), - - > Tr(ay)) for all
permutations 7 of (a,..., ).

Q For € S, and i <n we have 7* [ = [*7* with j := 7(j). In
particular, all [**: F; — F{;) are conjugates of [*': F; — F; and
hence ordinary Rota-Baxter operators.

O We have [""cf =c [ fforall c € ]—"(’n) and f € F. In particular,

II"C = cxp.
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Simple Properties

Q Forany a = (a1, ..., ), there is an embedding
ta: K[Xay, - Xa,] = Fa
Xoj = Lo, = [T,
and we have mp(Ta,; .- Tay) = P(Tr(ar), - - > Tr(ay)) for all
permutations 7 of (a,..., ).
Q For € S, and i <n we have 7* [ = [*7* with j := 7(j). In
particular, all [**: F; — F{;) are conjugates of [*': F; — F; and
hence ordinary Rota-Baxter operators.

O We have [""cf =c [ fforall c € ]-"(’n) and f € F. In particular,
fz"c = cxp.
© The embedding ¢, of Item (1) is a homomorphism of Rota-Baxter

. Xa; , .
algebras in the sense that (o0 [/ = [" 044 for j=1,...,k.
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Simple Properties

Q Forany a = (a1, ..., ), there is an embedding
ta: KXoy, Xay] = Fa
Xo, — 2o, = [T,
and we have mp(Ta,; .- Tay) = P(Tr(ar), - - > Tr(ay)) for all
permutations 7 of (a,..., ).

Q For € S, and i <n we have 7* [ = [*7* with j := 7(j). In
particular, all [**: F; — F{;) are conjugates of [*': F; — F; and
hence ordinary Rota-Baxter operators.

O We have [""cf =c [ fforall c € ]-"(’n) and f € F. In particular,
fxnc = cxp.

© The embedding ¢, of Item (1) is a homomorphism of Rota-Baxter
algebras in the sense that ¢ o fg(aj = [" oy forj=1,...,k.

Q If M € M(K) vanishes in the i-th column, then M*(F) C .7-‘('1.).
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Simple Properties

o

o
o

For any a = (a1, ..., ), there is an embedding
ta: KXoy, Xay] = Fa
Xo, — 2o, = [T,
and we have mp(Ta,; .- Tay) = P(Tr(ar), - - > Tr(ay)) for all
permutations 7 of (a,..., ).
For m € S, and i < n we have 7* [** = [* 7% with j := 7(j). In

particular, all [**: F; — F{;) are conjugates of [*': F; — F; and
hence ordinary Rota-Baxter operators.

We have [“"cf =c [* f forall c € ]-"(’n) and f € F. In particular,

fxnc = cxp.

The embedding ¢, of Item (1) is a homomorphism of Rota-Baxter
. KXo To.: .

algebras in the sense that .0 [, 7 = [* 01y for j =1,...,k.

If M € M(K) vanishes in the i-th column, then M*(F) C .7-‘('1.).

We have E; [*" =0 for all i > 0.
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Admissible Coefficient Algebras
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Admissible Coefficient Algebras

Induced hierarchy of ordinary (F7i, [):
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Admissible Coefficient Algebras

Induced hierarchy of ordinary (F7i, [):
o Ascending algebra (G, [ )nen

Markus Rosenkranz Differential Algebra for Boundary Problems



Admissible Coefficient Algebras

Induced hierarchy of ordinary (F7i, [):
o Ascending algebra (G, [ )nen
o Algebras G, :==G®" with f1 @ - @ fu—> 1R Q@ fr®1
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Admissible Coefficient Algebras

Induced hierarchy of ordinary (F7i, [):
o Ascending algebra (G, [ )nen
o Algebras G, :==G®" with f1 @ - @ fu—> 1R Q@ fr®1
o Rota-Baxter operators [ := 19"V @ |
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Admissible Coefficient Algebras

Induced hierarchy of ordinary (F7i, [):
o Ascending algebra (G, [ )nen
o Algebras G, :==G®" with f1 @ - @ fu—> 1R Q@ fr®1
o Rota-Baxter operators [ := 19"V @ |

Definition

Let (F, fx")n@N be a hierarchical Rota-Baxter algebra over a field K.

A substitutive ordinary integro-differential algebra (G1, [) over K is called
an admissible coefficient domain if its induced hierarchy (gn,f‘”")neN
is a hierarchical integro-differential subalgebra of (F,,, fwn)neN.

Markus Rosenkranz Differential Algebra for Boundary Problems



Admissible Coefficient Algebras

Induced hierarchy of ordinary (F7i, [):
o Ascending algebra (G, [ )nen
o Algebras G, :==G®" with f1 @ - @ fu—> 1R Q@ fr®1
o Rota-Baxter operators [ := 19"V @ |

Definition

Let (F, fx")n@N be a hierarchical Rota-Baxter algebra over a field K.
A substitutive ordinary integro-differential algebra (G1, [) over K is called
an admissible coefficient domain if its induced hierarchy (gn,f‘”")neN
is a hierarchical integro-differential subalgebra of (F,,, fwn)neN.

Minimal example K[z] = K[z, z2,...] for any (F, [)
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Admissible Coefficient Algebras

Induced hierarchy of ordinary (F7i, [):
o Ascending algebra (G, [ )nen
o Algebras G, :==G®" with f1 @ - @ fu—> 1R Q@ fr®1
o Rota-Baxter operators [ := 19"V @ |

Definition

Let (F, fx")n@N be a hierarchical Rota-Baxter algebra over a field K.
A substitutive ordinary integro-differential algebra (G1, [) over K is called
an admissible coefficient domain if its induced hierarchy (gn,f‘”")neN
is a hierarchical integro-differential subalgebra of (F,,, fwn)neN.

Minimal example K[z] = K[z, z2,...] for any (F, [)
Important for applications: K[z, e®?] ¢ C®(R>)
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Coalgebra Structure for Coefficients

Can expand every g € G as

.
g = ng,l Gk
k=1

with gr; € Gy fori € {1,...,n}.
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Coalgebra Structure for Coefficients

Can expand every g € G as
T
g= ng,l"'gkn
k=1
with gr; € Gy fori € {1,...,n}.

Use some kind of Sweedler notation:

©

Abbreviate the g1, 92, .. € G(;) by g(;) with implied summation.
o Hence expansion is g = g(1) " gn)-

o More generally, gi (o) = Gk,a1 *** Gk,a, SO that g = g1)g(1) etc.

o Abbreviate shifted factors by (i j)*g1, (i j)* g2, - - - € G(j) by giz)-
o Similarly, (i 7)* g1,y (1 5)* 91,6y - - - € G5y Written as gy
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Normalization of General Line Integrators

Proposition

Let (F, fm”)ngN be a hierarchical Rota-Baxter algebra over a field K,

and let G; be an admissible coefficient domain for F. Then for M € M,

and g € G with g(x;) ;== (1j)*g and j € {1,...,n} we have

[ gy M* = Mg Gy (1— E;)M*me;} (Ga0)) La(D)* i @ # o0,
’ (S g(;)) M othw.

By definition i = min{k | My, # 0}, with M € M,, and | € K,,_;

by one sweep of Gaussian elminiation if the minimum exists, and by

convention ¢ = oo otherwise. Moreover, g = M/ g and M;; = d; 1/p,;-
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Ordering of General Line Integrators

Proposition

Let (F, fm")ngN be a hierarchical Rota-Baxter algebra over a field K,
and let G; be an admissible coefficient domain for F. Then for i < j and
arbitrary vectors v € K"~ w € K™ 7 and functions g,h € G,
with g(z;) = (1 i)*g and h(z;) := (1j)*h we have
ST (@) Ly (w)* [ (@) Ls(v)" = (1=E7) [ g(:) Li(v')" [ h@;) Lj (v

with v/ = Lj__lz(w) v € K" as earlier.
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Coalescence of General Line Integrators

Proposition

8
3

Let (Fy, [*")nen be a hierarchical Rota-Baxter algebra over a field K,
and let G; be an admissible coefficient domain for F. Then for ¢ € N and
arbitrary vectors v,w € K™% with w # 0 we have

wg [ h(z;) Li(w)* [T g(z; L'(v)* = L_l(w')*a*(ﬁ(n+1)) X
x ( )* ST Ry Li(0)* = ["hepy Li(v + w)*)fwkﬁ(m)/?k(w/)*

where }_L = (ek/wk - en+1/wk)*h = h(k)h(n—l—l) S ]:(k,n—l-l) with slack
transposition ¢ := (kn +1), and h := Li(v); (1 k)*l_z(k) € Gik)-

The remaining notation is as earlier.
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The Operator Ring
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The Operator Ring

Let (G1, |) be an ordinary integro-differential algebra over a field K with
induced hiearchy (G, [*")nen. Then the ring of partial integral
operators over G is defined as the quotient of the K-algebra

Glf] = G Ug K[M]" Lk K[A] / o~

with the congruence = given below.

M*g = (M -g) M* M*A; 20 if Mjg=0
Ajg(wi) = g(xi)A; Aig(z;) = g(x;)Aq
Ajg(a;)M* 22 M Gi1jy (1= BY)M AN (G(1:0)) L () if i := min{k | My # 0} # o0
Ajg(z)M* = (% g(z;)) M* if i := min{k | My; # 0} = co

Ajh(z;)Lj(w)* Aig(wi)Li(v)* =2 (1 — E5) Aig(zi) Li(v')* Ajh(z;) Lj(w)*
Aih(z) Li(w)* Agg(wi) Li(v)* = wi 'L (w')*0*(B(ng1)) X

x (Li(w)* Aihrgy Li(w')* — Aih(ygy Li(v' + w)*)Akﬁ(m)Lk(w')*
Ajg(x;)A; 2= (J*g(x;))A; — A (S g(=5))
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Natural Action and Termination

Proposition

Let (F, fm")ngN be a hierarchical Rota-Baxter algebra over a field K,
and let G; be an admissible coefficient domain for 7. Then the natural
action G[[] x F — Finduced by g - f = gf, M*- f = M*(f)

and A; - f = [" f is well-defined.
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Natural Action and Termination

Proposition

Let (F, fx")ngN be a hierarchical Rota-Baxter algebra over a field K,
and let G; be an admissible coefficient domain for 7. Then the natural
action G[[] x F — Finduced by g - f = gf, M*- f = M*(f)

and A; - f = [" f is well-defined.

This follows from the propositions given above.
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and let G; be an admissible coefficient domain for 7. Then the natural
action G[[] x F — Finduced by g - f = gf, M*- f = M*(f)

and A; - f = [" f is well-defined.

This follows from the propositions given above.

Now introduce a suitable term order on underlying word monoid.
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Natural Action and Termination

Let (F, fm")ngN be a hierarchical Rota-Baxter algebra over a field K,
and let G; be an admissible coefficient domain for 7. Then the natural
action G[[] x F — Finduced by g - f = gf, M*- f = M*(f)

and A; - f = [" f is well-defined.

This follows from the propositions given above.

Now introduce a suitable term order on underlying word monoid.

Let (G1, J) be an ordinary integro-differential algebra over a field K.
Orienting the rules of the Table from left to right, one obtains a
Noetherian reduction system.
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Conjectured Canonical Forms
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Conjectured Canonical Forms

o Line integrator of index i is A;b(z;)Li(v)* with v € K"~!
and a basis element b € G;.
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Conjectured Canonical Forms

o Line integrator of index i is A;b(z;)Li(v)* with v € K"~!
and a basis element b € G;.

o Volume integrator is a word of the form b M*J; - - - J, for line
integrators Ji, ..., J, with indices i1 < --- < i, and M* € M(K)*
with M;,e # 0 if 7 > 0.
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o Line integrator of index i is A;b(z;)Li(v)* with v € K"~!
and a basis element b € G;.

o Volume integrator is a word of the form b M*J; - - - J, for line
integrators Ji, ..., J, with indices i1 < --- < i, and M* € M(K)*
with M;,e # 0 if 7 > 0.

Easy to check: The volume integrators span G[[] over K.
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o Line integrator of index i is A;b(z;)Li(v)* with v € K"~!
and a basis element b € G;.

o Volume integrator is a word of the form b M*J; - - - J, for line
integrators Ji, ..., J, with indices i1 < --- < i, and M* € M(K)*
with M;,e # 0 if 7 > 0.

Easy to check: The volume integrators span G[[] over K.

Conjecture: They are linearly independent over K.
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Conjectured Canonical Forms

o Line integrator of index i is A;b(z;)Li(v)* with v € K"~!
and a basis element b € G;.

o Volume integrator is a word of the form b M*J; - - - J, for line
integrators Ji, ..., J, with indices i1 < --- < i, and M* € M(K)*
with M;,e # 0 if 7 > 0.

Easy to check: The volume integrators span G[[] over K.

Conjecture: They are linearly independent over K.

Then we have a system of canonical forms.
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Additional Rules for Derivations

Assume (Fy,, [*", 8y, ) is hierarchical integro-differential algebra.
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Additional Rules for Derivations

Assume (Fy,, [*", 8y, ) is hierarchical integro-differential algebra.

Add indeterminates D, for action of 0, , impose the relations:

D;M* zk M. M* Dy, D;Dj = D;D;

D f(z;) = f(x:)Di + f'(21) Dif(xj) = f(z;)Di

D;A; =1 D-A-:A-D-

A f(zi)Li(v)* (f x;) — Aifl(z:) — fi(0) E*)L (v)* = Zj>2- v Ai f(x;)Li(v)*D;
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Additional Rules for Derivations

Assume (Fy,, [*", 8y, ) is hierarchical integro-differential algebra.

Add indeterminates D, for action of 0, , impose the relations:

DiM* =5, My M* Dy, D:D; = D; D;
Dif(x;) = f(zi)Di + f(24) D;f(z;) = f(z;)D;
Ai f(z:)Li(v)* Dy = (f(x5) — Aif{(2i) — £i(0) EY ) Li(v)* = 32, v Ai f(2i) Li(v)* D,

Canonical forms similar but with certain D® on the right.
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LPDE Example Revisited

Cauchy problem:

Upp — 4 Uty + 4 Ugy — guyy = f7
u(0,z,y) = fi(z,y), w(0,z,y) = fa(z,y)
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LPDE Example Revisited

Cauchy problem:

Upp — 4 Uty + 4 Ugy — guyy = f7
u(0,z,y) = fi(z,y), w(0,z,y) = fa(z,y)

Signal and state operators:
Gf (t,z,y) = fofo (1,2 + 2t — 27,y — 3t — 37 + 60) d7 do.
(fl, f2) = fl (Q}+2t, y—3t)+fé (f2—2 Dxf1+3 Dyfl)($+2t, y—3t+67') dT
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LPDE Example Revisited

Cauchy problem:

Upp — 4 Uty + 4 Ugy — guyy = f7
u(0,z,y) = fi(z,y), w(0,z,y) = fa(z,y)

Signal and state operators:
Gf (t,z,y) = fofo (1,2 + 2t — 27,y — 3t — 37 + 60) d7 do.
H(f1, f2) = fila+2t,y=3)+ [ (fo—2 Dy f1+3 Dy f1) (x-+2t, y—3t+67) dr

Factor problems:

up — 2uy £ 3uy = f,
w(0,2,y) = f*(z,y).

HE[* (4 w,y) = 5 (@ + 2ty F 31)
GEf(t,z,y) = fo (r,x + 2t — 27,y F 3t £ 37)dr
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Factorization Examples for LPDEs

Unbounded wave equation:
(Dit = Daa, [Lt, L Dy]) = (Dt — Dy, [Lt]) - (Dt + Da, [Ls])
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Factorization Examples for LPDEs

Unbounded wave equation:
(Dit = Daa, [Lt, L Dy]) = (Dt — Dy, [Lt]) - (Dt + Da, [Ls])

or Utt — Uge = f | ut—ua=f || uttua=f
u(z,0) = ut(z,0) =0 | | u(z,0)=0 u(z,0) =0
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Factorization Examples for LPDEs

Unbounded wave equation:
(Dit = Daa, [Lt, L Dy]) = (Dt — Dy, [Lt]) - (Dt + Da, [Ls])

or Utt — Uge = f | ut—ua=f || uttua=f
u(z,0) = ut(z,0) =0 | | u(z,0)=0 u(z,0) =0

Green's Operator: G = ( 11(1))Ax(%(1))*14x(—11(1))*

= (1j2172) A (118)" (1j2172)" 4a (19)"
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Factorization Examples for LPDEs

Unbounded wave equation:
(Dit = Daa, [Lt, L Dy]) = (Dt — Dy, [Lt]) - (Dt + Da, [Ls])

or

Utt — Uze = f u—us=f | | uttuec=Ff
u(z,0) = ut(z,0) =0 u(z,0) =0 u(z,0) =0

Green's Operator: G = ( 4, 9) A, (39)" A, ( 4L 9)"

£ u(0,t)=0

= (1j2172) A (118)" (1j2172)" 4a (19)"

.| Bounded wave equation:
(Dt = Daa, [Lt, Lt D, L, Ry]) = (Dt — Da, [Lt, S]) - (Dt + Da, [Lt, L))

U, 0) U (X,0)-0
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Factorization Examples for LPDEs

Unbounded wave equation:

(Dtt — Dag, [Lt, Lt Dt]) = (Dt — Dy, [Lt]) - (Dt 4 Da, [Lt])

or Utt — Uge = f | ut—ua=f || uttua=f
u(z,0) = ut(z,0) =0 | | u(z,0)=0 u(z,0) =0
Green's Operator: G = ( 4, 9) A, (39)" A, ( 4L 9)"

= (1)2102) A (119)" - (Lijpn) 4 (19)
.| Bounded wave equation:

(D¢t — Dga, [Lt, Lt D¢, Ly, Ry]) = (Dt — D, [Lt, S]) - (D¢ + Dg, [Lt, Lz])
or Utt — Ugxy =

u(w, O)—ut(z 0) = u(0,t) =u(l,t) =0 |

ut —ug = f ut +ugy = f
u(@,0) = f{1_y) (& €+t —1)dE=0

u(z,0) = u(0,t) =0

U, 0) U (X,0)-0
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Factorization Examples for LPDEs

Unbounded wave equation:

(Dtt — Dag, [Lt, Lt Dt]) = (Dt — Dy, [Lt]) - (Dt 4 Da, [Lt])

or Utt — Uge = f | wt—ua=f || uetug=f
u(z,0) = ut(z,0) =0 | | u(z,0)=0 u(z,0) =0
Green's Operator: G = ( 4, 9) A, (39)" A, ( 4L 9)"

= (1)2102) A (119)" - (Lijpn) 4 (19)
.| Bounded wave equation:

(D¢t — Dga, [Lt, Lt D¢, Ly, Ry]) = (Dt — D, [Lt, S]) - (D¢ + Dg, [Lt, Lz])
or Utt — Ugxy =

u(w, O)—ut(z 0) = u(0,t) =u(l,t) =0 |

ut — ug = f

ut +ug = f
u(e,0) = f}l_mru(g,g +t—1)dE=0 w(z,0) = u(0,t) =0
L el (=D @=D+(t-T-i-1)
Green's Operator G = Z / / de dr
(t—i—=1)4 JI(=1)* (z—f —(t—7— z—f)|
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Geometric Interpretation

Ut — Uga = f
u(z,0) = ut(z,0) = u(0,t) = u(l,t) =0

up — ug = f Ut +ug = f
w(@,0) = [t 4, wEE+t-1)de=0 |'| u(z,0)=u(0,t)=0
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Geometric Interpretation

Ut — Uga = f
u(z,0) = ut(z,0) = u(0,t) = u(l,t) =0

ut — ug = f ut +ug = f
u(z,0) = f(l t)+u(§ E+t—1)dé=0 || u(z,0) =u(0,t) =0

B

> -

t-0
x=0 x-1

Gif(et) =[Gy, JEE—a+1)de
Gaf(z,t) = [ZH(=1)) £ (3 + (—1)17) (frac(n) — L),z +t —n) dn
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Outline

Q Conclusion
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What has been achieved:
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Summary and Future Work

What has been achieved:
o Algebraic theory for linear boundary problems
o Operator algebras for integration
o Algorithms for LODE case

What needs to be done:
o Green's operators for classes of LPDEs
o Discrete analogs

o Nonlinear boundary problems?

THANK YoUu
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