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Inverting Boundary Problems?

Recall: Given a regular boundary problem (T,B),
we can compute its Green’s operator (T,B)−1.

Why do we write this as a reciprocal? Because we have(
(T,B)(T̃ , B̃)

)−1
= (T̃ , B̃)−1(T,B)−1.

Is there any deeper reason for the “reciprocal”?
Under what multiplication would it be reciprocal?
Is there a ring of boundary problems?

Well, yes and no. . .
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Overview of Mikusiński Calculus

Operational calculus for initial value problems.
Well-developed mainly for constant-coefficient LODEs.
Popular in engineering communities.

Two development stages:
Heuristic system introduced by Oliver Heaviside (1850–1925)
Rigorous treatment by Jan Mikusiński (1913–1987)

Mikusiński’s idea was to employ localization of convolution rings.

→ A symbolic calculus, but (a priori) not purely algebraic!

Will start with intuitive treatment.
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Fundamental Formula of the Mikusiński Calculus

Consider R := C(R+), imagine f ∈ R continued to R by zero.

Define h : R → R as antiderivative f 7→
r x

0f(ξ) dξ.
Let s : ???→ ??? be its formal inverse.
Introduce formal Dirac distribution δ by h(δ) = 1.

Observe that δ = s(1).
Moreover, h(f ′) = f − f(0) implies f ′ = sf − f(0) δ.

Hence obtain fundamental formula:
sf = f ′ + f(0) δ

By induction (sk+1(1) =: δ(k)):

snf = f (n) +
n−1∑
i=0

f (i)(0) δ(n−i−1)

Dual interpretation: algebraic/analytic. x

y

f H0L

f
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Example: Second-Order Initial Value Problem

u′′ + u′ − 2u = f
u(0) = a, u′(0) = b

Fundamental formula su = u′ + u(0) δ = u′ + aδ

Second-order version s2u = u′′ + u(0) δ′ + u′(0) δ = u′′ + aδ′ + bδ

Hence u′′ + u′ − 2u = (s2 + s− 2)u− (as+ a+ b) δ.

We have thus the formal solution:

u = 1
s2+s−2

f + as+a+b
s2+s−2

δ

3u =
(

1
s−1 −

1
s+2

)
f +

(
2a+b
s−1 + a−b

s+2

)
δ

What is the “normal” meaning of this?!
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We have thus the formal solution:

u = 1
s2+s−2

f + as+a+b
s2+s−2

δ

3u =
(

1
s−1 −

1
s+2

)
f +

(
2a+b
s−1 + a−b

s+2

)
δ

What is the “normal” meaning of this?!
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Back Translation Formulae

Recall Leibniz’s integral rule (chain rule R→ R3 → R):

d

dx

b(x)∫
a(x)

f(x, ξ) dξ =

b(x)∫
a(x)

∂f

∂x
(x, ξ) dξ + f(x, b(x)) b′(x)− f(x, a(x)) a′(x)

Claim:
1

s− a
u =

∫ x

0
ea(x−ξ) u(ξ) dξ

Straightforward calculation:

(s− a)
∫ x

0 e
a(x−ξ) u(ξ) dξ

FF
= d

dx

∫ x
0 e

a(x−ξ) u(ξ) dξ − a
∫ x

0 e
a(x−ξ) u(ξ) dξ

LI
= e0 u(x) + a

∫ x
0 e

a(x−ξ) u(ξ) dξ − a
∫ x

0 e
a(x−ξ) u(ξ) dξ = u(x)

Convolution f ? g (x) :=
∫ x

0 f(x− ξ) g(ξ) dξ → 1
s−a = eax ?_

Generalization by induction → 1
(s−a)n = xn−1

(n−1)! e
ax ?_

Can be interpreted as formal Laplace transform.
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Solution of Second-Order Initial Value Problem

Back translation of formal solution:

u = 1
3

(
2a+b
s−1 + a−b

s+2

)
δ + 1

3

(
1
s−1 −

1
s+2

)
f

= 1
3

(
(2a+ b)ex + (a− b)e−2x

)
? δ + 1

3

(
ex − e−2x

)
? f

= 2a+b
3 ex + a−b

3 e−2x + 1
3

x∫
0

(ex−ξ − e−2(x−ξ))f(ξ) dξ

Same process applicable to any constant-coefficient LODE.
Certain extensions to variable-coefficients LODEs and PDEs.
Avoids need of (convergent) Laplace transforms.

So what is this “formal inverse”?
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The Mikusiński Field

Consider R := C(R+) with respect to convolution ?.
Commutative but not invertible—not even unital! However:

Theorem (Titchmarsh 1926)

The commutative ring (R,+, ?) has no zero divisors.

Definition (Mikusiński 1959)

DefineM := R−1
∗ R with multiplication ? and division�.

Heaviside function h : R+ → R, h(x) := 1, thus h ? f =

h(f)h(f)h(f)︷ ︸︸ ︷r x
0f(ξ) dξ.

This extends as

h : R→ R, h(x) :=

{
1 if x > 0,
0 if x ≤ 0.

h?f =

∫ ∞
−∞

h(x−ξ) f(ξ) dξ =: h~f x

y

f H0L

f

Now write 1 := h�h ∈M for the unit and s := 1�h for differentation.
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Conventions and Embeddings

Must distinguish two embeddings:
Functions R ↪→M, f 7→ {f} := (f ? h)�h
Numbers R ↪→M, x 7→ {x}�h

Caveat: We have {f ? g} = {f} ? {g} but not {fg} = ?©?©?©.
Observe that {h} = {1} 6= 1︸︷︷︸

δδδ

, in particular 1 7→ 1.
Usually one writes

pq := q ? q and p/q := q�q for p, q ∈M,
1 := 1 ∈M.

Hence distinguish {f}{g} from {fg} and {1} from 1.

Recall earlier intuition h(δ) = 1.
Now this is {h} ? 1 = {h} = {1}.
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Fundamental Formula and Back Translation

From
∫ x

0 f
′(ξ) dξ = f(x)− f(0) we infer {h}{f ′} = {f} − f(0){h}.

Now multiply by s := 1/h = 1/{h}:

s {f} = {f ′}+ f(0)

sn {f} = {f (n)}+
n−1∑
i=0

f (i)(0) δ(n−i−1)

Here δ ≡ 1 ∈M and hence δ(k) ≡ sk for clarity.

Convolution fractions p ∈M are “operators” and “functions”. Like h:
Qua function: sh = 1 encapsulates ∂(h) = δ.
Qua operator: h{f} = {g} means

∫ x
0 f = g.

Back translation (operator qua function): 1
(s−a)n = { xn−1

(n−1)! e
ax}.

Characteristic difference: Operational Calculus ↔ Algebraic Analysis.
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An Algebraic Analysis Approach to Boundary Problems

Build up a new “Mikusiński Calculus” that is
algebraic (based on differential algebra, no topology),
treats boundary and initial conditions on a par,
includes global conditions like

∫ 1
0 u = 0,

follows Heaviside/Mikusiński in spirit (“
∫

= ∂−1”).

However, the new calculus must be noncommutative since
u′ = f, u(0) = 0 solved by A : f 7→ u =

r x
0f ,

u′ = f, u(1) = 0 solved by −B : f 7→ u = −
r 1
xf ,

but A and B do not commute!

Hence replace commutative by noncommutative localization.
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Operators qua Functions?

For example, take F2 := C([a, b]× [a, b]).

Duhamel’s convolution ? replaced by Volterra’s composition:

� : F2 ×F2 → F2, k(x, y) � k̃(x, y) :=

∫ b

a
f(x, t) k̃(t, y) dt

Continuous analog of matrix-matrix multiplication.

Similar analog for matrix-vector multiplication:

k(x, y)� u(x) :=

∫ b

a
k(x, t)u(t) dt

Rather unwieldy, better stay on operator level (action separate)!
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Monoid/Ring of Regular Boundary Problems

Integro-differential algebra (F , ∂,
r

) with saturated (E , ∂) ≤ (F , ∂).
Fix character set Φ and restrict (T,B) to T ∈ F [∂] and B ≤ KΦ.
Consider Green’s operators in FΦ[∂,

r
], hence solutions in F .

Lemma
Let (T,B) be a boundary problem over F and choose bases β1, . . . , βn
for B and u1, . . . , un for kerT . Then (T,B) is regular iff ord(T ) = dimB
and the evaluation matrix β(u) = [βi(uj)] ∈ Kn×n is regular.

Monoid of regular problems: E [∂]Φ ⊂ E [∂] nKΦ

Ring of regular problems: KE [∂]Φ ≡ {λ1 (T1,B1) + · · ·+ λk (Tk,Bk)}

Side Remark: Regular only means ∃! but well-posed also needs stability.
Regular but ill-posed:

u′ − u = f
u′′(0) = 0

Green’s operator:
(D − 1, [LD2])−1 = exAe−x − exL− exLD ∈ FΦ[∂,

r
]

u(x) =
r x

0e
x−ξf(ξ) dξ − (f(0) + f ′(0)) ex
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Monoid of regular problems: E [∂]Φ ⊂ E [∂] nKΦ

Ring of regular problems: KE [∂]Φ ≡ {λ1 (T1,B1) + · · ·+ λk (Tk,Bk)}

Side Remark: Regular only means ∃! but well-posed also needs stability.
Regular but ill-posed:

u′ − u = f
u′′(0) = 0

Green’s operator:
(D − 1, [LD2])−1 = exAe−x − exL− exLD ∈ FΦ[∂,

r
]

u(x) =
r x

0e
x−ξf(ξ) dξ − (f(0) + f ′(0)) ex
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Classical Ring of Fractions

Definition

Let R be a ring, S ⊆ R. Then ε : R→ S−1R is a left ring of fractions if
(a) all elements ε(s) with s ∈ S are invertible in S−1R,
(b) every element of S−1R is ε(s)−1ε(r) for some s ∈ S, r ∈ R,
(c) and the kernel of ε is given by {r ∈ R | ∃s ∈ S : sr = 0}.
The ring homomorphism ε is called the extension. Injective iff R is a
domain.

Caveat: Left and right are distinct!

Clearly, S needs to be multiplicative.

Given r ∈ R, s ∈ S we need r̃ ∈ R, s̃ ∈ S with rs−1 = s̃−1r̃:
S is left permutable if (∀r ∈ R)(∀s ∈ S) Sr ∩Rs 6= ∅

If rs = 0 we infer ε(r) = 0 and hence 0 ∈ Sr by (c):
S is left reversible if (∀r ∈ R)(0 ∈ rS ⇒ 0 ∈ Sr)
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Necessary and Sufficient Conditions for Fractions

Theorem (Ore 1931)

Let R be a ring. Then for any S ⊆ R, the left ring of fractions S−1R
exists iff S is multiplicative, left permutable and left reversible.

Our goal is to take R = KE [∂]Φ and S = E [∂]Φ. Somewhat easier:

Lemma

If S is a left Ore monoid, the left ring of fractions S−1(KS) exists.

Proof idea: Find s̃, s̃1, . . . , s̃n ∈ S with
s̃(λ1s1 + · · ·+ λnsn) = (λ1s̃1 + · · ·+ λns̃n)s.

l̃ns1 = r̃1s

·λ1 l̃1···l̃n−1λ1 l̃1···l̃n−1λ1 l̃1···l̃n−1−−−−−−−→ s̃(λ1s1) = (λ1s̃1)s

l̃n−1(l̃ns2) = r̃2s

·λ2 l̃2···l̃n−2λ2 l̃2···l̃n−2λ2 l̃2···l̃n−2−−−−−−−→ s̃(λ2s2) = (λ2s̃2)s

...
...

...
...

...

l̃1(l̃2 · · · l̃nsn) = r̃ns

·λnλnλn−−→ s̃(λnsn) = (λns̃n)s
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Suitable Differential Operators

Recall multiplication of boundary problems:
(T,B)(T̃ , B̃) = (T T̃ ,BT̃ + B)

Projection onto first factor −→ T, T̃ , . . . must be left Ore.

Definition
A differential algebra (E , ∂) is called left extensible if the monoid of
monic differential operators in E [∂] is left Ore.

Proposition
Any left Noetherian differential domain (E , ∂) is left extensible.

Euclidean domains like K(x) are not integro-differential.
Typical choice E = K[x] so that E [∂] = A1(K).
Also here K[x] ⊂ K(x) does not help directly.
Also E = Cω(R) works.
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Suitable Boundary Conditions: Umbral Characters

Definition
A Stieltjes condition β ∈ FΦ[∂,

r
] is called umbral if β(xm) 6= 0 for some

monomial xm ∈ K[x]. Furthermore, we call Φ an umbral character set
if every nondegenerate Stieltjes condition is umbral.

A boundary condition is degenerate if it acts as 0.
Note: This is possible in C∞(R) but not in Cω(R).

Loosely speaking, “most” boundary conditions are umbral.
Local conditions unproblematic, global conditions need (induction):

Lemma (Antiderivative Leibniz Rule)

In any integro-differential algebra (F , ∂,
r

), we have the formula

r
fxn =

n∑
k=0

(−1)knk xn−kf (−k−1)

for all f ∈ F . Here we define f (0) = f and f (−k−1) =
r
f (−k).
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Relation to Umbral Calculus

Lemma

Let β = ϕ
r
f be a global condition in FΦ[∂,

r
]. Then β = ϕβ̃ with

β̃ =

∞∑
k=0

bk ∂
k : K[x]→ K[x]

is a shift-invariant operator with coefficients bk = (−1)kϕ(f (−k−1)).

Proof: Shift invariance of β̃ known from Umbral Calculus
Anti-Leibniz: β(xn) =

∑
k bk ϕ(nk xn−k) =

∑
k bk ϕ∂

k(xn)

Moral: Over K[x] there is no need for
r
.

But need upper bound ∞ in sum, unlike T ∈ K[∂].
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Umbral Representation Theorem

Theorem (Umbral Representation)

Every Stieltjes condition β induces via β = eβ̃ a shift-invariant operator

β̃ =
∞∑
k=0

bk∂
k : K[x]→ K[x]

with coefficients bk = β(xk/k!). Clearly, β̃ is nontrivial iff β is umbral.

Proof: Recall Stieltjes condition normal form and apply Lemma:

β =
∑
ϕ∈Φ

ϕ
( ∑
i∈N

aϕ,i ∂
i +
r
fϕ

)
=
∑
ϕ∈Φ

ϕ (Tϕ + β̃ϕ)

=
∑
ϕ∈Φ

e Sϕ(Tϕ + β̃ϕ)︸ ︷︷ ︸
β̃

Shift operator Sϕ : f(x) 7→ f(x+ ϕ̄) with ϕ̄ := ϕ(x) ∈ K
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Umbral Conditions in the Smooth Case

Proposition
In the smooth setting C∞(R), the point evaluations u 7→ u(ϕ) for ϕ ∈ R
form an umbral character set.

Proof:
Consider β(u) =

∑
ϕ

∑
i aϕ,iu

(i)(ϕ) +
∑

ϕ

∫ ϕ
0 fϕ(ξ)u(ξ) dξ.

Since β is nondegenerate, β(u) 6= 0 for some u ∈ C∞(R).
Reduce to Ck(K) for k = max{i} and K = [−max |ϕ|,max |ϕ|].
Observe that β : Ck(K)→ R is continuous.
Use Weierstrass-Nachbin theorem on Ck(K) to obtain (pn)→ u.
Conclude β(xm) 6= 0 for some m.

Result applies to subalgebras like Cω(R) and exponential polynomials.
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Necessary Conditions for Umbral Character Sets

Two natural requirements:
We call Φ separative if ϕ̄ = χ̄ implies ϕ = χ, where ψ̄ := ψ(x) ∈ K.
� Otherwise ϕ− χ is nondegenerate but not umbral.
A character ϕ is called complete if f ⊥ϕ K[x]⇒ f = 0
with respect to bilinear form 〈f |g〉 = ϕ

r
fg.

� Every ϕ-orthonormal basis is complete in pre-Hilbert space

�

(for positive definite 〈·|·〉ϕ over K = R,C).
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Separativity of Local Boundary Conditions

Proposition

Let Φ be separative for an integro-differential algebra (F , ∂,
r

). Then
every local boundary condition of FΦ[∂,

r
] is umbral.

Proof:
Write β =

∑r
i=1

∑s
j=1 aij ϕi∂

j−1 with a =

( a11

...
ars

)
∈ Kn and n = rs.

Then β(1) = β(x) = · · · = β(xn−1) = 0 means Ma = 0.
System matrix M =

(
Mns(ϕ̄1), . . . ,Mns(ϕ̄r)

)
∈ Kn×n with strips

Mns(x) ≡



1
x 1
x2

2
x 1

.

.

.
. . .

. . .
xs−1

(s−1)!
xs−2

(s−2)!
· · · x 1

xs

s!
xs−1

(s−1)!
· · · x2

2
x

.

.

.
.
.
.

. . .
.
.
.

.

.

.
xn−1

(n−1)!
xn−2

(n−2)!
· · · xn−s+1

(n−s+1)!
xn−s

(n−s)!



∈ K[x]n×s .

Use detM(x) = V (r)s
2

sf(s− 1)r/ sf(n− 1) and ϕ̄i 6= ϕ̄i′ .
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Completeness of Characters

Example: C∞(R) with character set {e = 0, ϕ = 1}
Effectively C∞[0, 1] with 〈f |g〉 := β(g) =

r 1
0 f(ξ)g(ξ) dξ.

Complete sequence (xn)n∈N in pre-Hilbert space
(
C∞[0, 1], 〈|〉

)
.

Gram-Schmidt yields Legendre polynomials en ∼ dn

dxn (x2 − 1)n.
Fact: In every pre-Hilbert space, an orthonormal basis (en) has the
property that 〈em|f〉 6= 0 for some m ∈ N, provided f is nonzero.
Thus if β = ϕ

r
f annihilates K[x] then f |[0,1] = 0 so β is degenerate.

This means β is complete.

Lemma
Let ϕ be a complete character in an integro-differential algebra (F , ∂,

r
).

Then a nondegenerate global condition ϕ
r
f never coincides on K[x] with

any local condition based on ϕ.
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Regularity Lemma

Lemma
Let F be an integro-differential algebra and β an umbral Stieltjes condition
over F . Then (∂k+1, [e, . . . , e∂k−1, β]) is regular for some k ∈ N.

Example: Condition β = e1 − e0 over C∞(R).

Boundary problem (∂, [e1 − e0]) is singular.
Boundary problem (∂2, [e0, e1 − e0]) = (∂2, [e0, e1]) regular.

Proof of Regularity Lemma:

By umbrality, take minimal k ∈ N with β(xk) 6= 0.
Take u = (1, x/1!, . . . , xk/k!) as fundamental system for ∂k+1.
Evaluation matrix for u and γ = (e, . . . , e∂k−1, β):

Evaluation matrix γ(u) =


1 0 · · · 0 0

0 1
. . .

.

.

. 0

.

.

.
. . .

. . . 0

.

.

.
0 · · · 0 1 0

000 · · · 000 000 β(xk/k!)

.
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The Factorization Theorem for Boundary Problems

Definition
Let (T,B) ∈ E [∂] nKΦ be a an arbitrary boundary problem.
Then (T2,B2) ∈ E [∂] nKΦ is called a subproblem of (T,B) if T2 is a
right divisor of T and B2 ≤ B. In this case we write (T2,B2) ≤ (T,B),

Regular subproblems arise naturally from right factors:

Theorem (Factorization)

Given (T,B) ∈ E [∂]Φ, every factorization T = T1T2 of the differential
operator lifts to a factorization (T,B) = (T1,B1) · (T2,B2) of boundary
problems such that (T1,B1), (T2,B2) ∈ E [∂]Φ and (T2,B2) ≤ (T,B).

Singular subproblems need not be right factors:
(∂, e1 − e0) ≤ (∂2, [e0, e1])

Justification by the following Division Lemma.
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The Division Lemma for Boundary Problems

Lemma (Division)

Given (T,B) ∈ E [∂]Φ and any factorization T = T1T2 of the differential
operator, there is a unique (T1,B1) ∈ E [∂]Φ such that for any regular
subproblem (T2,B2) ≤ (T,B) this lifts to (T1,B1) · (T2,B2) = (T,B).

Prototypical factorization is (∂2, [e0, e1]) = (∂, [
r 1

0])(∂, e0) or

u′′ = f
u(0) = u(1) = 0

=
u′ = fr 1

0u(ξ) dξ = 0
· u′ = f
u(0) = 0

.

� Unique left-hand factor for (∂2, [e0, e1]) is (∂, [
r 1

0]).
� Assume (∂, e1 − e0) ≤ (∂2, [e0, e1]) were a right factor.
� Then (∂, [

r 1
0])(∂, [e1 − e0]) = (∂2, [e1 − e0]) should be (∂2, [e0, e1])  .

Note the left/right asymmetry in the Division Lemma!
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Converse Closure for Regular Boundary Problems

Closure of E [∂]Φ ⊂ E [∂] nKΦ admits partial converse:

Lemma
Let (T1,B1), (T2,B2) be boundary problems over an integro-differential
algebra F with ord(T1) = dimB1 and ord(T2) = dimB2. Then (T1,B1)
and (T2,B2) are regular whenever (T1,B1)(T2,B2) is.

Proof:

Fundamental systems (f1, . . . , fm) for T1 and (g1, . . . , gn) for T2.

Take K-bases β1, . . . , βm of B1 ≤ F∗ and γ1, . . . , γn of B2 ≤ F∗.
Then T♦2f1, . . . , T

♦
2fm, g1, . . . , gn is a fundamental system for T1T2.

Conclude B1T2 u B2 = [β1T2, . . . , βmT2, γ1, . . . , γn].

Regularity of (T1T2,B1T2 + B2) yields regular evaluation matrix(
(βT2)(T♦2f) (βT2)(g)

γ(T♦2f) γ(g)

)
=

(
β(f) 0

γ(T♦2f) γ(g)

)
Hence diagonal blocks β(f) and γ(g) are regular.
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Crucial Tool: The Regularization Lemma

Lemma (Regularization)

Let Φ be an umbral character set for an integro-differential algebra F .
Then for an arbitrary boundary problem (T,B) ∈ E [∂] nKΦ there is a
regular boundary problem (S,A) ∈ E [∂]Φ that has (T,B) as subproblem.

Proof: Set n = ord(T ) > 0 and B = [β1, . . . , βm].
Write In := [e, . . . , e∂n−1] and Bk := [β1, . . . , βk] for k = 0, . . . ,m.
Use induction on k to find (S,A) ∈ E [∂]Φ : (T,Bk) ≤ (S,A).
Base case k = 0 clear with (S,A) = (T, In).
Take (S̃, Ã) ∈ E [∂]Φ : (T,Bk−1) ≤ (S̃, Ã) and write G̃ := (S̃, Ã)−1.
For degenerate βkG̃ use (S,A) = (S̃, Ã) since im(G̃) = Ã⊥ ≤ [βk]

⊥.
Else (T̃ , B̃) = (∂r+1, [e, . . . , e∂r−1, βkG̃]) from Regularity Lemma.
Set (S,A) = (T̃ , B̃)(S̃, Ã) = (T̃ S̃, [eS̃, . . . , e∂r−1S̃, βk] + Ã).

∀u ∈ A⊥ :

↑

βku = 0⇔ βkG̃S̃u = 0

∀u ∈ A⊥ :

↑

βku = 0⇔ βkG̃S̃u = 0
∀u ∈ A⊥ :

↑

βku = 0⇔ βkG̃S̃u = 0

Now (S,A) ∈ E [∂]Φ since (T̃ , B̃), (S̃, Ã) ∈ E [∂]Φ.
Since Bk−1 ≤ Ã we have also (T,Bk) ≤ (S,A).
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Set (S,A) = (T̃ , B̃)(S̃, Ã) = (T̃ S̃, [eS̃, . . . , e∂r−1S̃, βk] + Ã).
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Set (S,A) = (T̃ , B̃)(S̃, Ã) = (T̃ S̃, [eS̃, . . . , e∂r−1S̃, βk] + Ã).
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Since Bk−1 ≤ Ã we have also (T,Bk) ≤ (S,A).

Markus Rosenkranz Noncommutative Mikusiński Calculus



Crucial Tool: The Regularization Lemma

Lemma (Regularization)

Let Φ be an umbral character set for an integro-differential algebra F .
Then for an arbitrary boundary problem (T,B) ∈ E [∂] nKΦ there is a
regular boundary problem (S,A) ∈ E [∂]Φ that has (T,B) as subproblem.

Proof: Set n = ord(T ) > 0 and B = [β1, . . . , βm].
Write In := [e, . . . , e∂n−1] and Bk := [β1, . . . , βk] for k = 0, . . . ,m.
Use induction on k to find (S,A) ∈ E [∂]Φ : (T,Bk) ≤ (S,A).
Base case k = 0 clear with (S,A) = (T, In).
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⊥.
Else (T̃ , B̃) = (∂r+1, [e, . . . , e∂r−1, βkG̃]) from Regularity Lemma.
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Left Permutability of Boundary Problems

Lemma
Let Φ be umbral for an integro-differential algebra F with left extensible
coefficient algebra E . Then E [∂]Φ is a left permutable monoid.

Proof:
Let (T1,B1), (T2,B2) ∈ E [∂]Φ be given.
Since E is left extensible, T := T̃1T1 = T̃2T2 for some T̃1, T̃2 ∈ E [∂].
Regular subproblem (S,A) ≤ (T,B1 + B2) by Regularization Lemma.
Then (T1,B1), (T2,B2) ≤ (S,A) are regular subproblems.
Division Lemma yields (T̃1, B̃1), (T̃2, B̃2) ∈ E [∂]Φ with

(S,A) = (T̃1, B̃1)(T1,B1) = (T̃2, B̃2)(T2,B2).

Simplest Example of an Ore Quadruple:

(∂2, [e0, e1]) = (∂, [
r 1

0])(∂, [e0]) = (∂, [
r 1

0])(∂, [e1])

(T,B) = (∂, [e0, e1])
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Lack of Right Permutability

In general, left and right localization/localizability may differ.

Here they actually do (strengthened result!):

Proposition
Let Φ be an arbitrary character set for an integro-differential algebra F
with coefficient algebra E . Assume (T,B1), (T,B2) ∈ E [∂]Φ have a
common right multiple

(T,B1)(S, C1) = (T,B2)(S, C2)

for some right factors (S, C1), (S, C2) ∈ E [∂] nKΦ. Then both (S, C1)
and (S, C2) are singular whenever B1 6= B2.

Reason for asymmetry: Naturality of left action.

However, left permutability also goes through for well-posed problems.
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Existence of Left Fraction Ring

Theorem
Let Φ be an umbral character set for the integro-differential algebra
(F , ∂,

r
) with left extensible coefficient algebra E . Then there exists the

left fraction ring KE [∂]?Φ of KE [∂]Φ with denominator set E [∂]Φ.

Proof:
Suffices to check that E [∂] is Ore monoid. Still need left reversibility.
For a module S, left reversibility means

s1S ∩ s2S 6= ∅ ⇒ Ss1 ∩ Ss2 6= ∅

for all s1, s2 ∈ S.
Hence assume (T1,B1)(T,B) = (T2,B2)(T,B) for regular problems.
By left extensibility of E [∂] take T̃ with T̃ T1 = T̃ T2.
Setting B̃ = [e, . . . , e∂n−1] yields (T̃ , B̃) ∈ E [∂]Φ.
Then

(
(T̃ , B̃)(T1,B1)

)
(T,B) =

(
(T̃ , B̃)(T2, B̃)

)
(T,B) ∈ E [∂]Φ.

By the Division Lemma (T̃ , B̃)(T1,B1) = (T̃ , B̃)(T2, B̃).
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Ring of Methorious Operators

We call KE [∂]?Φ the ring of methorious operators:
� Typical cases when F = C∞(R) or F = Cω(R).

In either case E = Cω(R) or E = R[x] is possible.
� Clearly ε : KE [∂]Φ → KE [∂]?Φ is not an embedding.

Example: N := (∂, [e0])− (∂, [e1]) ∈ ker ε

(∂, [
r 1

0])N = (∂2, [e0, e1])− (∂2, [e0, e1]) = 0

Conjecture
Let Φ be an umbral character set for an integro-differential algebra F with
left extensible coefficient algebra E . Then we have

∑
i λi (Ti,Bi) ∈ ker ε

iff
∑

i λiGi ∈ (Φ), where Gi is the Green’s operator of (Ti,Bi).
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iff
∑

i λiGi ∈ (Φ), where Gi is the Green’s operator of (Ti,Bi).
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Operating on Hyperfunctions via Localization

Recall our “algebraic analysis” stance:

Methorious operators  Methorious functions

←↩ E [∂] ⊃ F

Confer Analysis: δ ∈ D(R)′ ⊂ C∞0 (R)

Confer Algebra: D-Module M , specifically for D = A1(K)A1(K)A1(K)

Basic method: Module of fractions

R _?/o/o/o/o M

RS _?/o/o/o

ε

OO

MS

µ

OO

This will justify the terminology of methorious operators.
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Why the Detour?

Recall Mikusiński’s construction: h =
∫ x

0  s := h−1.

Why not start with Green’s operators like h = (∂, [e0])−1?
Problem: This is a right but not a left Ore Monoid!
If we must do s h, why not localize E [∂] instead of E [∂]Φ?
Problem: Yields ∂−1 as two-sided inverse, losing boundary data!

However, localizing via KE [∂]?Φ brings complications:
Need action of KE [∂]Φ on F .
Hence must extend F prior to localization, unlike Mikusiński. /

Recall Mikusiński’s fundamental formula:
sf = f ′ + e0(f) δ0

Here δ0 for h�h since tied to e0. Can generalize to sξξξ := (∂, [eξξξ]).
Note that eξ is the projector onto ker ∂ along [eξ].
But how to represent carrier objects δξ in FΦ?
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Action on Methorious Functions

Generalized fundamental formula:

(T,B) · f := Tf + Pf (T,B)

Here P is the projector onto kerT along B⊥.
And (T,B) on the right is a carrier object for this boundary problem.

� Methorious functions f (T,B) ∈ F ⊗K KE [∂]Φ with f ∈ kerT .
� Essentially records integration constants β(f) for β ∈ B

Canonical extension of action:

(T̃ , B̃) · f (T,B) := f (T̃ T, B̃T + B)

� Adds new integration constants β̃T f = 0.

But which methorious functions are equal?
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The Module of Methorious Functions

Equality of methorious functions:

f (T,B) = G̃f (T T̃ ,BT̃ + B̃)

� Same information for g = G̃f since β̃(g) = 0 and (βT̃ )(g) = β(f).

Definition
Let I ≤ F ⊗K KE [∂]Φ generated by f (T,B) with Tf = 0. Furthermore,
let I0 be the subspace of I generated by the elements

f (T,B)− G̃f (T T̃ ,BT̃ + B̃).

Then we define the module of methorious functions FΦ := F ⊕ I/I0.

Module structure is as intended:

Proposition

Let (F , ∂,
r

) be an integro-differential algebra with character set Φ. The
definitions given above induce a monoid action of E [∂]Φ on FΦ such that
it becomes a KE [∂]Φ-module.
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Methorious Functions  Methorious Hyperfunctions

General theory as expected:

Theorem
Let M be a left R-module, and let S ⊆ R be a multiplicative, right
permutable and right reversible denominator set S ⊆ R. Then there exists
a left S−1R-module S−1M . The kernel of the extension µ : M → S−1M
consists of those u ∈M for which there exists an s ∈ S with su = 0.

Apply this to M = FΦ, and R = KE [∂]Φ with S = E [∂]Φ.
We call S−1M the module of methorious hyperfunctions F?Φ.
Again noninjective extension, for example (∂, [e1])− (∂, [e0]) ∈ kerµ. But:

Proposition

Let (F , ∂,
r

) be an integro-differential algebra with character set Φ.
Then we have an embedding F ⊂ F?Φ.
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Application to Boundary Problems

At long last—Green’s operators are reciprocals:

Proposition

We have (T,B)−1 · f = Gf for all f ∈ F .
Moreover, if Tf = 0 then (T,B)−1 · f (T,B) = f .

Henceforth fix F = C∞(R) and E = R[x]:

Set sξ := (∂, [eξ]) ∈ KE [∂]?Φ and δξ := (∂, [eξ]) ∈ F?Φ.
� Generalized Fundamental Formula sξf = f ′ + f(ξ) δξ.
Algebraic representation for all Dirac distributions.

Set s[0,1] := (∂, [
r 1

0]) ∈ KKE [∂]?Φ and ε[0,1] := (∂, [
r 1

0]) ∈ F?Φ.

� New Fundamental Formula s[0,1]f = f ′ +

(∫ 1

0
f(ξ) dξ

)
ε[0,1]

No counterpart in Analysis?
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Minimal Example

Consider smallest two-point boundary problem:

u′′ = f
u(0) = a, u(b) = b

Since Pu = u(0) (1− x) + u(1)x we have

(∂2, [e0, e1])u = u′′ +
(
u(0) (1− x) + u(1)x

)
(∂2, [e0, e1])

= f +
(
a (1− x) + b x

)
(∂2, [e0, e1]),

u = (∂2, [e0, e1])−1 f + a (1− x) + b x

= (
r x

0x+ x
r 1
x − x

r x
0x− x

r 1
xx) f + a (1− x) + b x.

Markus Rosenkranz Noncommutative Mikusiński Calculus



Minimal Example

Consider smallest two-point boundary problem:

u′′ = f
u(0) = a, u(b) = b

Since Pu = u(0) (1− x) + u(1)x we have

(∂2, [e0, e1])u = u′′ +
(
u(0) (1− x) + u(1)x

)
(∂2, [e0, e1])

= f +
(
a (1− x) + b x

)
(∂2, [e0, e1]),

u = (∂2, [e0, e1])−1 f + a (1− x) + b x

= (
r x

0x+ x
r 1
x − x

r x
0x− x

r 1
xx) f + a (1− x) + b x.

Markus Rosenkranz Noncommutative Mikusiński Calculus



Minimal Example

Consider smallest two-point boundary problem:

u′′ = f
u(0) = a, u(b) = b

Since Pu = u(0) (1− x) + u(1)x we have

(∂2, [e0, e1])u = u′′ +
(
u(0) (1− x) + u(1)x

)
(∂2, [e0, e1])

= f +
(
a (1− x) + b x

)
(∂2, [e0, e1]),

u = (∂2, [e0, e1])−1 f + a (1− x) + b x

= (
r x

0x+ x
r 1
x − x

r x
0x− x

r 1
xx) f + a (1− x) + b x.

Markus Rosenkranz Noncommutative Mikusiński Calculus



Minimal Example

Consider smallest two-point boundary problem:

u′′ = f
u(0) = a, u(b) = b

Since Pu = u(0) (1− x) + u(1)x we have

(∂2, [e0, e1])u = u′′ +
(
u(0) (1− x) + u(1)x

)
(∂2, [e0, e1])

= f +
(
a (1− x) + b x

)
(∂2, [e0, e1]),

u = (∂2, [e0, e1])−1 f + a (1− x) + b x

= (
r x

0x+ x
r 1
x − x

r x
0x− x

r 1
xx) f + a (1− x) + b x.

Markus Rosenkranz Noncommutative Mikusiński Calculus



Minimal Example

Consider smallest two-point boundary problem:

u′′ = f
u(0) = a, u(b) = b

Since Pu = u(0) (1− x) + u(1)x we have

(∂2, [e0, e1])u = u′′ +
(
u(0) (1− x) + u(1)x

)
(∂2, [e0, e1])

= f +
(
a (1− x) + b x

)
(∂2, [e0, e1]),

u = (∂2, [e0, e1])−1 f + a (1− x) + b x

= (
r x

0x+ x
r 1
x − x

r x
0x− x

r 1
xx) f + a (1− x) + b x.

Markus Rosenkranz Noncommutative Mikusiński Calculus



Minimal Example

Consider smallest two-point boundary problem:

u′′ = f
u(0) = a, u(b) = b

Since Pu = u(0) (1− x) + u(1)x we have

(∂2, [e0, e1])u = u′′ +
(
u(0) (1− x) + u(1)x

)
(∂2, [e0, e1])

= f +
(
a (1− x) + b x

)
(∂2, [e0, e1]),

u = (∂2, [e0, e1])−1 f + a (1− x) + b x

= (
r x

0x+ x
r 1
x − x

r x
0x− x

r 1
xx) f + a (1− x) + b x.

Markus Rosenkranz Noncommutative Mikusiński Calculus



Minimal Example

Consider smallest two-point boundary problem:

u′′ = f
u(0) = a, u(b) = b

Since Pu = u(0) (1− x) + u(1)x we have

(∂2, [e0, e1])u = u′′ +
(
u(0) (1− x) + u(1)x

)
(∂2, [e0, e1])

= f +
(
a (1− x) + b x

)
(∂2, [e0, e1]),

u = (∂2, [e0, e1])−1 f + a (1− x) + b x

= (
r x

0x+ x
r 1
x − x

r x
0x− x

r 1
xx) f + a (1− x) + b x.

Markus Rosenkranz Noncommutative Mikusiński Calculus



Outline

1 Motivation

2 Classical Mikusiński Calculus

3 Towards A Noncommutative Mikusiński Calculus

4 Umbral Character Sets

5 Ring of Methorious Operators

6 Module of Methorious Functions

7 Conclusion

Markus Rosenkranz Noncommutative Mikusiński Calculus



Summary

Formal sums of boundary problems have an action.

Create ideal objects like distributions → methorious functions FΦ.
Reciprocals are Green’s operators → methorious operators KE [∂]?Φ.
Corresponding fractions → methorious hyperfunctions F?Φ.

E [∂]Φ _?/o/o/o FΦFΦFΦ

KE [∂]?Φ
_?/o/o/o

ε

OO

F?ΦF
?
ΦF?Φ

µ

OO

THANK YOU
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Formal sums of boundary problems have an action.
Create ideal objects like distributions → methorious functions FΦ.
Reciprocals are Green’s operators → methorious operators KE [∂]?Φ.
Corresponding fractions → methorious hyperfunctions F?Φ.

E [∂]Φ _?/o/o/o FΦFΦFΦ

KE [∂]?Φ
_?/o/o/o

ε

OO

F?ΦF
?
ΦF?Φ

µ

OO

THANK YOU

Markus Rosenkranz Noncommutative Mikusiński Calculus



Desiderata for the Future

Determine kernel of extension.
Elaborate on connection with umbral calculus.
Would be preferable to localize within (part or all of) F[∂,

r
].

Action should come via localization.
Ideal elements like δξ should be created by localization.
Possible way out: singular boundyary problems.
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