A Noncommutative Mikusiński Calculus for Linear Boundary Problems

Markus Rosenkranz

 $\langle M.Rosenkranz@kent.ac.uk \rangle$

School of Mathematics, Statistics and Actuarial Science University of Kent, United Kingdom

Kolchin Seminar in Differential Algebra 8 July 2014

We acknowledge support from EPSRC First Grant EP/I037474/1.

< 合)

This talk is based on joint work with A. Korporal [MCS13], with significant input from G. Regensburger (earlier phase).

O Motivation

This talk is based on joint work with A. Korporal [MCS13], with significant input from G. Regensburger (earlier phase).

O Motivation

Classical Mikusiński Calculus

This talk is based on joint work with A. Korporal [MCS13], with significant input from G. Regensburger (earlier phase).

O Motivation

- Classical Mikusiński Calculus
- **O** Towards a Noncommutative Mikusiński Calculus

This talk is based on joint work with A. Korporal [MCS13], with significant input from G. Regensburger (earlier phase).

O Motivation

- Classical Mikusiński Calculus
- Towards a Noncommutative Mikusiński Calculus
- **O Umbral Character Sets**

- O Motivation
- Classical Mikusiński Calculus
- Towards a Noncommutative Mikusiński Calculus
- O Umbral Character Sets
- **O** Ring of Methorious Operators

- O Motivation
- Classical Mikusiński Calculus
- Towards a Noncommutative Mikusiński Calculus
- O Umbral Character Sets
- **O** Ring of Methorious Operators
- **O** Module of Methorious Functions

- O Motivation
- Classical Mikusiński Calculus
- Towards a Noncommutative Mikusiński Calculus
- O Umbral Character Sets
- **O** Ring of Methorious Operators
- **O** Module of Methorious Functions
- Conclusion

Outline

<u>Recall</u>: Given a regular boundary problem (T, \mathcal{B}) ,

<u>Recall</u>: Given a regular boundary problem (T, \mathcal{B}) , we can compute its Green's operator $(T, \mathcal{B})^{-1}$.

<u>Recall:</u> Given a regular boundary problem (T, \mathcal{B}) , we can compute its Green's operator $(T, \mathcal{B})^{-1}$.

Why do we write this as a reciprocal?

<u>Recall:</u> Given a regular boundary problem (T, \mathcal{B}) , we can compute its Green's operator $(T, \mathcal{B})^{-1}$.

Why do we write this as a reciprocal? Because we have

$$\left((T,\mathcal{B})(\tilde{T},\tilde{\mathcal{B}})\right)^{-1} = (\tilde{T},\tilde{\mathcal{B}})^{-1}(T,\mathcal{B})^{-1}.$$

<u>Recall:</u> Given a regular boundary problem (T, \mathcal{B}) , we can compute its Green's operator $(T, \mathcal{B})^{-1}$.

Why do we write this as a reciprocal? Because we have $\left((T,\mathcal{B})(\tilde{T},\tilde{\mathcal{B}})\right)^{-1} = (\tilde{T},\tilde{\mathcal{B}})^{-1}(T,\mathcal{B})^{-1}.$

Is there any deeper reason for the "reciprocal"?

<u>Recall:</u> Given a regular boundary problem (T, \mathcal{B}) , we can compute its Green's operator $(T, \mathcal{B})^{-1}$.

Why do we write this as a reciprocal? Because we have $\left((T,\mathcal{B})(\tilde{T},\tilde{\mathcal{B}})\right)^{-1} = (\tilde{T},\tilde{\mathcal{B}})^{-1}(T,\mathcal{B})^{-1}.$

Is there any deeper reason for the "reciprocal"? Under what multiplication would it be reciprocal?

< 🗗)

<u>Recall:</u> Given a regular boundary problem (T, \mathcal{B}) , we can compute its Green's operator $(T, \mathcal{B})^{-1}$.

Why do we write this as a reciprocal? Because we have $\left((T,\mathcal{B})(\tilde{T},\tilde{\mathcal{B}})\right)^{-1} = (\tilde{T},\tilde{\mathcal{B}})^{-1}(T,\mathcal{B})^{-1}.$

Is there any deeper reason for the "reciprocal"? Under what multiplication would it be reciprocal? Is there a ring of boundary problems?

<u>Recall:</u> Given a regular boundary problem (T, \mathcal{B}) , we can compute its Green's operator $(T, \mathcal{B})^{-1}$.

Why do we write this as a reciprocal? Because we have $\left((T,\mathcal{B})(\tilde{T},\tilde{\mathcal{B}})\right)^{-1} = (\tilde{T},\tilde{\mathcal{B}})^{-1}(T,\mathcal{B})^{-1}.$

Is there any deeper reason for the "reciprocal"? Under what multiplication would it be reciprocal? Is there a ring of boundary problems?

Well, yes and no. . .

Outline

Motivation

- Olassical Mikusiński Calculus
- Towards A Noncommutative Mikusiński Calculus
- Umbral Character Sets
- 6 Ring of Methorious Operators
- 6 Module of Methorious Functions

O Conclusion

• Operational calculus for initial value problems.

- Operational calculus for initial value problems.
- Well-developed mainly for constant-coefficient LODEs.

- Operational calculus for initial value problems.
- Well-developed mainly for constant-coefficient LODEs.
- Popular in engineering communities.

- Operational calculus for initial value problems.
- Well-developed mainly for constant-coefficient LODEs.
- Popular in engineering communities.

Two development stages:

- Operational calculus for initial value problems.
- Well-developed mainly for constant-coefficient LODEs.
- Popular in engineering communities.
- Two development stages:
 - Heuristic system introduced by Oliver Heaviside (1850-1925)

- Operational calculus for initial value problems.
- Well-developed mainly for constant-coefficient LODEs.
- Popular in engineering communities.
- Two development stages:
 - Heuristic system introduced by Oliver Heaviside (1850–1925)
 - Rigorous treatment by Jan Mikusiński (1913–1987)

- Operational calculus for initial value problems.
- Well-developed mainly for constant-coefficient LODEs.
- Popular in engineering communities.

Two development stages:

- Heuristic system introduced by Oliver Heaviside (1850-1925)
- Rigorous treatment by Jan Mikusiński (1913–1987)

Mikusiński's idea was to employ localization of convolution rings.

- Operational calculus for initial value problems.
- Well-developed mainly for constant-coefficient LODEs.
- Popular in engineering communities.

Two development stages:

- Heuristic system introduced by Oliver Heaviside (1850-1925)
- Rigorous treatment by Jan Mikusiński (1913–1987)

Mikusiński's idea was to employ localization of convolution rings.

 \rightarrow A symbolic calculus, but (a priori) <u>not</u> purely algebraic!

< 🗗)

- Operational calculus for initial value problems.
- Well-developed mainly for constant-coefficient LODEs.
- Popular in engineering communities.

Two development stages:

- Heuristic system introduced by Oliver Heaviside (1850-1925)
- Rigorous treatment by Jan Mikusiński (1913–1987)

Mikusiński's idea was to employ localization of convolution rings.

 \rightarrow A symbolic calculus, but (a priori) <u>not</u> purely algebraic!

Will start with intuitive treatment.

(日)

< 🗗 >

Consider $\mathcal{R} := C(\mathbb{R}^+)$, imagine $f \in \mathcal{R}$ continued to \mathbb{R} by zero.

Consider $\mathcal{R} := C(\mathbb{R}^+)$, imagine $f \in \mathcal{R}$ continued to \mathbb{R} by zero.

• Define $h: \mathcal{R} \to \mathcal{R}$ as antiderivative $f \mapsto \int_0^x f(\xi) d\xi$.

Consider $\mathcal{R} := C(\mathbb{R}^+)$, imagine $f \in \mathcal{R}$ continued to \mathbb{R} by zero.

- Define $h: \mathcal{R} \to \mathcal{R}$ as antiderivative $f \mapsto \int_0^x f(\xi) d\xi$.
- Let $s: ? \rightarrow ?$ be its formal inverse.

Consider $\mathcal{R} := C(\mathbb{R}^+)$, imagine $f \in \mathcal{R}$ continued to \mathbb{R} by zero.

- Define $h: \mathcal{R} \to \mathcal{R}$ as antiderivative $f \mapsto \int_0^x f(\xi) d\xi$.
- Let $s: ? \rightarrow ?$ be its formal inverse.
- Introduce formal Dirac distribution δ by $h(\delta) = 1$.

Consider $\mathcal{R} := C(\mathbb{R}^+)$, imagine $f \in \mathcal{R}$ continued to \mathbb{R} by zero.

- Define $h: \mathcal{R} \to \mathcal{R}$ as antiderivative $f \mapsto \int_0^x f(\xi) d\xi$.
- Let $s: ? \rightarrow ?$ be its formal inverse.
- Introduce formal Dirac distribution δ by $h(\delta) = 1$.

Observe that $\delta = s(1)$.

Consider $\mathcal{R} := C(\mathbb{R}^+)$, imagine $f \in \mathcal{R}$ continued to \mathbb{R} by zero.

- Define $h: \mathcal{R} \to \mathcal{R}$ as antiderivative $f \mapsto \int_0^x f(\xi) d\xi$.
- Let $s: ? \rightarrow ?$ be its formal inverse.
- Introduce formal Dirac distribution δ by $h(\delta) = 1$.

Observe that $\delta = s(1)$. Moreover, h(f') = f - f(0) implies $f' = sf - f(0) \delta$.

Consider $\mathcal{R} := C(\mathbb{R}^+)$, imagine $f \in \mathcal{R}$ continued to \mathbb{R} by zero.

- Define $h: \mathcal{R} \to \mathcal{R}$ as antiderivative $f \mapsto \int_0^x f(\xi) d\xi$.
- Let $s: ? \rightarrow ?$ be its formal inverse.
- Introduce formal Dirac distribution δ by $h(\delta) = 1$.

Observe that $\delta = s(1)$. Moreover, h(f') = f - f(0) implies $f' = sf - f(0) \delta$.

Hence obtain fundamental formula:

$$sf = f' + f(0)\,\delta$$

Consider $\mathcal{R} := C(\mathbb{R}^+)$, imagine $f \in \mathcal{R}$ continued to \mathbb{R} by zero.

- Define $h: \mathcal{R} \to \mathcal{R}$ as antiderivative $f \mapsto \int_0^x f(\xi) d\xi$.
- Let $s: ? \rightarrow ?$ be its formal inverse.
- Introduce formal Dirac distribution δ by $h(\delta) = 1$.

Observe that $\delta = s(1)$. Moreover, h(f') = f - f(0) implies $f' = sf - f(0)\delta$.

Hence obtain fundamental formula:

$$sf = f' + f(0)\,\delta$$

By induction $(s^{k+1}(1) =: \delta^{(k)})$:

$$s^{n}f = f^{(n)} + \sum_{i=0}^{n-1} f^{(i)}(0) \,\delta^{(n-i-1)}$$

Consider $\mathcal{R} := C(\mathbb{R}^+)$, imagine $f \in \mathcal{R}$ continued to \mathbb{R} by zero.

- Define $h: \mathcal{R} \to \mathcal{R}$ as antiderivative $f \mapsto \int_0^x f(\xi) d\xi$.
- Let $s: ? \rightarrow ?$ be its formal inverse.
- Introduce formal Dirac distribution δ by $h(\delta) = 1$.

Observe that $\delta = s(1)$. Moreover, h(f') = f - f(0) implies $f' = sf - f(0) \delta$.

Hence obtain fundamental formula:

$$sf = f' + f(0)\,\delta$$

By induction $(s^{k+1}(1) =: \delta^{(k)})$:

$$s^n f = f^{(n)} + \sum_{i=0}^{n-1} f^{(i)}(0) \,\delta^{(n-i-1)}$$

Dual interpretation: algebraic/analytic.

< 🗗)

Consider $\mathcal{R} := C(\mathbb{R}^+)$, imagine $f \in \mathcal{R}$ continued to \mathbb{R} by zero.

- Define $h: \mathcal{R} \to \mathcal{R}$ as antiderivative $f \mapsto \int_0^x f(\xi) d\xi$.
- Let $s: ? \rightarrow ?$ be its formal inverse.
- Introduce formal Dirac distribution δ by $h(\delta) = 1$.

Observe that $\delta = s(1)$. Moreover, h(f') = f - f(0) implies $f' = sf - f(0) \delta$.

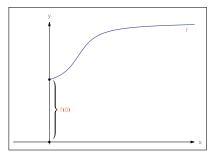
Hence obtain fundamental formula:

$$sf = f' + f(0)\,\delta$$

By induction $(s^{k+1}(1) =: \delta^{(k)})$:

$$s^n f = f^{(n)} + \sum_{i=0}^{n-1} f^{(i)}(0) \,\delta^{(n-i-1)}$$

Dual interpretation: algebraic/analytic.



< 🗗)

Example: Second-Order Initial Value Problem

$$u'' + u' - 2u = f$$

 $u(0) = a, u'(0) = b$

< Ø →

$$u'' + u' - 2u = f$$

 $u(0) = a, u'(0) = b$

• Fundamental formula $su = u' + u(0) \, \delta = u' + a \delta$

$$u'' + u' - 2u = f$$

 $u(0) = a, u'(0) = b$

- $\bullet\,$ Fundamental formula $su=u'+u(0)\,\delta=u'+a\delta\,$
- Second-order version $s^2 u = u'' + u(0) \, \delta' + u'(0) \, \delta = u'' + a \delta' + b \delta$

$$u'' + u' - 2u = f$$

 $u(0) = a, u'(0) = b$

- Fundamental formula $su = u' + u(0) \, \delta = u' + a \delta$
- Second-order version $s^2 u = u'' + u(0) \, \delta' + u'(0) \, \delta = u'' + a \delta' + b \delta$
- Hence $u'' + u' 2u = (s^2 + s 2)u (as + a + b)\delta$.

$$u'' + u' - 2u = f$$

 $u(0) = a, u'(0) = b$

- $\bullet\,$ Fundamental formula $su=u'+u(0)\,\delta=u'+a\delta\,$
- Second-order version $s^2 u = u'' + u(0) \, \delta' + u'(0) \, \delta = u'' + a \delta' + b \delta$
- Hence $u'' + u' 2u = (s^2 + s 2)u (as + a + b)\delta$.

$$u'' + u' - 2u = f$$

 $u(0) = a, u'(0) = b$

- $\bullet\,$ Fundamental formula $su=u'+u(0)\,\delta=u'+a\delta\,$
- Second-order version $s^2 u = u'' + u(0) \, \delta' + u'(0) \, \delta = u'' + a \delta' + b \delta$
- Hence $u'' + u' 2u = (s^2 + s 2)u (as + a + b)\delta$.

$$u = \frac{1}{s^2 + s - 2} f + \frac{as + a + b}{s^2 + s - 2} \delta$$

$$u'' + u' - 2u = f$$

 $u(0) = a, u'(0) = b$

- $\bullet\,$ Fundamental formula $su=u'+u(0)\,\delta=u'+a\delta\,$
- Second-order version $s^2 u = u'' + u(0) \, \delta' + u'(0) \, \delta = u'' + a \delta' + b \delta$
- Hence $u'' + u' 2u = (s^2 + s 2)u (as + a + b)\delta$.

$$u = \frac{1}{s^2 + s - 2} f + \frac{as + a + b}{s^2 + s - 2} \delta$$

$$3u = \left(\frac{1}{s - 1} - \frac{1}{s + 2}\right) f + \left(\frac{2a + b}{s - 1} + \frac{a - b}{s + 2}\right) \delta$$

$$u'' + u' - 2u = f$$

 $u(0) = a, u'(0) = b$

- $\bullet\,$ Fundamental formula $su=u'+u(0)\,\delta=u'+a\delta\,$
- Second-order version $s^2 u = u'' + u(0) \, \delta' + u'(0) \, \delta = u'' + a \delta' + b \delta$
- Hence $u'' + u' 2u = (s^2 + s 2)u (as + a + b)\delta$.

$$u = \frac{1}{s^2 + s - 2} f + \frac{as + a + b}{s^2 + s - 2} \delta$$

$$3u = \left(\frac{1}{s - 1} - \frac{1}{s + 2}\right) f + \left(\frac{2a + b}{s - 1} + \frac{a - b}{s + 2}\right) \delta$$

What is the "normal" meaning of this?!

< (1)

Recall Leibniz's integral rule (chain rule $\mathbb{R} \to \mathbb{R}^3 \to \mathbb{R}$):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,\xi) \, d\xi = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,\xi) \, d\xi + f(x,b(x)) \, b'(x) - f(x,a(x)) \, a'(x)$$

Recall Leibniz's integral rule (chain rule $\mathbb{R} \to \mathbb{R}^3 \to \mathbb{R}$):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,\xi) \, d\xi = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,\xi) \, d\xi + f(x,b(x)) \, b'(x) - f(x,a(x)) \, a'(x)$$

Claim:
$$\left| \frac{1}{s-a} u = \int_0^x e^{a(x-\xi)} u(\xi) d\xi \right|$$

< 🗗)

Recall Leibniz's integral rule (chain rule $\mathbb{R} \to \mathbb{R}^3 \to \mathbb{R}$):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,\xi) \, d\xi = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,\xi) \, d\xi + f(x,b(x)) \, b'(x) - f(x,a(x)) \, a'(x)$$

Claim:
$$\left| \frac{1}{s-a} u = \int_0^x e^{a(x-\xi)} u(\xi) d\xi \right|$$

Straightforward calculation:

 $(s-a) \int_0^x e^{a(x-\xi)} u(\xi) d\xi$

Recall Leibniz's integral rule (chain rule $\mathbb{R} \to \mathbb{R}^3 \to \mathbb{R}$):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,\xi) \, d\xi = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,\xi) \, d\xi + f(x,b(x)) \, b'(x) - f(x,a(x)) \, a'(x)$$

Claim:
$$\left| \frac{1}{s-a} u = \int_0^x e^{a(x-\xi)} u(\xi) d\xi \right|$$

Straightforward calculation:

$$(s-a) \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{FF}{=} \frac{d}{dx} \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi$$

Recall Leibniz's integral rule (chain rule $\mathbb{R} \to \mathbb{R}^3 \to \mathbb{R}$):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,\xi) \, d\xi = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,\xi) \, d\xi + f(x,b(x)) \, b'(x) - f(x,a(x)) \, a'(x)$$

Claim:
$$\left| \frac{1}{s-a} u = \int_0^x e^{a(x-\xi)} u(\xi) d\xi \right|$$

Straightforward calculation:

$$(s-a) \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{FF}{=} \frac{d}{dx} \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{LI}{=} e^0 u(x) + a \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi$$

Recall Leibniz's integral rule (chain rule $\mathbb{R} \to \mathbb{R}^3 \to \mathbb{R}$):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,\xi) \, d\xi = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,\xi) \, d\xi + f(x,b(x)) \, b'(x) - f(x,a(x)) \, a'(x)$$

Claim:
$$\left| \frac{1}{s-a} u = \int_0^x e^{a(x-\xi)} u(\xi) d\xi \right|$$

Straightforward calculation:

$$(s-a) \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{FF}{=} \frac{d}{dx} \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{LI}{=} e^0 u(x) + a \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi = u(x)$$

Recall Leibniz's integral rule (chain rule $\mathbb{R} \to \mathbb{R}^3 \to \mathbb{R}$):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,\xi) \, d\xi = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,\xi) \, d\xi + f(x,b(x)) \, b'(x) - f(x,a(x)) \, a'(x)$$

Claim:
$$\left| \frac{1}{s-a} u = \int_0^x e^{a(x-\xi)} u(\xi) d\xi \right|$$

Straightforward calculation:

$$(s-a) \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{FF}{=} \frac{d}{dx} \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{LI}{=} e^0 u(x) + a \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi = u(x)$$

Convolution $f \star g(x) := \int_0^x f(x - \xi) g(\xi) d\xi$

< 67 →

Recall Leibniz's integral rule (chain rule $\mathbb{R} \to \mathbb{R}^3 \to \mathbb{R}$):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,\xi) \, d\xi = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,\xi) \, d\xi + f(x,b(x)) \, b'(x) - f(x,a(x)) \, a'(x)$$

Claim:
$$\left| \frac{1}{s-a} u = \int_0^x e^{a(x-\xi)} u(\xi) d\xi \right|$$

Straightforward calculation:

$$(s-a) \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{FF}{=} \frac{d}{dx} \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{LI}{=} e^0 u(x) + a \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi = u(x)$$

Convolution $f \star g(x) := \int_0^x f(x-\xi) g(\xi) d\xi \rightarrow \frac{1}{s-a} = e^{ax} \star$

(日)

Recall Leibniz's integral rule (chain rule $\mathbb{R} \to \mathbb{R}^3 \to \mathbb{R}$):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,\xi) \, d\xi = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,\xi) \, d\xi + f(x,b(x)) \, b'(x) - f(x,a(x)) \, a'(x)$$

Claim:
$$\left| \frac{1}{s-a} u = \int_0^x e^{a(x-\xi)} u(\xi) d\xi \right|$$

Straightforward calculation:

$$(s-a) \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{FF}{=} \frac{d}{dx} \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{LI}{=} e^0 u(x) + a \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi = u(x)$$

Convolution $f \star g(x) := \int_0^x f(x-\xi) g(\xi) d\xi \rightarrow \frac{1}{s-a} = e^{ax} \star _$ Generalization by induction $\rightarrow \frac{1}{(s-a)^n} = \frac{x^{n-1}}{(n-1)!} e^{ax} \star _$

< 日)

Recall Leibniz's integral rule (chain rule $\mathbb{R} \to \mathbb{R}^3 \to \mathbb{R}$):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,\xi) \, d\xi = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,\xi) \, d\xi + f(x,b(x)) \, b'(x) - f(x,a(x)) \, a'(x)$$

Claim:
$$\left| \frac{1}{s-a} u = \int_0^x e^{a(x-\xi)} u(\xi) d\xi \right|$$

Straightforward calculation:

$$(s-a) \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{FF}{=} \frac{d}{dx} \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi \stackrel{LI}{=} e^0 u(x) + a \int_0^x e^{a(x-\xi)} u(\xi) d\xi - a \int_0^x e^{a(x-\xi)} u(\xi) d\xi = u(x)$$

Convolution $f \star g(x) := \int_0^x f(x - \xi) g(\xi) d\xi \rightarrow \frac{1}{s-a} = e^{ax} \star _$ Generalization by induction $\rightarrow \frac{1}{(s-a)^n} = \frac{x^{n-1}}{(n-1)!} e^{ax} \star _$ Can be interpreted as formal Laplace transform.

(日)

Back translation of formal solution:

$$u = \frac{1}{3} \left(\frac{2a+b}{s-1} + \frac{a-b}{s+2} \right) \delta + \frac{1}{3} \left(\frac{1}{s-1} - \frac{1}{s+2} \right) f$$

< 🗗 >

Back translation of formal solution:

$$u = \frac{1}{3} \left(\frac{2a+b}{s-1} + \frac{a-b}{s+2} \right) \delta + \frac{1}{3} \left(\frac{1}{s-1} - \frac{1}{s+2} \right) f$$
$$= \frac{1}{3} \left((2a+b)e^x + (a-b)e^{-2x} \right) \star \delta + \frac{1}{3} \left(e^x - e^{-2x} \right) \star f$$

Back translation of formal solution:

$$\begin{split} u &= \frac{1}{3} \left(\frac{2a+b}{s-1} + \frac{a-b}{s+2} \right) \delta + \frac{1}{3} \left(\frac{1}{s-1} - \frac{1}{s+2} \right) f \\ &= \frac{1}{3} \left((2a+b)e^x + (a-b)e^{-2x} \right) \star \delta + \frac{1}{3} \left(e^x - e^{-2x} \right) \star f \\ &= \frac{2a+b}{3} e^x + \frac{a-b}{3} e^{-2x} + \frac{1}{3} \int_0^x (e^{x-\xi} - e^{-2(x-\xi)}) f(\xi) \, d\xi \end{split}$$

< 🗗)

Back translation of formal solution:

$$\begin{split} u &= \frac{1}{3} \left(\frac{2a+b}{s-1} + \frac{a-b}{s+2} \right) \delta + \frac{1}{3} \left(\frac{1}{s-1} - \frac{1}{s+2} \right) f \\ &= \frac{1}{3} \left((2a+b)e^x + (a-b)e^{-2x} \right) \star \delta + \frac{1}{3} \left(e^x - e^{-2x} \right) \star f \\ &= \frac{2a+b}{3} e^x + \frac{a-b}{3} e^{-2x} + \frac{1}{3} \int_0^x (e^{x-\xi} - e^{-2(x-\xi)}) f(\xi) \, d\xi \end{split}$$

• Same process applicable to any constant-coefficient LODE.

Back translation of formal solution:

$$u = \frac{1}{3} \left(\frac{2a+b}{s-1} + \frac{a-b}{s+2} \right) \delta + \frac{1}{3} \left(\frac{1}{s-1} - \frac{1}{s+2} \right) f$$

= $\frac{1}{3} \left((2a+b)e^x + (a-b)e^{-2x} \right) \star \delta + \frac{1}{3} \left(e^x - e^{-2x} \right) \star f$
= $\frac{2a+b}{3} e^x + \frac{a-b}{3} e^{-2x} + \frac{1}{3} \int_0^x (e^{x-\xi} - e^{-2(x-\xi)}) f(\xi) d\xi$

- Same process applicable to any constant-coefficient LODE.
- Certain extensions to variable-coefficients LODEs and PDEs.

(日)

Back translation of formal solution:

$$u = \frac{1}{3} \left(\frac{2a+b}{s-1} + \frac{a-b}{s+2} \right) \delta + \frac{1}{3} \left(\frac{1}{s-1} - \frac{1}{s+2} \right) f$$

= $\frac{1}{3} \left((2a+b)e^x + (a-b)e^{-2x} \right) \star \delta + \frac{1}{3} \left(e^x - e^{-2x} \right) \star f$
= $\frac{2a+b}{3} e^x + \frac{a-b}{3} e^{-2x} + \frac{1}{3} \int_0^x (e^{x-\xi} - e^{-2(x-\xi)}) f(\xi) d\xi$

- Same process applicable to any constant-coefficient LODE.
- Certain extensions to variable-coefficients LODEs and PDEs.
- Avoids need of (convergent) Laplace transforms.

Back translation of formal solution:

$$u = \frac{1}{3} \left(\frac{2a+b}{s-1} + \frac{a-b}{s+2} \right) \delta + \frac{1}{3} \left(\frac{1}{s-1} - \frac{1}{s+2} \right) f$$

= $\frac{1}{3} \left((2a+b)e^x + (a-b)e^{-2x} \right) \star \delta + \frac{1}{3} \left(e^x - e^{-2x} \right) \star f$
= $\frac{2a+b}{3} e^x + \frac{a-b}{3} e^{-2x} + \frac{1}{3} \int_0^x (e^{x-\xi} - e^{-2(x-\xi)}) f(\xi) d\xi$

- Same process applicable to any constant-coefficient LODE.
- Certain extensions to variable-coefficients LODEs and PDEs.
- Avoids need of (convergent) Laplace transforms.

So what is this "formal inverse"?

(日)

The Mikusiński Field

Consider $\mathcal{R} := C(\mathbb{R}^+)$ with respect to convolution \star .

The Mikusiński Field

Consider $\mathcal{R} := C(\mathbb{R}^+)$ with respect to convolution \star . Commutative but not invertible—not even unital! However:

Consider $\mathcal{R} := C(\mathbb{R}^+)$ with respect to convolution \star . Commutative but not invertible—not even unital! However:

Theorem (Titchmarsh 1926)

The commutative ring $(\mathcal{R}, +, \star)$ has no zero divisors.

Consider $\mathcal{R} := C(\mathbb{R}^+)$ with respect to convolution \star . Commutative but not invertible—not even unital! However:

Theorem (Titchmarsh 1926)

The commutative ring $(\mathcal{R}, +, \star)$ has no zero divisors.

Definition (Mikusiński 1959)

Define $\mathcal{M} := \mathcal{R}_*^{-1} \mathcal{R}$ with multiplication \star and division $/\!\!/$.

Consider $\mathcal{R} := C(\mathbb{R}^+)$ with respect to convolution \star . Commutative but not invertible—not even unital! However:

Theorem (Titchmarsh 1926)

The commutative ring $(\mathcal{R}, +, \star)$ has no zero divisors.

Definition (Mikusiński 1959)

Define $\mathcal{M} := \mathcal{R}_*^{-1} \mathcal{R}$ with multiplication \star and division $/\!\!/$.

Heaviside function $h: \mathbb{R}^+ \to \mathbb{R}, h(x) := 1$, thus $h \star f = \overbrace{\int_0^x f(\xi) d\xi}^x$.

Consider $\mathcal{R} := C(\mathbb{R}^+)$ with respect to convolution \star . Commutative but not invertible—not even unital! However:

Theorem (Titchmarsh 1926)

The commutative ring $(\mathcal{R}, +, \star)$ has no zero divisors.

Definition (Mikusiński 1959)

Define $\mathcal{M} := \mathcal{R}_*^{-1} \mathcal{R}$ with multiplication \star and division //.

Heaviside function $h: \mathbb{R}^+ \to \mathbb{R}, h(x) := 1$, thus $h \star f = \int_0^x f(\xi) d\xi$.

This extends as

$$h \colon \mathbb{R} \to \mathbb{R}, h(x) := \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

h(f)

Consider $\mathcal{R} := C(\mathbb{R}^+)$ with respect to convolution \star . Commutative but not invertible—not even unital! However:

Theorem (Titchmarsh 1926)

The commutative ring $(\mathcal{R}, +, \star)$ has no zero divisors.

Definition (Mikusiński 1959)

Define $\mathcal{M} := \mathcal{R}_*^{-1} \mathcal{R}$ with multiplication \star and division //.

Heaviside function $h: \mathbb{R}^+ \to \mathbb{R}, h(x) := 1$, thus $h \star f = \int_0^x f(\xi) d\xi$.

This extends as

$$h \colon \mathbb{R} \to \mathbb{R}, h(x) := \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$
$$h \star f = \int_{-\infty}^{\infty} h(x - \xi) f(\xi) \, d\xi =: h \circledast f$$

h(f)

Consider $\mathcal{R} := C(\mathbb{R}^+)$ with respect to convolution \star . Commutative but not invertible—not even unital! However:

Theorem (Titchmarsh 1926)

The commutative ring $(\mathcal{R}, +, \star)$ has no zero divisors.

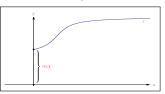
Definition (Mikusiński 1959)

Define $\mathcal{M} := \mathcal{R}_*^{-1} \mathcal{R}$ with multiplication \star and division //.

Heaviside function $h: \mathbb{R}^+ \to \mathbb{R}, h(x) := 1$, thus $h \star f = \overbrace{\int_0^x f(\xi) d\xi}^x$.

This extends as

$$h: \mathbb{R} \to \mathbb{R}, h(x) := \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$
$$h \star f = \int_{-\infty}^{\infty} h(x - \xi) f(\xi) \, d\xi =: h \circledast f$$



h(f)

Consider $\mathcal{R} := C(\mathbb{R}^+)$ with respect to convolution \star . Commutative but not invertible—not even unital! However:

Theorem (Titchmarsh 1926)

The commutative ring $(\mathcal{R}, +, \star)$ has no zero divisors.

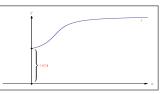
Definition (Mikusiński 1959)

Define $\mathcal{M} := \mathcal{R}_*^{-1} \mathcal{R}$ with multiplication \star and division //.

Heaviside function $h: \mathbb{R}^+ \to \mathbb{R}, h(x) := 1$, thus $h \star f = \overbrace{\int_0^x f(\xi) d\xi}^x$.

This extends as

$$h \colon \mathbb{R} \to \mathbb{R}, h(x) := \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$
$$h \star f = \int_{-\infty}^{\infty} h(x - \xi) f(\xi) \, d\xi =: h \circledast f$$



h(f)

Now write $1 := h // h \in \mathcal{M}$ for the unit and s := 1 // h for differentation.

(日)

Must distinguish two embeddings:

Must distinguish two embeddings:

• Functions $\mathcal{R} \hookrightarrow \mathcal{M}, f \mapsto \{f\} := (f \star h) /\!\!/ h$

Must distinguish two embeddings:

- Functions $\mathcal{R} \hookrightarrow \mathcal{M}, f \mapsto \{f\} := (f \star h) /\!\!/ h$
- Numbers $\mathbb{R} \hookrightarrow \mathcal{M}, x \mapsto \{x\} /\!\!/ h$

Must distinguish two embeddings:

• Functions $\mathcal{R} \hookrightarrow \mathcal{M}, f \mapsto \{f\} := (f \star h) /\!\!/ h$

• Numbers
$$\mathbb{R} \hookrightarrow \mathcal{M}, x \mapsto \{x\} /\!\!/ h$$

<u>Caveat:</u> We have $\{f \star g\} = \{f\} \star \{g\}$ but not $\{fg\} = ?$.

Must distinguish two embeddings:

• Functions $\mathcal{R} \hookrightarrow \mathcal{M}, f \mapsto \{f\} := (f \star h) /\!\!/ h$

• Numbers
$$\mathbb{R} \hookrightarrow \mathcal{M}, x \mapsto \{x\} /\!\!/ h$$

<u>Caveat:</u> We have $\{f \star g\} = \{f\} \star \{g\}$ but not $\{fg\} = ?$. Observe that $\{h\} = \{1\} \neq 1$

Must distinguish two embeddings:

• Functions $\mathcal{R} \hookrightarrow \mathcal{M}, f \mapsto \{f\} := (f \star h) /\!\!/ h$

• Numbers
$$\mathbb{R} \hookrightarrow \mathcal{M}, x \mapsto \{x\} /\!\!/ h$$

<u>Caveat:</u> We have $\{f \star g\} = \{f\} \star \{g\}$ but not $\{fg\} = ?$. Observe that $\{h\} = \{1\} \neq ___$, in particular $1 \mapsto 1$.

Must distinguish two embeddings:

• Functions $\mathcal{R} \hookrightarrow \mathcal{M}, f \mapsto \{f\} := (f \star h) /\!\!/ h$

• Numbers
$$\mathbb{R} \hookrightarrow \mathcal{M}, x \mapsto \{x\} /\!\!/ h$$

<u>Caveat:</u> We have $\{f \star g\} = \{f\} \star \{g\}$ but not $\{fg\} =$?

Observe that $\{h\} = \{1\} \neq \underbrace{\mathbb{1}}_{}$, in particular $1 \mapsto \mathbb{1}$.

Usually one writes

$$pq:=q\star q \text{ and } p/q:=q/\!\!/ q \text{ for } p,q\in \mathcal{M}\text{,}$$

Must distinguish two embeddings:

• Functions $\mathcal{R} \hookrightarrow \mathcal{M}, f \mapsto \{f\} := (f \star h) /\!\!/ h$

• Numbers
$$\mathbb{R} \hookrightarrow \mathcal{M}, x \mapsto \{x\} /\!\!/ h$$

<u>Caveat</u>: We have $\{f \star g\} = \{f\} \star \{g\}$ but not $\{fg\} =$?

Observe that $\{h\} = \{1\} \neq \underbrace{\mathbb{1}}_{}$, in particular $1 \mapsto \mathbb{1}$.

Usually one writes

$$pq := q \star q$$
 and $p/q := q //q$ for $p, q \in \mathcal{M}$,
 $1 := \mathbb{1} \in \mathcal{M}$.

Must distinguish two embeddings:

• Functions $\mathcal{R} \hookrightarrow \mathcal{M}, f \mapsto \{f\} := (f \star h) /\!\!/ h$

• Numbers
$$\mathbb{R} \hookrightarrow \mathcal{M}, x \mapsto \{x\} /\!\!/ h$$

<u>Caveat</u>: We have $\{f \star g\} = \{f\} \star \{g\}$ but not $\{fg\} =$?

Observe that $\{h\} = \{1\} \neq \underbrace{\mathbb{1}}_{,}$ in particular $1 \mapsto \mathbb{1}$.

Usually one writes

$$pq := q \star q \text{ and } p/q := q /\!\!/ q \text{ for } p, q \in \mathcal{M},$$

 $1 := \mathbb{1} \in \mathcal{M}.$

Hence distinguish $\{f\}\{g\}$ from $\{fg\}$ and $\{1\}$ from 1.

Must distinguish two embeddings:

• Functions $\mathcal{R} \hookrightarrow \mathcal{M}, f \mapsto \{f\} := (f \star h) /\!\!/ h$

• Numbers
$$\mathbb{R} \hookrightarrow \mathcal{M}, x \mapsto \{x\} /\!\!/ h$$

<u>Caveat</u>: We have $\{f \star g\} = \{f\} \star \{g\}$ but not $\{fg\} = ?$.

Observe that $\{h\} = \{1\} \neq \underline{1}$, in particular $1 \mapsto 1$.

Usually one writes

$$pq := q \star q$$
 and $p/q := q // q$ for $p, q \in \mathcal{M}$,
 $1 := \mathbb{1} \in \mathcal{M}$.

Hence distinguish $\{f\}\{g\}$ from $\{fg\}$ and $\{1\}$ from 1.

Recall earlier intuition $h(\delta) = 1$.

Must distinguish two embeddings:

• Functions $\mathcal{R} \hookrightarrow \mathcal{M}, f \mapsto \{f\} := (f \star h) /\!\!/ h$

• Numbers
$$\mathbb{R} \hookrightarrow \mathcal{M}, x \mapsto \{x\} /\!\!/ h$$

<u>Caveat</u>: We have $\{f \star g\} = \{f\} \star \{g\}$ but not $\{fg\} = ?$.

Observe that $\{h\} = \{1\} \neq 1$, in particular $1 \mapsto 1$.

Usually one writes

$$pq := q \star q \text{ and } p/q := q /\!\!/ q \text{ for } p, q \in \mathcal{M},$$

 $1 := \mathbb{1} \in \mathcal{M}.$

Hence distinguish $\{f\}\{g\}$ from $\{fg\}$ and $\{1\}$ from 1.

Recall earlier intuition $h(\delta) = 1$. Now this is $\{h\} \star 1 = \{h\} = \{1\}$.

< (2) >

From $\int_0^x f'(\xi) d\xi = f(x) - f(0)$ we infer $\{h\}\{f'\} = \{f\} - f(0)\{h\}$.

From $\int_0^x f'(\xi) d\xi = f(x) - f(0)$ we infer $\{h\}\{f'\} = \{f\} - f(0)\{h\}$. Now multiply by $s := 1/h = 1/\{h\}$:

From $\int_0^x f'(\xi) d\xi = f(x) - f(0)$ we infer $\{h\}\{f'\} = \{f\} - f(0)\{h\}$. Now multiply by $s := 1/h = 1/\{h\}$:

$$s \{f\} = \{f'\} + f(0)$$

$$s^n \{f\} = \{f^{(n)}\} + \sum_{i=0}^{n-1} f^{(i)}(0) \,\delta^{(n-i-1)}$$

From $\int_0^x f'(\xi) d\xi = f(x) - f(0)$ we infer $\{h\}\{f'\} = \{f\} - f(0)\{h\}$. Now multiply by $s := 1/h = 1/\{h\}$:

$$s \{f\} = \{f'\} + f(0)$$

$$s^{n} \{f\} = \{f^{(n)}\} + \sum_{i=0}^{n-1} f^{(i)}(0) \,\delta^{(n-i-1)}$$

Here $\delta \equiv 1 \in \mathcal{M}$ and hence $\delta^{(k)} \equiv s^k$ for clarity.

From $\int_0^x f'(\xi) d\xi = f(x) - f(0)$ we infer $\{h\}\{f'\} = \{f\} - f(0)\{h\}$. Now multiply by $s := 1/h = 1/\{h\}$:

$$s \{f\} = \{f'\} + f(0)$$

$$s^{n} \{f\} = \{f^{(n)}\} + \sum_{i=0}^{n-1} f^{(i)}(0) \,\delta^{(n-i-1)}$$

Here $\delta \equiv 1 \in \mathcal{M}$ and hence $\delta^{(k)} \equiv s^k$ for clarity.

Convolution fractions $p \in \mathcal{M}$ are "operators" <u>and</u> "functions".

From $\int_0^x f'(\xi) d\xi = f(x) - f(0)$ we infer $\{h\}\{f'\} = \{f\} - f(0)\{h\}$. Now multiply by $s := 1/h = 1/\{h\}$:

$$s \{f\} = \{f'\} + f(0)$$

$$s^{n} \{f\} = \{f^{(n)}\} + \sum_{i=0}^{n-1} f^{(i)}(0) \,\delta^{(n-i-1)}$$

Here $\delta \equiv 1 \in \mathcal{M}$ and hence $\delta^{(k)} \equiv s^k$ for clarity.

Convolution fractions $p \in \mathcal{M}$ are "operators" <u>and</u> "functions". Like h:

From $\int_0^x f'(\xi) d\xi = f(x) - f(0)$ we infer $\{h\}\{f'\} = \{f\} - f(0)\{h\}$. Now multiply by $s := 1/h = 1/\{h\}$:

$$s \{f\} = \{f'\} + f(0)$$

$$s^{n} \{f\} = \{f^{(n)}\} + \sum_{i=0}^{n-1} f^{(i)}(0) \,\delta^{(n-i-1)}$$

Here $\delta \equiv 1 \in \mathcal{M}$ and hence $\delta^{(k)} \equiv s^k$ for clarity.

Convolution fractions $p \in \mathcal{M}$ are "operators" <u>and</u> "functions". Like *h*:

• Qua function: sh = 1 encapsulates $\partial(h) = \delta$.

From $\int_0^x f'(\xi) d\xi = f(x) - f(0)$ we infer $\{h\}\{f'\} = \{f\} - f(0)\{h\}$. Now multiply by $s := 1/h = 1/\{h\}$:

$$s \{f\} = \{f'\} + f(0)$$

$$s^{n} \{f\} = \{f^{(n)}\} + \sum_{i=0}^{n-1} f^{(i)}(0) \,\delta^{(n-i-1)}$$

Here $\delta \equiv 1 \in \mathcal{M}$ and hence $\delta^{(k)} \equiv s^k$ for clarity.

Convolution fractions $p \in \mathcal{M}$ are "operators" <u>and</u> "functions". Like h:

- Qua function: sh = 1 encapsulates $\partial(h) = \delta$.
- Qua operator: $h\{f\} = \{g\}$ means $\int_0^x f = g$.

From $\int_0^x f'(\xi) d\xi = f(x) - f(0)$ we infer $\{h\}\{f'\} = \{f\} - f(0)\{h\}$. Now multiply by $s := 1/h = 1/\{h\}$:

$$s \{f\} = \{f'\} + f(0)$$

$$s^{n} \{f\} = \{f^{(n)}\} + \sum_{i=0}^{n-1} f^{(i)}(0) \,\delta^{(n-i-1)}$$

Here $\delta \equiv 1 \in \mathcal{M}$ and hence $\delta^{(k)} \equiv s^k$ for clarity.

Convolution fractions $p \in \mathcal{M}$ are "operators" <u>and</u> "functions". Like h:

- Qua function: sh = 1 encapsulates $\partial(h) = \delta$.
- Qua operator: $h\{f\} = \{g\}$ means $\int_0^x f = g$.

Back translation (operator *qua* function): $\frac{1}{(s-a)^n} = \{\frac{x^{n-1}}{(n-1)!}e^{ax}\}.$

From $\int_0^x f'(\xi) d\xi = f(x) - f(0)$ we infer $\{h\}\{f'\} = \{f\} - f(0)\{h\}$. Now multiply by $s := 1/h = 1/\{h\}$:

$$s \{f\} = \{f'\} + f(0)$$

$$s^{n} \{f\} = \{f^{(n)}\} + \sum_{i=0}^{n-1} f^{(i)}(0) \,\delta^{(n-i-1)}$$

Here $\delta \equiv 1 \in \mathcal{M}$ and hence $\delta^{(k)} \equiv s^k$ for clarity.

Convolution fractions $p \in \mathcal{M}$ are "operators" <u>and</u> "functions". Like h:

- Qua function: sh = 1 encapsulates $\partial(h) = \delta$.
- Qua operator: $h\{f\} = \{g\}$ means $\int_0^x f = g$.

Back translation (operator *qua* function): $\frac{1}{(s-a)^n} = \{\frac{x^{n-1}}{(n-1)!}e^{ax}\}.$

Characteristic difference: Operational Calculus \leftrightarrow Algebraic Analysis.

Motivation

2 Classical Mikusiński Calculus

3 Towards A Noncommutative Mikusiński Calculus

- Umbral Character Sets
- 6 Ring of Methorious Operators
- 6 Module of Methorious Functions

O Conclusion

< (2) >

Build up a new "Mikusiński Calculus" that is

Build up a new "Mikusiński Calculus" that is

• algebraic (based on differential algebra, no topology),

Build up a new "Mikusiński Calculus" that is

- algebraic (based on differential algebra, no topology),
- treats boundary and initial conditions on a par,

Build up a new "Mikusiński Calculus" that is

- algebraic (based on differential algebra, no topology),
- treats boundary and initial conditions on a par,
- includes global conditions like $\int_0^1 u = 0$,

Build up a new "Mikusiński Calculus" that is

- algebraic (based on differential algebra, no topology),
- treats boundary and initial conditions on a par,
- includes global conditions like $\int_0^1 u = 0$,
- follows Heaviside/Mikusiński in spirit (" $\int = \partial^{-1}$ ").

However, the new calculus must be noncommutative since

Build up a new "Mikusiński Calculus" that is

- algebraic (based on differential algebra, no topology),
- treats boundary and initial conditions on a par,
- includes global conditions like $\int_0^1 u = 0$,
- follows Heaviside/Mikusiński in spirit (" $\int = \partial^{-1}$ ").

However, the new calculus must be noncommutative since

$$u'=f, u(0)=0$$
 solved by $A\colon f\mapsto u=\int_0^x\!\!f$,

Build up a new "Mikusiński Calculus" that is

- algebraic (based on differential algebra, no topology),
- treats boundary and initial conditions on a par,
- includes global conditions like $\int_0^1 u = 0$,
- follows Heaviside/Mikusiński in spirit (" $\int = \partial^{-1}$ ").

However, the new calculus must be noncommutative since

$$\begin{aligned} u' &= f, u(0) = 0 \text{ solved by } A \colon f \mapsto u = \int_0^x f, \\ u' &= f, u(1) = 0 \text{ solved by } -B \colon f \mapsto u = -\int_x^1 f, \end{aligned}$$

< 🗗)

Build up a new "Mikusiński Calculus" that is

- algebraic (based on differential algebra, no topology),
- treats boundary and initial conditions on a par,
- includes global conditions like $\int_0^1 u = 0$,
- follows Heaviside/Mikusiński in spirit (" $\int = \partial^{-1}$ ").

However, the new calculus must be noncommutative since

$$u' = f, u(0) = 0$$
 solved by $A: f \mapsto u = \int_0^x f$,
 $u' = f, u(1) = 0$ solved by $-B: f \mapsto u = -\int_x^1 f$,
but A and B do not commute!

< 🗗)

Build up a new "Mikusiński Calculus" that is

- algebraic (based on differential algebra, no topology),
- treats boundary and initial conditions on a par,
- includes global conditions like $\int_0^1 u = 0$,
- follows Heaviside/Mikusiński in spirit (" $\int = \partial^{-1}$ ").

However, the new calculus must be noncommutative since

$$u' = f, u(0) = 0$$
 solved by $A: f \mapsto u = \int_0^x f$,
 $u' = f, u(1) = 0$ solved by $-B: f \mapsto u = -\int_x^1 f$,
but A and B do not commute!

Hence replace commutative by noncommutative localization.

(日)

For example, take $\mathcal{F}^2 := C([a, b] \times [a, b])$.

For example, take $\mathcal{F}^2 := C([a, b] \times [a, b])$.

Duhamel's convolution * replaced by Volterra's composition:

For example, take $\mathcal{F}^2 := C([a, b] \times [a, b])$.

Duhamel's convolution * replaced by Volterra's composition:

$$\mathbb{E}: \mathcal{F}^2 \times \mathcal{F}^2 \to \mathcal{F}^2, \quad k(x,y) \cong \tilde{k}(x,y) := \int_a^b f(x,t) \,\tilde{k}(t,y) \, dt$$

< 🗗)

For example, take $\mathcal{F}^2 := C([a, b] \times [a, b])$.

Duhamel's convolution * replaced by Volterra's composition:

$$\mathbb{K} \colon \mathcal{F}^2 \times \mathcal{F}^2 \to \mathcal{F}^2, \quad k(x,y) \cong \tilde{k}(x,y) \coloneqq \int_a^b f(x,t) \,\tilde{k}(t,y) \, dt$$

Continuous analog of matrix-matrix multiplication.

For example, take $\mathcal{F}^2 := C([a, b] \times [a, b])$.

Duhamel's convolution * replaced by Volterra's composition:

$$\mathbb{K} \colon \mathcal{F}^2 \times \mathcal{F}^2 \to \mathcal{F}^2, \quad k(x,y) \cong \tilde{k}(x,y) \coloneqq \int_a^b f(x,t) \,\tilde{k}(t,y) \, dt$$

Continuous analog of matrix-matrix multiplication.

Similar analog for matrix-vector multiplication:

For example, take $\mathcal{F}^2 := C([a, b] \times [a, b])$.

Duhamel's convolution * replaced by Volterra's composition:

$$\mathbb{K} \colon \mathcal{F}^2 \times \mathcal{F}^2 \to \mathcal{F}^2, \quad k(x,y) \cong \tilde{k}(x,y) \coloneqq \int_a^b f(x,t) \, \tilde{k}(t,y) \, dt$$

Continuous analog of matrix-matrix multiplication.

Similar analog for matrix-vector multiplication:

$$k(x,y) \odot u(x) := \int_a^b k(x,t) u(t) dt$$

For example, take $\mathcal{F}^2 := C([a, b] \times [a, b])$.

Duhamel's convolution * replaced by Volterra's composition:

$$\mathbb{K} \colon \mathcal{F}^2 \times \mathcal{F}^2 \to \mathcal{F}^2, \quad k(x,y) \cong \tilde{k}(x,y) \coloneqq \int_a^b f(x,t) \, \tilde{k}(t,y) \, dt$$

Continuous analog of matrix-matrix multiplication.

Similar analog for matrix-vector multiplication:

$$k(x,y) \odot u(x) := \int_a^b k(x,t) \, u(t) \, dt$$

Rather unwieldy, better stay on operator level (action separate)!

< 🗗 >

• Integro-differential algebra $(\mathcal{F}, \partial, \int)$ with saturated $(\mathcal{E}, \partial) \leq (\mathcal{F}, \partial)$.

- Integro-differential algebra $(\mathcal{F}, \partial, \int)$ with saturated $(\mathcal{E}, \partial) \leq (\mathcal{F}, \partial)$.
- Fix character set Φ and restrict (T, \mathcal{B}) to $T \in \mathcal{F}[\partial]$ and $\mathcal{B} \leq K\Phi$.

- Integro-differential algebra $(\mathcal{F}, \partial, \int)$ with saturated $(\mathcal{E}, \partial) \leq (\mathcal{F}, \partial)$.
- Fix character set Φ and restrict (T, \mathcal{B}) to $T \in \mathcal{F}[\partial]$ and $\mathcal{B} \leq K\Phi$.
- Consider Green's operators in $\mathcal{F}_{\Phi}[\partial, \int]$, hence solutions in \mathcal{F} .

- Integro-differential algebra $(\mathcal{F}, \partial, \int)$ with saturated $(\mathcal{E}, \partial) \leq (\mathcal{F}, \partial)$.
- Fix character set Φ and restrict (T, \mathcal{B}) to $T \in \mathcal{F}[\partial]$ and $\mathcal{B} \leq K\Phi$.
- Consider Green's operators in $\mathcal{F}_{\Phi}[\partial, \int]$, hence solutions in \mathcal{F} .

Lemma

Let (T, \mathcal{B}) be a boundary problem over \mathcal{F} and choose bases β_1, \ldots, β_n for \mathcal{B} and u_1, \ldots, u_n for ker T. Then (T, \mathcal{B}) is regular iff $\operatorname{ord}(T) = \dim \mathcal{B}$ and the evaluation matrix $\beta(u) = [\beta_i(u_j)] \in K^{n \times n}$ is regular.

- Integro-differential algebra $(\mathcal{F}, \partial, \int)$ with saturated $(\mathcal{E}, \partial) \leq (\mathcal{F}, \partial)$.
- Fix character set Φ and restrict (T, \mathcal{B}) to $T \in \mathcal{F}[\partial]$ and $\mathcal{B} \leq K\Phi$.
- Consider Green's operators in $\mathcal{F}_{\Phi}[\partial, \int]$, hence solutions in \mathcal{F} .

Lemma

Let (T, \mathcal{B}) be a boundary problem over \mathcal{F} and choose bases β_1, \ldots, β_n for \mathcal{B} and u_1, \ldots, u_n for ker T. Then (T, \mathcal{B}) is regular iff $\operatorname{ord}(T) = \dim \mathcal{B}$ and the evaluation matrix $\beta(u) = [\beta_i(u_j)] \in K^{n \times n}$ is regular.

Monoid of regular problems: $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$

- Integro-differential algebra $(\mathcal{F}, \partial, \int)$ with saturated $(\mathcal{E}, \partial) \leq (\mathcal{F}, \partial)$.
- Fix character set Φ and restrict (T, \mathcal{B}) to $T \in \mathcal{F}[\partial]$ and $\mathcal{B} \leq K\Phi$.
- Consider Green's operators in $\mathcal{F}_{\Phi}[\partial, \int]$, hence solutions in \mathcal{F} .

Lemma

Let (T, \mathcal{B}) be a boundary problem over \mathcal{F} and choose bases β_1, \ldots, β_n for \mathcal{B} and u_1, \ldots, u_n for ker T. Then (T, \mathcal{B}) is regular iff $\operatorname{ord}(T) = \dim \mathcal{B}$ and the evaluation matrix $\beta(u) = [\beta_i(u_j)] \in K^{n \times n}$ is regular.

Monoid of regular problems: $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ Ring of regular problems: $K\mathcal{E}[\partial]_{\Phi} \equiv \{\lambda_1 (T_1, \mathcal{B}_1) + \dots + \lambda_k (T_k, \mathcal{B}_k)\}$

- Integro-differential algebra $(\mathcal{F}, \partial, \int)$ with saturated $(\mathcal{E}, \partial) \leq (\mathcal{F}, \partial)$.
- Fix character set Φ and restrict (T, \mathcal{B}) to $T \in \mathcal{F}[\partial]$ and $\mathcal{B} \leq K\Phi$.
- Consider Green's operators in $\mathcal{F}_{\Phi}[\partial, \int]$, hence solutions in \mathcal{F} .

Lemma

Let (T, \mathcal{B}) be a boundary problem over \mathcal{F} and choose bases β_1, \ldots, β_n for \mathcal{B} and u_1, \ldots, u_n for ker T. Then (T, \mathcal{B}) is regular iff $\operatorname{ord}(T) = \dim \mathcal{B}$ and the evaluation matrix $\beta(u) = [\beta_i(u_j)] \in K^{n \times n}$ is regular.

Monoid of regular problems: $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ Ring of regular problems: $K\mathcal{E}[\partial]_{\Phi} \equiv \{\lambda_1 (T_1, \mathcal{B}_1) + \dots + \lambda_k (T_k, \mathcal{B}_k)\}$

<u>Side Remark:</u> Regular only means \exists ! but well-posed also needs stability.

- Integro-differential algebra $(\mathcal{F}, \partial, \int)$ with saturated $(\mathcal{E}, \partial) \leq (\mathcal{F}, \partial)$.
- Fix character set Φ and restrict (T, \mathcal{B}) to $T \in \mathcal{F}[\partial]$ and $\mathcal{B} \leq K\Phi$.
- Consider Green's operators in $\mathcal{F}_{\Phi}[\partial, \int]$, hence solutions in \mathcal{F} .

Lemma

Let (T, \mathcal{B}) be a boundary problem over \mathcal{F} and choose bases β_1, \ldots, β_n for \mathcal{B} and u_1, \ldots, u_n for ker T. Then (T, \mathcal{B}) is regular iff $\operatorname{ord}(T) = \dim \mathcal{B}$ and the evaluation matrix $\beta(u) = [\beta_i(u_j)] \in K^{n \times n}$ is regular.

Monoid of regular problems: $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ Ring of regular problems: $K\mathcal{E}[\partial]_{\Phi} \equiv \{\lambda_1 (T_1, \mathcal{B}_1) + \dots + \lambda_k (T_k, \mathcal{B}_k)\}$

<u>Side Remark</u>: Regular only means \exists ! but well-posed also needs stability. Regular but ill-posed:

- Integro-differential algebra $(\mathcal{F}, \partial, \int)$ with saturated $(\mathcal{E}, \partial) \leq (\mathcal{F}, \partial)$.
- Fix character set Φ and restrict (T, \mathcal{B}) to $T \in \mathcal{F}[\partial]$ and $\mathcal{B} \leq K\Phi$.
- Consider Green's operators in $\mathcal{F}_{\Phi}[\partial, \int]$, hence solutions in \mathcal{F} .

Lemma

Let (T, \mathcal{B}) be a boundary problem over \mathcal{F} and choose bases β_1, \ldots, β_n for \mathcal{B} and u_1, \ldots, u_n for ker T. Then (T, \mathcal{B}) is regular iff $\operatorname{ord}(T) = \dim \mathcal{B}$ and the evaluation matrix $\beta(u) = [\beta_i(u_j)] \in K^{n \times n}$ is regular.

Monoid of regular problems: $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ Ring of regular problems: $K\mathcal{E}[\partial]_{\Phi} \equiv \{\lambda_1 (T_1, \mathcal{B}_1) + \dots + \lambda_k (T_k, \mathcal{B}_k)\}$

<u>Side Remark</u>: Regular only means \exists ! but well-posed also needs stability. Regular but ill-posed:

$$u' - u = f$$
$$u''(0) = 0$$

- Integro-differential algebra $(\mathcal{F}, \partial, \int)$ with saturated $(\mathcal{E}, \partial) \leq (\mathcal{F}, \partial)$.
- Fix character set Φ and restrict (T, \mathcal{B}) to $T \in \mathcal{F}[\partial]$ and $\mathcal{B} \leq K\Phi$.
- Consider Green's operators in $\mathcal{F}_{\Phi}[\partial, \int]$, hence solutions in \mathcal{F} .

Lemma

Let (T, \mathcal{B}) be a boundary problem over \mathcal{F} and choose bases β_1, \ldots, β_n for \mathcal{B} and u_1, \ldots, u_n for ker T. Then (T, \mathcal{B}) is regular iff $\operatorname{ord}(T) = \dim \mathcal{B}$ and the evaluation matrix $\beta(u) = [\beta_i(u_j)] \in K^{n \times n}$ is regular.

Monoid of regular problems: $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ Ring of regular problems: $K\mathcal{E}[\partial]_{\Phi} \equiv \{\lambda_1 (T_1, \mathcal{B}_1) + \dots + \lambda_k (T_k, \mathcal{B}_k)\}$

<u>Side Remark:</u> Regular only means \exists ! but well-posed also needs stability. Regular but ill-posed: Green's operator:

u' - u = fu''(0) = 0

$$(D-1, [LD^2])^{-1} = e^x A e^{-x} - e^x L - e^x L D \in \mathcal{F}_{\Phi}[\partial, \int]$$

- Integro-differential algebra $(\mathcal{F}, \partial, \int)$ with saturated $(\mathcal{E}, \partial) \leq (\mathcal{F}, \partial)$.
- Fix character set Φ and restrict (T, \mathcal{B}) to $T \in \mathcal{F}[\partial]$ and $\mathcal{B} \leq K\Phi$.
- Consider Green's operators in $\mathcal{F}_{\Phi}[\partial, \int]$, hence solutions in \mathcal{F} .

Lemma

Let (T, \mathcal{B}) be a boundary problem over \mathcal{F} and choose bases β_1, \ldots, β_n for \mathcal{B} and u_1, \ldots, u_n for ker T. Then (T, \mathcal{B}) is regular iff $\operatorname{ord}(T) = \dim \mathcal{B}$ and the evaluation matrix $\beta(u) = [\beta_i(u_j)] \in K^{n \times n}$ is regular.

Monoid of regular problems: $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ Ring of regular problems: $K\mathcal{E}[\partial]_{\Phi} \equiv \{\lambda_1 (T_1, \mathcal{B}_1) + \dots + \lambda_k (T_k, \mathcal{B}_k)\}$

<u>Side Remark:</u> Regular only means \exists ! but well-posed also needs stability. Regular but ill-posed: Green's operator:

u'-u=f	
u''(0) = 0	

$$(D-1, [LD^2])^{-1} = e^x A e^{-x} - e^x L - e^x L D \in \mathcal{F}_{\Phi}[\partial, \int]$$
$$u(x) = \int_0^x e^{x-\xi} f(\xi) \, d\xi - (f(0) + f'(0)) \, e^x$$

Classical Ring of Fractions

Let R be a ring, $S \subseteq R$. Then $\varepsilon \colon R \to S^{-1}R$ is a left ring of fractions if

- (a) all elements $\varepsilon(s)$ with $s \in S$ are invertible in $S^{-1}R$,
- (b) every element of $S^{-1}R$ is $\varepsilon(s)^{-1}\varepsilon(r)$ for some $s \in S$, $r \in R$,
- (c) and the kernel of ε is given by $\{r \in R \mid \exists s \in S : sr = 0\}$.

The ring homomorphism ε is called the extension.

Let R be a ring, $S \subseteq R$. Then $\varepsilon \colon R \to S^{-1}R$ is a left ring of fractions if

- (a) all elements $\varepsilon(s)$ with $s \in S$ are invertible in $S^{-1}R$,
- (b) every element of $S^{-1}R$ is $\varepsilon(s)^{-1}\varepsilon(r)$ for some $s \in S$, $r \in R$,
- (c) and the kernel of ε is given by $\{r \in R \mid \exists s \in S \colon sr = 0\}$.

The ring homomorphism ε is called the extension. Injective iff R is a domain.

Let R be a ring, $S \subseteq R$. Then $\varepsilon \colon R \to S^{-1}R$ is a left ring of fractions if

- (a) all elements $\varepsilon(s)$ with $s \in S$ are invertible in $S^{-1}R$,
- (b) every element of $S^{-1}R$ is $\varepsilon(s)^{-1}\varepsilon(r)$ for some $s \in S$, $r \in R$,
- (c) and the kernel of ε is given by $\{r \in R \mid \exists s \in S \colon sr = 0\}$.

The ring homomorphism ε is called the extension. Injective iff R is a domain.

Caveat: Left and right are distinct!

Let R be a ring, $S \subseteq R$. Then $\varepsilon \colon R \to S^{-1}R$ is a left ring of fractions if

- (a) all elements $\varepsilon(s)$ with $s \in S$ are invertible in $S^{-1}R$,
- (b) every element of $S^{-1}R$ is $\varepsilon(s)^{-1}\varepsilon(r)$ for some $s \in S$, $r \in R$,
- (c) and the kernel of ε is given by $\{r \in R \mid \exists s \in S \colon sr = 0\}$.

The ring homomorphism ε is called the extension. Injective iff R is a domain.

Caveat: Left and right are distinct!

Clearly, S needs to be multiplicative.

Let R be a ring, $S \subseteq R$. Then $\varepsilon \colon R \to S^{-1}R$ is a left ring of fractions if

- (a) all elements $\varepsilon(s)$ with $s \in S$ are invertible in $S^{-1}R$,
- (b) every element of $S^{-1}R$ is $\varepsilon(s)^{-1}\varepsilon(r)$ for some $s \in S$, $r \in R$,
- (c) and the kernel of ε is given by $\{r \in R \mid \exists s \in S \colon sr = 0\}$.

The ring homomorphism ε is called the extension. Injective iff R is a domain.

Caveat: Left and right are distinct!

Clearly, S needs to be multiplicative.

Given $r \in R, s \in S$ we need $\tilde{r} \in R, \tilde{s} \in S$ with $rs^{-1} = \tilde{s}^{-1}\tilde{r}$:

Let R be a ring, $S \subseteq R$. Then $\varepsilon \colon R \to S^{-1}R$ is a left ring of fractions if

- (a) all elements $\varepsilon(s)$ with $s \in S$ are invertible in $S^{-1}R$,
- (b) every element of $S^{-1}R$ is $\varepsilon(s)^{-1}\varepsilon(r)$ for some $s \in S$, $r \in R$,
- (c) and the kernel of ε is given by $\{r \in R \mid \exists s \in S \colon sr = 0\}$.

The ring homomorphism ε is called the extension. Injective iff R is a domain.

Caveat: Left and right are distinct!

Clearly, S needs to be multiplicative.

Given $r \in R, s \in S$ we need $\tilde{r} \in R, \tilde{s} \in S$ with $rs^{-1} = \tilde{s}^{-1}\tilde{r}$:

S is left permutable if $(\forall r \in R)(\forall s \in S)$ $Sr \cap Rs \neq \emptyset$

Let R be a ring, $S \subseteq R$. Then $\varepsilon \colon R \to S^{-1}R$ is a left ring of fractions if

- (a) all elements $\varepsilon(s)$ with $s \in S$ are invertible in $S^{-1}R$,
- (b) every element of $S^{-1}R$ is $\varepsilon(s)^{-1}\varepsilon(r)$ for some $s \in S$, $r \in R$,
- (c) and the kernel of ε is given by $\{r \in R \mid \exists s \in S \colon sr = 0\}$.

The ring homomorphism ε is called the extension. Injective iff R is a domain.

Caveat: Left and right are distinct!

Clearly, S needs to be multiplicative.

Given $r \in R, s \in S$ we need $\tilde{r} \in R, \tilde{s} \in S$ with $rs^{-1} = \tilde{s}^{-1}\tilde{r}$:

S is left permutable if $(\forall r \in R)(\forall s \in S) Sr \cap Rs \neq \emptyset$

If rs = 0 we infer $\varepsilon(r) = 0$ and hence $0 \in Sr$ by (c):

Let R be a ring, $S \subseteq R$. Then $\varepsilon \colon R \to S^{-1}R$ is a left ring of fractions if

- (a) all elements $\varepsilon(s)$ with $s \in S$ are invertible in $S^{-1}R$,
- (b) every element of $S^{-1}R$ is $\varepsilon(s)^{-1}\varepsilon(r)$ for some $s \in S$, $r \in R$,
- (c) and the kernel of ε is given by $\{r \in R \mid \exists s \in S \colon sr = 0\}$.

The ring homomorphism ε is called the extension. Injective iff R is a domain.

Caveat: Left and right are distinct!

Clearly, S needs to be multiplicative.

Given $r \in R, s \in S$ we need $\tilde{r} \in R, \tilde{s} \in S$ with $rs^{-1} = \tilde{s}^{-1}\tilde{r}$:

S is left permutable if $(\forall r \in R)(\forall s \in S) Sr \cap Rs \neq \emptyset$

If rs = 0 we infer $\varepsilon(r) = 0$ and hence $0 \in Sr$ by (c):

S is left reversible if $(\forall r \in R) (0 \in rS \Rightarrow 0 \in Sr)$

< (2) >

Theorem (Ore 1931)

Let R be a ring. Then for any $S \subseteq R$, the left ring of fractions $S^{-1}R$ exists iff S is multiplicative, left permutable and left reversible.

Let R be a ring. Then for any $S \subseteq R$, the left ring of fractions $S^{-1}R$ exists iff S is multiplicative, left permutable and left reversible.

Our goal is to take $R = K\mathcal{E}[\partial]_{\Phi}$ and $S = \mathcal{E}[\partial]_{\Phi}$.

Let R be a ring. Then for any $S \subseteq R$, the left ring of fractions $S^{-1}R$ exists iff S is multiplicative, left permutable and left reversible.

Our goal is to take $R = K\mathcal{E}[\partial]_{\Phi}$ and $S = \mathcal{E}[\partial]_{\Phi}$. Somewhat easier:

Let R be a ring. Then for any $S \subseteq R$, the left ring of fractions $S^{-1}R$ exists iff S is multiplicative, left permutable and left reversible.

Our goal is to take $R = K\mathcal{E}[\partial]_{\Phi}$ and $S = \mathcal{E}[\partial]_{\Phi}$. Somewhat easier:

Lemma

If S is a left Ore monoid, the left ring of fractions $S^{-1}(KS)$ exists.

Let R be a ring. Then for any $S \subseteq R$, the left ring of fractions $S^{-1}R$ exists iff S is multiplicative, left permutable and left reversible.

Our goal is to take $R = K\mathcal{E}[\partial]_{\Phi}$ and $S = \mathcal{E}[\partial]_{\Phi}$. Somewhat easier:

Lemma

If S is a left Ore monoid, the left ring of fractions $S^{-1}(KS)$ exists.

<u>Proof idea:</u> Find $\tilde{s}, \tilde{s}_1, \ldots, \tilde{s}_n \in S$ with

 $\tilde{s}(\lambda_1 s_1 + \dots + \lambda_n s_n) = (\lambda_1 \tilde{s}_1 + \dots + \lambda_n \tilde{s}_n)s.$

Let R be a ring. Then for any $S \subseteq R$, the left ring of fractions $S^{-1}R$ exists iff S is multiplicative, left permutable and left reversible.

Our goal is to take $R = K\mathcal{E}[\partial]_{\Phi}$ and $S = \mathcal{E}[\partial]_{\Phi}$. Somewhat easier:

Lemma

If S is a left Ore monoid, the left ring of fractions $S^{-1}(KS)$ exists.

Proof idea: Find
$$\tilde{s}, \tilde{s}_1, \dots, \tilde{s}_n \in S$$
 with
 $\tilde{s}(\lambda_1 s_1 + \dots + \lambda_n s_n) = (\lambda_1 \tilde{s}_1 + \dots + \lambda_n \tilde{s}_n)s.$
 $\tilde{l}_n s_1 = \tilde{r}_1 s$
 $\tilde{l}_{n-1}(\tilde{l}_n s_2) = \tilde{r}_2 s$
 \vdots \vdots
 $\tilde{l}_1(\tilde{l}_2 \cdots \tilde{l}_n s_n) = \tilde{r}_n s$

Let R be a ring. Then for any $S \subseteq R$, the left ring of fractions $S^{-1}R$ exists iff S is multiplicative, left permutable and left reversible.

Our goal is to take $R = K\mathcal{E}[\partial]_{\Phi}$ and $S = \mathcal{E}[\partial]_{\Phi}$. Somewhat easier:

Lemma

If S is a left Ore monoid, the left ring of fractions $S^{-1}(KS)$ exists.

$$\begin{array}{ll} \underline{\operatorname{Proof idea:}} \ \mathrm{Find} \ \tilde{s}, \tilde{s}_1, \dots, \tilde{s}_n \in S \ \text{with} \\ \\ \tilde{s}(\lambda_1 s_1 + \dots + \lambda_n s_n) = (\lambda_1 \tilde{s}_1 + \dots + \lambda_n \tilde{s}_n) s. \\ \\ \tilde{l}_n s_1 = \tilde{r}_1 s & \xrightarrow{\boldsymbol{\cdot} \lambda_1 \tilde{l}_1 \dots \tilde{l}_{n-1}} & \tilde{s}(\lambda_1 s_1) = (\lambda_1 \tilde{s}_1) s \\ \\ \tilde{l}_{n-1}(\tilde{l}_n s_2) = \tilde{r}_2 s & \xrightarrow{\boldsymbol{\cdot} \lambda_2 \tilde{l}_2 \dots \tilde{l}_{n-2}} & \tilde{s}(\lambda_2 s_2) = (\lambda_2 \tilde{s}_2) s \\ \\ \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{l}_1(\tilde{l}_2 \dots \tilde{l}_n s_n) = \tilde{r}_n s & \xrightarrow{\boldsymbol{\cdot} \lambda_n} & \tilde{s}(\lambda_n s_n) = (\lambda_n \tilde{s}_n) s \end{array}$$

Recall multiplication of boundary problems: $(T,\mathcal{B})(\tilde{T},\tilde{\mathcal{B}})=(T\tilde{T},\mathcal{B}\tilde{T}+\mathcal{B})$

Recall multiplication of boundary problems: $(T, \mathcal{B})(\tilde{T}, \tilde{\mathcal{B}}) = (T\tilde{T}, \mathcal{B}\tilde{T} + \mathcal{B})$

Projection onto first factor $\longrightarrow T, \tilde{T}, \dots$ must be left Ore.

Recall multiplication of boundary problems: $(T, \mathcal{B})(\tilde{T}, \tilde{\mathcal{B}}) = (T\tilde{T}, \mathcal{B}\tilde{T} + \mathcal{B})$

Projection onto first factor $\longrightarrow T, \tilde{T}, \ldots$ must be left Ore.

Definition

A differential algebra (\mathcal{E}, ∂) is called left extensible if the monoid of monic differential operators in $\mathcal{E}[\partial]$ is left Ore.

Recall multiplication of boundary problems: $(T, \mathcal{B})(\tilde{T}, \tilde{\mathcal{B}}) = (T\tilde{T}, \mathcal{B}\tilde{T} + \mathcal{B})$

Projection onto first factor $\longrightarrow T, \tilde{T}, \dots$ must be left Ore.

Definition

A differential algebra (\mathcal{E}, ∂) is called left extensible if the monoid of monic differential operators in $\mathcal{E}[\partial]$ is left Ore.

Proposition

Any left Noetherian differential domain (\mathcal{E},∂) is left extensible.

Recall multiplication of boundary problems: $(T, \mathcal{B})(\tilde{T}, \tilde{\mathcal{B}}) = (T\tilde{T}, \mathcal{B}\tilde{T} + \mathcal{B})$

Projection onto first factor $\longrightarrow T, \tilde{T}, \dots$ must be left Ore.

Definition

A differential algebra (\mathcal{E}, ∂) is called **left extensible** if the monoid of <u>monic</u> differential operators in $\mathcal{E}[\partial]$ is left Ore.

Proposition

Any left Noetherian differential domain (\mathcal{E}, ∂) is left extensible.

• Euclidean domains like K(x) are not integro-differential.

Recall multiplication of boundary problems: $(T, \mathcal{B})(\tilde{T}, \tilde{\mathcal{B}}) = (T\tilde{T}, \mathcal{B}\tilde{T} + \mathcal{B})$

Projection onto first factor $\longrightarrow T, \tilde{T}, \dots$ must be left Ore.

Definition

A differential algebra (\mathcal{E}, ∂) is called left extensible if the monoid of monic differential operators in $\mathcal{E}[\partial]$ is left Ore.

Proposition

Any left Noetherian differential domain (\mathcal{E}, ∂) is left extensible.

- Euclidean domains like K(x) are not integro-differential.
- Typical choice $\mathcal{E} = K[x]$ so that $\mathcal{E}[\partial] = A_1(K)$.

Recall multiplication of boundary problems: $(T, \mathcal{B})(\tilde{T}, \tilde{\mathcal{B}}) = (T\tilde{T}, \mathcal{B}\tilde{T} + \mathcal{B})$

Projection onto first factor $\longrightarrow T, \tilde{T}, \dots$ must be left Ore.

Definition

A differential algebra (\mathcal{E}, ∂) is called left extensible if the monoid of monic differential operators in $\mathcal{E}[\partial]$ is left Ore.

Proposition

Any left Noetherian differential domain (\mathcal{E}, ∂) is left extensible.

- Euclidean domains like K(x) are not integro-differential.
- Typical choice $\mathcal{E} = K[x]$ so that $\mathcal{E}[\partial] = A_1(K)$. Also here $K[x] \subset K(x)$ does not help directly.

Recall multiplication of boundary problems: $(T, \mathcal{B})(\tilde{T}, \tilde{\mathcal{B}}) = (T\tilde{T}, \mathcal{B}\tilde{T} + \mathcal{B})$

Projection onto first factor $\longrightarrow T, \tilde{T}, \dots$ must be left Ore.

Definition

A differential algebra (\mathcal{E}, ∂) is called **left extensible** if the monoid of <u>monic</u> differential operators in $\mathcal{E}[\partial]$ is left Ore.

Proposition

Any left Noetherian differential domain (\mathcal{E}, ∂) is left extensible.

- Euclidean domains like K(x) are not integro-differential.
- Typical choice $\mathcal{E} = K[x]$ so that $\mathcal{E}[\partial] = A_1(K)$. Also here $K[x] \subset K(x)$ does not help directly.
- Also $\mathcal{E} = C^{\omega}(\mathbb{R})$ works.

< 🗗 >

Definition

A Stieltjes condition $\beta \in \mathcal{F}_{\Phi}[\partial, \int]$ is called umbral if $\beta(x^m) \neq 0$ for some monomial $x^m \in K[x]$.

Definition

A Stieltjes condition $\beta \in \mathcal{F}_{\Phi}[\partial, \int]$ is called umbral if $\beta(x^m) \neq 0$ for some monomial $x^m \in K[x]$. Furthermore, we call Φ an umbral character set if every nondegenerate Stieltjes condition is umbral.

Definition

A Stieltjes condition $\beta \in \mathcal{F}_{\Phi}[\partial, \int]$ is called **umbral** if $\beta(x^m) \neq 0$ for some monomial $x^m \in K[x]$. Furthermore, we call Φ an **umbral character set** if every nondegenerate Stieltjes condition is umbral.

A boundary condition is degenerate if it acts as 0.

Definition

A Stieltjes condition $\beta \in \mathcal{F}_{\Phi}[\partial, \int]$ is called **umbral** if $\beta(x^m) \neq 0$ for some monomial $x^m \in K[x]$. Furthermore, we call Φ an **umbral character set** if every nondegenerate Stieltjes condition is umbral.

A boundary condition is degenerate if it acts as 0. Note: This is possible in $C^{\infty}(\mathbb{R})$ but not in $C^{\omega}(\mathbb{R})$.

Definition

A Stieltjes condition $\beta \in \mathcal{F}_{\Phi}[\partial, \int]$ is called umbral if $\beta(x^m) \neq 0$ for some monomial $x^m \in K[x]$. Furthermore, we call Φ an umbral character set if every nondegenerate Stieltjes condition is umbral.

A boundary condition is degenerate if it acts as 0. Note: This is possible in $C^{\infty}(\mathbb{R})$ but not in $C^{\omega}(\mathbb{R})$.

Loosely speaking, "most" boundary conditions are umbral.

Definition

A Stieltjes condition $\beta \in \mathcal{F}_{\Phi}[\partial, \int]$ is called **umbral** if $\beta(x^m) \neq 0$ for some monomial $x^m \in K[x]$. Furthermore, we call Φ an **umbral character set** if every nondegenerate Stieltjes condition is umbral.

A boundary condition is **degenerate** if it acts as 0. Note: This is possible in $C^{\infty}(\mathbb{R})$ but not in $C^{\omega}(\mathbb{R})$.

Loosely speaking, "most" boundary conditions are umbral. Local conditions unproblematic, global conditions need (induction):

Definition

A Stieltjes condition $\beta \in \mathcal{F}_{\Phi}[\partial, \int]$ is called **umbral** if $\beta(x^m) \neq 0$ for some monomial $x^m \in K[x]$. Furthermore, we call Φ an **umbral character set** if every nondegenerate Stieltjes condition is umbral.

A boundary condition is **degenerate** if it acts as 0. <u>Note</u>: This is possible in $C^{\infty}(\mathbb{R})$ but not in $C^{\omega}(\mathbb{R})$.

Loosely speaking, "most" boundary conditions are umbral. Local conditions unproblematic, global conditions need (induction):

Lemma (Antiderivative Leibniz Rule)

In any integro-differential algebra $(\mathcal{F},\partial,\int)$, we have the formula

$$\int fx^{n} = \sum_{k=0}^{n} (-1)^{k} n^{\underline{k}} x^{n-k} f^{(-k-1)}$$

for all $f \in \mathcal{F}$. Here we define $f^{(0)} = f$ and $f^{(-k-1)} = \int f^{(-k)}$.

Motivation

- 2 Classical Mikusiński Calculus
- Towards A Noncommutative Mikusiński Calculus
- Umbral Character Sets
- 6 Ring of Methorious Operators
- 6 Module of Methorious Functions

Conclusion

(日)

Lemma

Let
$$\beta = \varphi \int f$$
 be a global condition in $\mathcal{F}_{\Phi}[\partial, \int]$. Then $\beta = \varphi \tilde{\beta}$ with
 $\tilde{\beta} = \sum_{k=0}^{\infty} b_k \partial^k : \quad K[x] \to K[x]$

is a shift-invariant operator with coefficients $b_k = (-1)^k \varphi(f^{(-k-1)})$.

Lemma

Let
$$\beta = \varphi \int f$$
 be a global condition in $\mathcal{F}_{\Phi}[\partial, \int]$. Then $\beta = \varphi \tilde{\beta}$ with
 $\tilde{\beta} = \sum_{k=0}^{\infty} b_k \partial^k : \quad K[x] \to K[x]$

is a shift-invariant operator with coefficients $b_k = (-1)^k \varphi(f^{(-k-1)})$.

<u>Proof</u>: Shift invariance of $\tilde{\beta}$ known from Umbral Calculus

Lemma

Let
$$\beta = \varphi \int f$$
 be a global condition in $\mathcal{F}_{\Phi}[\partial, \int]$. Then $\beta = \varphi \tilde{\beta}$ with
 $\tilde{\beta} = \sum_{k=0}^{\infty} b_k \partial^k : \quad K[x] \to K[x]$

is a shift-invariant operator with coefficients $b_k = (-1)^k \varphi(f^{(-k-1)})$.

<u>Proof:</u> Shift invariance of $\tilde{\beta}$ known from Umbral Calculus Anti-Leibniz: $\beta(x^n) = \sum_k b_k \varphi(n^{\underline{k}} x^{n-k}) = \sum_k b_k \varphi \partial^k(x^n)$

Lemma

Let
$$\beta = \varphi \int f$$
 be a global condition in $\mathcal{F}_{\Phi}[\partial, \int]$. Then $\beta = \varphi \tilde{\beta}$ with
 $\tilde{\beta} = \sum_{k=0}^{\infty} b_k \partial^k : \quad K[x] \to K[x]$

is a shift-invariant operator with coefficients $b_k = (-1)^k \varphi(f^{(-k-1)})$.

<u>Proof:</u> Shift invariance of $\tilde{\beta}$ known from Umbral Calculus Anti-Leibniz: $\beta(x^n) = \sum_k b_k \varphi(n^{\underline{k}} x^{n-k}) = \sum_k b_k \varphi \partial^k(x^n)$

Moral: Over K[x] there is no need for \int .

Lemma

Let
$$\beta = \varphi \int f$$
 be a global condition in $\mathcal{F}_{\Phi}[\partial, \int]$. Then $\beta = \varphi \tilde{\beta}$ with
 $\tilde{\beta} = \sum_{k=0}^{\infty} b_k \partial^k : \quad K[x] \to K[x]$

is a shift-invariant operator with coefficients $b_k = (-1)^k \varphi(f^{(-k-1)})$.

<u>Proof:</u> Shift invariance of $\tilde{\beta}$ known from Umbral Calculus Anti-Leibniz: $\beta(x^n) = \sum_k b_k \varphi(n^{\underline{k}} x^{n-k}) = \sum_k b_k \varphi \partial^k(x^n)$

Moral: Over K[x] there is no need for \int . But need upper bound ∞ in sum, unlike $T \in K[\partial]$.

Every Stieltjes condition β induces via $\beta = \mathbf{E}\tilde{\beta}$ a shift-invariant operator

$$\tilde{\beta} = \sum_{k=0}^{\infty} b_k \partial^k : \quad K[x] \to K[x]$$

with coefficients $b_k = \beta(x^k/k!)$. Clearly, $\tilde{\beta}$ is nontrivial iff β is umbral.

Every Stieltjes condition β induces via $\beta = \mathbf{E}\tilde{\beta}$ a shift-invariant operator $\tilde{\beta} = \sum_{k=0}^{\infty} b_k \partial^k : \quad K[x] \to K[x]$

with coefficients $b_k = \beta(x^k/k!)$. Clearly, $\tilde{\beta}$ is nontrivial iff β is umbral.

Proof: Recall Stieltjes condition normal form and apply Lemma:

$$\beta = \sum_{\varphi \in \Phi} \varphi \left(\sum_{i \in \mathbb{N}} a_{\varphi,i} \,\partial^i + \int f_\varphi \right)$$

Every Stieltjes condition β induces via $\beta = \mathbf{E}\tilde{\beta}$ a shift-invariant operator $\tilde{\beta} = \sum_{k=0}^{\infty} b_k \partial^k : \quad K[x] \to K[x]$

with coefficients $b_k = \beta(x^k/k!)$. Clearly, $\tilde{\beta}$ is nontrivial iff β is umbral.

Proof: Recall Stieltjes condition normal form and apply Lemma:

$$\beta = \sum_{\varphi \in \Phi} \varphi \left(\sum_{i \in \mathbb{N}} a_{\varphi,i} \, \partial^i + \int f_\varphi \right) = \sum_{\varphi \in \Phi} \varphi \left(T_\varphi + \tilde{\beta}_\varphi \right)$$

Every Stieltjes condition β induces via $\beta = \mathbf{E}\tilde{\beta}$ a shift-invariant operator $\tilde{\beta} = \sum_{k=0}^{\infty} b_k \partial^k : \quad K[x] \to K[x]$

with coefficients $b_k = \beta(x^k/k!)$. Clearly, $\tilde{\beta}$ is nontrivial iff β is umbral.

Proof: Recall Stieltjes condition normal form and apply Lemma:

$$\beta = \sum_{\varphi \in \Phi} \varphi \left(\sum_{i \in \mathbb{N}} a_{\varphi,i} \partial^i + \int f_\varphi \right) = \sum_{\varphi \in \Phi} \varphi \left(T_\varphi + \tilde{\beta}_\varphi \right)$$
$$= \sum_{\varphi \in \Phi} \mathbf{E} \underbrace{S_\varphi (T_\varphi + \tilde{\beta}_\varphi)}_{\tilde{\beta}}$$

Shift operator $S_{\varphi} \colon f(x) \mapsto f(x+\bar{\varphi})$ with $\bar{\varphi} := \varphi(x) \in K$

< 🗗 >

In the smooth setting $C^{\infty}(\mathbb{R})$, the point evaluations $u \mapsto u(\varphi)$ for $\varphi \in \mathbb{R}$ form an umbral character set.

In the smooth setting $C^{\infty}(\mathbb{R})$, the point evaluations $u \mapsto u(\varphi)$ for $\varphi \in \mathbb{R}$ form an umbral character set.

• Consider
$$\beta(u) = \sum_{\varphi} \sum_{i} a_{\varphi,i} u^{(i)}(\varphi) + \sum_{\varphi} \int_{0}^{\varphi} f_{\varphi}(\xi) u(\xi) d\xi.$$

In the smooth setting $C^{\infty}(\mathbb{R})$, the point evaluations $u \mapsto u(\varphi)$ for $\varphi \in \mathbb{R}$ form an umbral character set.

- Consider $\beta(u) = \sum_{\varphi} \sum_{i} a_{\varphi,i} u^{(i)}(\varphi) + \sum_{\varphi} \int_{0}^{\varphi} f_{\varphi}(\xi) u(\xi) d\xi.$
- Since β is nondegenerate, $\beta(u) \neq 0$ for some $u \in C^{\infty}(\mathbb{R})$.

In the smooth setting $C^{\infty}(\mathbb{R})$, the point evaluations $u \mapsto u(\varphi)$ for $\varphi \in \mathbb{R}$ form an umbral character set.

- Consider $\beta(u) = \sum_{\varphi} \sum_{i} a_{\varphi,i} u^{(i)}(\varphi) + \sum_{\varphi} \int_{0}^{\varphi} f_{\varphi}(\xi) u(\xi) d\xi.$
- Since β is nondegenerate, $\beta(u) \neq 0$ for some $u \in C^{\infty}(\mathbb{R})$.
- Reduce to $C^k(K)$ for $k = \max\{i\}$ and $K = [-\max |\varphi|, \max |\varphi|]$.

In the smooth setting $C^{\infty}(\mathbb{R})$, the point evaluations $u \mapsto u(\varphi)$ for $\varphi \in \mathbb{R}$ form an umbral character set.

- Consider $\beta(u) = \sum_{\varphi} \sum_{i} a_{\varphi,i} u^{(i)}(\varphi) + \sum_{\varphi} \int_{0}^{\varphi} f_{\varphi}(\xi) u(\xi) d\xi.$
- Since β is nondegenerate, $\beta(u) \neq 0$ for some $u \in C^{\infty}(\mathbb{R})$.
- Reduce to $C^k(K)$ for $k = \max\{i\}$ and $K = [-\max |\varphi|, \max |\varphi|]$.
- Observe that $\beta \colon C^k(K) \to \mathbb{R}$ is continuous.

In the smooth setting $C^{\infty}(\mathbb{R})$, the point evaluations $u \mapsto u(\varphi)$ for $\varphi \in \mathbb{R}$ form an umbral character set.

- Consider $\beta(u) = \sum_{\varphi} \sum_{i} a_{\varphi,i} u^{(i)}(\varphi) + \sum_{\varphi} \int_{0}^{\varphi} f_{\varphi}(\xi) u(\xi) d\xi.$
- Since β is nondegenerate, $\beta(u) \neq 0$ for some $u \in C^{\infty}(\mathbb{R})$.
- Reduce to $C^k(K)$ for $k = \max\{i\}$ and $K = [-\max |\varphi|, \max |\varphi|]$.
- Observe that $\beta \colon C^k(K) \to \mathbb{R}$ is continuous.
- Use Weierstrass-Nachbin theorem on $C^k(K)$ to obtain $(p_n) \to u$.

In the smooth setting $C^{\infty}(\mathbb{R})$, the point evaluations $u \mapsto u(\varphi)$ for $\varphi \in \mathbb{R}$ form an umbral character set.

- Consider $\beta(u) = \sum_{\varphi} \sum_{i} a_{\varphi,i} u^{(i)}(\varphi) + \sum_{\varphi} \int_{0}^{\varphi} f_{\varphi}(\xi) u(\xi) d\xi.$
- Since β is nondegenerate, $\beta(u) \neq 0$ for some $u \in C^{\infty}(\mathbb{R})$.
- Reduce to $C^k(K)$ for $k = \max\{i\}$ and $K = [-\max |\varphi|, \max |\varphi|]$.
- Observe that $\beta \colon C^k(K) \to \mathbb{R}$ is continuous.
- Use Weierstrass-Nachbin theorem on $C^k(K)$ to obtain $(p_n) \to u$.
- Conclude $\beta(x^m) \neq 0$ for some m.

In the smooth setting $C^{\infty}(\mathbb{R})$, the point evaluations $u \mapsto u(\varphi)$ for $\varphi \in \mathbb{R}$ form an umbral character set.

<u>Proof:</u>

- Consider $\beta(u) = \sum_{\varphi} \sum_{i} a_{\varphi,i} u^{(i)}(\varphi) + \sum_{\varphi} \int_{0}^{\varphi} f_{\varphi}(\xi) u(\xi) d\xi.$
- Since β is nondegenerate, $\beta(u) \neq 0$ for some $u \in C^{\infty}(\mathbb{R})$.
- Reduce to $C^k(K)$ for $k = \max\{i\}$ and $K = [-\max |\varphi|, \max |\varphi|]$.
- Observe that $\beta \colon C^k(K) \to \mathbb{R}$ is continuous.
- Use Weierstrass-Nachbin theorem on $C^k(K)$ to obtain $(p_n) \to u$.
- Conclude $\beta(x^m) \neq 0$ for some m.

Result applies to subalgebras like $C^{\omega}(\mathbb{R})$ and exponential polynomials.

< (2) >

Two natural requirements:

(日)

Two natural requirements:

• We call Φ separative if $\bar{\varphi} = \bar{\chi}$ implies $\varphi = \chi$, where $\bar{\psi} := \psi(x) \in K$.

- We call Φ separative if $\bar{\varphi} = \bar{\chi}$ implies $\varphi = \chi$, where $\bar{\psi} := \psi(x) \in K$.
 - \rhd Otherwise $\varphi-\chi$ is nondegenerate but not umbral.

- We call Φ separative if φ
 = χ
 implies φ = χ, where ψ
 := ψ(x) ∈ K.
 ▷ Otherwise φ χ is nondegenerate but not umbral.
- A character φ is called complete if $f \perp_{\varphi} K[x] \Rightarrow f = 0$ with respect to bilinear form $\langle f | g \rangle = \varphi \int f g$.

- We call Φ separative if φ
 = χ
 implies φ = χ, where ψ
 := ψ(x) ∈ K.
 ▷ Otherwise φ χ is nondegenerate but not umbral.
- A character φ is called complete if $f \perp_{\varphi} K[x] \Rightarrow f = 0$ with respect to bilinear form $\langle f | g \rangle = \varphi \int f g$.
 - \triangleright Every φ -orthonormal basis is complete in pre-Hilbert space (for positive definite $\langle \cdot | \cdot \rangle_{\varphi}$ over $K = \mathbb{R}, \mathbb{C}$).

- We call Φ separative if φ
 = χ
 implies φ = χ, where ψ
 := ψ(x) ∈ K.
 ▷ Otherwise φ χ is nondegenerate but not umbral.
- A character φ is called complete if $f \perp_{\varphi} K[x] \Rightarrow f = 0$ with respect to bilinear form $\langle f | g \rangle = \varphi \int f g$.
 - \triangleright Every φ -orthonormal basis is complete in pre-Hilbert space (for positive definite $\langle \cdot | \cdot \rangle_{\varphi}$ over $K = \mathbb{R}, \mathbb{C}$).
 - $\vartriangleright \text{ Equivalent to } \forall f \in \mathcal{F} \colon \varphi {\textstyle \int} f \text{ nondegenerate } \Rightarrow \varphi {\textstyle \int} f \text{ umbral}.$

Two natural requirements:

- We call Φ separative if $\bar{\varphi} = \bar{\chi}$ implies $\varphi = \chi$, where $\bar{\psi} := \psi(x) \in K$.
 - \rhd Otherwise $\varphi \chi$ is nondegenerate but not umbral.
- A character φ is called complete if $f \perp_{\varphi} K[x] \Rightarrow f = 0$ with respect to bilinear form $\langle f | g \rangle = \varphi \int f g$.
 - \triangleright Every φ -orthonormal basis is complete in pre-Hilbert space (for positive definite $\langle \cdot | \cdot \rangle_{\varphi}$ over $K = \mathbb{R}, \mathbb{C}$).

 $\succ \text{ Equivalent to } \forall f \in \mathcal{F} \colon \varphi \int f \text{ nondegenerate } \Rightarrow \varphi \int f \text{ umbral.}$ Sufficiency unclear in general case.

Two natural requirements:

- We call Φ separative if $\bar{\varphi} = \bar{\chi}$ implies $\varphi = \chi$, where $\bar{\psi} := \psi(x) \in K$.
 - \rhd Otherwise $\varphi \chi$ is nondegenerate but not umbral.
- A character φ is called **complete** if $f \perp_{\varphi} K[x] \Rightarrow f = 0$ with respect to bilinear form $\langle f | g \rangle = \varphi \int f g$.
 - \triangleright Every φ -orthonormal basis is complete in pre-Hilbert space (for positive definite $\langle \cdot | \cdot \rangle_{\varphi}$ over $K = \mathbb{R}, \mathbb{C}$).

 $\vartriangleright \ \mathsf{Equivalent} \ \mathsf{to} \ \forall f \in \mathcal{F} \colon \varphi {\int} f \ \mathsf{nondegenerate} \Rightarrow \varphi {\int} f \ \mathsf{umbral}.$ Sufficiency unclear in general case.

Counterexamples in $\mathbb{R}[x, e^x]$:

Two natural requirements:

- We call Φ separative if $\bar{\varphi} = \bar{\chi}$ implies $\varphi = \chi$, where $\bar{\psi} := \psi(x) \in K$.
 - \rhd Otherwise $\varphi \chi$ is nondegenerate but not umbral.
- A character φ is called complete if $f \perp_{\varphi} K[x] \Rightarrow f = 0$ with respect to bilinear form $\langle f | g \rangle = \varphi \int f g$.
 - \triangleright Every φ -orthonormal basis is complete in pre-Hilbert space (for positive definite $\langle \cdot | \cdot \rangle_{\varphi}$ over $K = \mathbb{R}, \mathbb{C}$).

 $\vartriangleright \mbox{ Equivalent to } \forall f \in \mathcal{F} \colon \varphi {\int} f \mbox{ nondegenerate } \Rightarrow \varphi {\int} f \mbox{ umbral.}$ Sufficiency unclear in general case.

Counterexamples in $\mathbb{R}[x, e^x]$:

• Nonseparative character set $\{\varphi, \psi\}$ with $\varphi(p) := p(1)$ and $\underset{n \ge 0}{\forall} \psi(x^n) := 1, \psi(e^x) := 1.$ Two natural requirements:

- We call Φ separative if $\bar{\varphi} = \bar{\chi}$ implies $\varphi = \chi$, where $\bar{\psi} := \psi(x) \in K$.
 - \rhd Otherwise $\varphi-\chi$ is nondegenerate but not umbral.
- A character φ is called **complete** if $f \perp_{\varphi} K[x] \Rightarrow f = 0$ with respect to bilinear form $\langle f | g \rangle = \varphi \int f g$.
 - \triangleright Every φ -orthonormal basis is complete in pre-Hilbert space (for positive definite $\langle \cdot | \cdot \rangle_{\varphi}$ over $K = \mathbb{R}, \mathbb{C}$).

 $\vartriangleright \ \mathsf{Equivalent} \ \mathsf{to} \ \forall f \in \mathcal{F} \colon \varphi {\int} f \ \mathsf{nondegenerate} \Rightarrow \varphi {\int} f \ \mathsf{umbral}.$ Sufficiency unclear in general case.

Counterexamples in $\mathbb{R}[x, e^x]$:

- Nonseparative character set $\{\varphi, \psi\}$ with $\varphi(p) := p(1)$ and $\underset{n \ge 0}{\forall} \psi(x^n) := 1, \psi(e^x) := 1.$
- Incomplete character φ with $\varphi(1) := 1, \underset{n>0}{\forall} \varphi(x^n) := 0, \varphi(e^x) := e.$

Two natural requirements:

- We call Φ separative if $\bar{\varphi} = \bar{\chi}$ implies $\varphi = \chi$, where $\bar{\psi} := \psi(x) \in K$.
 - \rhd Otherwise $\varphi \chi$ is nondegenerate but not umbral.
- A character φ is called **complete** if $f \perp_{\varphi} K[x] \Rightarrow f = 0$ with respect to bilinear form $\langle f | g \rangle = \varphi \int fg$.
 - \triangleright Every φ -orthonormal basis is complete in pre-Hilbert space (for positive definite $\langle \cdot | \cdot \rangle_{\varphi}$ over $K = \mathbb{R}, \mathbb{C}$).

 $\vartriangleright \ \mathsf{Equivalent} \ \mathsf{to} \ \forall f \in \mathcal{F} \colon \varphi {\int} f \ \mathsf{nondegenerate} \Rightarrow \varphi {\int} f \ \mathsf{umbral}.$ Sufficiency unclear in general case.

Counterexamples in $\mathbb{R}[x, e^x]$:

- Nonseparative character set $\{\varphi, \psi\}$ with $\varphi(p) := p(1)$ and $\underset{n \ge 0}{\forall} \psi(x^n) := 1, \psi(e^x) := 1.$
- Incomplete character φ with $\varphi(1) := 1$, $\underset{n>0}{\forall} \varphi(x^n) := 0$, $\varphi(e^x) := e$. Then $(\varphi \int)e^x = e - 1 \neq 0$ but $(\varphi \int)x^m = \varphi(x^{m+1})/(m+1) = 0$.

Let Φ be separative for an integro-differential algebra $(\mathcal{F}, \partial, \int)$. Then every local boundary condition of $\mathcal{F}_{\Phi}[\partial, \int]$ is umbral.

Proposition

Let Φ be separative for an integro-differential algebra $(\mathcal{F}, \partial, \int)$. Then every local boundary condition of $\mathcal{F}_{\Phi}[\partial, \int]$ is umbral.

• Write
$$\beta = \sum_{i=1}^{r} \sum_{j=1}^{s} a_{ij} \varphi_i \partial^{j-1}$$
 with $a = \begin{pmatrix} a_{11} \\ \vdots \\ a_{rs} \end{pmatrix} \in K^n$ and $n = rs$.

Proposition

Let Φ be separative for an integro-differential algebra $(\mathcal{F}, \partial, \int)$. Then every local boundary condition of $\mathcal{F}_{\Phi}[\partial, \int]$ is umbral.

< 🗗 >

Proposition

Let Φ be separative for an integro-differential algebra $(\mathcal{F}, \partial, \int)$. Then every local boundary condition of $\mathcal{F}_{\Phi}[\partial, \int]$ is umbral.

$$\begin{array}{l} \underline{\operatorname{Proof:}}\\ \bullet \ \operatorname{Write} \ \beta = \sum_{i=1}^{r} \sum_{j=1}^{s} a_{ij} \ \varphi_i \partial^{j-1} \ \text{with} \ a = \begin{pmatrix} \overset{a_{11}}{\vdots} \\ \vdots \\ a_{rs} \end{pmatrix} \in K^n \ \text{and} \ n = rs. \\ \bullet \ \operatorname{Then} \ \beta(1) = \beta(x) = \cdots = \beta(x^{n-1}) = 0 \ \text{means} \ Ma = 0. \\ \bullet \ \operatorname{System} \ \operatorname{matrix} \ M = \begin{pmatrix} M_{ns}(\bar{\varphi}_1), \dots, M_{ns}(\bar{\varphi}_r) \end{pmatrix} \in K^{n \times n} \ \text{with} \ \text{strips} \\ & \\ \begin{pmatrix} \frac{1}{x} & 1 \\ \vdots & \ddots & \ddots \\ \frac{x^{s-1}}{(s-1)!} & \frac{x^{s-2}}{(s-2)!} & \cdots & x & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{x^{n-1}}{(s-1)!} & \frac{x^{n-2}}{(n-2)!} & \cdots & \frac{x^{n-s+1}}{(n-s+1)!} & \frac{x^{n-s}}{(n-s)!} \end{pmatrix} \in K[x]^{n \times s} . \end{array}$$

Proposition

Let Φ be separative for an integro-differential algebra $(\mathcal{F}, \partial, \int)$. Then every local boundary condition of $\mathcal{F}_{\Phi}[\partial, \int]$ is umbral.

$$\begin{array}{l} \underline{\operatorname{Proof:}}\\ \bullet \ \operatorname{Write} \ \beta = \sum_{i=1}^{r} \sum_{j=1}^{s} a_{ij} \ \varphi_i \partial^{j-1} \ \text{with} \ a = \begin{pmatrix} a_{11} \\ \vdots \\ a_{rs} \end{pmatrix} \in K^n \ \text{and} \ n = rs \\ \bullet \ \operatorname{Then} \ \beta(1) = \beta(x) = \cdots = \beta(x^{n-1}) = 0 \ \text{means} \ Ma = 0. \\ \bullet \ \operatorname{System} \ \operatorname{matrix} \ M = \begin{pmatrix} M_{ns}(\bar{\varphi}_1), \ldots, M_{ns}(\bar{\varphi}_r) \end{pmatrix} \in K^{n \times n} \ \text{with} \ \operatorname{strips} \\ & \\ \begin{pmatrix} 1 \\ x^2 \\ 2 \\ x & 1 \\ \vdots \\ (s-1)! \\ \frac{x^{s-2}}{(s-1)!} & \frac{x^{s-2}}{2} \\ \vdots \\ \vdots \\ \frac{x^{n-1}}{(s-1)!} & \frac{x^{n-2}}{(s-2)!} \\ \vdots \\ \frac{x^{n-1}}{(s-1)!} & \frac{x^{n-s+1}}{(n-s+1)!} \\ \frac{x^{n-s+1}}{(n-s+1)!} \\ \end{pmatrix} \in K[x]^{n \times s} \ . \\ \bullet \ \operatorname{Use} \ \det M(x) = V(r)^{s^2} \operatorname{sf}(s-1)^r / \operatorname{sf}(n-1) \ \text{and} \ \bar{\varphi}_i \neq \bar{\varphi}_{i'}. \end{array}$$

Example: $C^{\infty}(\mathbb{R})$ with character set $\{\mathbf{E} = 0, \varphi = 1\}$

Example: $C^{\infty}(\mathbb{R})$ with character set $\{\mathbf{E} = 0, \varphi = 1\}$ • Effectively $C^{\infty}[0,1]$ with $\langle f|g \rangle := \beta(g) = \int_0^1 f(\xi)g(\xi) d\xi$.

- **Example:** $C^{\infty}(\mathbb{R})$ with character set $\{\mathbf{E} = 0, \varphi = 1\}$
 - Effectively $C^{\infty}[0,1]$ with $\langle f|g \rangle := \beta(g) = \int_0^1 f(\xi)g(\xi) d\xi$.
 - Complete sequence $(x^n)_{n \in \mathbb{N}}$ in pre-Hilbert space $(C^{\infty}[0,1],\langle|\rangle)$.

- **Example:** $C^{\infty}(\mathbb{R})$ with character set $\{\mathbf{E} = 0, \varphi = 1\}$
 - Effectively $C^{\infty}[0,1]$ with $\langle f|g \rangle := \beta(g) = \int_0^1 f(\xi)g(\xi) d\xi$.
 - Complete sequence $(x^n)_{n \in \mathbb{N}}$ in pre-Hilbert space $(C^{\infty}[0,1],\langle|\rangle)$.
 - Gram-Schmidt yields Legendre polynomials $e_n \sim \frac{d^n}{dx^n} (x^2 1)^n$.

- **Example:** $C^{\infty}(\mathbb{R})$ with character set $\{\mathbf{E} = 0, \varphi = 1\}$
 - Effectively $C^{\infty}[0,1]$ with $\langle f|g \rangle := \beta(g) = \int_0^1 f(\xi)g(\xi) d\xi$.
 - Complete sequence $(x^n)_{n \in \mathbb{N}}$ in pre-Hilbert space $(C^{\infty}[0,1],\langle|\rangle)$.
 - Gram-Schmidt yields Legendre polynomials $e_n \sim \frac{d^n}{dx^n} (x^2 1)^n$.
 - <u>Fact</u>: In every pre-Hilbert space, an orthonormal basis (e_n) has the property that $\langle e_m | f \rangle \neq 0$ for some $m \in \mathbb{N}$, provided f is nonzero.

- **Example:** $C^{\infty}(\mathbb{R})$ with character set $\{\mathbf{E} = 0, \varphi = 1\}$
 - Effectively $C^{\infty}[0,1]$ with $\langle f|g \rangle := \beta(g) = \int_0^1 f(\xi)g(\xi) d\xi$.
 - Complete sequence $(x^n)_{n \in \mathbb{N}}$ in pre-Hilbert space $(C^{\infty}[0,1],\langle|\rangle)$.
 - Gram-Schmidt yields Legendre polynomials $e_n \sim \frac{d^n}{dx^n} (x^2 1)^n$.
 - <u>Fact</u>: In every pre-Hilbert space, an orthonormal basis (e_n) has the property that $\langle e_m | f \rangle \neq 0$ for some $m \in \mathbb{N}$, provided f is nonzero.
 - Thus if $\beta = \varphi \int f$ annihilates K[x] then $f|_{[0,1]} = 0$ so β is degenerate.

- **Example:** $C^{\infty}(\mathbb{R})$ with character set $\{\mathbf{E} = 0, \varphi = 1\}$
 - Effectively $C^{\infty}[0,1]$ with $\langle f|g \rangle := \beta(g) = \int_0^1 f(\xi)g(\xi) d\xi$.
 - Complete sequence $(x^n)_{n \in \mathbb{N}}$ in pre-Hilbert space $(C^{\infty}[0,1],\langle|\rangle)$.
 - Gram-Schmidt yields Legendre polynomials $e_n \sim \frac{d^n}{dx^n} (x^2 1)^n$.
 - <u>Fact</u>: In every pre-Hilbert space, an orthonormal basis (e_n) has the property that $\langle e_m | f \rangle \neq 0$ for some $m \in \mathbb{N}$, provided f is nonzero.
 - Thus if $\beta = \varphi \int f$ annihilates K[x] then $f|_{[0,1]} = 0$ so β is degenerate.
 - This means β is complete.

Example: $C^{\infty}(\mathbb{R})$ with character set $\{\mathbf{E} = 0, \varphi = 1\}$

- Effectively $C^{\infty}[0,1]$ with $\langle f|g \rangle := \beta(g) = \int_0^1 f(\xi)g(\xi) d\xi$.
- Complete sequence $(x^n)_{n \in \mathbb{N}}$ in pre-Hilbert space $(C^{\infty}[0,1],\langle|\rangle)$.
- Gram-Schmidt yields Legendre polynomials $e_n \sim \frac{d^n}{dx^n} (x^2 1)^n$.
- <u>Fact</u>: In every pre-Hilbert space, an orthonormal basis (e_n) has the property that $\langle e_m | f \rangle \neq 0$ for some $m \in \mathbb{N}$, provided f is nonzero.
- Thus if $\beta = \varphi \int f$ annihilates K[x] then $f|_{[0,1]} = 0$ so β is degenerate.
- This means β is complete.

Lemma

Let φ be a complete character in an integro-differential algebra $(\mathcal{F}, \partial, \int)$. Then a nondegenerate global condition $\varphi \int f$ never coincides on K[x] with any local condition based on φ .

< (2) →

Lemma

Let \mathcal{F} be an integro-differential algebra and β an umbral Stieltjes condition over \mathcal{F} . Then $(\partial^{k+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{k-1}, \beta])$ is regular for some $k \in \mathbb{N}$.

Lemma

Let \mathcal{F} be an integro-differential algebra and β an umbral Stieltjes condition over \mathcal{F} . Then $(\partial^{k+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{k-1}, \beta])$ is regular for some $k \in \mathbb{N}$.

Example: Condition $\beta = \mathbf{E}_1 - \mathbf{E}_0$ over $C^{\infty}(\mathbb{R})$.

Lemma

Let \mathcal{F} be an integro-differential algebra and β an umbral Stieltjes condition over \mathcal{F} . Then $(\partial^{k+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{k-1}, \beta])$ is regular for some $k \in \mathbb{N}$.

Example: Condition $\beta = \mathbf{E}_1 - \mathbf{E}_0$ over $C^{\infty}(\mathbb{R})$.

- Boundary problem $(\partial, [E_1 E_0])$ is singular.
- Boundary problem $(\partial^2, [E_0, E_1 E_0]) = (\partial^2, [E_0, E_1])$ regular.

Lemma

Let \mathcal{F} be an integro-differential algebra and β an umbral Stieltjes condition over \mathcal{F} . Then $(\partial^{k+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{k-1}, \beta])$ is regular for some $k \in \mathbb{N}$.

Example: Condition $\beta = \mathbf{E}_1 - \mathbf{E}_0$ over $C^{\infty}(\mathbb{R})$.

- Boundary problem $(\partial, [E_1 E_0])$ is singular.
- Boundary problem $(\partial^2, [E_0, E_1 E_0]) = (\partial^2, [E_0, E_1])$ regular.

Lemma

Let \mathcal{F} be an integro-differential algebra and β an umbral Stieltjes condition over \mathcal{F} . Then $(\partial^{k+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{k-1}, \beta])$ is regular for some $k \in \mathbb{N}$.

Example: Condition $\beta = \mathbf{E}_1 - \mathbf{E}_0$ over $C^{\infty}(\mathbb{R})$.

- \bullet Boundary problem $(\partial, [{\tt E}_1 {\tt E}_0])$ is singular.
- Boundary problem $(\partial^2, [E_0, E_1 E_0]) = (\partial^2, [E_0, E_1])$ regular.

Proof of Regularity Lemma:

• By umbrality, take minimal $k \in \mathbb{N}$ with $\beta(x^k) \neq 0$.

Lemma

Let \mathcal{F} be an integro-differential algebra and β an umbral Stieltjes condition over \mathcal{F} . Then $(\partial^{k+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{k-1}, \beta])$ is regular for some $k \in \mathbb{N}$.

Example: Condition $\beta = \mathbf{E}_1 - \mathbf{E}_0$ over $C^{\infty}(\mathbb{R})$.

- Boundary problem $(\partial, [E_1 E_0])$ is singular.
- Boundary problem $(\partial^2, [E_0, E_1 E_0]) = (\partial^2, [E_0, E_1])$ regular.

- By umbrality, take minimal $k \in \mathbb{N}$ with $\beta(x^k) \neq 0$.
- Take $u = (1, x/1!, \dots, x^k/k!)$ as fundamental system for ∂^{k+1} .

Lemma

Let \mathcal{F} be an integro-differential algebra and β an umbral Stieltjes condition over \mathcal{F} . Then $(\partial^{k+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{k-1}, \beta])$ is regular for some $k \in \mathbb{N}$.

Example: Condition $\beta = \mathbf{E}_1 - \mathbf{E}_0$ over $C^{\infty}(\mathbb{R})$.

- Boundary problem $(\partial, [E_1 E_0])$ is singular.
- Boundary problem $(\partial^2, [E_0, E_1 E_0]) = (\partial^2, [E_0, E_1])$ regular.

- By umbrality, take minimal $k \in \mathbb{N}$ with $\beta(x^k) \neq 0$.
- Take $u = (1, x/1!, \dots, x^k/k!)$ as fundamental system for ∂^{k+1} .
- Evaluation matrix for u and $\gamma = (\mathbf{E}, \dots, \mathbf{E}\partial^{k-1}, \beta)$:

Lemma

Let \mathcal{F} be an integro-differential algebra and β an umbral Stieltjes condition over \mathcal{F} . Then $(\partial^{k+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{k-1}, \beta])$ is regular for some $k \in \mathbb{N}$.

Example: Condition $\beta = \mathbf{E}_1 - \mathbf{E}_0$ over $C^{\infty}(\mathbb{R})$.

- Boundary problem $(\partial, [\mathtt{E}_1 \mathtt{E}_0])$ is singular.
- Boundary problem $(\partial^2, [E_0, E_1 E_0]) = (\partial^2, [E_0, E_1])$ regular.

- By umbrality, take minimal $k \in \mathbb{N}$ with $\beta(x^k) \neq 0$.
- Take $u = (1, x/1!, \dots, x^k/k!)$ as fundamental system for ∂^{k+1} .
- Evaluation matrix for u and $\gamma = (\mathbf{E}, \dots, \mathbf{E}\partial^{k-1}, \beta)$:

Evaluation matrix
$$\gamma(u) = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \ddots & \vdots & 0 \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & 0 & g(x^k/k!) \end{pmatrix}$$

Interview 1 Motivation

- 2 Classical Mikusiński Calculus
- Towards A Noncommutative Mikusiński Calculus
- Umbral Character Sets
- 6 Ring of Methorious Operators
- 6 Module of Methorious Functions

Conclusion

< 🗗 >

Let $(T, \mathcal{B}) \in \mathcal{E}[\partial] \ltimes K\Phi$ be a an arbitrary boundary problem. Then $(T_2, \mathcal{B}_2) \in \mathcal{E}[\partial] \ltimes K\Phi$ is called a subproblem of (T, \mathcal{B}) if T_2 is a right divisor of T and $\mathcal{B}_2 \leq \mathcal{B}$.

Let $(T, \mathcal{B}) \in \mathcal{E}[\partial] \ltimes K\Phi$ be a an arbitrary boundary problem.

Then $(T_2, \mathcal{B}_2) \in \mathcal{E}[\partial] \ltimes K\Phi$ is called a subproblem of (T, \mathcal{B}) if T_2 is a right divisor of T and $\mathcal{B}_2 \leq \mathcal{B}$. In this case we write $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$,

Let $(T, \mathcal{B}) \in \mathcal{E}[\partial] \ltimes K\Phi$ be a an arbitrary boundary problem.

Then $(T_2, \mathcal{B}_2) \in \mathcal{E}[\partial] \ltimes K\Phi$ is called a subproblem of (T, \mathcal{B}) if T_2 is a right divisor of T and $\mathcal{B}_2 \leq \mathcal{B}$. In this case we write $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$,

Regular subproblems arise naturally from right factors:

Let $(T, \mathcal{B}) \in \mathcal{E}[\partial] \ltimes K\Phi$ be a an arbitrary boundary problem. Then $(T_2, \mathcal{B}_2) \in \mathcal{E}[\partial] \ltimes K\Phi$ is called a **subproblem** of (T, \mathcal{B}) if T_2 is a right divisor of T and $\mathcal{B}_2 \leq \mathcal{B}$. In this case we write $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$,

Regular subproblems arise naturally from right factors:

Theorem (Factorization)

Given $(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}$, every factorization $T = T_1T_2$ of the differential operator lifts to a factorization $(T, \mathcal{B}) = (T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2)$ of boundary problems such that $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ and $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$.

Let $(T, \mathcal{B}) \in \mathcal{E}[\partial] \ltimes K\Phi$ be a an arbitrary boundary problem. Then $(T_2, \mathcal{B}_2) \in \mathcal{E}[\partial] \ltimes K\Phi$ is called a **subproblem** of (T, \mathcal{B}) if T_2 is a right divisor of T and $\mathcal{B}_2 \leq \mathcal{B}$. In this case we write $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$,

Regular subproblems arise naturally from right factors:

Theorem (Factorization)

Given $(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}$, every factorization $T = T_1T_2$ of the differential operator lifts to a factorization $(T, \mathcal{B}) = (T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2)$ of boundary problems such that $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ and $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$.

Singular subproblems need not be right factors:

Let $(T, \mathcal{B}) \in \mathcal{E}[\partial] \ltimes K\Phi$ be a an arbitrary boundary problem. Then $(T_2, \mathcal{B}_2) \in \mathcal{E}[\partial] \ltimes K\Phi$ is called a subproblem of (T, \mathcal{B}) if T_2 is a right divisor of T and $\mathcal{B}_2 \leq \mathcal{B}$. In this case we write $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$,

Regular subproblems arise naturally from right factors:

Theorem (Factorization)

Given $(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}$, every factorization $T = T_1T_2$ of the differential operator lifts to a factorization $(T, \mathcal{B}) = (T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2)$ of boundary problems such that $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ and $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$.

Singular subproblems need not be right factors:

 $(\partial, \mathtt{e}_1 - \mathtt{e}_0) \leq (\partial^2, [\mathtt{e}_0, \mathtt{e}_1])$

Let $(T, \mathcal{B}) \in \mathcal{E}[\partial] \ltimes K\Phi$ be a an arbitrary boundary problem. Then $(T_2, \mathcal{B}_2) \in \mathcal{E}[\partial] \ltimes K\Phi$ is called a subproblem of (T, \mathcal{B}) if T_2 is a right divisor of T and $\mathcal{B}_2 \leq \mathcal{B}$. In this case we write $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$,

Regular subproblems arise naturally from right factors:

Theorem (Factorization)

Given $(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}$, every factorization $T = T_1T_2$ of the differential operator lifts to a factorization $(T, \mathcal{B}) = (T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2)$ of boundary problems such that $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ and $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$.

Singular subproblems need not be right factors:

$$(\partial, \mathbf{e}_1 - \mathbf{e}_0) \le (\partial^2, [\mathbf{e}_0, \mathbf{e}_1])$$

Justification by the following Division Lemma.

Given $(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}$ and any factorization $T = T_1T_2$ of the differential operator, there is a unique $(T_1, \mathcal{B}_1) \in \mathcal{E}[\partial]_{\Phi}$ such that for any regular subproblem $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$ this lifts to $(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T, \mathcal{B})$.

Given $(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}$ and any factorization $T = T_1T_2$ of the differential operator, there is a unique $(T_1, \mathcal{B}_1) \in \mathcal{E}[\partial]_{\Phi}$ such that for any regular subproblem $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$ this lifts to $(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T, \mathcal{B})$.

Prototypical factorization is $(\partial^2, [E_0, E_1]) = (\partial, [\int_0^1])(\partial, E_0)$ or

Given $(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}$ and any factorization $T = T_1T_2$ of the differential operator, there is a unique $(T_1, \mathcal{B}_1) \in \mathcal{E}[\partial]_{\Phi}$ such that for any regular subproblem $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$ this lifts to $(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T, \mathcal{B})$.

Prototypical factorization is $(\partial^2, [E_0, E_1]) = (\partial, [\int_0^1])(\partial, E_0)$ or

$$\begin{array}{c} u'' = f \\ u(0) = u(1) = 0 \end{array} = \begin{array}{c} u' = f \\ \int_0^1 u(\xi) \, d\xi = 0 \end{array} \cdot \begin{array}{c} u' = f \\ u(0) = 0 \end{array} .$$

Given $(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}$ and any factorization $T = T_1T_2$ of the differential operator, there is a unique $(T_1, \mathcal{B}_1) \in \mathcal{E}[\partial]_{\Phi}$ such that for any regular subproblem $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$ this lifts to $(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T, \mathcal{B})$.

Prototypical factorization is $(\partial^2, [E_0, E_1]) = (\partial, [\int_0^1])(\partial, E_0)$ or

$$\begin{array}{c} u'' = f \\ u(0) = u(1) = 0 \end{array} = \begin{bmatrix} u' = f \\ \int_0^1 u(\xi) \, d\xi = 0 \end{bmatrix} \cdot \begin{bmatrix} u' = f \\ u(0) = 0 \end{bmatrix} .$$

 \triangleright Unique left-hand factor for $(\partial^2, [\mathtt{E}_0, \mathtt{E}_1])$ is $(\partial, [\int_0^1])$.

Given $(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}$ and any factorization $T = T_1T_2$ of the differential operator, there is a unique $(T_1, \mathcal{B}_1) \in \mathcal{E}[\partial]_{\Phi}$ such that for any regular subproblem $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$ this lifts to $(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T, \mathcal{B})$.

Prototypical factorization is $(\partial^2, [E_0, E_1]) = (\partial, [\int_0^1])(\partial, E_0)$ or

$$\begin{array}{c} u'' = f \\ u(0) = u(1) = 0 \end{array} = \begin{array}{c} u' = f \\ \int_0^1 u(\xi) \, d\xi = 0 \end{array} \cdot \begin{array}{c} u' = f \\ u(0) = 0 \end{array}.$$

 \triangleright Unique left-hand factor for $(\partial^2, [E_0, E_1])$ is $(\partial, [\int_0^1])$.

 $\rhd \text{ Assume } (\partial, \mathtt{E}_1 - \mathtt{E}_0) \leq (\partial^2, [\mathtt{E}_0, \mathtt{E}_1]) \text{ were a right factor}.$

Given $(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}$ and any factorization $T = T_1T_2$ of the differential operator, there is a unique $(T_1, \mathcal{B}_1) \in \mathcal{E}[\partial]_{\Phi}$ such that for any regular subproblem $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$ this lifts to $(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T, \mathcal{B})$.

Prototypical factorization is $(\partial^2, [E_0, E_1]) = (\partial, [\int_0^1])(\partial, E_0)$ or

$$\begin{array}{c} u'' = f \\ u(0) = u(1) = 0 \end{array} = \begin{array}{c} u' = f \\ \int_0^1 u(\xi) \, d\xi = 0 \end{array} \cdot \begin{array}{c} u' = f \\ u(0) = 0 \end{array}.$$

 \triangleright Unique left-hand factor for $(\partial^2, [\mathbf{E}_0, \mathbf{E}_1])$ is $(\partial, [\int_0^1])$.

 \triangleright Assume $(\partial, \mathtt{E}_1 - \mathtt{E}_0) \leq (\partial^2, [\mathtt{E}_0, \mathtt{E}_1])$ were a right factor.

 $\vartriangleright \text{ Then } (\partial, [\int_0^1])(\partial, [\mathtt{E}_1 - \mathtt{E}_0]) = (\partial^2, [\mathtt{E}_1 - \mathtt{E}_0]) \text{ should be } (\partial^2, [\mathtt{E}_0, \mathtt{E}_1]) \notin .$

Given $(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}$ and any factorization $T = T_1T_2$ of the differential operator, there is a unique $(T_1, \mathcal{B}_1) \in \mathcal{E}[\partial]_{\Phi}$ such that for any regular subproblem $(T_2, \mathcal{B}_2) \leq (T, \mathcal{B})$ this lifts to $(T_1, \mathcal{B}_1) \cdot (T_2, \mathcal{B}_2) = (T, \mathcal{B})$.

Prototypical factorization is $(\partial^2, [E_0, E_1]) = (\partial, [\int_0^1])(\partial, E_0)$ or

$$\begin{array}{c} u'' = f \\ u(0) = u(1) = 0 \end{array} = \left[\begin{array}{c} u' = f \\ \int_0^1 u(\xi) \, d\xi = 0 \end{array} \right] \cdot \left[\begin{array}{c} u' = f \\ u(0) = 0 \end{array} \right].$$

$$\begin{split} & \succ \text{ Unique left-hand factor for } (\partial^2, [\mathtt{E}_0, \mathtt{E}_1]) \text{ is } (\partial, [\int_0^1]). \\ & \triangleright \text{ Assume } (\partial, \mathtt{E}_1 - \mathtt{E}_0) \leq (\partial^2, [\mathtt{E}_0, \mathtt{E}_1]) \text{ were a right factor.} \\ & \triangleright \text{ Then } (\partial, [\int_0^1])(\partial, [\mathtt{E}_1 - \mathtt{E}_0]) = (\partial^2, [\mathtt{E}_1 - \mathtt{E}_0]) \text{ should be } (\partial^2, [\mathtt{E}_0, \mathtt{E}_1]) \notin . \end{split}$$

Note the left/right asymmetry in the Division Lemma!

< **∂** >

Closure of $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ admits partial converse:

Closure of $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ admits partial converse:

Lemma

Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2)$ be boundary problems over an integro-differential algebra \mathcal{F} with $\operatorname{ord}(T_1) = \dim \mathcal{B}_1$ and $\operatorname{ord}(T_2) = \dim \mathcal{B}_2$. Then (T_1, \mathcal{B}_1) and (T_2, \mathcal{B}_2) are regular whenever $(T_1, \mathcal{B}_1)(T_2, \mathcal{B}_2)$ is.

Closure of $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ admits partial converse:

Lemma

Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2)$ be boundary problems over an integro-differential algebra \mathcal{F} with $\operatorname{ord}(T_1) = \dim \mathcal{B}_1$ and $\operatorname{ord}(T_2) = \dim \mathcal{B}_2$. Then (T_1, \mathcal{B}_1) and (T_2, \mathcal{B}_2) are regular whenever $(T_1, \mathcal{B}_1)(T_2, \mathcal{B}_2)$ is.

Proof:

• Fundamental systems (f_1, \ldots, f_m) for T_1 and (g_1, \ldots, g_n) for T_2 .

Closure of $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ admits partial converse:

Lemma

Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2)$ be boundary problems over an integro-differential algebra \mathcal{F} with $\operatorname{ord}(T_1) = \dim \mathcal{B}_1$ and $\operatorname{ord}(T_2) = \dim \mathcal{B}_2$. Then (T_1, \mathcal{B}_1) and (T_2, \mathcal{B}_2) are regular whenever $(T_1, \mathcal{B}_1)(T_2, \mathcal{B}_2)$ is.

- Fundamental systems (f_1, \ldots, f_m) for T_1 and (g_1, \ldots, g_n) for T_2 .
- Take K-bases β_1, \ldots, β_m of $\mathcal{B}_1 \leq \mathcal{F}^*$ and $\gamma_1, \ldots, \gamma_n$ of $\mathcal{B}_2 \leq \mathcal{F}^*$.

Closure of $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ admits partial converse:

Lemma

Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2)$ be boundary problems over an integro-differential algebra \mathcal{F} with $\operatorname{ord}(T_1) = \dim \mathcal{B}_1$ and $\operatorname{ord}(T_2) = \dim \mathcal{B}_2$. Then (T_1, \mathcal{B}_1) and (T_2, \mathcal{B}_2) are regular whenever $(T_1, \mathcal{B}_1)(T_2, \mathcal{B}_2)$ is.

- Fundamental systems (f_1, \ldots, f_m) for T_1 and (g_1, \ldots, g_n) for T_2 .
- Take K-bases β_1, \ldots, β_m of $\mathcal{B}_1 \leq \mathcal{F}^*$ and $\gamma_1, \ldots, \gamma_n$ of $\mathcal{B}_2 \leq \mathcal{F}^*$.
- Then $T_2^{\Diamond} f_1, \ldots, T_2^{\Diamond} f_m, g_1, \ldots, g_n$ is a fundamental system for $T_1 T_2$.

Closure of $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ admits partial converse:

Lemma

Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2)$ be boundary problems over an integro-differential algebra \mathcal{F} with $\operatorname{ord}(T_1) = \dim \mathcal{B}_1$ and $\operatorname{ord}(T_2) = \dim \mathcal{B}_2$. Then (T_1, \mathcal{B}_1) and (T_2, \mathcal{B}_2) are regular whenever $(T_1, \mathcal{B}_1)(T_2, \mathcal{B}_2)$ is.

- Fundamental systems (f_1, \ldots, f_m) for T_1 and (g_1, \ldots, g_n) for T_2 .
- Take K-bases β_1, \ldots, β_m of $\mathcal{B}_1 \leq \mathcal{F}^*$ and $\gamma_1, \ldots, \gamma_n$ of $\mathcal{B}_2 \leq \mathcal{F}^*$.
- Then $T_2^{\Diamond} f_1, \ldots, T_2^{\Diamond} f_m, g_1, \ldots, g_n$ is a fundamental system for $T_1 T_2$.
- Conclude $\mathcal{B}_1T_2 + \mathcal{B}_2 = [\beta_1T_2, \dots, \beta_mT_2, \gamma_1, \dots, \gamma_n].$

Closure of $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ admits partial converse:

Lemma

Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2)$ be boundary problems over an integro-differential algebra \mathcal{F} with $\operatorname{ord}(T_1) = \dim \mathcal{B}_1$ and $\operatorname{ord}(T_2) = \dim \mathcal{B}_2$. Then (T_1, \mathcal{B}_1) and (T_2, \mathcal{B}_2) are regular whenever $(T_1, \mathcal{B}_1)(T_2, \mathcal{B}_2)$ is.

- Fundamental systems (f_1, \ldots, f_m) for T_1 and (g_1, \ldots, g_n) for T_2 .
- Take K-bases β_1, \ldots, β_m of $\mathcal{B}_1 \leq \mathcal{F}^*$ and $\gamma_1, \ldots, \gamma_n$ of $\mathcal{B}_2 \leq \mathcal{F}^*$.
- Then $T_2^{\Diamond}f_1, \ldots, T_2^{\Diamond}f_m, g_1, \ldots, g_n$ is a fundamental system for T_1T_2 .
- Conclude $\mathcal{B}_1T_2 + \mathcal{B}_2 = [\beta_1T_2, \dots, \beta_mT_2, \gamma_1, \dots, \gamma_n].$
- Regularity of $(T_1T_2, \mathcal{B}_1T_2 + \mathcal{B}_2)$ yields regular evaluation matrix $\begin{pmatrix} (\beta T_2)(T_2^{\diamond}f) & (\beta T_2)(g) \\ \gamma(T^{\diamond}f) & \gamma(g) \end{pmatrix} = \begin{pmatrix} \beta(f) & 0 \\ \gamma(T^{\diamond}f) & \gamma(g) \end{pmatrix}$

Closure of $\mathcal{E}[\partial]_{\Phi} \subset \mathcal{E}[\partial] \ltimes K\Phi$ admits partial converse:

Lemma

Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2)$ be boundary problems over an integro-differential algebra \mathcal{F} with $\operatorname{ord}(T_1) = \dim \mathcal{B}_1$ and $\operatorname{ord}(T_2) = \dim \mathcal{B}_2$. Then (T_1, \mathcal{B}_1) and (T_2, \mathcal{B}_2) are regular whenever $(T_1, \mathcal{B}_1)(T_2, \mathcal{B}_2)$ is.

Proof:

- Fundamental systems (f_1, \ldots, f_m) for T_1 and (g_1, \ldots, g_n) for T_2 .
- Take K-bases β_1, \ldots, β_m of $\mathcal{B}_1 \leq \mathcal{F}^*$ and $\gamma_1, \ldots, \gamma_n$ of $\mathcal{B}_2 \leq \mathcal{F}^*$.
- Then $T_2^{\Diamond}f_1, \ldots, T_2^{\Diamond}f_m, g_1, \ldots, g_n$ is a fundamental system for T_1T_2 .
- Conclude $\mathcal{B}_1T_2 + \mathcal{B}_2 = [\beta_1T_2, \dots, \beta_mT_2, \gamma_1, \dots, \gamma_n].$
- Regularity of $(T_1T_2, \mathcal{B}_1T_2 + \mathcal{B}_2)$ yields regular evaluation matrix $\begin{pmatrix} (\beta T_2)(T_2^{\diamond}f) & (\beta T_2)(g) \\ \gamma(T^{\diamond}f) & \gamma(g) \end{pmatrix} = \begin{pmatrix} \beta(f) & 0 \\ \gamma(T^{\diamond}f) & \gamma(g) \end{pmatrix}$
- Hence diagonal blocks $\beta(f)$ and $\gamma(g)$ are regular.

Lemma (Regularization)

Let Φ be an umbral character set for an integro-differential algebra \mathcal{F} . Then for an arbitrary boundary problem $(T, \mathcal{B}) \in \mathcal{E}[\partial] \ltimes K\Phi$ there is a regular boundary problem $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi}$ that has (T, \mathcal{B}) as subproblem.

Lemma (Regularization)

Let Φ be an umbral character set for an integro-differential algebra \mathcal{F} . Then for an arbitrary boundary problem $(T, \mathcal{B}) \in \mathcal{E}[\partial] \ltimes K\Phi$ there is a regular boundary problem $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi}$ that has (T, \mathcal{B}) as subproblem.

Proof: • Set
$$n = \operatorname{ord}(T) > 0$$
 and $\mathcal{B} = [\beta_1, \dots, \beta_m]$.

Let Φ be an umbral character set for an integro-differential algebra \mathcal{F} . Then for an arbitrary boundary problem $(T, \mathcal{B}) \in \mathcal{E}[\partial] \ltimes K\Phi$ there is a regular boundary problem $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi}$ that has (T, \mathcal{B}) as subproblem.

<u>Proof:</u> • Set $n = \operatorname{ord}(T) > 0$ and $\mathcal{B} = [\beta_1, \dots, \beta_m]$. • Write $\mathcal{I}_n := [\mathsf{E}, \dots, \mathsf{E}\partial^{n-1}]$ and $\mathcal{B}_k := [\beta_1, \dots, \beta_k]$ for $k = 0, \dots, m$.

< 🗗 >

Proof: • Set
$$n = \operatorname{ord}(T) > 0$$
 and $\mathcal{B} = [\beta_1, \dots, \beta_m]$.

- Write $\mathcal{I}_n := [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ and $\mathcal{B}_k := [\beta_1, \dots, \beta_k]$ for $k = 0, \dots, m$.
- Use induction on k to find $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_k) \leq (S, \mathcal{A}).$

Proof: • Set
$$n = \operatorname{ord}(T) > 0$$
 and $\mathcal{B} = [\beta_1, \dots, \beta_m]$.

- Write $\mathcal{I}_n := [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ and $\mathcal{B}_k := [\beta_1, \dots, \beta_k]$ for $k = 0, \dots, m$.
- Use induction on k to find $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_k) \leq (S, \mathcal{A}).$
- Base case k = 0 clear with $(S, \mathcal{A}) = (T, \mathcal{I}_n)$.

Proof: • Set
$$n = \operatorname{ord}(T) > 0$$
 and $\mathcal{B} = [\beta_1, \dots, \beta_m]$.

- Write $\mathcal{I}_n := [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ and $\mathcal{B}_k := [\beta_1, \dots, \beta_k]$ for $k = 0, \dots, m$.
- Use induction on k to find $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_k) \leq (S, \mathcal{A}).$
- Base case k = 0 clear with $(S, \mathcal{A}) = (T, \mathcal{I}_n)$.
- Take $(\tilde{S}, \tilde{\mathcal{A}}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_{k-1}) \leq (\tilde{S}, \tilde{\mathcal{A}})$ and write $\tilde{G} := (\tilde{S}, \tilde{\mathcal{A}})^{-1}$.

Proof: • Set
$$n = \operatorname{ord}(T) > 0$$
 and $\mathcal{B} = [\beta_1, \dots, \beta_m]$.

- Write $\mathcal{I}_n := [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ and $\mathcal{B}_k := [\beta_1, \dots, \beta_k]$ for $k = 0, \dots, m$.
- Use induction on k to find $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_k) \leq (S, \mathcal{A}).$
- Base case k = 0 clear with $(S, \mathcal{A}) = (T, \mathcal{I}_n)$.
- Take $(\tilde{S}, \tilde{\mathcal{A}}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_{k-1}) \leq (\tilde{S}, \tilde{\mathcal{A}})$ and write $\tilde{G} := (\tilde{S}, \tilde{\mathcal{A}})^{-1}$.
- For degenerate $\beta_k \tilde{G}$ use $(S, \mathcal{A}) = (\tilde{S}, \tilde{\mathcal{A}})$ since $\operatorname{im}(\tilde{G}) = \tilde{\mathcal{A}}^{\perp} \leq [\beta_k]^{\perp}$.

Proof: • Set
$$n = \operatorname{ord}(T) > 0$$
 and $\mathcal{B} = [\beta_1, \dots, \beta_m]$.

- Write $\mathcal{I}_n := [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ and $\mathcal{B}_k := [\beta_1, \dots, \beta_k]$ for $k = 0, \dots, m$.
- Use induction on k to find $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_k) \leq (S, \mathcal{A}).$
- Base case k = 0 clear with $(S, \mathcal{A}) = (T, \mathcal{I}_n)$.
- Take $(\tilde{S}, \tilde{\mathcal{A}}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_{k-1}) \leq (\tilde{S}, \tilde{\mathcal{A}})$ and write $\tilde{G} := (\tilde{S}, \tilde{\mathcal{A}})^{-1}$.
- For degenerate $\beta_k \tilde{G}$ use $(S, \mathcal{A}) = (\tilde{S}, \tilde{\mathcal{A}})$ since $\operatorname{im}(\tilde{G}) = \tilde{\mathcal{A}}^{\perp} \leq [\beta_k]^{\perp}$.
- Else $(\tilde{T}, \tilde{\mathcal{B}}) = (\partial^{r+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{r-1}, \beta_k \tilde{G}])$ from Regularity Lemma.

Proof: • Set
$$n = \operatorname{ord}(T) > 0$$
 and $\mathcal{B} = [\beta_1, \dots, \beta_m]$.

- Write $\mathcal{I}_n := [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ and $\mathcal{B}_k := [\beta_1, \dots, \beta_k]$ for $k = 0, \dots, m$.
- Use induction on k to find $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_k) \leq (S, \mathcal{A}).$
- Base case k = 0 clear with $(S, \mathcal{A}) = (T, \mathcal{I}_n)$.
- Take $(\tilde{S}, \tilde{\mathcal{A}}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_{k-1}) \leq (\tilde{S}, \tilde{\mathcal{A}})$ and write $\tilde{G} := (\tilde{S}, \tilde{\mathcal{A}})^{-1}$.
- For degenerate $\beta_k \tilde{G}$ use $(S, \mathcal{A}) = (\tilde{S}, \tilde{\mathcal{A}})$ since $\operatorname{im}(\tilde{G}) = \tilde{\mathcal{A}}^{\perp} \leq [\beta_k]^{\perp}$.
- Else $(\tilde{T}, \tilde{\mathcal{B}}) = (\partial^{r+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{r-1}, \beta_k \tilde{G}])$ from Regularity Lemma.
- Set $(S, \mathcal{A}) = (\tilde{T}, \tilde{\mathcal{B}})(\tilde{S}, \tilde{\mathcal{A}}) = (\tilde{T}\tilde{S}, [\mathbf{E}\tilde{S}, \dots, \mathbf{E}\partial^{r-1}\tilde{S}, \beta_k] + \tilde{\mathcal{A}}).$

Proof: • Set
$$n = \operatorname{ord}(T) > 0$$
 and $\mathcal{B} = [\beta_1, \dots, \beta_m]$.

- Write $\mathcal{I}_n := [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ and $\mathcal{B}_k := [\beta_1, \dots, \beta_k]$ for $k = 0, \dots, m$.
- Use induction on k to find $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_k) \leq (S, \mathcal{A}).$
- Base case k = 0 clear with $(S, \mathcal{A}) = (T, \mathcal{I}_n)$.
- Take $(\tilde{S}, \tilde{\mathcal{A}}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_{k-1}) \leq (\tilde{S}, \tilde{\mathcal{A}})$ and write $\tilde{G} := (\tilde{S}, \tilde{\mathcal{A}})^{-1}$.
- For degenerate $\beta_k \tilde{G}$ use $(S, \mathcal{A}) = (\tilde{S}, \tilde{\mathcal{A}})$ since $\operatorname{im}(\tilde{G}) = \tilde{\mathcal{A}}^{\perp} \leq [\beta_k]^{\perp}$.
- Else $(\tilde{T}, \tilde{\mathcal{B}}) = (\partial^{r+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{r-1}, \beta_k \tilde{G}])$ from Regularity Lemma.
- Set $(S, \mathcal{A}) = (\tilde{T}, \tilde{\mathcal{B}})(\tilde{S}, \tilde{\mathcal{A}}) = (\tilde{T}\tilde{S}, [\mathbf{E}\tilde{S}, \dots, \mathbf{E}\partial^{r-1}\tilde{S}, \beta_k] + \tilde{\mathcal{A}}).$

$$\begin{array}{l} \forall u \in \mathcal{A}^{\perp} :\\ \beta_k u = 0 \Leftrightarrow \beta_k \tilde{G} \tilde{S} u = 0 \end{array}$$

Proof: • Set
$$n = \operatorname{ord}(T) > 0$$
 and $\mathcal{B} = [\beta_1, \dots, \beta_m]$.

- Write $\mathcal{I}_n := [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ and $\mathcal{B}_k := [\beta_1, \dots, \beta_k]$ for $k = 0, \dots, m$.
- Use induction on k to find $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi} : (T, \mathcal{B}_k) \leq (S, \mathcal{A}).$
- Base case k = 0 clear with $(S, \mathcal{A}) = (T, \mathcal{I}_n)$.
- Take $(\tilde{S}, \tilde{\mathcal{A}}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_{k-1}) \leq (\tilde{S}, \tilde{\mathcal{A}})$ and write $\tilde{G} := (\tilde{S}, \tilde{\mathcal{A}})^{-1}$.
- For degenerate $\beta_k \tilde{G}$ use $(S, \mathcal{A}) = (\tilde{S}, \tilde{\mathcal{A}})$ since $\operatorname{im}(\tilde{G}) = \tilde{\mathcal{A}}^{\perp} \leq [\beta_k]^{\perp}$.
- Else $(\tilde{T}, \tilde{\mathcal{B}}) = (\partial^{r+1}, [\mathtt{E}, \dots, \mathtt{E}\partial^{r-1}, \beta_k \tilde{G}])$ from Regularity Lemma.
- Set $(S, \mathcal{A}) = (\tilde{T}, \tilde{\mathcal{B}})(\tilde{S}, \tilde{\mathcal{A}}) = (\tilde{T}\tilde{S}, [\mathtt{E}\tilde{S}, \dots, \mathtt{E}\partial^{r-1}\tilde{S}, \beta_k] + \tilde{\mathcal{A}}).$
- Set $(S, \mathcal{A}) = (I, \mathcal{B})(S, \mathcal{A})$ Now $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi}$ since $(\tilde{T}, \tilde{\mathcal{B}}), (\tilde{S}, \tilde{\mathcal{A}}) \in \mathcal{E}[\partial]_{\Phi}$. $\forall u \in \mathcal{A}^{\perp}:$ $\beta_{k}u = 0 \Leftrightarrow \beta_{k} \tilde{G}\tilde{S}u = 0$

Proof: • Set
$$n = \operatorname{ord}(T) > 0$$
 and $\mathcal{B} = [\beta_1, \dots, \beta_m]$.

- Write $\mathcal{I}_n := [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ and $\mathcal{B}_k := [\beta_1, \dots, \beta_k]$ for $k = 0, \dots, m$.
- Use induction on k to find $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_k) \leq (S, \mathcal{A}).$
- Base case k = 0 clear with $(S, \mathcal{A}) = (T, \mathcal{I}_n)$.
- Take $(\tilde{S}, \tilde{\mathcal{A}}) \in \mathcal{E}[\partial]_{\Phi} \colon (T, \mathcal{B}_{k-1}) \leq (\tilde{S}, \tilde{\mathcal{A}})$ and write $\tilde{G} := (\tilde{S}, \tilde{\mathcal{A}})^{-1}$.
- For degenerate $\beta_k \tilde{G}$ use $(S, \mathcal{A}) = (\tilde{S}, \tilde{\mathcal{A}})$ since $\operatorname{im}(\tilde{G}) = \tilde{\mathcal{A}}^{\perp} \leq [\beta_k]^{\perp}$.
- Else $(\tilde{T}, \tilde{\mathcal{B}}) = (\partial^{r+1}, [\mathbf{E}, \dots, \mathbf{E}\partial^{r-1}, \beta_k \tilde{G}])$ from Regularity Lemma.
- Set $(S, \mathcal{A}) = (\tilde{T}, \tilde{\mathcal{B}})(\tilde{S}, \tilde{\mathcal{A}}) = (\tilde{T}\tilde{S}, [\mathbf{E}\tilde{S}, \dots, \mathbf{E}\partial^{r-1}\tilde{S}, \beta_k] + \tilde{\mathcal{A}}).$
- Now $(S, \mathcal{A}) \in \mathcal{E}[\partial]_{\Phi}$ since $(\tilde{T}, \tilde{\mathcal{B}}), (\tilde{S}, \tilde{\mathcal{A}}) \in \mathcal{E}[\partial]_{\Phi}$. $\forall u \in \mathcal{A}^{\perp}:$ $\beta_{F}u = 0 \Leftrightarrow \beta_{F}\tilde{G}\tilde{S}u = 0$
- Since $\mathcal{B}_{k-1} \leq \tilde{\mathcal{A}}$ we have also $(T, \mathcal{B}_k) \leq (S, \mathcal{A})$.

< 🗗 >

Let Φ be umbral for an integro-differential algebra \mathcal{F} with left extensible coefficient algebra \mathcal{E} . Then $\mathcal{E}[\partial]_{\Phi}$ is a left permutable monoid.

Let Φ be umbral for an integro-differential algebra \mathcal{F} with left extensible coefficient algebra \mathcal{E} . Then $\mathcal{E}[\partial]_{\Phi}$ is a left permutable monoid.

Proof:

• Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ be given.

Let Φ be umbral for an integro-differential algebra \mathcal{F} with left extensible coefficient algebra \mathcal{E} . Then $\mathcal{E}[\partial]_{\Phi}$ is a left permutable monoid.

- Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ be given.
- Since \mathcal{E} is left extensible, $T := \tilde{T}_1 T_1 = \tilde{T}_2 T_2$ for some $\tilde{T}_1, \tilde{T}_2 \in \mathcal{E}[\partial]$.

Let Φ be umbral for an integro-differential algebra \mathcal{F} with left extensible coefficient algebra \mathcal{E} . Then $\mathcal{E}[\partial]_{\Phi}$ is a left permutable monoid.

- Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ be given.
- Since \mathcal{E} is left extensible, $T := \tilde{T}_1 T_1 = \tilde{T}_2 T_2$ for some $\tilde{T}_1, \tilde{T}_2 \in \mathcal{E}[\partial]$.
- Regular subproblem $(S, \mathcal{A}) \leq (T, \mathcal{B}_1 + \mathcal{B}_2)$ by Regularization Lemma.

Let Φ be umbral for an integro-differential algebra \mathcal{F} with left extensible coefficient algebra \mathcal{E} . Then $\mathcal{E}[\partial]_{\Phi}$ is a left permutable monoid.

- Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ be given.
- Since \mathcal{E} is left extensible, $T := \tilde{T}_1 T_1 = \tilde{T}_2 T_2$ for some $\tilde{T}_1, \tilde{T}_2 \in \mathcal{E}[\partial]$.
- Regular subproblem $(S, \mathcal{A}) \leq (T, \mathcal{B}_1 + \mathcal{B}_2)$ by Regularization Lemma.
- Then $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \leq (S, \mathcal{A})$ are regular subproblems.

Let Φ be umbral for an integro-differential algebra \mathcal{F} with left extensible coefficient algebra \mathcal{E} . Then $\mathcal{E}[\partial]_{\Phi}$ is a left permutable monoid.

Proof:

- Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ be given.
- Since \mathcal{E} is left extensible, $T := \tilde{T}_1 T_1 = \tilde{T}_2 T_2$ for some $\tilde{T}_1, \tilde{T}_2 \in \mathcal{E}[\partial]$.
- Regular subproblem $(S, \mathcal{A}) \leq (T, \mathcal{B}_1 + \mathcal{B}_2)$ by Regularization Lemma.
- Then $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \leq (S, \mathcal{A})$ are regular subproblems.
- Division Lemma yields $(\tilde{T}_1, \tilde{\mathcal{B}}_1), (\tilde{T}_2, \tilde{\mathcal{B}}_2) \in \mathcal{E}[\partial]_{\Phi}$ with

 $(S,\mathcal{A}) = (\tilde{T}_1, \tilde{\mathcal{B}}_1)(T_1, \mathcal{B}_1) = (\tilde{T}_2, \tilde{\mathcal{B}}_2)(T_2, \mathcal{B}_2).$

Let Φ be umbral for an integro-differential algebra \mathcal{F} with left extensible coefficient algebra \mathcal{E} . Then $\mathcal{E}[\partial]_{\Phi}$ is a left permutable monoid.

Proof:

- Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ be given.
- Since \mathcal{E} is left extensible, $T := \tilde{T}_1 T_1 = \tilde{T}_2 T_2$ for some $\tilde{T}_1, \tilde{T}_2 \in \mathcal{E}[\partial]$.
- Regular subproblem $(S, \mathcal{A}) \leq (T, \mathcal{B}_1 + \mathcal{B}_2)$ by Regularization Lemma.
- Then $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \leq (S, \mathcal{A})$ are regular subproblems.
- Division Lemma yields $(\tilde{T}_1, \tilde{\mathcal{B}}_1), (\tilde{T}_2, \tilde{\mathcal{B}}_2) \in \mathcal{E}[\partial]_{\Phi}$ with

$$(S,\mathcal{A}) = (\tilde{T}_1,\tilde{\mathcal{B}}_1)(T_1,\mathcal{B}_1) = (\tilde{T}_2,\tilde{\mathcal{B}}_2)(T_2,\mathcal{B}_2).$$

Simplest Example of an Ore Quadruple:

Let Φ be umbral for an integro-differential algebra \mathcal{F} with left extensible coefficient algebra \mathcal{E} . Then $\mathcal{E}[\partial]_{\Phi}$ is a left permutable monoid.

Proof:

- Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ be given.
- Since \mathcal{E} is left extensible, $T := \tilde{T}_1 T_1 = \tilde{T}_2 T_2$ for some $\tilde{T}_1, \tilde{T}_2 \in \mathcal{E}[\partial]$.
- Regular subproblem $(S, \mathcal{A}) \leq (T, \mathcal{B}_1 + \mathcal{B}_2)$ by Regularization Lemma.
- Then $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \leq (S, \mathcal{A})$ are regular subproblems.
- Division Lemma yields $(\tilde{T}_1, \tilde{\mathcal{B}}_1), (\tilde{T}_2, \tilde{\mathcal{B}}_2) \in \mathcal{E}[\partial]_{\Phi}$ with

$$(S,\mathcal{A}) = (\tilde{T}_1,\tilde{\mathcal{B}}_1)(T_1,\mathcal{B}_1) = (\tilde{T}_2,\tilde{\mathcal{B}}_2)(T_2,\mathcal{B}_2).$$

Simplest Example of an Ore Quadruple:

$$(\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) = (\partial, [\int_0^1])(\partial, [\mathbf{E}_0]) = (\partial, [\int_0^1])(\partial, [\mathbf{E}_1])$$

Let Φ be umbral for an integro-differential algebra \mathcal{F} with left extensible coefficient algebra \mathcal{E} . Then $\mathcal{E}[\partial]_{\Phi}$ is a left permutable monoid.

Proof:

- Let $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ be given.
- Since \mathcal{E} is left extensible, $T := \tilde{T}_1 T_1 = \tilde{T}_2 T_2$ for some $\tilde{T}_1, \tilde{T}_2 \in \mathcal{E}[\partial]$.
- Regular subproblem $(S, \mathcal{A}) \leq (T, \mathcal{B}_1 + \mathcal{B}_2)$ by Regularization Lemma.
- Then $(T_1, \mathcal{B}_1), (T_2, \mathcal{B}_2) \leq (S, \mathcal{A})$ are regular subproblems.
- Division Lemma yields $(\tilde{T}_1, \tilde{\mathcal{B}}_1), (\tilde{T}_2, \tilde{\mathcal{B}}_2) \in \mathcal{E}[\partial]_{\Phi}$ with

$$(S,\mathcal{A}) = (\tilde{T}_1,\tilde{\mathcal{B}}_1)(T_1,\mathcal{B}_1) = (\tilde{T}_2,\tilde{\mathcal{B}}_2)(T_2,\mathcal{B}_2).$$

Simplest Example of an Ore Quadruple:

$$\begin{aligned} (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) &= (\partial, [\int_0^1])(\partial, [\mathbf{E}_0]) = (\partial, [\int_0^1])(\partial, [\mathbf{E}_1]) \\ (T, \mathcal{B}) &= (\partial, [\mathbf{E}_0, \mathbf{E}_1]) \end{aligned}$$

(日)

In general, left and right localization/localizability may differ.

In general, left and right localization/localizability may differ.

Here they actually do (strengthened result!):

In general, left and right localization/localizability may differ.

Here they actually do (strengthened result!):

Proposition

Let Φ be an arbitrary character set for an integro-differential algebra \mathcal{F} with coefficient algebra \mathcal{E} . Assume $(T, \mathcal{B}_1), (T, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ have a common right multiple

 $(T, \mathcal{B}_1)(S, \mathcal{C}_1) = (T, \mathcal{B}_2)(S, \mathcal{C}_2)$

for some right factors $(S, C_1), (S, C_2) \in \mathcal{E}[\partial] \ltimes K\Phi$. Then both (S, C_1) and (S, C_2) are singular whenever $\mathcal{B}_1 \neq \mathcal{B}_2$.

In general, left and right localization/localizability may differ.

Here they actually do (strengthened result!):

Proposition

Let Φ be an arbitrary character set for an integro-differential algebra \mathcal{F} with coefficient algebra \mathcal{E} . Assume $(T, \mathcal{B}_1), (T, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ have a common right multiple

 $(T, \mathcal{B}_1)(S, \mathcal{C}_1) = (T, \mathcal{B}_2)(S, \mathcal{C}_2)$

for some right factors $(S, C_1), (S, C_2) \in \mathcal{E}[\partial] \ltimes K\Phi$. Then both (S, C_1) and (S, C_2) are singular whenever $\mathcal{B}_1 \neq \mathcal{B}_2$.

Reason for asymmetry: Naturality of left action.

In general, left and right localization/localizability may differ.

Here they actually do (strengthened result!):

Proposition

Let Φ be an arbitrary character set for an integro-differential algebra \mathcal{F} with coefficient algebra \mathcal{E} . Assume $(T, \mathcal{B}_1), (T, \mathcal{B}_2) \in \mathcal{E}[\partial]_{\Phi}$ have a common right multiple

 $(T, \mathcal{B}_1)(S, \mathcal{C}_1) = (T, \mathcal{B}_2)(S, \mathcal{C}_2)$

for some right factors $(S, C_1), (S, C_2) \in \mathcal{E}[\partial] \ltimes K\Phi$. Then both (S, C_1) and (S, C_2) are singular whenever $\mathcal{B}_1 \neq \mathcal{B}_2$.

Reason for asymmetry: Naturality of left action.

However, left permutability also goes through for well-posed problems.

Let Φ be an umbral character set for the integro-differential algebra $(\mathcal{F}, \partial, \int)$ with left extensible coefficient algebra \mathcal{E} . Then there exists the left fraction ring $K\mathcal{E}[\partial]_{\Phi}^*$ of $K\mathcal{E}[\partial]_{\Phi}$ with denominator set $\mathcal{E}[\partial]_{\Phi}$.

Let Φ be an umbral character set for the integro-differential algebra $(\mathcal{F}, \partial, \int)$ with left extensible coefficient algebra \mathcal{E} . Then there exists the left fraction ring $K\mathcal{E}[\partial]_{\Phi}^*$ of $K\mathcal{E}[\partial]_{\Phi}$ with denominator set $\mathcal{E}[\partial]_{\Phi}$.

Let Φ be an umbral character set for the integro-differential algebra $(\mathcal{F}, \partial, \int)$ with left extensible coefficient algebra \mathcal{E} . Then there exists the left fraction ring $K\mathcal{E}[\partial]_{\Phi}^*$ of $K\mathcal{E}[\partial]_{\Phi}$ with denominator set $\mathcal{E}[\partial]_{\Phi}$.

Proof:

• Suffices to check that $\mathcal{E}[\partial]$ is Ore monoid.

Let Φ be an umbral character set for the integro-differential algebra $(\mathcal{F}, \partial, \int)$ with left extensible coefficient algebra \mathcal{E} . Then there exists the left fraction ring $K\mathcal{E}[\partial]_{\Phi}^*$ of $K\mathcal{E}[\partial]_{\Phi}$ with denominator set $\mathcal{E}[\partial]_{\Phi}$.

Proof:

 \bullet Suffices to check that $\mathcal{E}[\partial]$ is Ore monoid. Still need left reversibility.

Let Φ be an umbral character set for the integro-differential algebra $(\mathcal{F}, \partial, \int)$ with left extensible coefficient algebra \mathcal{E} . Then there exists the left fraction ring $K\mathcal{E}[\partial]_{\Phi}^*$ of $K\mathcal{E}[\partial]_{\Phi}$ with denominator set $\mathcal{E}[\partial]_{\Phi}$.

Proof:

- \bullet Suffices to check that $\mathcal{E}[\partial]$ is Ore monoid. Still need left reversibility.
- For a module S, left reversibility means

 $s_1S \cap s_2S \neq \emptyset \Rightarrow Ss_1 \cap Ss_2 \neq \emptyset$

Let Φ be an umbral character set for the integro-differential algebra $(\mathcal{F}, \partial, \int)$ with left extensible coefficient algebra \mathcal{E} . Then there exists the left fraction ring $K\mathcal{E}[\partial]_{\Phi}^*$ of $K\mathcal{E}[\partial]_{\Phi}$ with denominator set $\mathcal{E}[\partial]_{\Phi}$.

Proof:

- \bullet Suffices to check that $\mathcal{E}[\partial]$ is Ore monoid. Still need left reversibility.
- For a module S, left reversibility means

$$s_1S \cap s_2S \neq \emptyset \Rightarrow Ss_1 \cap Ss_2 \neq \emptyset$$

for all $s_1, s_2 \in S$.

• Hence assume $(T_1, \mathcal{B}_1)(T, \mathcal{B}) = (T_2, \mathcal{B}_2)(T, \mathcal{B})$ for regular problems.

Let Φ be an umbral character set for the integro-differential algebra $(\mathcal{F}, \partial, \int)$ with left extensible coefficient algebra \mathcal{E} . Then there exists the left fraction ring $K\mathcal{E}[\partial]_{\Phi}^*$ of $K\mathcal{E}[\partial]_{\Phi}$ with denominator set $\mathcal{E}[\partial]_{\Phi}$.

Proof:

- \bullet Suffices to check that $\mathcal{E}[\partial]$ is Ore monoid. Still need left reversibility.
- For a module S, left reversibility means

$$s_1S \cap s_2S \neq \emptyset \Rightarrow Ss_1 \cap Ss_2 \neq \emptyset$$

- Hence assume $(T_1, \mathcal{B}_1)(T, \mathcal{B}) = (T_2, \mathcal{B}_2)(T, \mathcal{B})$ for regular problems.
- By left extensibility of $\mathcal{E}[\partial]$ take \tilde{T} with $\tilde{T}T_1 = \tilde{T}T_2$.

Let Φ be an umbral character set for the integro-differential algebra $(\mathcal{F}, \partial, \int)$ with left extensible coefficient algebra \mathcal{E} . Then there exists the left fraction ring $K\mathcal{E}[\partial]_{\Phi}^*$ of $K\mathcal{E}[\partial]_{\Phi}$ with denominator set $\mathcal{E}[\partial]_{\Phi}$.

Proof:

- \bullet Suffices to check that $\mathcal{E}[\partial]$ is Ore monoid. Still need left reversibility.
- For a module S, left reversibility means

$$s_1S \cap s_2S \neq \emptyset \Rightarrow Ss_1 \cap Ss_2 \neq \emptyset$$

- Hence assume $(T_1, \mathcal{B}_1)(T, \mathcal{B}) = (T_2, \mathcal{B}_2)(T, \mathcal{B})$ for regular problems.
- By left extensibility of $\mathcal{E}[\partial]$ take \tilde{T} with $\tilde{T}T_1 = \tilde{T}T_2$.
- Setting $\tilde{\mathcal{B}} = [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ yields $(\tilde{T}, \tilde{\mathcal{B}}) \in \mathcal{E}[\partial]_{\Phi}$.

Let Φ be an umbral character set for the integro-differential algebra $(\mathcal{F}, \partial, \int)$ with left extensible coefficient algebra \mathcal{E} . Then there exists the left fraction ring $K\mathcal{E}[\partial]_{\Phi}^*$ of $K\mathcal{E}[\partial]_{\Phi}$ with denominator set $\mathcal{E}[\partial]_{\Phi}$.

Proof:

- \bullet Suffices to check that $\mathcal{E}[\partial]$ is Ore monoid. Still need left reversibility.
- For a module S, left reversibility means

$$s_1S \cap s_2S \neq \emptyset \Rightarrow Ss_1 \cap Ss_2 \neq \emptyset$$

- Hence assume $(T_1, \mathcal{B}_1)(T, \mathcal{B}) = (T_2, \mathcal{B}_2)(T, \mathcal{B})$ for regular problems.
- By left extensibility of $\mathcal{E}[\partial]$ take \tilde{T} with $\tilde{T}T_1 = \tilde{T}T_2$.
- Setting $\tilde{\mathcal{B}} = [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ yields $(\tilde{T}, \tilde{\mathcal{B}}) \in \mathcal{E}[\partial]_{\Phi}$.
- Then $((\tilde{T}, \tilde{\mathcal{B}})(T_1, \mathcal{B}_1))(T, \mathcal{B}) = ((\tilde{T}, \tilde{\mathcal{B}})(T_2, \tilde{\mathcal{B}}))(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}.$

Theorem

Let Φ be an umbral character set for the integro-differential algebra $(\mathcal{F}, \partial, \int)$ with left extensible coefficient algebra \mathcal{E} . Then there exists the left fraction ring $K\mathcal{E}[\partial]_{\Phi}^*$ of $K\mathcal{E}[\partial]_{\Phi}$ with denominator set $\mathcal{E}[\partial]_{\Phi}$.

Proof:

- \bullet Suffices to check that $\mathcal{E}[\partial]$ is Ore monoid. Still need left reversibility.
- For a module S, left reversibility means

$$s_1S \cap s_2S \neq \emptyset \Rightarrow Ss_1 \cap Ss_2 \neq \emptyset$$

for all $s_1, s_2 \in S$.

- Hence assume $(T_1, \mathcal{B}_1)(T, \mathcal{B}) = (T_2, \mathcal{B}_2)(T, \mathcal{B})$ for regular problems.
- By left extensibility of $\mathcal{E}[\partial]$ take \tilde{T} with $\tilde{T}T_1 = \tilde{T}T_2$.
- Setting $\tilde{\mathcal{B}} = [\mathbf{E}, \dots, \mathbf{E}\partial^{n-1}]$ yields $(\tilde{T}, \tilde{\mathcal{B}}) \in \mathcal{E}[\partial]_{\Phi}$.
- Then $((\tilde{T}, \tilde{\mathcal{B}})(T_1, \mathcal{B}_1))(T, \mathcal{B}) = ((\tilde{T}, \tilde{\mathcal{B}})(T_2, \tilde{\mathcal{B}}))(T, \mathcal{B}) \in \mathcal{E}[\partial]_{\Phi}.$
- By the Division Lemma $(\tilde{T}, \tilde{\mathcal{B}})(T_1, \mathcal{B}_1) = (\tilde{T}, \tilde{\mathcal{B}})(T_2, \tilde{\mathcal{B}}).$

< 🗗 >

We call $K\mathcal{E}[\partial]^{\star}_{\Phi}$ the ring of methorious operators:

We call $K\mathcal{E}[\partial]^*_{\Phi}$ the ring of methorious operators (< Greek $\mu \varepsilon \theta \delta \rho \iota \circ \varsigma$): \triangleright Typical cases when $\mathcal{F} = C^{\infty}(\mathbb{R})$ or $\mathcal{F} = C^{\omega}(\mathbb{R})$.

We call $K\mathcal{E}[\partial]^*_{\Phi}$ the ring of methorious operators (< Greek $\mu\epsilon\theta$ óριος): \triangleright Typical cases when $\mathcal{F} = C^{\infty}(\mathbb{R})$ or $\mathcal{F} = C^{\omega}(\mathbb{R})$.

In either case $\mathcal{E} = C^{\omega}(\mathbb{R})$ or $\mathcal{E} = \mathbb{R}[x]$ is possible.

We call $K\mathcal{E}[\partial]^*_{\Phi}$ the ring of methorious operators (< Greek $\mu\epsilon\theta \delta\rho\iotao\varsigma$): \triangleright Typical cases when $\mathcal{F} = C^{\infty}(\mathbb{R})$ or $\mathcal{F} = C^{\omega}(\mathbb{R})$.

In either case $\mathcal{E} = C^{\omega}(\mathbb{R})$ or $\mathcal{E} = \mathbb{R}[x]$ is possible.

 \triangleright Clearly $\varepsilon \colon K\mathcal{E}[\partial]_{\Phi} \to K\mathcal{E}[\partial]_{\Phi}^{\star}$ is not an embedding.

We call $K\mathcal{E}[\partial]^*_{\Phi}$ the ring of methorious operators (< Greek $\mu\epsilon\theta \delta\rho\iotao\varsigma$): \triangleright Typical cases when $\mathcal{F} = C^{\infty}(\mathbb{R})$ or $\mathcal{F} = C^{\omega}(\mathbb{R})$.

In either case $\mathcal{E} = C^{\omega}(\mathbb{R})$ or $\mathcal{E} = \mathbb{R}[x]$ is possible.

 \triangleright Clearly $\varepsilon \colon K\mathcal{E}[\partial]_{\Phi} \to K\mathcal{E}[\partial]_{\Phi}^{\star}$ is not an embedding.

Example: $N := (\partial, [\mathbf{E}_0]) - (\partial, [\mathbf{E}_1]) \in \ker \varepsilon$

We call $K\mathcal{E}[\partial]^*_{\Phi}$ the ring of methorious operators (< Greek $\mu\epsilon\theta$ óριος): \triangleright Typical cases when $\mathcal{F} = C^{\infty}(\mathbb{R})$ or $\mathcal{F} = C^{\omega}(\mathbb{R})$.

In either case $\mathcal{E} = C^{\omega}(\mathbb{R})$ or $\mathcal{E} = \mathbb{R}[x]$ is possible.

 \triangleright Clearly $\varepsilon \colon K\mathcal{E}[\partial]_{\Phi} \to K\mathcal{E}[\partial]_{\Phi}^{\star}$ is not an embedding.

Example: $N := (\partial, [\mathbf{E}_0]) - (\partial, [\mathbf{E}_1]) \in \ker \varepsilon$ $(\partial, [\int_0^1]) N = (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) - (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) = 0$

We call $K\mathcal{E}[\partial]^*_{\Phi}$ the ring of methorious operators (< Greek $\mu\epsilon\theta$ óριος): \triangleright Typical cases when $\mathcal{F} = C^{\infty}(\mathbb{R})$ or $\mathcal{F} = C^{\omega}(\mathbb{R})$.

In either case $\mathcal{E} = C^{\omega}(\mathbb{R})$ or $\mathcal{E} = \mathbb{R}[x]$ is possible.

 \triangleright Clearly $\varepsilon \colon K\mathcal{E}[\partial]_{\Phi} \to K\mathcal{E}[\partial]_{\Phi}^{\star}$ is not an embedding.

Example:
$$N := (\partial, [\mathbf{E}_0]) - (\partial, [\mathbf{E}_1]) \in \ker \varepsilon$$

 $(\partial, [\int_0^1]) N = (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) - (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) = 0$

Conjecture

Let Φ be an umbral character set for an integro-differential algebra \mathcal{F} with left extensible coefficient algebra \mathcal{E} . Then we have $\sum_i \lambda_i (T_i, \mathcal{B}_i) \in \ker \varepsilon$ iff $\sum_i \lambda_i G_i \in (\Phi)$, where G_i is the Green's operator of (T_i, \mathcal{B}_i) .

Interpretation

- 2 Classical Mikusiński Calculus
- Towards A Noncommutative Mikusiński Calculus
- Umbral Character Sets
- 6 Ring of Methorious Operators
- **Module of Methorious Functions**

Conclusion

Recall our "algebraic analysis" stance:

Methorious operators

 $\sim \rightarrow$

Methorious functions

 $\hookleftarrow \mathcal{E}[\partial]$

Recall our "algebraic analysis" stance:

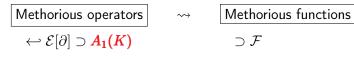
Confer Analysis: $\delta \in \mathcal{D}(\mathbb{R})' \subset C_0^{\infty}(\mathbb{R})$

Recall our "algebraic analysis" stance:

Confer Analysis: $\delta \in \mathcal{D}(\mathbb{R})' \subset C_0^{\infty}(\mathbb{R})$

Confer Algebra: D-Module M, specifically for $D = A_1(K)$

Recall our "algebraic analysis" stance:



Confer Analysis: $\delta \in \mathcal{D}(\mathbb{R})' \subset C_0^{\infty}(\mathbb{R})$

Confer Algebra: D-Module M, specifically for $D = A_1(K)$

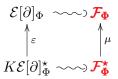
Basic method: Module of fractions

Recall our "algebraic analysis" stance:

Confer Analysis: $\delta \in \mathcal{D}(\mathbb{R})' \subset C_0^{\infty}(\mathbb{R})$

Confer Algebra: D-Module M, specifically for $D = A_1(K)$

Basic method: Module of fractions



This will justify the terminology of methorious operators.

(日)

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

• Why not start with Green's operators like $h = (\partial, [E_0])^{-1}$?

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

Why not start with Green's operators like h = (∂, [E₀])⁻¹?
 Problem: This is a right but not a left Ore Monoid!

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

- Why not start with Green's operators like h = (∂, [E₀])⁻¹?
 Problem: This is a right but not a left Ore Monoid!
- If we must do $s \rightsquigarrow h$, why not localize $\mathcal{E}[\partial]$ instead of $\mathcal{E}[\partial]_{\Phi}$?

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

- Why not start with Green's operators like h = (∂, [E₀])⁻¹?
 Problem: This is a right but not a left Ore Monoid!
- If we must do s → h, why not localize E[∂] instead of E[∂]_Φ?
 Problem: Yields ∂⁻¹ as two-sided inverse, losing boundary data!

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

- Why not start with Green's operators like h = (∂, [E₀])⁻¹?
 Problem: This is a right but not a left Ore Monoid!
- If we must do s → h, why not localize E[∂] instead of E[∂]_Φ?
 Problem: Yields ∂⁻¹ as two-sided inverse, losing boundary data!

However, localizing via $K\mathcal{E}[\partial]^{\star}_{\Phi}$ brings complications:

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

- Why not start with Green's operators like h = (∂, [E₀])⁻¹?
 Problem: This is a right but not a left Ore Monoid!
- If we must do s → h, why not localize E[∂] instead of E[∂]_Φ?
 Problem: Yields ∂⁻¹ as two-sided inverse, losing boundary data!

However, localizing via $K\mathcal{E}[\partial]^{\star}_{\Phi}$ brings complications:

• Need action of $K\mathcal{E}[\partial]_{\Phi}$ on \mathcal{F} .

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

- Why not start with Green's operators like h = (∂, [E₀])⁻¹?
 Problem: This is a right but not a left Ore Monoid!
- If we must do s → h, why not localize E[∂] instead of E[∂]_Φ?
 Problem: Yields ∂⁻¹ as two-sided inverse, losing boundary data!

However, localizing via $K\mathcal{E}[\partial]^{\star}_{\Phi}$ brings complications:

- Need action of $K\mathcal{E}[\partial]_{\Phi}$ on \mathcal{F} .
- Hence must extend ${\cal F}$ prior to localization, unlike Mikusiński. ${\ensuremath{\mathfrak{G}}}$

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

- Why not start with Green's operators like h = (∂, [E₀])⁻¹?
 Problem: This is a right but not a left Ore Monoid!
- If we must do s → h, why not localize E[∂] instead of E[∂]_Φ?
 Problem: Yields ∂⁻¹ as two-sided inverse, losing boundary data!

However, localizing via $K\mathcal{E}[\partial]^{\star}_{\Phi}$ brings complications:

- Need action of $K\mathcal{E}[\partial]_{\Phi}$ on \mathcal{F} .
- Hence must extend ${\cal F}$ prior to localization, unlike Mikusiński. ${\ensuremath{\mathfrak{G}}}$

Recall Mikusiński's fundamental formula:

 $sf = f' + \mathbf{E}_0(f)\,\delta_0$

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

- Why not start with Green's operators like h = (∂, [E₀])⁻¹?
 Problem: This is a right but not a left Ore Monoid!
- If we must do s → h, why not localize E[∂] instead of E[∂]_Φ?
 Problem: Yields ∂⁻¹ as two-sided inverse, losing boundary data!

However, localizing via $K\mathcal{E}[\partial]^{\star}_{\Phi}$ brings complications:

- Need action of $K\mathcal{E}[\partial]_{\Phi}$ on \mathcal{F} .
- ullet Hence must extend ${\mathcal F}$ prior to localization, unlike Mikusiński. $oldsymbol{eta}$

Recall Mikusiński's fundamental formula:

 $sf = f' + \mathbf{E}_0(f)\,\delta_0$

Here δ_0 for $h /\!\!/ h$ since tied to \mathbf{E}_0 .

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

- Why not start with Green's operators like h = (∂, [E₀])⁻¹?
 Problem: This is a right but not a left Ore Monoid!
- If we must do s → h, why not localize E[∂] instead of E[∂]_Φ?
 Problem: Yields ∂⁻¹ as two-sided inverse, losing boundary data!

However, localizing via $K\mathcal{E}[\partial]^{\star}_{\Phi}$ brings complications:

- Need action of $K\mathcal{E}[\partial]_{\Phi}$ on \mathcal{F} .
- ullet Hence must extend ${\mathcal F}$ prior to localization, unlike Mikusiński. $oldsymbol{eta}$

Recall Mikusiński's fundamental formula:

 $s_{\boldsymbol{\xi}}f = f' + \mathbf{E}_{\boldsymbol{\xi}}(f)\,\delta_{\boldsymbol{\xi}}$

Here δ_0 for $h/\!\!/ h$ since tied to \mathbf{E}_0 . Can generalize to $s_{\boldsymbol{\xi}} := (\partial, [\mathbf{E}_{\boldsymbol{\xi}}])$.

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

- Why not start with Green's operators like h = (∂, [E₀])⁻¹?
 Problem: This is a right but not a left Ore Monoid!
- If we must do s → h, why not localize E[∂] instead of E[∂]_Φ?
 Problem: Yields ∂⁻¹ as two-sided inverse, losing boundary data!

However, localizing via $K\mathcal{E}[\partial]^{\star}_{\Phi}$ brings complications:

- Need action of $K\mathcal{E}[\partial]_{\Phi}$ on \mathcal{F} .
- ullet Hence must extend ${\mathcal F}$ prior to localization, unlike Mikusiński. $oldsymbol{eta}$

Recall Mikusiński's fundamental formula:

 $s_{\xi}f = f' + \mathbf{E}_{\xi}(f)\,\delta_{\xi}$

Here δ_0 for $h /\!\!/ h$ since tied to \mathbf{E}_0 . Can generalize to $s_{\boldsymbol{\xi}} := (\partial, [\mathbf{E}_{\boldsymbol{\xi}}])$. Note that $\mathbf{E}_{\boldsymbol{\xi}}$ is the **projector** onto ker ∂ along $[\mathbf{E}_{\boldsymbol{\xi}}]$.

Recall Mikusiński's construction: $h = \int_0^x \rightsquigarrow s := h^{-1}$.

- Why not start with Green's operators like h = (∂, [E₀])⁻¹?
 Problem: This is a right but not a left Ore Monoid!
- If we must do s → h, why not localize E[∂] instead of E[∂]_Φ?
 Problem: Yields ∂⁻¹ as two-sided inverse, losing boundary data!

However, localizing via $K\mathcal{E}[\partial]^{\star}_{\Phi}$ brings complications:

- Need action of $K\mathcal{E}[\partial]_{\Phi}$ on \mathcal{F} .
- ullet Hence must extend ${\mathcal F}$ prior to localization, unlike Mikusiński. $oldsymbol{eta}$

Recall Mikusiński's fundamental formula:

 $s_{\pmb{\xi}}f = f' + \mathbf{E}_{\pmb{\xi}}(f)\,\delta_{\pmb{\xi}}$

Here δ_0 for $h/\!\!/ h$ since tied to \mathbf{E}_0 . Can generalize to $s_{\boldsymbol{\xi}} := (\partial, [\mathbf{E}_{\boldsymbol{\xi}}])$. Note that $\mathbf{E}_{\boldsymbol{\xi}}$ is the projector onto ker ∂ along $[\mathbf{E}_{\boldsymbol{\xi}}]$. But how to represent carrier objects $\delta_{\boldsymbol{\xi}}$ in \mathcal{F}_{Φ} ?

(日)

Generalized fundamental formula:

 $(T, \mathcal{B}) \cdot f := Tf + Pf(T, \mathcal{B})$

Generalized fundamental formula:

 $(T, \mathcal{B}) \cdot f := Tf + Pf(T, \mathcal{B})$

Here P is the projector onto ker T along \mathcal{B}^{\perp} .

Generalized fundamental formula:

 $(T, \mathcal{B}) \cdot f := Tf + Pf(T, \mathcal{B})$

Here P is the projector onto ker T along \mathcal{B}^{\perp} .

And (T, \mathcal{B}) on the right is a carrier object for this boundary problem.

Generalized fundamental formula:

 $(T, \mathcal{B}) \cdot f := Tf + Pf(T, \mathcal{B})$

Here P is the projector onto ker T along \mathcal{B}^{\perp} .

And (T, \mathcal{B}) on the right is a carrier object for this boundary problem.

 \triangleright Methorious functions $f(T, \mathcal{B}) \in \mathcal{F} \otimes_K K\mathcal{E}[\partial]_{\Phi}$ with $f \in \ker T$.

Generalized fundamental formula:

 $(T, \mathcal{B}) \cdot f := Tf + Pf(T, \mathcal{B})$

Here P is the projector onto ker T along \mathcal{B}^{\perp} .

And (T, \mathcal{B}) on the right is a carrier object for this boundary problem.

 \triangleright Methorious functions $f(T, \mathcal{B}) \in \mathcal{F} \otimes_K K\mathcal{E}[\partial]_{\Phi}$ with $f \in \ker T$.

 \triangleright Essentially records integration constants $\beta(f)$ for $\beta \in \mathcal{B}$

Generalized fundamental formula:

 $(T, \mathcal{B}) \cdot f := Tf + Pf(T, \mathcal{B})$

Here P is the projector onto ker T along \mathcal{B}^{\perp} . And (T, \mathcal{B}) on the right is a carrier object for this boundary problem.

- \triangleright Methorious functions $f(T, \mathcal{B}) \in \mathcal{F} \otimes_K K\mathcal{E}[\partial]_{\Phi}$ with $f \in \ker T$.
- \triangleright Essentially records integration constants $\beta(f)$ for $\beta \in \mathcal{B}$

Canonical extension of action:

 $(\tilde{T}, \tilde{\mathcal{B}}) \cdot f(T, \mathcal{B}) := f(\tilde{T}T, \tilde{\mathcal{B}}T + \mathcal{B})$

Action on Methorious Functions

Generalized fundamental formula:

 $(T, \mathcal{B}) \cdot f := Tf + Pf(T, \mathcal{B})$

Here P is the projector onto ker T along \mathcal{B}^{\perp} . And (T, \mathcal{B}) on the right is a carrier object for this boundary problem.

 \triangleright Methorious functions $f(T, \mathcal{B}) \in \mathcal{F} \otimes_K K\mathcal{E}[\partial]_{\Phi}$ with $f \in \ker T$.

 \triangleright Essentially records integration constants $\beta(f)$ for $\beta \in \mathcal{B}$

Canonical extension of action:

$$(\tilde{T}, \tilde{\mathcal{B}}) \cdot f(T, \mathcal{B}) := f(\tilde{T}T, \tilde{\mathcal{B}}T + \mathcal{B})$$

 \triangleright Adds new integration constants $\tilde{\beta}Tf = 0$.

Action on Methorious Functions

Generalized fundamental formula:

 $(T, \mathcal{B}) \cdot f := Tf + Pf(T, \mathcal{B})$

Here P is the projector onto ker T along \mathcal{B}^{\perp} . And (T, \mathcal{B}) on the right is a carrier object for this boundary problem.

 \triangleright Methorious functions $f(T, \mathcal{B}) \in \mathcal{F} \otimes_K K\mathcal{E}[\partial]_{\Phi}$ with $f \in \ker T$.

 \triangleright Essentially records integration constants $\beta(f)$ for $\beta \in \mathcal{B}$

Canonical extension of action:

$$(\tilde{T}, \tilde{\mathcal{B}}) \cdot f(T, \mathcal{B}) := f(\tilde{T}T, \tilde{\mathcal{B}}T + \mathcal{B})$$

 \triangleright Adds new integration constants $\tilde{\beta}Tf = 0$.

But which methorious functions are equal?

Equality of methorious functions:

 $f(T,\mathcal{B}) = \tilde{G}f(T\tilde{T},\mathcal{B}\tilde{T} + \tilde{\mathcal{B}})$

Equality of methorious functions:

 $f(T,\mathcal{B}) = \tilde{G}f(T\tilde{T},\mathcal{B}\tilde{T} + \tilde{\mathcal{B}})$

 \triangleright Same information for $g = \tilde{G}f$ since $\tilde{\beta}(g) = 0$ and $(\beta \tilde{T})(g) = \beta(f)$.

Equality of methorious functions:

 $f(T,\mathcal{B}) = \tilde{G}f(T\tilde{T},\mathcal{B}\tilde{T} + \tilde{\mathcal{B}})$

 \triangleright Same information for $g = \tilde{G}f$ since $\tilde{\beta}(g) = 0$ and $(\beta \tilde{T})(g) = \beta(f)$.

Definition

Let $\mathcal{I} \leq \mathcal{F} \otimes_K K\mathcal{E}[\partial]_{\Phi}$ generated by $f(T, \mathcal{B})$ with Tf = 0. Furthermore, let \mathcal{I}_0 be the subspace of \mathcal{I} generated by the elements $f(T, \mathcal{B}) - \tilde{G}f(T\tilde{T}, \mathcal{B}\tilde{T} + \tilde{\mathcal{B}}).$

Then we define the module of methorious functions $\mathcal{F}_{\Phi} := \mathcal{F} \oplus \mathcal{I}/\mathcal{I}_0$.

Equality of methorious functions:

 $f\left(T,\mathcal{B}\right)=\tilde{G}f\left(T\tilde{T},\mathcal{B}\tilde{T}+\tilde{\mathcal{B}}\right)$

 \triangleright Same information for $g = \tilde{G}f$ since $\tilde{\beta}(g) = 0$ and $(\beta \tilde{T})(g) = \beta(f)$.

Definition

Let $\mathcal{I} \leq \mathcal{F} \otimes_K K\mathcal{E}[\partial]_{\Phi}$ generated by $f(T, \mathcal{B})$ with Tf = 0. Furthermore, let \mathcal{I}_0 be the subspace of \mathcal{I} generated by the elements $f(T, \mathcal{B}) - \tilde{G}f(T\tilde{T}, \mathcal{B}\tilde{T} + \tilde{\mathcal{B}}).$

Then we define the module of methorious functions $\mathcal{F}_{\Phi} := \mathcal{F} \oplus \mathcal{I}/\mathcal{I}_0$.

Module structure is as intended:

Proposition

Let $(\mathcal{F}, \partial, \int)$ be an integro-differential algebra with character set Φ . The definitions given above induce a monoid action of $\mathcal{E}[\partial]_{\Phi}$ on \mathcal{F}_{Φ} such that it becomes a $K\mathcal{E}[\partial]_{\Phi}$ -module.

< 🗗 >

Theorem

Let M be a left R-module, and let $S \subseteq R$ be a multiplicative, right permutable and right reversible denominator set $S \subseteq R$. Then there exists a left $S^{-1}R$ -module $S^{-1}M$. The kernel of the extension $\mu \colon M \to S^{-1}M$ consists of those $u \in M$ for which there exists an $s \in S$ with su = 0.

Theorem

Let M be a left R-module, and let $S \subseteq R$ be a multiplicative, right permutable and right reversible denominator set $S \subseteq R$. Then there exists a left $S^{-1}R$ -module $S^{-1}M$. The kernel of the extension $\mu \colon M \to S^{-1}M$ consists of those $u \in M$ for which there exists an $s \in S$ with su = 0.

Apply this to $M = \mathcal{F}_{\Phi}$, and $R = K\mathcal{E}[\partial]_{\Phi}$ with $S = \mathcal{E}[\partial]_{\Phi}$.

Theorem

Let M be a left R-module, and let $S \subseteq R$ be a multiplicative, right permutable and right reversible denominator set $S \subseteq R$. Then there exists a left $S^{-1}R$ -module $S^{-1}M$. The kernel of the extension $\mu \colon M \to S^{-1}M$ consists of those $u \in M$ for which there exists an $s \in S$ with su = 0.

Apply this to $M = \mathcal{F}_{\Phi}$, and $R = K\mathcal{E}[\partial]_{\Phi}$ with $S = \mathcal{E}[\partial]_{\Phi}$. We call $S^{-1}M$ the module of methorious hyperfunctions \mathcal{F}_{Φ}^{*} .

Theorem

Let M be a left R-module, and let $S \subseteq R$ be a multiplicative, right permutable and right reversible denominator set $S \subseteq R$. Then there exists a left $S^{-1}R$ -module $S^{-1}M$. The kernel of the extension $\mu \colon M \to S^{-1}M$ consists of those $u \in M$ for which there exists an $s \in S$ with su = 0.

Apply this to $M = \mathcal{F}_{\Phi}$, and $R = K\mathcal{E}[\partial]_{\Phi}$ with $S = \mathcal{E}[\partial]_{\Phi}$. We call $S^{-1}M$ the module of methorious hyperfunctions $\mathcal{F}_{\Phi}^{\star}$. Again noninjective extension, for example $(\partial, [\mathbf{E}_1]) - (\partial, [\mathbf{E}_0]) \in \ker \mu$.

Theorem

Let M be a left R-module, and let $S \subseteq R$ be a multiplicative, right permutable and right reversible denominator set $S \subseteq R$. Then there exists a left $S^{-1}R$ -module $S^{-1}M$. The kernel of the extension $\mu \colon M \to S^{-1}M$ consists of those $u \in M$ for which there exists an $s \in S$ with su = 0.

Apply this to
$$M = \mathcal{F}_{\Phi}$$
, and $R = K\mathcal{E}[\partial]_{\Phi}$ with $S = \mathcal{E}[\partial]_{\Phi}$.
We call $S^{-1}M$ the module of methorious hyperfunctions $\mathcal{F}_{\Phi}^{\star}$.

Again noninjective extension, for example $(\partial, [E_1]) - (\partial, [E_0]) \in \ker \mu$. But:

Proposition

Let $(\mathcal{F}, \partial, \int)$ be an integro-differential algebra with character set Φ . Then we have an **embedding** $\mathcal{F} \subset \mathcal{F}_{\Phi}^{\star}$.

At long last—Green's operators are reciprocals:

At long last—Green's operators are reciprocals:

Proposition

We have $(T, \mathcal{B})^{-1} \cdot f = Gf$ for all $f \in \mathcal{F}$.

At long last—Green's operators are reciprocals:

Proposition

We have $(T, \mathcal{B})^{-1} \cdot f = Gf$ for all $f \in \mathcal{F}$. Moreover, if Tf = 0 then $(T, \mathcal{B})^{-1} \cdot f(T, \mathcal{B}) = f$.

At long last—Green's operators are reciprocals:

Proposition

We have $(T, \mathcal{B})^{-1} \cdot f = Gf$ for all $f \in \mathcal{F}$. Moreover, if Tf = 0 then $(T, \mathcal{B})^{-1} \cdot f(T, \mathcal{B}) = f$.

At long last—Green's operators are reciprocals:

Proposition

We have $(T, \mathcal{B})^{-1} \cdot f = Gf$ for all $f \in \mathcal{F}$. Moreover, if Tf = 0 then $(T, \mathcal{B})^{-1} \cdot f(T, \mathcal{B}) = f$.

• Set
$$s_{\xi} := (\partial, [\mathbf{E}_{\xi}]) \in K\mathcal{E}[\partial]_{\Phi}^{\star}$$
 and $\delta_{\xi} := (\partial, [\mathbf{E}_{\xi}]) \in \mathcal{F}_{\Phi}^{\star}$.

At long last—Green's operators are reciprocals:

Proposition

We have $(T, \mathcal{B})^{-1} \cdot f = Gf$ for all $f \in \mathcal{F}$. Moreover, if Tf = 0 then $(T, \mathcal{B})^{-1} \cdot f(T, \mathcal{B}) = f$.

Henceforth fix $\mathcal{F} = C^{\infty}(\mathbb{R})$ and $\mathcal{E} = \mathbb{R}[x]$:

• Set $s_{\xi} := (\partial, [\mathbf{E}_{\xi}]) \in K\mathcal{E}[\partial]_{\Phi}^{\star}$ and $\delta_{\xi} := (\partial, [\mathbf{E}_{\xi}]) \in \mathcal{F}_{\Phi}^{\star}$. \triangleright Generalized Fundamental Formula $s_{\xi}f = f' + f(\xi) \delta_{\xi}$.

At long last—Green's operators are reciprocals:

Proposition

We have $(T, \mathcal{B})^{-1} \cdot f = Gf$ for all $f \in \mathcal{F}$. Moreover, if Tf = 0 then $(T, \mathcal{B})^{-1} \cdot f(T, \mathcal{B}) = f$.

Henceforth fix $\mathcal{F} = C^{\infty}(\mathbb{R})$ and $\mathcal{E} = \mathbb{R}[x]$:

Set s_ξ := (∂, [E_ξ]) ∈ KE[∂]^{*}_Φ and δ_ξ := (∂, [E_ξ]) ∈ F^{*}_Φ.
 ▷ Generalized Fundamental Formula s_ξf = f' + f(ξ) δ_ξ.
 Algebraic representation for all Dirac distributions.

At long last—Green's operators are reciprocals:

Proposition

We have $(T, \mathcal{B})^{-1} \cdot f = Gf$ for all $f \in \mathcal{F}$. Moreover, if Tf = 0 then $(T, \mathcal{B})^{-1} \cdot f(T, \mathcal{B}) = f$.

- Set s_ξ := (∂, [E_ξ]) ∈ KE[∂]^{*}_Φ and δ_ξ := (∂, [E_ξ]) ∈ F^{*}_Φ.
 ▷ Generalized Fundamental Formula s_ξf = f' + f(ξ) δ_ξ.
 Algebraic representation for all Dirac distributions.
- Set $s_{[0,1]} := (\partial, [\int_0^1]) \in KK\mathcal{E}[\partial]_{\Phi}^{\star}$ and $\varepsilon_{[0,1]} := (\partial, [\int_0^1]) \in \mathcal{F}_{\Phi}^{\star}$.

At long last—Green's operators are reciprocals:

Proposition

We have $(T, \mathcal{B})^{-1} \cdot f = Gf$ for all $f \in \mathcal{F}$. Moreover, if Tf = 0 then $(T, \mathcal{B})^{-1} \cdot f(T, \mathcal{B}) = f$.

- Set s_ξ := (∂, [E_ξ]) ∈ KE[∂]^{*}_Φ and δ_ξ := (∂, [E_ξ]) ∈ F^{*}_Φ.
 ▷ Generalized Fundamental Formula s_ξf = f' + f(ξ) δ_ξ.
 Algebraic representation for all Dirac distributions.
- Set $s_{[0,1]} := (\partial, [\int_0^1]) \in KK\mathcal{E}[\partial]_{\Phi}^{\star}$ and $\varepsilon_{[0,1]} := (\partial, [\int_0^1]) \in \mathcal{F}_{\Phi}^{\star}$. \triangleright New Fundamental Formula $s_{[0,1]}f = f' + \left(\int_0^1 f(\xi) \, d\xi\right) \varepsilon_{[0,1]}$

At long last—Green's operators are reciprocals:

Proposition

We have $(T, \mathcal{B})^{-1} \cdot f = Gf$ for all $f \in \mathcal{F}$. Moreover, if Tf = 0 then $(T, \mathcal{B})^{-1} \cdot f(T, \mathcal{B}) = f$.

- Set s_ξ := (∂, [E_ξ]) ∈ KE[∂]^{*}_Φ and δ_ξ := (∂, [E_ξ]) ∈ F^{*}_Φ.
 ▷ Generalized Fundamental Formula s_ξf = f' + f(ξ) δ_ξ.
 Algebraic representation for all Dirac distributions.
- Set $s_{[0,1]} := (\partial, [\int_0^1]) \in KK\mathcal{E}[\partial]_{\Phi}^{\star}$ and $\varepsilon_{[0,1]} := (\partial, [\int_0^1]) \in \mathcal{F}_{\Phi}^{\star}$. \triangleright New Fundamental Formula $s_{[0,1]}f = f' + \left(\int_0^1 f(\xi) d\xi\right) \varepsilon_{[0,1]}$ No counterpart in Analysis?

(日)

Consider smallest two-point boundary problem:

$$u'' = f$$

$$u(0) = a, u(b) = b$$

Consider smallest two-point boundary problem:

$$u'' = f$$

$$u(0) = a, u(b) = b$$

Consider smallest two-point boundary problem:

$$u'' = f$$

$$u(0) = a, u(b) = b$$

$$(\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) \, u = u'' + \left(u(0) \left(1 - x\right) + u(1) \, x\right) \left(\partial^2, [\mathbf{E}_0, \mathbf{E}_1]\right)$$

Consider smallest two-point boundary problem:

$$u'' = f$$

$$u(0) = a, u(b) = b$$

$$(\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) \, u = u'' + \left(u(0) \, (1-x) + u(1) \, x\right) (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) \\ = f + \left(a \, (1-x) + b \, x\right) (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]),$$

Consider smallest two-point boundary problem:

$$u'' = f$$

$$u(0) = a, u(b) = b$$

$$\begin{aligned} (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) \, u &= u'' + \left(u(0) \, (1-x) + u(1) \, x \right) (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) \\ &= f + \left(a \, (1-x) + b \, x \right) (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]), \\ u &= (\partial^2, [\mathbf{E}_0, \mathbf{E}_1])^{-1} \, f + a \, (1-x) + b \, x \end{aligned}$$

Consider smallest two-point boundary problem:

$$u'' = f$$

$$u(0) = a, u(b) = b$$

Since Pu = u(0) (1 - x) + u(1) x we have

$$\begin{aligned} (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) \, u &= u'' + \left(u(0) \, (1-x) + u(1) \, x \right) (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]) \\ &= f + \left(a \, (1-x) + b \, x \right) (\partial^2, [\mathbf{E}_0, \mathbf{E}_1]), \\ u &= (\partial^2, [\mathbf{E}_0, \mathbf{E}_1])^{-1} \, f + a \, (1-x) + b \, x \\ &= (\int_0^x x + x \int_x^1 - x \int_0^x x - x \int_x^1 x) \, f + a \, (1-x) + b \, x. \end{aligned}$$

< 日)

Intersection

- 2 Classical Mikusiński Calculus
- Towards A Noncommutative Mikusiński Calculus
- Umbral Character Sets
- 6 Ring of Methorious Operators
- 6 Module of Methorious Functions

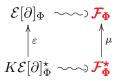
• Formal sums of boundary problems have an action.

- Formal sums of boundary problems have an action.
- Create ideal objects like distributions \rightarrow methorious functions \mathcal{F}_{Φ} .

- Formal sums of boundary problems have an action.
- Create ideal objects like distributions \rightarrow methorious functions \mathcal{F}_{Φ} .
- Reciprocals are Green's operators → methorious operators KE[∂]^{*}_Φ.

- Formal sums of boundary problems have an action.
- Create ideal objects like distributions \rightarrow methorious functions \mathcal{F}_{Φ} .
- Reciprocals are Green's operators \rightarrow methorious operators $K\mathcal{E}[\partial]_{\Phi}^{\star}$.
- Corresponding fractions → methorious hyperfunctions 𝓕^{*}_Φ.

- Formal sums of boundary problems have an action.
- Create ideal objects like distributions \rightarrow methorious functions \mathcal{F}_{Φ} .
- Reciprocals are Green's operators \rightarrow methorious operators $K\mathcal{E}[\partial]_{\Phi}^{\star}$.
- Corresponding fractions → methorious hyperfunctions 𝓕^{*}_Φ.



THANK YOU

< (1)

• Determine kernel of extension.

- Determine kernel of extension.
- Elaborate on connection with umbral calculus.

- Determine kernel of extension.
- Elaborate on connection with umbral calculus.
- Would be preferable to localize within (part or all of) $\mathcal{F}[\partial, \int]$.

- Determine kernel of extension.
- Elaborate on connection with umbral calculus.
- Would be preferable to localize within (part or all of) $\mathcal{F}[\partial, \int]$.
- Action should come via localization.

- Determine kernel of extension.
- Elaborate on connection with umbral calculus.
- Would be preferable to localize within (part or all of) $\mathcal{F}[\partial, \int]$.
- Action should come via localization.
- Ideal elements like δ_{ξ} should be created by localization.

- Determine kernel of extension.
- Elaborate on connection with umbral calculus.
- Would be preferable to localize within (part or all of) $\mathcal{F}[\partial, \int]$.
- Action should come via localization.
- Ideal elements like δ_{ξ} should be created by localization.
- Possible way out: singular boundyary problems.

- Determine kernel of extension.
- Elaborate on connection with umbral calculus.
- Would be preferable to localize within (part or all of) $\mathcal{F}[\partial, \int]$.
- Action should come via localization.
- Ideal elements like δ_{ξ} should be created by localization.
- Possible way out: singular boundyary problems.

THANK YOU

References

M. Rosenkranz, A. Korporal.

A noncommutative algebraic operational calculus for boundary problems. *Math. Comput. Sci*, 7(2), 201–227, 2013.

- 1. Overview
- 2. Inverting Boundary Problems?
- 3. Overview of Mikusiński Calculus
- 4. Fundamental Formula of the Mikusiński Calculus
- 5. Example: Second-Order Initial Value Problem
- 6. Back Translation Formulae
- 7. Solution of Second-Order Initial Value Problem
- 8. The Mikusiński Field
- 9. Conventions and Embeddings
- 10. Fundamental Formula and Back Translation
- 11. An Algebraic Analysis Approach to Boundary Problems
- 12. Operators qua Functions?
- 13. Monoid/Ring of Regular Boundary Problems
- 14. Classical Ring of Fractions
- 15. Necessary and Sufficient Conditions for Fractions
- 16. Suitable Differential Operators
- 17. Suitable Boundary Conditions: Umbral Characters
- 18. Relation to Umbral Calculus
- 19. Umbral Representation Theorem
- 20. Umbral Conditions in the Smooth Case
- 21. Necessary Conditions for Umbral Character Sets

- 22. Separativity of Local Boundary Conditions
- 23. Completeness of Characters
- 24. Regularity Lemma
- 25. The Factorization Theorem for Boundary Problems
- 26. The Division Lemma for Boundary Problems
- 27. Converse Closure for Regular Boundary Problems
- 28. Crucial Tool: The Regularization Lemma
- 29. Left Permutability of Boundary Problems
- 30. Lack of Right Permutability
- 31. Existence of Left Fraction Ring
- 32. Ring of Methorious Operators
- 33. Operating on Hyperfunctions via Localization
- 34. Why the Detour?
- 35. Action on Methorious Functions
- 36. The Module of Methorious Functions
- 37. Methorious Functions ---> Methorious Hyperfunctions
- 38. Application to Boundary Problems
- 39. Minimal Example
- 40. Summary
- 41. Desiderata for the Future
- 42. References