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Overview

1 Noncommutative Gröbner Bases
Mainly summarizing [Bergman1978].

2 Integro-Differential Weyl Algebra
Joint work with J. Middeke and G. Regensburger [ISSAC09].

3 Symbolic Software for Boundary Problems
Joint work with B. Buchberger [JSC12], A. Korporal [CASC11],
N. Phisanbut [CASC13], G. Regensburger [SFB11, ISSAC08],
L. Tec [CCA08, ICMS10].

4 Applications in Actuarial Mathematics
Joint work with G. Regensburger and our great actuarial maths
collaborators [SIAM12, IME10].
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Outline

1 Noncommutative Gröbner Bases

2 Integro-Differential Weyl Algebra
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Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n ] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉
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Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W =f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.
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Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu  .

Note: Any Noetherian partial order extends to a well-order.
But a Noetherian word order need not extend to word well-order.
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Confluence for Recursively Presented Algebras

Assume A = k〈X|R〉 has normal forms for R ⊆ 〈X〉 × k〈X〉.
When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is locally confluent, meaning for all
nodes a, b, b′ with b +← a

+→ b′ there is a node a′ with b ∗→ a′ ∗← b′.
Then every connected component has a unique minimal node.

a
+

zzttt
tt +

%%KKK
KK

b

∗ $$HHH
HH b′

∗zzuuu
uu

a′

Conclusion equivalent to confluence:

All nodes a, b, b′ with b ∗←∗←∗← a ∗→∗→∗→ b′ there is a node a′

with b ∗→ a′ ∗← b′.

Strengthen this result for G = k〈X〉 with ∗→ from R ⊆ 〈X〉 × k〈X〉:
Only a ∈ 〈X〉 needed.
Suffices to check “minimal ambiguities”.
May further restrict b ∗→ a′ ∗← b′ below a.
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Conclusion equivalent to confluence:

All nodes a, b, b′ with b ∗←∗←∗← a ∗→∗→∗→ b′ there is a node a′

with b ∗→ a′ ∗← b′.

Strengthen this result for G = k〈X〉 with ∗→ from R ⊆ 〈X〉 × k〈X〉:
Only a ∈ 〈X〉 needed.
Suffices to check “minimal ambiguities”.

May further restrict b ∗→ a′ ∗← b′ below a.
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Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.
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The Diamond Lemma for Ring Theory

Theorem (Bergman 1978)

Let A = k〈X|R〉 be a presentation of a k-algebra with reduction order ≤.
Then the following are equivalent [no inclusion ambiguities]:

All overlaps are resolvable.
All overlaps are resolvable below (relative to ≤).
Every element of k〈X〉 has a unique normal form under R.
The normal forms k〈X〉↓ yield representatives for A ∼= k〈X〉/R.
We have k〈X〉 = k〈X〉↓ u IR as k-modules.

In this case, we call
G := {W − f | (W, f) ∈ R}

a noncommutative Gröbner basis for IR.

If (k,+,−, ·, /) as well as X and R are recursive, then so is A ∼= k〈X〉↓
with operations f(ā1, . . . , ān) := f(a1, . . . , an) ↓ .
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A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases
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Outline

1 Noncommutative Gröbner Bases

2 Integro-Differential Weyl Algebra

3 Symbolic Software for Boundary Problems

4 Applications in Actuarial Mathematics
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Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].
Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:
Let σ be a k-endomorphism (“twist”).
Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.
Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity. If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.
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Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f ] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.
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The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k   .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications



The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k   .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications



The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.

Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k   .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications



The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222,

in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k   .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications



The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.

Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k   .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications



The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k   .

Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications



The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k   .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications



The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k   .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,

A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications



The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k   .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications



The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k   .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.

Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications



The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k   .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications



Two-Sided Ideals in the Integro Weyl Algebra

First look at the differential ring (K[`], δ):
Lemma
An ideal I ≤ K[`] is a nontrivial δ-ideal if and only if I = (`n) with n > 0.

Recall well-known characterization of simplicity for skew rings:

Theorem (Lam, First Course §3.15)

Let K be a ring of characteristic zero. Then K[ξ; δ] is a simple ring
iff δ is not an inner derivation and K is δ-simple.

Corollary
The ring A1(`) = K[x; δ] is not simple.

In fact, one has (two-sided) ideals
{∑

i ai(`)x
i | ai ∈ (`n)

}
for n > 0.
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Bases in the Integro Weyl Algebra

As in A1(∂), interchangeable left and right bases:

Fact
We have the identities

xn`m ←
n∑
k=0

(−m)k nk

k!
(−1)k `m+kxn−k, `mxn →

n∑
k=0

(−m)k nk

k!
xn−k`m+k,

where nk = n(n− 1) . . . (n− k + 1) is the falling factorial.

Unlike in A1(∂) there is also a mid basis in A1(`), namely (xm, xm`xn):

Fact
We have the identities

xm`xn =

m∑
k=0

m!

k!
`m−k+1xk+n, xm`xn =

n∑
k=0

n!

k!
(−1)n−kxm+k`n−k+1,

`m+1 =
m∑
k=0

(−1)k

k! (m− k)!
xm−k`xk

for changing between the left/right and the mid basis.
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Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):
Both are Noetherian integral domains.
Only A1(∂) is simple.
But A1(`) has a natural grading (by total degree).
While A1(∂) acts on K[x], what is ` · 1?
In addition to the left and right basis, A1(`) also has a mid basis.

In particular, one concludes A1(`) ∼= K[x][
r

].
Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?
Will this give K[x][∂,

r
]?
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Integro-Differential Weyl Algebra

Definition
The ring of constant-coefficient integro-differential operators is

K〈∂, `〉 = K〈D,L〉/(DL− 1)

with derivation δ(∂) = −1 and δ(`) = `2.

Beware of zero divisors: ∂(1− `∂) = ∂ − ∂`∂ = ∂ − ∂ = 0
Moreover, K〈∂, `〉 is not Noetherian [Jacobson’50, Gerrizten’00].

But skew polynomials still work except now deg fg ≤≤≤ deg f + deg g.

Definition
The integro-differential Weyl algebra is the skew polynomial ring
K〈∂, `〉[x; δ] denoted by A1(∂, `).

Neither Noetherian nor simple but. . .
Bergman Setting: A1(∂, `) ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2)
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Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

K〈∂, `〉 = K[∂] uK[`]`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).
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multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).
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Isomorphisms via Localization and Specialization

Proposition (Localization)

The map ϕ : K〈∂, `〉/(e)→ K[∂, ∂−1] defined by ∂ + (e) 7→ ∂ and
`+ (e) 7→ ∂−1 is a differential isomorphism, inducing the isomorphisms

K[∂, ∂−1][x; δ] ∼= A1(∂, `)/(e) ∼= K[`, ∂−1][x; δ].

of rings. So-called pseudo-differential operators.

More interesting to “fix” the constant of integration:

Theorem (Specialization)

If
r
is an integral operator for the standard derivation ∂ on K[x], we have
K[x][∂,

r
] ∼= A1(∂, `)/(ex− ce)

with c = e · x ∈ K as the constant of integration.

Bergman Setting:
K[x][∂,

r
] ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2, eX = ce)
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Localization versus Specialization

Integro-Differential Weyl Algebra A1(∂, `)

Here ` is some right inverse of ∂.

↙
Make ` into a left inverse
and hence a two-sided inverse.

↘
Make ` into an integral with
integration constant c ∈ K.

↓

Pseudo-Differential Operators
K[∂, ∂−1][x; δ]

↓

Integro-Differential Operators
K[x][∂,

r
]
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Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].
Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.
The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.
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Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.
The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞
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The General Ring of Integro-Differential Operators

Generalize coefficients of K[x][
r

] ∼= A1(∂, `)/e:

Definition and Theorem (R. 2005; Rosenkranz/R. 2008

Let (F , ∂,
r

) be an ordinary integro-differential algebra.
Then the ring of integro-differential operators F[∂,

r
] is the K-algebra

generated by {∂,
r
} ∪ F ∪ F• modulo the Gröbner basis below.

f̃f → f̃ · f ∂f → f∂ + f∂
r
f
r
→ f

r r
−
r
f

r

ϕ̃ϕ → ϕ ∂ϕ → 0
r
f∂ → f −

r
f∂ − fe e

ϕf → fϕ ϕ ∂
r
→ 1

r
fϕ → f

r
ϕ

Proposition (R. 2005; Rosenkranz/R. 2008)

One has F[∂,
r

] = F [∂] u F [
r

] u (F•), and the evaluation ideal (F•) is
generated by | F•) as a left F-module.

Arithemtic in F[∂,
r

] is basis of all operations on boundary problems.
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Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in
the Mathematica/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in F[∂,
r

], Green’s operators for C[∂].

GenPolyDom: Implemented in L. Tec’s 2011 thesis (co-supervised with
B. Buchberger and G. Regensburger) as a functor library ibidem.

Added composition/factorization, bivariate operator ring and
integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal’s 2012 thesis (co-supervised with
G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain Mathematica,
using nested algebraic domains in functorial style.

Focused on bivariate operator ring and simple LPDEs.
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The TH∃OREM∀ System

Integrated environment for
proving,
solving,
computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for
generic programming by functors,
proving (e.g. preservation theorems, correctness of specifications).

Both universal and domain-specific reasoners (provers, solvers, evaluators).

For more information please refer to:
http://www.risc.jku.at/research/theorema/software/
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Functors in TH∃OREM∀

Terminology in this context:
Domain: Carrier predicate and implemented operations.
Category: Collection of domains specified by higher-order predicate.
Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):
Computational aspect: Carrier/operations of result domain defined
in terms of carriers/operations of input domain(s).
Reasoning aspect: Transport properties from input domain(s) to
result domains (e.g. preservation of properties.
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Functor Example: Word Monoid

DefinitionB"Word Monoid", any@LD,
LexWords@LD = FunctorBW, anyAv, w, Ξ, Η, Ξ

�
, Η
�E,

s = X\

Î
W
@wD�í

is|tuple@wD
"

i=1,¼, w¤
Î
L
@wiD

î
W
= X\

v*
W
w = v ^ w

KXΗ, Η�\ >
W
X\O � True

KX\ >
W
XΗ�\O � False

KXΗ, Η�\ >
W
YΞ, Ξ�]O �ë

Η >
L
Ξ

HΗ = ΞL íXΗ�\ >
W
XΞ�\

FF
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Functor Example: Monoid Algebra

MonoidAlgebra@K, WD = whereBV = FreeModule@K, WD,
FunctorBP, any@c, d, f, g, Ξ, Η, m

�
, n
�D,

s = X\
¼H* linear operations from V *L
H* multiplication *L
X\*

P
g = X\

f*
P
X\ = X\

XXc, Ξ\, m
�\*

P
XXd, Η\, n

�\ = ZZc*
K
d, Ξ *

W
Η^^ +

P
XXc, Ξ\\*

P
Xn�\ +

P
Xm�\*

P
XXd, Η\, n

�\

FF
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Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T ](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T ] lquotT (u, v) if v |T u,
0K[T ] otherwise,

rrdmK[T ](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T ] rquotT (u, v) if v |T u,
0K[T ] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T ](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T ] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible. Base case for K is

lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T ] lrdmK[T ](f, g) ·K[T ] g ·K[T ] rrdmK[T ](f, g),
spolK[T ](f, g) := redK[T ](lcrK[T ](f, g), f)− redK[T ](lcrK[T ](f, g), f).
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Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).
Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.
Hence intdiffop(diffop(...), intop(...), boundop(...)).
Differential operators diffop(f0, f1, . . . ).
Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . . ).
Local boundary operators boundop(evop(c, evdiffop(f0, . . . ), . . . )).
Global boundop(evop(c, evintop(evintterm(g1, h1), . . . ), . . . )).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,
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Differential operators diffop(f0, f1, . . . ).
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Confluence Proofs

Typical critical pair
r
g
r
f∂

↙ ↘
(
r
· g)
r
f∂ −

r
(
r
· g) f∂

r
gf +

r
g
r
f ′ −

r
g (e · g) e

Three generations of parametrized confluence proof:
Original formulation in [JSC’05] with 36 relations, running 2000 lines
of automated proof, using integro-differential axioms.
Current formulation in [JSC’08] with 9 relations, handwritten proof
filling one page. Typical reduction runs as

(
r
· g)

r
f∂ −

r
(
r
· g) f∂ −

r
gf +

r
g
r
f ′ +

r
g (e · g) e

= (
r
· g)f − (

r
· g)

r
f ′ − (

r
· g) (e · f) e− (

r
· g)f +

r
∂ · ((

r
· g) · f)

+ (e · ((
r
· g) · f) e−

r
(g · f) + (

r
· g)

r
f ′ −

r
(
r
· g)f ′ + (e · f)(

r
· g) e

=
r
∂ · ((

r
· g) · f) + (e · ((

r
· g) · f) e−

r
(g · f)−

r
(
r
· g)f ′

=
r

(g · f) +
r

(
r
· g)f ′ + 0−

r
(g · f)−

r
(
r
· g)f ′ = 0.

Automated proof with integro-differential polynomial coefficients
in F{f, g}, hence internalizing integro-differential axioms.
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Short Demo of IntDiffOp

Current version for download at:
http://www.risc.jku.at/~akorpora/
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A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u
Premium income at constant rate c
Renewal process for number of claims
Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)
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The Gerber-Shiu Function

Definition
Let f(x, y, t|u) be the joint pdf of x = U(Tu−) and y = −U(Tu)
and t = Tu such that

t
f(x, y, z | u) dx dy dt = ψ(u).

Then the Gerber-Shiu function is given by

m(u) = E

(
e−δTu w

(
U(Tu−),−U(Tu)

)
1Tu<∞ | U(0) = u

)
=
y

e−δtw(x, y) f(x, y, t|u) dx dy dt

where w(x, y) is a given penalty function.

We need a formulation

Tm = f
β1(m) = · · · = βn(m) = 0

to be solved by u = Gf .

How does one get a differential equation?
Where do the boundary conditions come from?
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Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.
Standard renewal argument (Feller 1971) → integral equation
C0-Semigroup (Constantinescu 2006) → integro-differential equation
Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!
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Parametric Solution

Basic steps:
Lift factorization of T to boundary problems.
Distinguish stable and instable Green’s operators.
Introduce function space C1

0 (R) instead of C∞[a, b].
Calculate Mk values (Vandermonde-like determinants).

Theorem (Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010)

If X ∼ E(m) and τ ∼ E(n) then

m(u) =

m∑
i=1

n∑
j=1

cij

(( ∫ u

0
eσi(u−ξ) +

∫ ∞
u

eρj(u−ξ)
)

× f(ξ) dξ − f̂(ρj)e
σiu
)

+mp(u),

where f̂ is the Laplace transform and cij = cij(ρ, σ) ∈ R.
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Special Case and Perturbation

Theorem ((Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010))

Setting m = 1, n = 2 one has

m(u) =
eσu

ρ1 − ρ2

(
f̂(ρ1)

ρ1 − σ
−

f̂(ρ2)

ρ2 − σ
−
(
λ

c

)2

(ω̂(ρ1)− ω̂(ρ2))

)

−
1

ρ1 − ρ2

∫ ∞
u

(
1

ρ1 − σ
eρ1(u−ξ) −

1

ρ2 − σ
eρ2(u−ξ)

)
f(ξ) dξ

+
1

ρ1 − σ
1

ρ2 − σ

∫ u

0
eσ(u−ξ) f(ξ) dξ,

Adding Browning motion (double order) for m = n = 1 yields

m(u) = −
1

(ρ− σ1)(ρ− σ2)

∫ ∞
u

eρ(u−ξ)f(ξ) dξ −
f̂(ρ)

σ2 − σ1

(
eσ1u

ρ− σ1
−

eσ2u

ρ− σ2

)
+

1

σ2 − σ1

∫ u

0

(
eσ1(u−ξ)

ρ− σ1
−
eσ2(u−ξ)

ρ− σ2

)
f(ξ) dξ

+
1

σ2 − σ1

(
[σ2m(0)−m′(0)]eσ1u + [−σ1m(0) +m′(0)]eσ2u

)
,

generalizing the representations of [Chen et al.’07] and [Li-Garrido’05].
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Premium Accumulation with Interest Rate

Generalize basic model from above:

Premium accumulates as
∫ t

0 p(U(s)) ds for monotone p(u).
Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.
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Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.
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Factoring Stable and Instable Green’s Operators

Lemma
The Gerber-Shiu function is m(u) = c1s1(u) + · · ·+ cmsm(u) +Gg (u)
with G = GsGr and Gs = As1 · · ·Asm , Gr = (−1)nBr1 · · ·Brn where

Ati = ω(i)
ω(i−1) A

ω(i−1)
ω(i) for 1 ≤ i ≤ m,

Btj = Brj−m = ω(j)
ω(j−1) B

ω(j−1)
ω(j) for m+ 1 ≤ j ≤ m+ n,

setting ω(0) = 1 for convenience.

Proposition
The above Green’s operator can be decomposed as

G =

m+n∑
i=1

tiCi
di(m+n)
ω(m+n) −

n∑
j=1

ãj F
dm+j(m+n)
ω(m+n) ,

where Ci is
r x

0 for 1 ≤ i ≤ m and
r x
∞ for 1 ≤ i−m ≤ n, with F :=

∫∞
0

and certain constants ãj . Here ω is the Wronskian with minors di.

Markus Rosenkranz Symbolic BPs: Software & Applications



Factoring Stable and Instable Green’s Operators

Lemma
The Gerber-Shiu function is m(u) = c1s1(u) + · · ·+ cmsm(u) +Gg (u)
with G = GsGr and Gs = As1 · · ·Asm , Gr = (−1)nBr1 · · ·Brn where

Ati = ω(i)
ω(i−1) A

ω(i−1)
ω(i) for 1 ≤ i ≤ m,

Btj = Brj−m = ω(j)
ω(j−1) B

ω(j−1)
ω(j) for m+ 1 ≤ j ≤ m+ n,

setting ω(0) = 1 for convenience.

Proposition
The above Green’s operator can be decomposed as

G =

m+n∑
i=1

tiCi
di(m+n)
ω(m+n) −

n∑
j=1

ãj F
dm+j(m+n)
ω(m+n) ,

where Ci is
r x

0 for 1 ≤ i ≤ m and
r x
∞ for 1 ≤ i−m ≤ n, with F :=

∫∞
0
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General Representation of Solution

Theorem (Albrecher, Constantinescu, Palmowski, Regensburger, Rosenkranz)

For τ ∼ E(1/λ) and X ∼ E(µ) we have

m(u) = γ s(u)
(
− s(u)

∫ u

0

r(v)
w(v)

− r(u)
∫ ∞
u

s(v)
w(v)

+ r(0)
s(0)

s(u)

∫ ∞
0

s(v)
w(v)

)
f(v) dv,

where γ =
(
λω(0)+c r(0)s

′(0)−r′(0)s(0)
s(0)

∫∞
0

s(v)
w(v)

f(v) dv
)
/
(
(λ+δ) s(0)−c s′(0)

)
∈ R.

Corollary (Albrecher, Constantinescu, Palmowski, Regensburger, Rosenkranz)

In the special case δ = 0 one gets

m(u) =
λω(0)− p(0) s

′(0)
s(0)

∫∞
0

s(v)
s′(v) f(v) dv

λs(0)− p(0)s′(0) s(u)

+
(
s(u)

∫ u

0

1
s′(v) +

∫ ∞
u

s(v)
s′(v) −

s(u)
s(0)

∫ ∞
0

s(v)
s′(v)

)
f(v) dv

where γ is already included.
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Some Special Closed Forms

Closed-form solutions have been obtained for:

Linear premium p(u) = c+ εu: Kummer functions.
Exponential premium p(u) = c(1 + e−u): Hypergeometric functions.
Rational premium p(u) = c+ 1/(1 + u): Up to quadratures (exp).
Quadratic premium p(u) = c+ u2: Up to quadratures (exp, arctan).
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Generic Case Asymptotics for u→∞

Probability of ruin:
If p(∞) <∞ then ψ(u) ∼ µγ

λ exp
(
− µu+ λ

∫ u
0 p(w)−1 dw

)
.

If p(∞) =∞ then ψ(u) ∼ µγ
λ

1
p(u) exp

(
. . .
)
.

Homogeneous solutions t1, t2:
ti(u) ∼ exp

( ∫ u
0 (%i(t) + %̃i(t)) dt

)
where

2%1,2 = −
(
µ+ p′(u)

p(u)
− λ+δ

p(u)

)
±
√(

µ+ p′(u)
p(u)

− λ+δ
p(u)

)2
+ 4 δµ

p(u)

%̃1,2 = − %′1,2(u)

2%1,2(u)+
(
µ+

p′(u)
p(u)

− λ+δ
p(u)

)
Gerber-Shiu function:

If p(∞) <∞ then m(u) ∼ (γ −
∫∞

0
s(v)
s′(v) f(v) dv) s(u) +K1 f(u).

If p(∞) explodes polynomially then m(u) ∼ (. . . ) s(u) +K2u f(u)
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Future Work in Actuarial Mathematics

Currently working on generalized model with tax
→ LPDE instead of LODE.

Derivation of integro-differential from integral equation
very cumbersome → package.

Combine with variable coefficient case to derive asymptotics.

THANK YOU
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