
Software for Symbolic Boundary Problems and
Applications in Actuarial Mathematics

Markus Rosenkranz
〈M.Rosenkranz@kent.ac.uk〉

School of Mathematics, Statistics and Actuarial Science
University of Kent, United Kingdom

Kolchin Seminar in Differential Algebra
8 July 2014

We acknowledge support from EPSRC First Grant EP/I037474/1.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overview

1 Noncommutative Gröbner Bases
Mainly summarizing [Bergman1978].

2 Integro-Differential Weyl Algebra
Joint work with J. Middeke and G. Regensburger [ISSAC09].

3 Symbolic Software for Boundary Problems
Joint work with B. Buchberger [JSC12], A. Korporal [CASC11],
N. Phisanbut [CASC13], G. Regensburger [SFB11, ISSAC08],
L. Tec [CCA08, ICMS10].

4 Applications in Actuarial Mathematics
Joint work with G. Regensburger and our great actuarial maths
collaborators [SIAM12, IME10].

Markus Rosenkranz Symbolic BPs: Software & Applications

Overview

1 Noncommutative Gröbner Bases
Mainly summarizing [Bergman1978].

2 Integro-Differential Weyl Algebra
Joint work with J. Middeke and G. Regensburger [ISSAC09].

3 Symbolic Software for Boundary Problems
Joint work with B. Buchberger [JSC12], A. Korporal [CASC11],
N. Phisanbut [CASC13], G. Regensburger [SFB11, ISSAC08],
L. Tec [CCA08, ICMS10].

4 Applications in Actuarial Mathematics
Joint work with G. Regensburger and our great actuarial maths
collaborators [SIAM12, IME10].

Markus Rosenkranz Symbolic BPs: Software & Applications

Overview

1 Noncommutative Gröbner Bases
Mainly summarizing [Bergman1978].

2 Integro-Differential Weyl Algebra
Joint work with J. Middeke and G. Regensburger [ISSAC09].

3 Symbolic Software for Boundary Problems
Joint work with B. Buchberger [JSC12], A. Korporal [CASC11],
N. Phisanbut [CASC13], G. Regensburger [SFB11, ISSAC08],
L. Tec [CCA08, ICMS10].

4 Applications in Actuarial Mathematics
Joint work with G. Regensburger and our great actuarial maths
collaborators [SIAM12, IME10].

Markus Rosenkranz Symbolic BPs: Software & Applications

Overview

1 Noncommutative Gröbner Bases
Mainly summarizing [Bergman1978].

2 Integro-Differential Weyl Algebra
Joint work with J. Middeke and G. Regensburger [ISSAC09].

3 Symbolic Software for Boundary Problems
Joint work with B. Buchberger [JSC12], A. Korporal [CASC11],
N. Phisanbut [CASC13], G. Regensburger [SFB11, ISSAC08],
L. Tec [CCA08, ICMS10].

4 Applications in Actuarial Mathematics
Joint work with G. Regensburger and our great actuarial maths
collaborators [SIAM12, IME10].

Markus Rosenkranz Symbolic BPs: Software & Applications

Overview

1 Noncommutative Gröbner Bases
Mainly summarizing [Bergman1978].

2 Integro-Differential Weyl Algebra
Joint work with J. Middeke and G. Regensburger [ISSAC09].

3 Symbolic Software for Boundary Problems
Joint work with B. Buchberger [JSC12], A. Korporal [CASC11],
N. Phisanbut [CASC13], G. Regensburger [SFB11, ISSAC08],
L. Tec [CCA08, ICMS10].

4 Applications in Actuarial Mathematics
Joint work with G. Regensburger and our great actuarial maths
collaborators [SIAM12, IME10].

Markus Rosenkranz Symbolic BPs: Software & Applications

Outline

1 Noncommutative Gröbner Bases

2 Integro-Differential Weyl Algebra

3 Symbolic Software for Boundary Problems

4 Applications in Actuarial Mathematics

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials

M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:

M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X

M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Monoid Algebras

Fix a commutative unital ring k.

Definition
If M is a monoid, one calls kM := {p : M → k | |supp p| <∞} the
monoid algebra of M over k.

Write p = (w1 7→ λ1, · · · , wm 7→ λm) ∈ kM as λ1w1 + · · ·+ λmwm.

Important special cases:
M = [x1, . . . , xn] ∼= Nn: Commutative polynomials k[x1, . . . , xn]

M = [x1, . . . , xn, x
−1
1 , . . . , x−1

n] ∼= Zn: Laurent polynomials
M = 〈x1, . . . , xn〉: Noncommutative polynomials k〈x1, . . . , xn〉

Same for (recursive) infinite sets X:
M = [X] ∼= N(ω): For example k[X] = k{u} for X = N

M = [X,X−1]: Group algebra generated by X
M = 〈X〉: Free algebra k〈X〉

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W =f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:

This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W =f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).

Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W =f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.

Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W =f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W =f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W→→→f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W→→→f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W→→→f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.

Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W→→→f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′

and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W→→→f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W→→→f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.

If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W→→→f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W→→→f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:

1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W→→→f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.

2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Recursively Presented Algebras

Presentation A = k〈X|R〉 with generators X and relations R:
This means A ∼= k〈X〉/Id(R).
Both X and R may be infinite but recursive.
Relations (W, f) ∈ R ⊆ 〈X〉 × k〈X〉 meaning W→→→f in A.

Relation ρ = (W, f) ∈ R with prefix A and postfix B induces reduction

AρB : k〈X〉 → k〈X〉
as k-linear map AWB 7→ AfB fixing all other words.

Define g→ g′ for g, g′ ∈ k〈X〉 iff ∃ρ ∈ R ∃A,B ∈ 〈X〉 : AρB(g) = g′.
Write g +→ g′ iff g→· · ·→ g′ and g ∗→ g′ when g = g′ is allowed.

Call g irreducible if @ g′ : g +→ g′.
If g ∗→ g′ with g′ irreducible, g′ is called a normal form of g.

Two properties crucial for algorithmic treatment:
1 Noetherianity: Normal forms exist.
2 Confluence: Normal forms are unique.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .

Note: Any Noetherian partial order extends to a well-order.
But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C.

A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .

Note: Any Noetherian partial order extends to a well-order.
But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .

Note: Any Noetherian partial order extends to a well-order.
But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.

Converse valid iff k is free of zero divisors:
Define < as least transitive relation on 〈X〉 with C < D iff

C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .

Note: Any Noetherian partial order extends to a well-order.
But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .

Note: Any Noetherian partial order extends to a well-order.
But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉.

Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .

Note: Any Noetherian partial order extends to a well-order.
But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.

Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .

Note: Any Noetherian partial order extends to a well-order.
But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.

If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .

Note: Any Noetherian partial order extends to a well-order.
But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.

Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .
Note: Any Noetherian partial order extends to a well-order.

But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .

Note: Any Noetherian partial order extends to a well-order.
But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .

Note: Any Noetherian partial order extends to a well-order.

But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Noetherianity for Recursively Presented Algebras

Definition
A word order is a partial order ≤ on the monoid 〈X〉 such that B < B′

implies ABC < AB′C. A reduction order for R ⊆ 〈X〉 × k〈X〉 is a
Noetherian word order with W > f for all (W, f) ∈ R.

Clearly rules out infinite descending chains =⇒ normal forms exist.
Converse valid iff k is free of zero divisors:

Define < as least transitive relation on 〈X〉 with C < D iff
C ∈ AρB(D) 6= D

for some ρ ∈ R and A,B ∈ 〈X〉. Respects (〈X〉, ·) and R.
Normal forms imply irreflexivity and Noetherianity of >.
If ab = 0 in k consider ux→ a uy, yu→ b xu in 〈u, x, y〉.
Then uxu→ a uyu→ (ab)uxu = 0 but uxu > uyu > uxu .

Note: Any Noetherian partial order extends to a well-order.
But a Noetherian word order need not extend to word well-order.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence for Recursively Presented Algebras

Assume A = k〈X|R〉 has normal forms for R ⊆ 〈X〉 × k〈X〉.
When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is locally confluent, meaning for all
nodes a, b, b′ with b +← a

+→ b′ there is a node a′ with b ∗→ a′ ∗← b′.
Then every connected component has a unique minimal node.

a
+

zzttt
tt +

%%KKK
KK

b

∗ $$HHH
HH b′

∗zzuuu
uu

a′

Conclusion equivalent to confluence:

All nodes a, b, b′ with b ∗←∗←∗← a ∗→∗→∗→ b′ there is a node a′

with b ∗→ a′ ∗← b′.

Strengthen this result for G = k〈X〉 with ∗→ from R ⊆ 〈X〉 × k〈X〉:
Only a ∈ 〈X〉 needed.
Suffices to check “minimal ambiguities”.
May further restrict b ∗→ a′ ∗← b′ below a.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence for Recursively Presented Algebras

Assume A = k〈X|R〉 has normal forms for R ⊆ 〈X〉 × k〈X〉.
When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is locally confluent, meaning for all
nodes a, b, b′ with b +← a

+→ b′ there is a node a′ with b ∗→ a′ ∗← b′.

Then every connected component has a unique minimal node.

a
+

zzttt
tt +

%%KKK
KK

b

∗ $$HHH
HH b′

∗zzuuu
uu

a′

Conclusion equivalent to confluence:

All nodes a, b, b′ with b ∗←∗←∗← a ∗→∗→∗→ b′ there is a node a′

with b ∗→ a′ ∗← b′.

Strengthen this result for G = k〈X〉 with ∗→ from R ⊆ 〈X〉 × k〈X〉:
Only a ∈ 〈X〉 needed.
Suffices to check “minimal ambiguities”.
May further restrict b ∗→ a′ ∗← b′ below a.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence for Recursively Presented Algebras

Assume A = k〈X|R〉 has normal forms for R ⊆ 〈X〉 × k〈X〉.
When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is locally confluent, meaning for all
nodes a, b, b′ with b +← a

+→ b′ there is a node a′ with b ∗→ a′ ∗← b′.
Then every connected component has a unique minimal node.

a
+

zzttt
tt +

%%KKK
KK

b

∗ $$HHH
HH b′

∗zzuuu
uu

a′

Conclusion equivalent to confluence:

All nodes a, b, b′ with b ∗←∗←∗← a ∗→∗→∗→ b′ there is a node a′

with b ∗→ a′ ∗← b′.

Strengthen this result for G = k〈X〉 with ∗→ from R ⊆ 〈X〉 × k〈X〉:
Only a ∈ 〈X〉 needed.
Suffices to check “minimal ambiguities”.
May further restrict b ∗→ a′ ∗← b′ below a.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence for Recursively Presented Algebras

Assume A = k〈X|R〉 has normal forms for R ⊆ 〈X〉 × k〈X〉.
When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is locally confluent, meaning for all
nodes a, b, b′ with b +← a

+→ b′ there is a node a′ with b ∗→ a′ ∗← b′.
Then every connected component has a unique minimal node.

a
+

zzttt
tt +

%%KKK
KK

b

∗ $$HHH
HH b′

∗zzuuu
uu

a′

Conclusion equivalent to confluence:

All nodes a, b, b′ with b ∗←∗←∗← a ∗→∗→∗→ b′ there is a node a′

with b ∗→ a′ ∗← b′.

Strengthen this result for G = k〈X〉 with ∗→ from R ⊆ 〈X〉 × k〈X〉:
Only a ∈ 〈X〉 needed.
Suffices to check “minimal ambiguities”.
May further restrict b ∗→ a′ ∗← b′ below a.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence for Recursively Presented Algebras

Assume A = k〈X|R〉 has normal forms for R ⊆ 〈X〉 × k〈X〉.
When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is locally confluent, meaning for all
nodes a, b, b′ with b +← a

+→ b′ there is a node a′ with b ∗→ a′ ∗← b′.
Then every connected component has a unique minimal node.

a
+

zzttt
tt +

%%KKK
KK

b

∗ $$HHH
HH b′

∗zzuuu
uu

a′

Conclusion equivalent to confluence:

All nodes a, b, b′ with b ∗←∗←∗← a ∗→∗→∗→ b′ there is a node a′

with b ∗→ a′ ∗← b′.

Strengthen this result for G = k〈X〉 with ∗→ from R ⊆ 〈X〉 × k〈X〉:
Only a ∈ 〈X〉 needed.
Suffices to check “minimal ambiguities”.
May further restrict b ∗→ a′ ∗← b′ below a.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence for Recursively Presented Algebras

Assume A = k〈X|R〉 has normal forms for R ⊆ 〈X〉 × k〈X〉.
When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is locally confluent, meaning for all
nodes a, b, b′ with b +← a

+→ b′ there is a node a′ with b ∗→ a′ ∗← b′.
Then every connected component has a unique minimal node.

a
+

zzttt
tt +

%%KKK
KK

b

∗ $$HHH
HH b′

∗zzuuu
uu

a′

Conclusion equivalent to confluence:

All nodes a, b, b′ with b ∗←∗←∗← a ∗→∗→∗→ b′ there is a node a′

with b ∗→ a′ ∗← b′.

Strengthen this result for G = k〈X〉 with ∗→ from R ⊆ 〈X〉 × k〈X〉:

Only a ∈ 〈X〉 needed.
Suffices to check “minimal ambiguities”.
May further restrict b ∗→ a′ ∗← b′ below a.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence for Recursively Presented Algebras

Assume A = k〈X|R〉 has normal forms for R ⊆ 〈X〉 × k〈X〉.
When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is locally confluent, meaning for all
nodes a, b, b′ with b +← a

+→ b′ there is a node a′ with b ∗→ a′ ∗← b′.
Then every connected component has a unique minimal node.

a
+

zzttt
tt +

%%KKK
KK

b

∗ $$HHH
HH b′

∗zzuuu
uu

a′

Conclusion equivalent to confluence:

All nodes a, b, b′ with b ∗←∗←∗← a ∗→∗→∗→ b′ there is a node a′

with b ∗→ a′ ∗← b′.

Strengthen this result for G = k〈X〉 with ∗→ from R ⊆ 〈X〉 × k〈X〉:
Only a ∈ 〈X〉 needed.

Suffices to check “minimal ambiguities”.
May further restrict b ∗→ a′ ∗← b′ below a.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence for Recursively Presented Algebras

Assume A = k〈X|R〉 has normal forms for R ⊆ 〈X〉 × k〈X〉.
When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is locally confluent, meaning for all
nodes a, b, b′ with b +← a

+→ b′ there is a node a′ with b ∗→ a′ ∗← b′.
Then every connected component has a unique minimal node.

a
+

zzttt
tt +

%%KKK
KK

b

∗ $$HHH
HH b′

∗zzuuu
uu

a′

Conclusion equivalent to confluence:

All nodes a, b, b′ with b ∗←∗←∗← a ∗→∗→∗→ b′ there is a node a′

with b ∗→ a′ ∗← b′.

Strengthen this result for G = k〈X〉 with ∗→ from R ⊆ 〈X〉 × k〈X〉:
Only a ∈ 〈X〉 needed.
Suffices to check “minimal ambiguities”.

May further restrict b ∗→ a′ ∗← b′ below a.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence for Recursively Presented Algebras

Assume A = k〈X|R〉 has normal forms for R ⊆ 〈X〉 × k〈X〉.
When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is locally confluent, meaning for all
nodes a, b, b′ with b +← a

+→ b′ there is a node a′ with b ∗→ a′ ∗← b′.
Then every connected component has a unique minimal node.

a
+

zzttt
tt +

%%KKK
KK

b

∗ $$HHH
HH b′

∗zzuuu
uu

a′

Conclusion equivalent to confluence:

All nodes a, b, b′ with b ∗←∗←∗← a ∗→∗→∗→ b′ there is a node a′

with b ∗→ a′ ∗← b′.

Strengthen this result for G = k〈X〉 with ∗→ from R ⊆ 〈X〉 × k〈X〉:
Only a ∈ 〈X〉 needed.
Suffices to check “minimal ambiguities”.
May further restrict b ∗→ a′ ∗← b′ below a.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:

It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.

It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A.

Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.

Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).

The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).

It may even be nonrecursive (unsolvable word problems).
For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

Overlap Ambiguities and Their Resolution

Definition
For A = k〈X|R〉 as above, λ = (ρ, ρ′, U, V, U ′) is called an overlap
if ρ = (W, f) and ρ′ = (W ′, f ′) such that W = UV and W ′ = V U ′.

UV U′
ρ

wwppp
pp ρ′

''NNN
NN

fU′

∗ ''OOOOOO Uf ′

∗wwoooooo

?

We prefer harmless ambiguities:
It is resolvable if spol(ρ) := fU ′ − Uf ′ ∗→ 0.
It is resolvable below if spol(ρ) ∈ IUV U ′ .

Here IA is the k-submodule of k〈X〉 spanned by all U(W − f)U ′

with (W, f) ∈ R and UWU ′ < A. Write IR := I∞ for full ideal.
Clearly resolvability below =⇒ plain resolvability.

Buchberger’s Process: Every R is resolved by adding all spol(ρ).
The new R may be infinite (unlike in the commutative world).
It may even be nonrecursive (unsolvable word problems).

For R ⊆ k[X] with term order >, think of adding x→ y for x > y ∈ X.

Markus Rosenkranz Symbolic BPs: Software & Applications

The Diamond Lemma for Ring Theory

Theorem (Bergman 1978)

Let A = k〈X|R〉 be a presentation of a k-algebra with reduction order ≤.
Then the following are equivalent [no inclusion ambiguities]:

All overlaps are resolvable.
All overlaps are resolvable below (relative to ≤).
Every element of k〈X〉 has a unique normal form under R.
The normal forms k〈X〉↓ yield representatives for A ∼= k〈X〉/R.
We have k〈X〉 = k〈X〉↓ u IR as k-modules.

In this case, we call
G := {W − f | (W, f) ∈ R}

a noncommutative Gröbner basis for IR.

If (k,+,−, ·, /) as well as X and R are recursive, then so is A ∼= k〈X〉↓
with operations f(ā1, . . . , ān) := f(a1, . . . , an) ↓ .

Markus Rosenkranz Symbolic BPs: Software & Applications

The Diamond Lemma for Ring Theory

Theorem (Bergman 1978)

Let A = k〈X|R〉 be a presentation of a k-algebra with reduction order ≤.
Then the following are equivalent

[no inclusion ambiguities]:
All overlaps are resolvable.
All overlaps are resolvable below (relative to ≤).
Every element of k〈X〉 has a unique normal form under R.
The normal forms k〈X〉↓ yield representatives for A ∼= k〈X〉/R.
We have k〈X〉 = k〈X〉↓ u IR as k-modules.

In this case, we call
G := {W − f | (W, f) ∈ R}

a noncommutative Gröbner basis for IR.

If (k,+,−, ·, /) as well as X and R are recursive, then so is A ∼= k〈X〉↓
with operations f(ā1, . . . , ān) := f(a1, . . . , an) ↓ .

Markus Rosenkranz Symbolic BPs: Software & Applications

The Diamond Lemma for Ring Theory

Theorem (Bergman 1978)

Let A = k〈X|R〉 be a presentation of a k-algebra with reduction order ≤.
Then the following are equivalent [no inclusion ambiguities]:

All overlaps are resolvable.
All overlaps are resolvable below (relative to ≤).
Every element of k〈X〉 has a unique normal form under R.
The normal forms k〈X〉↓ yield representatives for A ∼= k〈X〉/R.
We have k〈X〉 = k〈X〉↓ u IR as k-modules.

In this case, we call
G := {W − f | (W, f) ∈ R}

a noncommutative Gröbner basis for IR.

If (k,+,−, ·, /) as well as X and R are recursive, then so is A ∼= k〈X〉↓
with operations f(ā1, . . . , ān) := f(a1, . . . , an) ↓ .

Markus Rosenkranz Symbolic BPs: Software & Applications

The Diamond Lemma for Ring Theory

Theorem (Bergman 1978)

Let A = k〈X|R〉 be a presentation of a k-algebra with reduction order ≤.
Then the following are equivalent [no inclusion ambiguities]:

All overlaps are resolvable.

All overlaps are resolvable below (relative to ≤).
Every element of k〈X〉 has a unique normal form under R.
The normal forms k〈X〉↓ yield representatives for A ∼= k〈X〉/R.
We have k〈X〉 = k〈X〉↓ u IR as k-modules.

In this case, we call
G := {W − f | (W, f) ∈ R}

a noncommutative Gröbner basis for IR.

If (k,+,−, ·, /) as well as X and R are recursive, then so is A ∼= k〈X〉↓
with operations f(ā1, . . . , ān) := f(a1, . . . , an) ↓ .

Markus Rosenkranz Symbolic BPs: Software & Applications

The Diamond Lemma for Ring Theory

Theorem (Bergman 1978)

Let A = k〈X|R〉 be a presentation of a k-algebra with reduction order ≤.
Then the following are equivalent [no inclusion ambiguities]:

All overlaps are resolvable.
All overlaps are resolvable below (relative to ≤).

Every element of k〈X〉 has a unique normal form under R.
The normal forms k〈X〉↓ yield representatives for A ∼= k〈X〉/R.
We have k〈X〉 = k〈X〉↓ u IR as k-modules.

In this case, we call
G := {W − f | (W, f) ∈ R}

a noncommutative Gröbner basis for IR.

If (k,+,−, ·, /) as well as X and R are recursive, then so is A ∼= k〈X〉↓
with operations f(ā1, . . . , ān) := f(a1, . . . , an) ↓ .

Markus Rosenkranz Symbolic BPs: Software & Applications

The Diamond Lemma for Ring Theory

Theorem (Bergman 1978)

Let A = k〈X|R〉 be a presentation of a k-algebra with reduction order ≤.
Then the following are equivalent [no inclusion ambiguities]:

All overlaps are resolvable.
All overlaps are resolvable below (relative to ≤).
Every element of k〈X〉 has a unique normal form under R.

The normal forms k〈X〉↓ yield representatives for A ∼= k〈X〉/R.
We have k〈X〉 = k〈X〉↓ u IR as k-modules.

In this case, we call
G := {W − f | (W, f) ∈ R}

a noncommutative Gröbner basis for IR.

If (k,+,−, ·, /) as well as X and R are recursive, then so is A ∼= k〈X〉↓
with operations f(ā1, . . . , ān) := f(a1, . . . , an) ↓ .

Markus Rosenkranz Symbolic BPs: Software & Applications

The Diamond Lemma for Ring Theory

Theorem (Bergman 1978)

Let A = k〈X|R〉 be a presentation of a k-algebra with reduction order ≤.
Then the following are equivalent [no inclusion ambiguities]:

All overlaps are resolvable.
All overlaps are resolvable below (relative to ≤).
Every element of k〈X〉 has a unique normal form under R.
The normal forms k〈X〉↓ yield representatives for A ∼= k〈X〉/R.

We have k〈X〉 = k〈X〉↓ u IR as k-modules.

In this case, we call
G := {W − f | (W, f) ∈ R}

a noncommutative Gröbner basis for IR.

If (k,+,−, ·, /) as well as X and R are recursive, then so is A ∼= k〈X〉↓
with operations f(ā1, . . . , ān) := f(a1, . . . , an) ↓ .

Markus Rosenkranz Symbolic BPs: Software & Applications

The Diamond Lemma for Ring Theory

Theorem (Bergman 1978)

Let A = k〈X|R〉 be a presentation of a k-algebra with reduction order ≤.
Then the following are equivalent [no inclusion ambiguities]:

All overlaps are resolvable.
All overlaps are resolvable below (relative to ≤).
Every element of k〈X〉 has a unique normal form under R.
The normal forms k〈X〉↓ yield representatives for A ∼= k〈X〉/R.
We have k〈X〉 = k〈X〉↓ u IR as k-modules.

In this case, we call
G := {W − f | (W, f) ∈ R}

a noncommutative Gröbner basis for IR.

If (k,+,−, ·, /) as well as X and R are recursive, then so is A ∼= k〈X〉↓
with operations f(ā1, . . . , ān) := f(a1, . . . , an) ↓ .

Markus Rosenkranz Symbolic BPs: Software & Applications

The Diamond Lemma for Ring Theory

Theorem (Bergman 1978)

Let A = k〈X|R〉 be a presentation of a k-algebra with reduction order ≤.
Then the following are equivalent [no inclusion ambiguities]:

All overlaps are resolvable.
All overlaps are resolvable below (relative to ≤).
Every element of k〈X〉 has a unique normal form under R.
The normal forms k〈X〉↓ yield representatives for A ∼= k〈X〉/R.
We have k〈X〉 = k〈X〉↓ u IR as k-modules.

In this case, we call
G := {W − f | (W, f) ∈ R}

a noncommutative Gröbner basis for IR.

If (k,+,−, ·, /) as well as X and R are recursive, then so is A ∼= k〈X〉↓
with operations f(ā1, . . . , ān) := f(a1, . . . , an) ↓ .

Markus Rosenkranz Symbolic BPs: Software & Applications

The Diamond Lemma for Ring Theory

Theorem (Bergman 1978)

Let A = k〈X|R〉 be a presentation of a k-algebra with reduction order ≤.
Then the following are equivalent [no inclusion ambiguities]:

All overlaps are resolvable.
All overlaps are resolvable below (relative to ≤).
Every element of k〈X〉 has a unique normal form under R.
The normal forms k〈X〉↓ yield representatives for A ∼= k〈X〉/R.
We have k〈X〉 = k〈X〉↓ u IR as k-modules.

In this case, we call
G := {W − f | (W, f) ∈ R}

a noncommutative Gröbner basis for IR.

If (k,+,−, ·, /) as well as X and R are recursive, then so is A ∼= k〈X〉↓
with operations f(ā1, . . . , ān) := f(a1, . . . , an) ↓ .

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:

Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials

Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉

Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

A Brief Look at the History of Gröbner Bases

Naturally, there are many different views—here is mine:
Macaulay 1916: H-Bases for k[X]

Ritt 1932: Characteristic sets for k[X]

P.M. Cohn 1956: Diamond lemma for sg(X|R)

Shirshov 1962: Shirshov bases, compositions for Lie polynomials
Hironaka 1964: Standard bases for k[[X]]

Buchberger 1965: Gröbner bases, S-polynomials for k[X]

Robinson 1965: Resolution principle for LΣ(X)

Knuth/Bendix 1970: Term rewriting, critical pairs for TΣ(X)

Bergman 1978: Diamond lemma for k〈X〉
Mora 1988: Effective computation of noncommutative Gröbner bases

Markus Rosenkranz Symbolic BPs: Software & Applications

Outline

1 Noncommutative Gröbner Bases

2 Integro-Differential Weyl Algebra

3 Symbolic Software for Boundary Problems

4 Applications in Actuarial Mathematics

Markus Rosenkranz Symbolic BPs: Software & Applications

Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].
Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:
Let σ be a k-endomorphism (“twist”).
Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.
Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity. If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.

Markus Rosenkranz Symbolic BPs: Software & Applications

Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].

Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:
Let σ be a k-endomorphism (“twist”).
Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.
Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity. If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.

Markus Rosenkranz Symbolic BPs: Software & Applications

Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].
Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:
Let σ be a k-endomorphism (“twist”).
Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.
Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity. If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.

Markus Rosenkranz Symbolic BPs: Software & Applications

Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].
Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:

Let σ be a k-endomorphism (“twist”).
Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.
Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity. If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.

Markus Rosenkranz Symbolic BPs: Software & Applications

Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].
Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:
Let σ be a k-endomorphism (“twist”).

Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.
Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity. If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.

Markus Rosenkranz Symbolic BPs: Software & Applications

Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].
Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:
Let σ be a k-endomorphism (“twist”).
Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.

Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity. If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.

Markus Rosenkranz Symbolic BPs: Software & Applications

Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].
Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:
Let σ be a k-endomorphism (“twist”).
Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.
Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity. If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.

Markus Rosenkranz Symbolic BPs: Software & Applications

Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].
Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:
Let σ be a k-endomorphism (“twist”).
Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.
Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity.

If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.

Markus Rosenkranz Symbolic BPs: Software & Applications

Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].
Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:
Let σ be a k-endomorphism (“twist”).
Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.
Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity. If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.

Markus Rosenkranz Symbolic BPs: Software & Applications

Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].
Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:
Let σ be a k-endomorphism (“twist”).
Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.
Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity. If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.

Markus Rosenkranz Symbolic BPs: Software & Applications

Skew Polynomial Rings

Before turning to F[∂,
r

] consider special case F = k[x].
Comes out as quotient of an integro-differential Weyl algebra A1(∂, `).

Shall construct A1(∂, `) as a skew polynomial ring:
Let σ be a k-endomorphism (“twist”).
Let δ be a σ-derivation, meaning δ(ab) = σ(a) δ(b) + δ(a) b.
Now define k[x;σ, δ] := k〈x|xa = σ(a)x+ δ(a)〉.

Definition

Hence we have k[x;σ, δ] :=
∞⊕
n=0

kxn with multiplication induced by
xa = σ(a)x+ δ(a)

and associativity. If σ = 1k one writes k[x; δ].

An Ore algebra is an iterated adjunction k[x1;σ1, δ1] · · · [xr;σr, δr] with
commuting σi and δj for i 6= j

and constancy constraints σi(xj) = xj , δi(xj) = 0 for i > j.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].

Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.

Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.

Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.

Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f
(q−1)xi

.
. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .

Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k.

Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}

=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.

Markus Rosenkranz Symbolic BPs: Software & Applications

Examples of Ore Algebras

Fix k = K[ξ1, . . . , ξr].
Weyl algebra: Derivations δi(f) = ∂f/∂ξi, trivial twists.
Shift algebra: Twists σi(f) = Ei(f) := f |xi 7→xi+1, trivial derivations.
Difference algebra: Twists σi = Ei, derivations δi = Ei − 1k.
Quantum Weyl algebra: Take σi(f) := f |xi 7→qxi and δi(f) = σi(f)−f

(q−1)xi
.

. . .
Combinations of these (→ relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and σ = 1k. Reconsider first example:

A1(k) =
{∑

ij

aij x
i∂j | aij ∈ k

}
=: A1(∂)=: A1(∂)=: A1(∂)

Observe [∂, f] := ∂f − f∂ = f ′:

1 Taking k = K[x] and ξ = ∂ means δ(f) := f ′.

2 Can also take k = K[∂] and ξ = x with δ(f) := −f ′.
Markus Rosenkranz Symbolic BPs: Software & Applications

The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications

The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications

The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.

Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications

The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222,

in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications

The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.

Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications

The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k .

Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications

The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications

The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,

A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications

The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications

The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.

Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications

The Integro-Weyl Algebra

Write ` : K[x]→ K[x] for xn 7→ xn+1/(n+ 1).

Observe [`(f), `] = `f` and in particular [xn, `] = n `xn−1`.
Specifically we have [x, `] = `222, in contrast to [∂, x] = ∂000.
Method 1 : For k = K[x] use ξ = ` to obtain δ(ξ) = −`2 6∈ k .
Method 2 : For k = K[`] use ξ = x to obtain δ(ξ) = +`2 ∈ kXXX.

Definition

We write A1(`) for the integro Weyl algebra K[`][x; δ] with δ(`) = `2,
A1(∂) for the differential Weyl algebra K[∂][x; δ] with δ(∂) = −1.

From the definition, δ(`n) = +++n `n+++1, in contrast to δ(∂n) =−−−n∂n−−−1.
Striking similarities as well as differences between A1(`) and A1(∂).

Markus Rosenkranz Symbolic BPs: Software & Applications

Two-Sided Ideals in the Integro Weyl Algebra

First look at the differential ring (K[`], δ):
Lemma
An ideal I ≤ K[`] is a nontrivial δ-ideal if and only if I = (`n) with n > 0.

Recall well-known characterization of simplicity for skew rings:

Theorem (Lam, First Course §3.15)

Let K be a ring of characteristic zero. Then K[ξ; δ] is a simple ring
iff δ is not an inner derivation and K is δ-simple.

Corollary
The ring A1(`) = K[x; δ] is not simple.

In fact, one has (two-sided) ideals
{∑

i ai(`)x
i | ai ∈ (`n)

}
for n > 0.

Markus Rosenkranz Symbolic BPs: Software & Applications

Two-Sided Ideals in the Integro Weyl Algebra

First look at the differential ring (K[`], δ):

Lemma
An ideal I ≤ K[`] is a nontrivial δ-ideal if and only if I = (`n) with n > 0.

Recall well-known characterization of simplicity for skew rings:

Theorem (Lam, First Course §3.15)

Let K be a ring of characteristic zero. Then K[ξ; δ] is a simple ring
iff δ is not an inner derivation and K is δ-simple.

Corollary
The ring A1(`) = K[x; δ] is not simple.

In fact, one has (two-sided) ideals
{∑

i ai(`)x
i | ai ∈ (`n)

}
for n > 0.

Markus Rosenkranz Symbolic BPs: Software & Applications

Two-Sided Ideals in the Integro Weyl Algebra

First look at the differential ring (K[`], δ):
Lemma
An ideal I ≤ K[`] is a nontrivial δ-ideal if and only if I = (`n) with n > 0.

Recall well-known characterization of simplicity for skew rings:

Theorem (Lam, First Course §3.15)

Let K be a ring of characteristic zero. Then K[ξ; δ] is a simple ring
iff δ is not an inner derivation and K is δ-simple.

Corollary
The ring A1(`) = K[x; δ] is not simple.

In fact, one has (two-sided) ideals
{∑

i ai(`)x
i | ai ∈ (`n)

}
for n > 0.

Markus Rosenkranz Symbolic BPs: Software & Applications

Two-Sided Ideals in the Integro Weyl Algebra

First look at the differential ring (K[`], δ):
Lemma
An ideal I ≤ K[`] is a nontrivial δ-ideal if and only if I = (`n) with n > 0.

Recall well-known characterization of simplicity for skew rings:

Theorem (Lam, First Course §3.15)

Let K be a ring of characteristic zero. Then K[ξ; δ] is a simple ring
iff δ is not an inner derivation and K is δ-simple.

Corollary
The ring A1(`) = K[x; δ] is not simple.

In fact, one has (two-sided) ideals
{∑

i ai(`)x
i | ai ∈ (`n)

}
for n > 0.

Markus Rosenkranz Symbolic BPs: Software & Applications

Two-Sided Ideals in the Integro Weyl Algebra

First look at the differential ring (K[`], δ):
Lemma
An ideal I ≤ K[`] is a nontrivial δ-ideal if and only if I = (`n) with n > 0.

Recall well-known characterization of simplicity for skew rings:

Theorem (Lam, First Course §3.15)

Let K be a ring of characteristic zero. Then K[ξ; δ] is a simple ring
iff δ is not an inner derivation and K is δ-simple.

Corollary
The ring A1(`) = K[x; δ] is not simple.

In fact, one has (two-sided) ideals
{∑

i ai(`)x
i | ai ∈ (`n)

}
for n > 0.

Markus Rosenkranz Symbolic BPs: Software & Applications

Two-Sided Ideals in the Integro Weyl Algebra

First look at the differential ring (K[`], δ):
Lemma
An ideal I ≤ K[`] is a nontrivial δ-ideal if and only if I = (`n) with n > 0.

Recall well-known characterization of simplicity for skew rings:

Theorem (Lam, First Course §3.15)

Let K be a ring of characteristic zero. Then K[ξ; δ] is a simple ring
iff δ is not an inner derivation and K is δ-simple.

Corollary
The ring A1(`) = K[x; δ] is not simple.

In fact, one has (two-sided) ideals
{∑

i ai(`)x
i | ai ∈ (`n)

}
for n > 0.

Markus Rosenkranz Symbolic BPs: Software & Applications

Two-Sided Ideals in the Integro Weyl Algebra

First look at the differential ring (K[`], δ):
Lemma
An ideal I ≤ K[`] is a nontrivial δ-ideal if and only if I = (`n) with n > 0.

Recall well-known characterization of simplicity for skew rings:

Theorem (Lam, First Course §3.15)

Let K be a ring of characteristic zero. Then K[ξ; δ] is a simple ring
iff δ is not an inner derivation and K is δ-simple.

Corollary
The ring A1(`) = K[x; δ] is not simple.

In fact, one has (two-sided) ideals
{∑

i ai(`)x
i | ai ∈ (`n)

}
for n > 0.

Markus Rosenkranz Symbolic BPs: Software & Applications

Bases in the Integro Weyl Algebra

As in A1(∂), interchangeable left and right bases:

Fact
We have the identities

xn`m ←
n∑
k=0

(−m)k nk

k!
(−1)k `m+kxn−k, `mxn →

n∑
k=0

(−m)k nk

k!
xn−k`m+k,

where nk = n(n− 1) . . . (n− k + 1) is the falling factorial.

Unlike in A1(∂) there is also a mid basis in A1(`), namely (xm, xm`xn):

Fact
We have the identities

xm`xn =

m∑
k=0

m!

k!
`m−k+1xk+n, xm`xn =

n∑
k=0

n!

k!
(−1)n−kxm+k`n−k+1,

`m+1 =
m∑
k=0

(−1)k

k! (m− k)!
xm−k`xk

for changing between the left/right and the mid basis.

Markus Rosenkranz Symbolic BPs: Software & Applications

Bases in the Integro Weyl Algebra

As in A1(∂), interchangeable left and right bases:

Fact
We have the identities

xn`m ←
n∑
k=0

(−m)k nk

k!
(−1)k `m+kxn−k, `mxn →

n∑
k=0

(−m)k nk

k!
xn−k`m+k,

where nk = n(n− 1) . . . (n− k + 1) is the falling factorial.

Unlike in A1(∂) there is also a mid basis in A1(`), namely (xm, xm`xn):

Fact
We have the identities

xm`xn =

m∑
k=0

m!

k!
`m−k+1xk+n, xm`xn =

n∑
k=0

n!

k!
(−1)n−kxm+k`n−k+1,

`m+1 =
m∑
k=0

(−1)k

k! (m− k)!
xm−k`xk

for changing between the left/right and the mid basis.

Markus Rosenkranz Symbolic BPs: Software & Applications

Bases in the Integro Weyl Algebra

As in A1(∂), interchangeable left and right bases:

Fact
We have the identities

xn`m ←
n∑
k=0

(−m)k nk

k!
(−1)k `m+kxn−k, `mxn →

n∑
k=0

(−m)k nk

k!
xn−k`m+k,

where nk = n(n− 1) . . . (n− k + 1) is the falling factorial.

Unlike in A1(∂) there is also a mid basis in A1(`), namely (xm, xm`xn):

Fact
We have the identities

xm`xn =

m∑
k=0

m!

k!
`m−k+1xk+n, xm`xn =

n∑
k=0

n!

k!
(−1)n−kxm+k`n−k+1,

`m+1 =
m∑
k=0

(−1)k

k! (m− k)!
xm−k`xk

for changing between the left/right and the mid basis.

Markus Rosenkranz Symbolic BPs: Software & Applications

Bases in the Integro Weyl Algebra

As in A1(∂), interchangeable left and right bases:

Fact
We have the identities

xn`m ←
n∑
k=0

(−m)k nk

k!
(−1)k `m+kxn−k, `mxn →

n∑
k=0

(−m)k nk

k!
xn−k`m+k,

where nk = n(n− 1) . . . (n− k + 1) is the falling factorial.

Unlike in A1(∂) there is also a mid basis in A1(`),

namely (xm, xm`xn):

Fact
We have the identities

xm`xn =

m∑
k=0

m!

k!
`m−k+1xk+n, xm`xn =

n∑
k=0

n!

k!
(−1)n−kxm+k`n−k+1,

`m+1 =
m∑
k=0

(−1)k

k! (m− k)!
xm−k`xk

for changing between the left/right and the mid basis.

Markus Rosenkranz Symbolic BPs: Software & Applications

Bases in the Integro Weyl Algebra

As in A1(∂), interchangeable left and right bases:

Fact
We have the identities

xn`m ←
n∑
k=0

(−m)k nk

k!
(−1)k `m+kxn−k, `mxn →

n∑
k=0

(−m)k nk

k!
xn−k`m+k,

where nk = n(n− 1) . . . (n− k + 1) is the falling factorial.

Unlike in A1(∂) there is also a mid basis in A1(`), namely (xm, xm`xn):

Fact
We have the identities

xm`xn =

m∑
k=0

m!

k!
`m−k+1xk+n, xm`xn =

n∑
k=0

n!

k!
(−1)n−kxm+k`n−k+1,

`m+1 =
m∑
k=0

(−1)k

k! (m− k)!
xm−k`xk

for changing between the left/right and the mid basis.

Markus Rosenkranz Symbolic BPs: Software & Applications

Bases in the Integro Weyl Algebra

As in A1(∂), interchangeable left and right bases:

Fact
We have the identities

xn`m ←
n∑
k=0

(−m)k nk

k!
(−1)k `m+kxn−k, `mxn →

n∑
k=0

(−m)k nk

k!
xn−k`m+k,

where nk = n(n− 1) . . . (n− k + 1) is the falling factorial.

Unlike in A1(∂) there is also a mid basis in A1(`), namely (xm, xm`xn):

Fact
We have the identities

xm`xn =
m∑
k=0

m!

k!
`m−k+1xk+n, xm`xn =

n∑
k=0

n!

k!
(−1)n−kxm+k`n−k+1,

`m+1 =
m∑
k=0

(−1)k

k! (m− k)!
xm−k`xk

for changing between the left/right and the mid basis.

Markus Rosenkranz Symbolic BPs: Software & Applications

Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):
Both are Noetherian integral domains.
Only A1(∂) is simple.
But A1(`) has a natural grading (by total degree).
While A1(∂) acts on K[x], what is ` · 1?
In addition to the left and right basis, A1(`) also has a mid basis.

In particular, one concludes A1(`) ∼= K[x][
r

].
Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?
Will this give K[x][∂,

r
]?

Markus Rosenkranz Symbolic BPs: Software & Applications

Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):

Both are Noetherian integral domains.
Only A1(∂) is simple.
But A1(`) has a natural grading (by total degree).
While A1(∂) acts on K[x], what is ` · 1?
In addition to the left and right basis, A1(`) also has a mid basis.

In particular, one concludes A1(`) ∼= K[x][
r

].
Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?
Will this give K[x][∂,

r
]?

Markus Rosenkranz Symbolic BPs: Software & Applications

Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):
Both are Noetherian integral domains.

Only A1(∂) is simple.
But A1(`) has a natural grading (by total degree).
While A1(∂) acts on K[x], what is ` · 1?
In addition to the left and right basis, A1(`) also has a mid basis.

In particular, one concludes A1(`) ∼= K[x][
r

].
Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?
Will this give K[x][∂,

r
]?

Markus Rosenkranz Symbolic BPs: Software & Applications

Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):
Both are Noetherian integral domains.
Only A1(∂) is simple.

But A1(`) has a natural grading (by total degree).
While A1(∂) acts on K[x], what is ` · 1?
In addition to the left and right basis, A1(`) also has a mid basis.

In particular, one concludes A1(`) ∼= K[x][
r

].
Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?
Will this give K[x][∂,

r
]?

Markus Rosenkranz Symbolic BPs: Software & Applications

Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):
Both are Noetherian integral domains.
Only A1(∂) is simple.
But A1(`) has a natural grading (by total degree).

While A1(∂) acts on K[x], what is ` · 1?
In addition to the left and right basis, A1(`) also has a mid basis.

In particular, one concludes A1(`) ∼= K[x][
r

].
Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?
Will this give K[x][∂,

r
]?

Markus Rosenkranz Symbolic BPs: Software & Applications

Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):
Both are Noetherian integral domains.
Only A1(∂) is simple.
But A1(`) has a natural grading (by total degree).
While A1(∂) acts on K[x], what is ` · 1?

In addition to the left and right basis, A1(`) also has a mid basis.
In particular, one concludes A1(`) ∼= K[x][

r
].

Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?
Will this give K[x][∂,

r
]?

Markus Rosenkranz Symbolic BPs: Software & Applications

Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):
Both are Noetherian integral domains.
Only A1(∂) is simple.
But A1(`) has a natural grading (by total degree).
While A1(∂) acts on K[x], what is ` · 1?
In addition to the left and right basis, A1(`) also has a mid basis.

In particular, one concludes A1(`) ∼= K[x][
r

].
Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?
Will this give K[x][∂,

r
]?

Markus Rosenkranz Symbolic BPs: Software & Applications

Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):
Both are Noetherian integral domains.
Only A1(∂) is simple.
But A1(`) has a natural grading (by total degree).
While A1(∂) acts on K[x], what is ` · 1?
In addition to the left and right basis, A1(`) also has a mid basis.

In particular, one concludes A1(`) ∼= K[x][
r

].

Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?
Will this give K[x][∂,

r
]?

Markus Rosenkranz Symbolic BPs: Software & Applications

Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):
Both are Noetherian integral domains.
Only A1(∂) is simple.
But A1(`) has a natural grading (by total degree).
While A1(∂) acts on K[x], what is ` · 1?
In addition to the left and right basis, A1(`) also has a mid basis.

In particular, one concludes A1(`) ∼= K[x][
r

].
Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?
Will this give K[x][∂,

r
]?

Markus Rosenkranz Symbolic BPs: Software & Applications

Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):
Both are Noetherian integral domains.
Only A1(∂) is simple.
But A1(`) has a natural grading (by total degree).
While A1(∂) acts on K[x], what is ` · 1?
In addition to the left and right basis, A1(`) also has a mid basis.

In particular, one concludes A1(`) ∼= K[x][
r

].
Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?

Will this give K[x][∂,
r

]?

Markus Rosenkranz Symbolic BPs: Software & Applications

Differential versus Integro Weyl Algebra

Summing up similarities/differences between A1(∂) and A1(`):
Both are Noetherian integral domains.
Only A1(∂) is simple.
But A1(`) has a natural grading (by total degree).
While A1(∂) acts on K[x], what is ` · 1?
In addition to the left and right basis, A1(`) also has a mid basis.

In particular, one concludes A1(`) ∼= K[x][
r

].
Bergman Setting: A1(`) ∼= K〈X,L〉/(XL = LX + L2)

Can we combine A1(∂) and A1(`) in a single skew polynomial ring?
Will this give K[x][∂,

r
]?

Markus Rosenkranz Symbolic BPs: Software & Applications

Integro-Differential Weyl Algebra

Definition
The ring of constant-coefficient integro-differential operators is

K〈∂, `〉 = K〈D,L〉/(DL− 1)

with derivation δ(∂) = −1 and δ(`) = `2.

Beware of zero divisors: ∂(1− `∂) = ∂ − ∂`∂ = ∂ − ∂ = 0
Moreover, K〈∂, `〉 is not Noetherian [Jacobson’50, Gerrizten’00].

But skew polynomials still work except now deg fg ≤≤≤ deg f + deg g.

Definition
The integro-differential Weyl algebra is the skew polynomial ring
K〈∂, `〉[x; δ] denoted by A1(∂, `).

Neither Noetherian nor simple but. . .
Bergman Setting: A1(∂, `) ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2)

Markus Rosenkranz Symbolic BPs: Software & Applications

Integro-Differential Weyl Algebra

Definition
The ring of constant-coefficient integro-differential operators is

K〈∂, `〉 = K〈D,L〉/(DL− 1)

with derivation δ(∂) = −1 and δ(`) = `2.

Beware of zero divisors: ∂(1− `∂) = ∂ − ∂`∂ = ∂ − ∂ = 0
Moreover, K〈∂, `〉 is not Noetherian [Jacobson’50, Gerrizten’00].

But skew polynomials still work except now deg fg ≤≤≤ deg f + deg g.

Definition
The integro-differential Weyl algebra is the skew polynomial ring
K〈∂, `〉[x; δ] denoted by A1(∂, `).

Neither Noetherian nor simple but. . .
Bergman Setting: A1(∂, `) ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2)

Markus Rosenkranz Symbolic BPs: Software & Applications

Integro-Differential Weyl Algebra

Definition
The ring of constant-coefficient integro-differential operators is

K〈∂, `〉 = K〈D,L〉/(DL− 1)

with derivation δ(∂) = −1 and δ(`) = `2.

Beware of zero divisors: ∂(1− `∂) = ∂ − ∂`∂ = ∂ − ∂ = 0

Moreover, K〈∂, `〉 is not Noetherian [Jacobson’50, Gerrizten’00].

But skew polynomials still work except now deg fg ≤≤≤ deg f + deg g.

Definition
The integro-differential Weyl algebra is the skew polynomial ring
K〈∂, `〉[x; δ] denoted by A1(∂, `).

Neither Noetherian nor simple but. . .
Bergman Setting: A1(∂, `) ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2)

Markus Rosenkranz Symbolic BPs: Software & Applications

Integro-Differential Weyl Algebra

Definition
The ring of constant-coefficient integro-differential operators is

K〈∂, `〉 = K〈D,L〉/(DL− 1)

with derivation δ(∂) = −1 and δ(`) = `2.

Beware of zero divisors: ∂(1− `∂) = ∂ − ∂`∂ = ∂ − ∂ = 0
Moreover, K〈∂, `〉 is not Noetherian [Jacobson’50, Gerrizten’00].

But skew polynomials still work except now deg fg ≤≤≤ deg f + deg g.

Definition
The integro-differential Weyl algebra is the skew polynomial ring
K〈∂, `〉[x; δ] denoted by A1(∂, `).

Neither Noetherian nor simple but. . .
Bergman Setting: A1(∂, `) ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2)

Markus Rosenkranz Symbolic BPs: Software & Applications

Integro-Differential Weyl Algebra

Definition
The ring of constant-coefficient integro-differential operators is

K〈∂, `〉 = K〈D,L〉/(DL− 1)

with derivation δ(∂) = −1 and δ(`) = `2.

Beware of zero divisors: ∂(1− `∂) = ∂ − ∂`∂ = ∂ − ∂ = 0
Moreover, K〈∂, `〉 is not Noetherian [Jacobson’50, Gerrizten’00].

But skew polynomials still work except now deg fg ≤≤≤ deg f + deg g.

Definition
The integro-differential Weyl algebra is the skew polynomial ring
K〈∂, `〉[x; δ] denoted by A1(∂, `).

Neither Noetherian nor simple but. . .
Bergman Setting: A1(∂, `) ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2)

Markus Rosenkranz Symbolic BPs: Software & Applications

Integro-Differential Weyl Algebra

Definition
The ring of constant-coefficient integro-differential operators is

K〈∂, `〉 = K〈D,L〉/(DL− 1)

with derivation δ(∂) = −1 and δ(`) = `2.

Beware of zero divisors: ∂(1− `∂) = ∂ − ∂`∂ = ∂ − ∂ = 0
Moreover, K〈∂, `〉 is not Noetherian [Jacobson’50, Gerrizten’00].

But skew polynomials still work except now deg fg ≤≤≤ deg f + deg g.

Definition
The integro-differential Weyl algebra is the skew polynomial ring
K〈∂, `〉[x; δ] denoted by A1(∂, `).

Neither Noetherian nor simple but. . .
Bergman Setting: A1(∂, `) ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2)

Markus Rosenkranz Symbolic BPs: Software & Applications

Integro-Differential Weyl Algebra

Definition
The ring of constant-coefficient integro-differential operators is

K〈∂, `〉 = K〈D,L〉/(DL− 1)

with derivation δ(∂) = −1 and δ(`) = `2.

Beware of zero divisors: ∂(1− `∂) = ∂ − ∂`∂ = ∂ − ∂ = 0
Moreover, K〈∂, `〉 is not Noetherian [Jacobson’50, Gerrizten’00].

But skew polynomials still work except now deg fg ≤≤≤ deg f + deg g.

Definition
The integro-differential Weyl algebra is the skew polynomial ring
K〈∂, `〉[x; δ] denoted by A1(∂, `).

Neither Noetherian nor simple but. . .

Bergman Setting: A1(∂, `) ∼= K〈X,L,D〉
/

(DL = 1, XD = XD + 1, XL = LX + L2)

Markus Rosenkranz Symbolic BPs: Software & Applications

Integro-Differential Weyl Algebra

Definition
The ring of constant-coefficient integro-differential operators is

K〈∂, `〉 = K〈D,L〉/(DL− 1)

with derivation δ(∂) = −1 and δ(`) = `2.

Beware of zero divisors: ∂(1− `∂) = ∂ − ∂`∂ = ∂ − ∂ = 0
Moreover, K〈∂, `〉 is not Noetherian [Jacobson’50, Gerrizten’00].

But skew polynomials still work except now deg fg ≤≤≤ deg f + deg g.

Definition
The integro-differential Weyl algebra is the skew polynomial ring
K〈∂, `〉[x; δ] denoted by A1(∂, `).

Neither Noetherian nor simple but. . .
Bergman Setting: A1(∂, `) ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2)

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

K〈∂, `〉 = K[∂] uK[`]`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

K〈∂, `〉 = K[∂] uK[`]`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

K〈∂, `〉 = K[∂] uK[`]`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉

� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

K〈∂, `〉 = K[∂] uK[`]`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.

� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

K〈∂, `〉 = K[∂] uK[`]`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

K〈∂, `〉 = K[∂] uK[`]`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

K〈∂, `〉 = K[∂] uK[`]`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

A1(∂, `) = A1(∂) u A1(`)`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

A1(∂, `) = A1(∂) u A1(`)`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

A1(∂, `) = A1(∂) u A1(`)`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,

multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

A1(∂, `) = A1(∂) u A1(`)`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Canonical Decomposition and Basis

Define evaluation e = 1− `∂ ∈ K〈∂, `〉 ⊂ A1(∂, `).

Induced evaluation ideal (e) ⊂ A1(∂, `)

= Skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
� Contained in every nonzero ideal of K〈∂, `〉.
� Only proper δ-ideal of K〈∂, `〉.

Proposition
We have

A1(∂, `) = A1(∂) u A1(`)`u (e)

as a direct sum of K-vector spaces.

Hence a K-basis of A1(∂, `) consists of (xi∂j , xi`j , xiejk) with

ejk := `je∂k forming a K-basis of (e) ⊂ K〈∂, `〉,
multiplying as the matrix units of K∞×∞ do [Jacobson’50].

Enables 3× 3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

Isomorphisms via Localization and Specialization

Proposition (Localization)

The map ϕ : K〈∂, `〉/(e)→ K[∂, ∂−1] defined by ∂ + (e) 7→ ∂ and
`+ (e) 7→ ∂−1 is a differential isomorphism, inducing the isomorphisms

K[∂, ∂−1][x; δ] ∼= A1(∂, `)/(e) ∼= K[`, ∂−1][x; δ].

of rings. So-called pseudo-differential operators.

More interesting to “fix” the constant of integration:

Theorem (Specialization)

If
r
is an integral operator for the standard derivation ∂ on K[x], we have
K[x][∂,

r
] ∼= A1(∂, `)/(ex− ce)

with c = e · x ∈ K as the constant of integration.

Bergman Setting:
K[x][∂,

r
] ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2, eX = ce)

Markus Rosenkranz Symbolic BPs: Software & Applications

Isomorphisms via Localization and Specialization

Proposition (Localization)

The map ϕ : K〈∂, `〉/(e)→ K[∂, ∂−1] defined by ∂ + (e) 7→ ∂ and
`+ (e) 7→ ∂−1 is a differential isomorphism, inducing the isomorphisms

K[∂, ∂−1][x; δ] ∼= A1(∂, `)/(e) ∼= K[`, ∂−1][x; δ].

of rings.

So-called pseudo-differential operators.

More interesting to “fix” the constant of integration:

Theorem (Specialization)

If
r
is an integral operator for the standard derivation ∂ on K[x], we have
K[x][∂,

r
] ∼= A1(∂, `)/(ex− ce)

with c = e · x ∈ K as the constant of integration.

Bergman Setting:
K[x][∂,

r
] ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2, eX = ce)

Markus Rosenkranz Symbolic BPs: Software & Applications

Isomorphisms via Localization and Specialization

Proposition (Localization)

The map ϕ : K〈∂, `〉/(e)→ K[∂, ∂−1] defined by ∂ + (e) 7→ ∂ and
`+ (e) 7→ ∂−1 is a differential isomorphism, inducing the isomorphisms

K[∂, ∂−1][x; δ] ∼= A1(∂, `)/(e) ∼= K[`, ∂−1][x; δ].

of rings. So-called pseudo-differential operators.

More interesting to “fix” the constant of integration:

Theorem (Specialization)

If
r
is an integral operator for the standard derivation ∂ on K[x], we have
K[x][∂,

r
] ∼= A1(∂, `)/(ex− ce)

with c = e · x ∈ K as the constant of integration.

Bergman Setting:
K[x][∂,

r
] ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2, eX = ce)

Markus Rosenkranz Symbolic BPs: Software & Applications

Isomorphisms via Localization and Specialization

Proposition (Localization)

The map ϕ : K〈∂, `〉/(e)→ K[∂, ∂−1] defined by ∂ + (e) 7→ ∂ and
`+ (e) 7→ ∂−1 is a differential isomorphism, inducing the isomorphisms

K[∂, ∂−1][x; δ] ∼= A1(∂, `)/(e) ∼= K[`, ∂−1][x; δ].

of rings. So-called pseudo-differential operators.

More interesting to “fix” the constant of integration:

Theorem (Specialization)

If
r
is an integral operator for the standard derivation ∂ on K[x], we have
K[x][∂,

r
] ∼= A1(∂, `)/(ex− ce)

with c = e · x ∈ K as the constant of integration.

Bergman Setting:
K[x][∂,

r
] ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2, eX = ce)

Markus Rosenkranz Symbolic BPs: Software & Applications

Isomorphisms via Localization and Specialization

Proposition (Localization)

The map ϕ : K〈∂, `〉/(e)→ K[∂, ∂−1] defined by ∂ + (e) 7→ ∂ and
`+ (e) 7→ ∂−1 is a differential isomorphism, inducing the isomorphisms

K[∂, ∂−1][x; δ] ∼= A1(∂, `)/(e) ∼= K[`, ∂−1][x; δ].

of rings. So-called pseudo-differential operators.

More interesting to “fix” the constant of integration:

Theorem (Specialization)

If
r
is an integral operator for the standard derivation ∂ on K[x], we have
K[x][∂,

r
] ∼= A1(∂, `)/(ex− ce)

with c = e · x ∈ K as the constant of integration.

Bergman Setting:
K[x][∂,

r
] ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2, eX = ce)

Markus Rosenkranz Symbolic BPs: Software & Applications

Isomorphisms via Localization and Specialization

Proposition (Localization)

The map ϕ : K〈∂, `〉/(e)→ K[∂, ∂−1] defined by ∂ + (e) 7→ ∂ and
`+ (e) 7→ ∂−1 is a differential isomorphism, inducing the isomorphisms

K[∂, ∂−1][x; δ] ∼= A1(∂, `)/(e) ∼= K[`, ∂−1][x; δ].

of rings. So-called pseudo-differential operators.

More interesting to “fix” the constant of integration:

Theorem (Specialization)

If
r
is an integral operator for the standard derivation ∂ on K[x], we have
K[x][∂,

r
] ∼= A1(∂, `)/(ex− ce) # K[x]# K[x]# K[x]

with c = e · x ∈ K as the constant of integration.

Bergman Setting:
K[x][∂,

r
] ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2, eX = ce)

Markus Rosenkranz Symbolic BPs: Software & Applications

Isomorphisms via Localization and Specialization

Proposition (Localization)

The map ϕ : K〈∂, `〉/(e)→ K[∂, ∂−1] defined by ∂ + (e) 7→ ∂ and
`+ (e) 7→ ∂−1 is a differential isomorphism, inducing the isomorphisms

K[∂, ∂−1][x; δ] ∼= A1(∂, `)/(e) ∼= K[`, ∂−1][x; δ].

of rings. So-called pseudo-differential operators.

More interesting to “fix” the constant of integration:

Theorem (Specialization)

If
r
is an integral operator for the standard derivation ∂ on K[x], we have
K[x][∂,

r
] ∼= A1(∂, `)/(ex− ce) # K[x]# K[x]# K[x]

with c = e · x ∈ K as the constant of integration.

Bergman Setting:
K[x][∂,

r
] ∼= K〈X,L,D〉

/
(DL = 1, XD = XD + 1, XL = LX + L2, eX = ce)

Markus Rosenkranz Symbolic BPs: Software & Applications

Localization versus Specialization

Integro-Differential Weyl Algebra A1(∂, `)

Here ` is some right inverse of ∂.

↙
Make ` into a left inverse
and hence a two-sided inverse.

↘
Make ` into an integral with
integration constant c ∈ K.

↓

Pseudo-Differential Operators
K[∂, ∂−1][x; δ]

↓

Integro-Differential Operators
K[x][∂,

r
]

Markus Rosenkranz Symbolic BPs: Software & Applications

Localization versus Specialization

Integro-Differential Weyl Algebra A1(∂, `)

Here ` is some right inverse of ∂.

↙
Make ` into a left inverse
and hence a two-sided inverse.

↘
Make ` into an integral with
integration constant c ∈ K.

↓

Pseudo-Differential Operators
K[∂, ∂−1][x; δ]

↓

Integro-Differential Operators
K[x][∂,

r
]

Markus Rosenkranz Symbolic BPs: Software & Applications

Localization versus Specialization

Integro-Differential Weyl Algebra A1(∂, `)

Here ` is some right inverse of ∂.

↙
Make ` into a left inverse
and hence a two-sided inverse.

↘
Make ` into an integral with
integration constant c ∈ K.

↓

Pseudo-Differential Operators
K[∂, ∂−1][x; δ]

↓

Integro-Differential Operators
K[x][∂,

r
]

Markus Rosenkranz Symbolic BPs: Software & Applications

Localization versus Specialization

Integro-Differential Weyl Algebra A1(∂, `)

Here ` is some right inverse of ∂.

↙
Make ` into a left inverse
and hence a two-sided inverse.

↘
Make ` into an integral with
integration constant c ∈ K.

↓

Pseudo-Differential Operators
K[∂, ∂−1][x; δ]

↓

Integro-Differential Operators
K[x][∂,

r
]

Markus Rosenkranz Symbolic BPs: Software & Applications

Localization versus Specialization

Integro-Differential Weyl Algebra A1(∂, `)

Here ` is some right inverse of ∂.

↙
Make ` into a left inverse
and hence a two-sided inverse.

↘
Make ` into an integral with
integration constant c ∈ K.

↓

Pseudo-Differential Operators
K[∂, ∂−1][x; δ]

↓

Integro-Differential Operators
K[x][∂,

r
]

Markus Rosenkranz Symbolic BPs: Software & Applications

Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].
Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.
The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.

Markus Rosenkranz Symbolic BPs: Software & Applications

Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].

Note that I1
∼= K[x][

r
] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.
The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.

Markus Rosenkranz Symbolic BPs: Software & Applications

Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].
Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.
The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.

Markus Rosenkranz Symbolic BPs: Software & Applications

Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].
Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.

Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.
The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.

Markus Rosenkranz Symbolic BPs: Software & Applications

Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].
Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.

Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.
The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.

Markus Rosenkranz Symbolic BPs: Software & Applications

Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].
Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.

Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.
The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.

Markus Rosenkranz Symbolic BPs: Software & Applications

Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].
Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.

All ideals are idempotent and commute.
The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.

Markus Rosenkranz Symbolic BPs: Software & Applications

Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].
Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.

The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.

Markus Rosenkranz Symbolic BPs: Software & Applications

Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].
Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.
The ideal lattice is distributive.

Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL
n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.

Markus Rosenkranz Symbolic BPs: Software & Applications

Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].
Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.
The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.

Markus Rosenkranz Symbolic BPs: Software & Applications

Generalization to Higher Dimensions

Define In = K〈x1, . . . , xn, ∂1, . . . , ∂n, `1, . . . , `n〉 ⊂ EndKK[x1, . . . , xn].
Note that I1

∼= K[x][
r

] and In = I1 ⊗ · · · ⊗ I1.

Wealth of results in [Bavula 2009]:
Each In is a prime, central, catenary and self-dual algebra.
Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
Explicit enumeration of its dn ≤ 22n ideals.
Unique maximal ideal m = 〈e1, . . . , en〉.
All ideals are idempotent and commute.
The ideal lattice is distributive.
Huge group of units K∗ × (1 + m)∗ ⊇ K∗ ×GL

n(2n−1)
∞

Close relations to Jacobian algebra An := An〈(∂1x1)−1, . . . , (∂nxn)−1〉.

Markus Rosenkranz Symbolic BPs: Software & Applications

Outline

1 Noncommutative Gröbner Bases

2 Integro-Differential Weyl Algebra

3 Symbolic Software for Boundary Problems

4 Applications in Actuarial Mathematics

Markus Rosenkranz Symbolic BPs: Software & Applications

The General Ring of Integro-Differential Operators

Generalize coefficients of K[x][
r

] ∼= A1(∂, `)/e:

Definition and Theorem (R. 2005; Rosenkranz/R. 2008

Let (F , ∂,
r

) be an ordinary integro-differential algebra.
Then the ring of integro-differential operators F[∂,

r
] is the K-algebra

generated by {∂,
r
} ∪ F ∪ F• modulo the Gröbner basis below.

f̃f → f̃ · f ∂f → f∂ + f∂
r
f
r
→ f

r r
−
r
f

r

ϕ̃ϕ → ϕ ∂ϕ → 0
r
f∂ → f −

r
f∂ − fe e

ϕf → fϕ ϕ ∂
r
→ 1

r
fϕ → f

r
ϕ

Proposition (R. 2005; Rosenkranz/R. 2008)

One has F[∂,
r

] = F [∂] u F [
r

] u (F•), and the evaluation ideal (F•) is
generated by | F•) as a left F-module.

Arithemtic in F[∂,
r

] is basis of all operations on boundary problems.

Markus Rosenkranz Symbolic BPs: Software & Applications

The General Ring of Integro-Differential Operators

Generalize coefficients of K[x][
r

] ∼= A1(∂, `)/e:

Definition and Theorem (R. 2005; Rosenkranz/R. 2008

Let (F , ∂,
r

) be an ordinary integro-differential algebra.
Then the ring of integro-differential operators F[∂,

r
] is the K-algebra

generated by {∂,
r
} ∪ F ∪ F• modulo the Gröbner basis below.

f̃f → f̃ · f ∂f → f∂ + f∂
r
f
r
→ f

r r
−
r
f

r

ϕ̃ϕ → ϕ ∂ϕ → 0
r
f∂ → f −

r
f∂ − fe e

ϕf → fϕ ϕ ∂
r
→ 1

r
fϕ → f

r
ϕ

Proposition (R. 2005; Rosenkranz/R. 2008)

One has F[∂,
r

] = F [∂] u F [
r

] u (F•), and the evaluation ideal (F•) is
generated by | F•) as a left F-module.

Arithemtic in F[∂,
r

] is basis of all operations on boundary problems.

Markus Rosenkranz Symbolic BPs: Software & Applications

The General Ring of Integro-Differential Operators

Generalize coefficients of K[x][
r

] ∼= A1(∂, `)/e:

Definition and Theorem (R. 2005; Rosenkranz/R. 2008

Let (F , ∂,
r

) be an ordinary integro-differential algebra.
Then the ring of integro-differential operators F[∂,

r
] is the K-algebra

generated by {∂,
r
} ∪ F ∪ F• modulo the Gröbner basis below.

f̃f → f̃ · f ∂f → f∂ + f∂
r
f
r
→ f

r r
−
r
f

r

ϕ̃ϕ → ϕ ∂ϕ → 0
r
f∂ → f −

r
f∂ − fe e

ϕf → fϕ ϕ ∂
r
→ 1

r
fϕ → f

r
ϕ

Proposition (R. 2005; Rosenkranz/R. 2008)

One has F[∂,
r

] = F [∂] u F [
r

] u (F•), and the evaluation ideal (F•) is
generated by | F•) as a left F-module.

Arithemtic in F[∂,
r

] is basis of all operations on boundary problems.

Markus Rosenkranz Symbolic BPs: Software & Applications

The General Ring of Integro-Differential Operators

Generalize coefficients of K[x][
r

] ∼= A1(∂, `)/e:

Definition and Theorem (R. 2005; Rosenkranz/R. 2008

Let (F , ∂,
r

) be an ordinary integro-differential algebra.
Then the ring of integro-differential operators F[∂,

r
] is the K-algebra

generated by {∂,
r
} ∪ F ∪ F• modulo the Gröbner basis below.

f̃f → f̃ · f ∂f → f∂ + f∂
r
f
r
→ f

r r
−
r
f

r

ϕ̃ϕ → ϕ ∂ϕ → 0
r
f∂ → f −

r
f∂ − fe e

ϕf → fϕ ϕ ∂
r
→ 1

r
fϕ → f

r
ϕ

Proposition (R. 2005; Rosenkranz/R. 2008)

One has F[∂,
r

] = F [∂] u F [
r

] u (F•), and the evaluation ideal (F•) is
generated by | F•) as a left F-module.

Arithemtic in F[∂,
r

] is basis of all operations on boundary problems.

Markus Rosenkranz Symbolic BPs: Software & Applications

The General Ring of Integro-Differential Operators

Generalize coefficients of K[x][
r

] ∼= A1(∂, `)/e:

Definition and Theorem (R. 2005; Rosenkranz/R. 2008

Let (F , ∂,
r

) be an ordinary integro-differential algebra.
Then the ring of integro-differential operators F[∂,

r
] is the K-algebra

generated by {∂,
r
} ∪ F ∪ F• modulo the Gröbner basis below.

f̃f → f̃ · f ∂f → f∂ + f∂
r
f
r
→ f

r r
−
r
f

r

ϕ̃ϕ → ϕ ∂ϕ → 0
r
f∂ → f −

r
f∂ − fe e

ϕf → fϕ ϕ ∂
r
→ 1

r
fϕ → f

r
ϕ

Proposition (R. 2005; Rosenkranz/R. 2008)

One has F[∂,
r

] = F [∂] u F [
r

] u (F•), and the evaluation ideal (F•) is
generated by | F•) as a left F-module.

Arithemtic in F[∂,
r

] is basis of all operations on boundary problems.

Markus Rosenkranz Symbolic BPs: Software & Applications

The General Ring of Integro-Differential Operators

Generalize coefficients of K[x][
r

] ∼= A1(∂, `)/e:

Definition and Theorem (R. 2005; Rosenkranz/R. 2008

Let (F , ∂,
r

) be an ordinary integro-differential algebra.
Then the ring of integro-differential operators F[∂,

r
] is the K-algebra

generated by {∂,
r
} ∪ F ∪ F• modulo the Gröbner basis below.

f̃f → f̃ · f ∂f → f∂ + f∂
r
f
r
→ f

r r
−
r
f

r

ϕ̃ϕ → ϕ ∂ϕ → 0
r
f∂ → f −

r
f∂ − fe e

ϕf → fϕ ϕ ∂
r
→ 1

r
fϕ → f

r
ϕ

Proposition (R. 2005; Rosenkranz/R. 2008)

One has F[∂,
r

] = F [∂] u F [
r

] u (F•), and the evaluation ideal (F•) is
generated by | F•) as a left F-module.

Arithemtic in F[∂,
r

] is basis of all operations on boundary problems.

Markus Rosenkranz Symbolic BPs: Software & Applications

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in
the Mathematica/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in F[∂,
r

], Green’s operators for C[∂].

GenPolyDom: Implemented in L. Tec’s 2011 thesis (co-supervised with
B. Buchberger and G. Regensburger) as a functor library ibidem.

Added composition/factorization, bivariate operator ring and
integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal’s 2012 thesis (co-supervised with
G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain Mathematica,
using nested algebraic domains in functorial style.

Focused on bivariate operator ring and simple LPDEs.

Markus Rosenkranz Symbolic BPs: Software & Applications

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in
the Mathematica/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in F[∂,
r

], Green’s operators for C[∂].

GenPolyDom: Implemented in L. Tec’s 2011 thesis (co-supervised with
B. Buchberger and G. Regensburger) as a functor library ibidem.

Added composition/factorization, bivariate operator ring and
integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal’s 2012 thesis (co-supervised with
G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain Mathematica,
using nested algebraic domains in functorial style.

Focused on bivariate operator ring and simple LPDEs.

Markus Rosenkranz Symbolic BPs: Software & Applications

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in
the Mathematica/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in F[∂,
r

], Green’s operators for C[∂].

GenPolyDom: Implemented in L. Tec’s 2011 thesis (co-supervised with
B. Buchberger and G. Regensburger) as a functor library ibidem.

Added composition/factorization, bivariate operator ring and
integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal’s 2012 thesis (co-supervised with
G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain Mathematica,
using nested algebraic domains in functorial style.

Focused on bivariate operator ring and simple LPDEs.

Markus Rosenkranz Symbolic BPs: Software & Applications

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in
the Mathematica/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in F[∂,
r

], Green’s operators for C[∂].

GenPolyDom: Implemented in L. Tec’s 2011 thesis (co-supervised with
B. Buchberger and G. Regensburger) as a functor library ibidem.

Added composition/factorization, bivariate operator ring and
integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal’s 2012 thesis (co-supervised with
G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain Mathematica,
using nested algebraic domains in functorial style.

Focused on bivariate operator ring and simple LPDEs.

Markus Rosenkranz Symbolic BPs: Software & Applications

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in
the Mathematica/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in F[∂,
r

], Green’s operators for C[∂].

GenPolyDom: Implemented in L. Tec’s 2011 thesis (co-supervised with
B. Buchberger and G. Regensburger) as a functor library ibidem.

Added composition/factorization, bivariate operator ring and
integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal’s 2012 thesis (co-supervised with
G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain Mathematica,
using nested algebraic domains in functorial style.

Focused on bivariate operator ring and simple LPDEs.

Markus Rosenkranz Symbolic BPs: Software & Applications

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in
the Mathematica/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in F[∂,
r

], Green’s operators for C[∂].

GenPolyDom: Implemented in L. Tec’s 2011 thesis (co-supervised with
B. Buchberger and G. Regensburger) as a functor library ibidem.

Added composition/factorization, bivariate operator ring and
integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal’s 2012 thesis (co-supervised with
G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain Mathematica,
using nested algebraic domains in functorial style.

Focused on bivariate operator ring and simple LPDEs.

Markus Rosenkranz Symbolic BPs: Software & Applications

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in
the Mathematica/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in F[∂,
r

], Green’s operators for C[∂].

GenPolyDom: Implemented in L. Tec’s 2011 thesis (co-supervised with
B. Buchberger and G. Regensburger) as a functor library ibidem.

Added composition/factorization, bivariate operator ring and
integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal’s 2012 thesis (co-supervised with
G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain Mathematica,
using nested algebraic domains in functorial style.

Focused on bivariate operator ring and simple LPDEs.

Markus Rosenkranz Symbolic BPs: Software & Applications

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in
the Mathematica/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in F[∂,
r

], Green’s operators for C[∂].

GenPolyDom: Implemented in L. Tec’s 2011 thesis (co-supervised with
B. Buchberger and G. Regensburger) as a functor library ibidem.

Added composition/factorization, bivariate operator ring and
integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal’s 2012 thesis (co-supervised with
G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain Mathematica,
using nested algebraic domains in functorial style.

Focused on bivariate operator ring and simple LPDEs.

Markus Rosenkranz Symbolic BPs: Software & Applications

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in
the Mathematica/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in F[∂,
r

], Green’s operators for C[∂].

GenPolyDom: Implemented in L. Tec’s 2011 thesis (co-supervised with
B. Buchberger and G. Regensburger) as a functor library ibidem.

Added composition/factorization, bivariate operator ring and
integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal’s 2012 thesis (co-supervised with
G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain Mathematica,
using nested algebraic domains in functorial style.

Focused on bivariate operator ring and simple LPDEs.

Markus Rosenkranz Symbolic BPs: Software & Applications

The TH∃OREM∀ System

Integrated environment for
proving,
solving,
computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for
generic programming by functors,
proving (e.g. preservation theorems, correctness of specifications).

Both universal and domain-specific reasoners (provers, solvers, evaluators).

For more information please refer to:
http://www.risc.jku.at/research/theorema/software/

Markus Rosenkranz Symbolic BPs: Software & Applications

http://www.risc.jku.at/research/theorema/software/

The TH∃OREM∀ System

Integrated environment for
proving,
solving,
computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for
generic programming by functors,
proving (e.g. preservation theorems, correctness of specifications).

Both universal and domain-specific reasoners (provers, solvers, evaluators).

For more information please refer to:
http://www.risc.jku.at/research/theorema/software/

Markus Rosenkranz Symbolic BPs: Software & Applications

http://www.risc.jku.at/research/theorema/software/

The TH∃OREM∀ System

Integrated environment for
proving,
solving,
computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for

generic programming by functors,
proving (e.g. preservation theorems, correctness of specifications).

Both universal and domain-specific reasoners (provers, solvers, evaluators).

For more information please refer to:
http://www.risc.jku.at/research/theorema/software/

Markus Rosenkranz Symbolic BPs: Software & Applications

http://www.risc.jku.at/research/theorema/software/

The TH∃OREM∀ System

Integrated environment for
proving,
solving,
computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for
generic programming by functors,

proving (e.g. preservation theorems, correctness of specifications).
Both universal and domain-specific reasoners (provers, solvers, evaluators).

For more information please refer to:
http://www.risc.jku.at/research/theorema/software/

Markus Rosenkranz Symbolic BPs: Software & Applications

http://www.risc.jku.at/research/theorema/software/

The TH∃OREM∀ System

Integrated environment for
proving,
solving,
computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for
generic programming by functors,
proving (e.g. preservation theorems, correctness of specifications).

Both universal and domain-specific reasoners (provers, solvers, evaluators).

For more information please refer to:
http://www.risc.jku.at/research/theorema/software/

Markus Rosenkranz Symbolic BPs: Software & Applications

http://www.risc.jku.at/research/theorema/software/

The TH∃OREM∀ System

Integrated environment for
proving,
solving,
computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for
generic programming by functors,
proving (e.g. preservation theorems, correctness of specifications).

Both universal and domain-specific reasoners (provers, solvers, evaluators).

For more information please refer to:
http://www.risc.jku.at/research/theorema/software/

Markus Rosenkranz Symbolic BPs: Software & Applications

http://www.risc.jku.at/research/theorema/software/

The TH∃OREM∀ System

Integrated environment for
proving,
solving,
computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for
generic programming by functors,
proving (e.g. preservation theorems, correctness of specifications).

Both universal and domain-specific reasoners (provers, solvers, evaluators).

For more information please refer to:
http://www.risc.jku.at/research/theorema/software/

Markus Rosenkranz Symbolic BPs: Software & Applications

http://www.risc.jku.at/research/theorema/software/

Functors in TH∃OREM∀

Terminology in this context:
Domain: Carrier predicate and implemented operations.
Category: Collection of domains specified by higher-order predicate.
Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):
Computational aspect: Carrier/operations of result domain defined
in terms of carriers/operations of input domain(s).
Reasoning aspect: Transport properties from input domain(s) to
result domains (e.g. preservation of properties.

Markus Rosenkranz Symbolic BPs: Software & Applications

Functors in TH∃OREM∀

Terminology in this context:

Domain: Carrier predicate and implemented operations.
Category: Collection of domains specified by higher-order predicate.
Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):
Computational aspect: Carrier/operations of result domain defined
in terms of carriers/operations of input domain(s).
Reasoning aspect: Transport properties from input domain(s) to
result domains (e.g. preservation of properties.

Markus Rosenkranz Symbolic BPs: Software & Applications

Functors in TH∃OREM∀

Terminology in this context:
Domain: Carrier predicate and implemented operations.

Category: Collection of domains specified by higher-order predicate.
Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):
Computational aspect: Carrier/operations of result domain defined
in terms of carriers/operations of input domain(s).
Reasoning aspect: Transport properties from input domain(s) to
result domains (e.g. preservation of properties.

Markus Rosenkranz Symbolic BPs: Software & Applications

Functors in TH∃OREM∀

Terminology in this context:
Domain: Carrier predicate and implemented operations.
Category: Collection of domains specified by higher-order predicate.

Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):
Computational aspect: Carrier/operations of result domain defined
in terms of carriers/operations of input domain(s).
Reasoning aspect: Transport properties from input domain(s) to
result domains (e.g. preservation of properties.

Markus Rosenkranz Symbolic BPs: Software & Applications

Functors in TH∃OREM∀

Terminology in this context:
Domain: Carrier predicate and implemented operations.
Category: Collection of domains specified by higher-order predicate.
Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):
Computational aspect: Carrier/operations of result domain defined
in terms of carriers/operations of input domain(s).
Reasoning aspect: Transport properties from input domain(s) to
result domains (e.g. preservation of properties.

Markus Rosenkranz Symbolic BPs: Software & Applications

Functors in TH∃OREM∀

Terminology in this context:
Domain: Carrier predicate and implemented operations.
Category: Collection of domains specified by higher-order predicate.
Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):

Computational aspect: Carrier/operations of result domain defined
in terms of carriers/operations of input domain(s).
Reasoning aspect: Transport properties from input domain(s) to
result domains (e.g. preservation of properties.

Markus Rosenkranz Symbolic BPs: Software & Applications

Functors in TH∃OREM∀

Terminology in this context:
Domain: Carrier predicate and implemented operations.
Category: Collection of domains specified by higher-order predicate.
Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):
Computational aspect: Carrier/operations of result domain defined
in terms of carriers/operations of input domain(s).

Reasoning aspect: Transport properties from input domain(s) to
result domains (e.g. preservation of properties.

Markus Rosenkranz Symbolic BPs: Software & Applications

Functors in TH∃OREM∀

Terminology in this context:
Domain: Carrier predicate and implemented operations.
Category: Collection of domains specified by higher-order predicate.
Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):
Computational aspect: Carrier/operations of result domain defined
in terms of carriers/operations of input domain(s).
Reasoning aspect: Transport properties from input domain(s) to
result domains (e.g. preservation of properties.

Markus Rosenkranz Symbolic BPs: Software & Applications

Functor Example: Word Monoid

DefinitionB"Word Monoid", any@LD,
LexWords@LD = FunctorBW, anyAv, w, Ξ, Η, Ξ

�
, Η
�E,

s = X\

Î
W
@wD�í

is|tuple@wD
"

i=1,¼, w¤
Î
L
@wiD

î
W
= X\

v*
W
w = v ^ w

KXΗ, Η�\ >
W
X\O � True

KX\ >
W
XΗ�\O � False

KXΗ, Η�\ >
W
YΞ, Ξ�]O �ë

Η >
L
Ξ

HΗ = ΞL íXΗ�\ >
W
XΞ�\

FF

Markus Rosenkranz Symbolic BPs: Software & Applications

Functor Example: Monoid Algebra

MonoidAlgebra@K, WD = whereBV = FreeModule@K, WD,
FunctorBP, any@c, d, f, g, Ξ, Η, m

�
, n
�D,

s = X\
¼H* linear operations from V *L
H* multiplication *L
X*

P
g = X\

f*
P
X\ = X\

XXc, Ξ\, m
�*

P
XXd, Η\, n

�\ = ZZc*
K
d, Ξ *

W
Η^^ +

P
XXc, Ξ*

P
Xn�\ +

P
Xm�*

P
XXd, Η\, n

�\

FF

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible. Base case for K is

lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),
spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.

Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible. Base case for K is

lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),
spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible. Base case for K is

lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),
spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible. Base case for K is

lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),
spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible. Base case for K is

lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),
spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).

Functorial construction, hence iteration possible. Base case for K is
lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),
spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible.

Base case for K is
lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),
spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible. Base case for K is

lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),
spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible. Base case for K is

lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),
spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible. Base case for K is

lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define

redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),
spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible. Base case for K is

lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),

spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in GenPolyDom

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.
Introduced in [Buchberger, SYNASC’01] for commutative setting.

Reduction Multiplier: Prepare reduction from left and right by

lrdmK[T](au+ . . . , bv + . . .) =

{
lrdmK(a, b) ·K[T] lquotT (u, v) if v |T u,
0K[T] otherwise,

rrdmK[T](au+ . . . , bv + . . .) =

{
rrdmK(a, b) ·K[T] rquotT (u, v) if v |T u,
0K[T] otherwise.

Least Common Reducible: Build S-polynomials via

lcrK[T](au+ . . . , bv + . . .) = lrcdK(a, b) ·K[T] lcmT (u, v).

Axioms like v |T u⇒ u = lquotT ·T v ·T rquotT and b < lrdmD(a, b) ·D a ·D rrdmD(a, b).
Functorial construction, hence iteration possible. Base case for K is

lrdmK(a, b) = a/Kb, rrdmK(a, b) = 1K , lcrK(a, b) = 1K .

Now define redK[T (f, g) := f −K[T] lrdmK[T](f, g) ·K[T] g ·K[T] rrdmK[T](f, g),
spolK[T](f, g) := redK[T](lcrK[T](f, g), f)− redK[T](lcrK[T](f, g), f).

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).
Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.
Hence intdiffop(diffop(...), intop(...), boundop(...)).
Differential operators diffop(f0, f1, . . .).
Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . .).
Local boundary operators boundop(evop(c, evdiffop(f0, . . .), . . .)).
Global boundop(evop(c, evintop(evintterm(g1, h1), . . .), . . .)).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).

Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.
Hence intdiffop(diffop(...), intop(...), boundop(...)).
Differential operators diffop(f0, f1, . . .).
Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . .).
Local boundary operators boundop(evop(c, evdiffop(f0, . . .), . . .)).
Global boundop(evop(c, evintop(evintterm(g1, h1), . . .), . . .)).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).
Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.
Hence intdiffop(diffop(...), intop(...), boundop(...)).
Differential operators diffop(f0, f1, . . .).
Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . .).
Local boundary operators boundop(evop(c, evdiffop(f0, . . .), . . .)).
Global boundop(evop(c, evintop(evintterm(g1, h1), . . .), . . .)).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).
Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.

Hence intdiffop(diffop(...), intop(...), boundop(...)).
Differential operators diffop(f0, f1, . . .).
Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . .).
Local boundary operators boundop(evop(c, evdiffop(f0, . . .), . . .)).
Global boundop(evop(c, evintop(evintterm(g1, h1), . . .), . . .)).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).
Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.
Hence intdiffop(diffop(...), intop(...), boundop(...)).

Differential operators diffop(f0, f1, . . .).
Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . .).
Local boundary operators boundop(evop(c, evdiffop(f0, . . .), . . .)).
Global boundop(evop(c, evintop(evintterm(g1, h1), . . .), . . .)).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).
Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.
Hence intdiffop(diffop(...), intop(...), boundop(...)).
Differential operators diffop(f0, f1, . . .).

Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . .).
Local boundary operators boundop(evop(c, evdiffop(f0, . . .), . . .)).
Global boundop(evop(c, evintop(evintterm(g1, h1), . . .), . . .)).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).
Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.
Hence intdiffop(diffop(...), intop(...), boundop(...)).
Differential operators diffop(f0, f1, . . .).
Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . .).

Local boundary operators boundop(evop(c, evdiffop(f0, . . .), . . .)).
Global boundop(evop(c, evintop(evintterm(g1, h1), . . .), . . .)).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).
Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.
Hence intdiffop(diffop(...), intop(...), boundop(...)).
Differential operators diffop(f0, f1, . . .).
Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . .).
Local boundary operators boundop(evop(c, evdiffop(f0, . . .), . . .)).

Global boundop(evop(c, evintop(evintterm(g1, h1), . . .), . . .)).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).
Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.
Hence intdiffop(diffop(...), intop(...), boundop(...)).
Differential operators diffop(f0, f1, . . .).
Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . .).
Local boundary operators boundop(evop(c, evdiffop(f0, . . .), . . .)).
Global boundop(evop(c, evintop(evintterm(g1, h1), . . .), . . .)).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).
Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.
Hence intdiffop(diffop(...), intop(...), boundop(...)).
Differential operators diffop(f0, f1, . . .).
Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . .).
Local boundary operators boundop(evop(c, evdiffop(f0, . . .), . . .)).
Global boundop(evop(c, evintop(evintterm(g1, h1), . . .), . . .)).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,

Markus Rosenkranz Symbolic BPs: Software & Applications

Computational Strategy in IntDiffOp

Recall canonical decomposition F[∂,
r

] = F [∂] u F [
r

] u (F•).
Use 3× 3 block scheme for multiplication as in A1(∂, `):

Split polynomial representation into three components.
Hence intdiffop(diffop(...), intop(...), boundop(...)).
Differential operators diffop(f0, f1, . . .).
Integral operators intop(intterm(f1, g1), intterm(f2, g2), . . .).
Local boundary operators boundop(evop(c, evdiffop(f0, . . .), . . .)).
Global boundop(evop(c, evintop(evintterm(g1, h1), . . .), . . .)).

Nine cases for multiplications, for example:

∂i · fe∂j = (∂i · f)e∂j ,
e∂i · f∂j =

∑
k(e · fk)e∂

j+k,
r
b · fe∂i = (

r
b · f)e∂i,

e∂i · f
r
b =

∑
k(e · gk)e∂

l,

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence Proofs

Typical critical pair
r
g
r
f∂

↙ ↘
(
r
· g)
r
f∂ −

r
(
r
· g) f∂

r
gf +

r
g
r
f ′ −

r
g (e · g) e

Three generations of parametrized confluence proof:
Original formulation in [JSC’05] with 36 relations, running 2000 lines
of automated proof, using integro-differential axioms.
Current formulation in [JSC’08] with 9 relations, handwritten proof
filling one page. Typical reduction runs as

(
r
· g)

r
f∂ −

r
(
r
· g) f∂ −

r
gf +

r
g
r
f ′ +

r
g (e · g) e

= (
r
· g)f − (

r
· g)

r
f ′ − (

r
· g) (e · f) e− (

r
· g)f +

r
∂ · ((

r
· g) · f)

+ (e · ((
r
· g) · f) e−

r
(g · f) + (

r
· g)

r
f ′ −

r
(
r
· g)f ′ + (e · f)(

r
· g) e

=
r
∂ · ((

r
· g) · f) + (e · ((

r
· g) · f) e−

r
(g · f)−

r
(
r
· g)f ′

=
r

(g · f) +
r

(
r
· g)f ′ + 0−

r
(g · f)−

r
(
r
· g)f ′ = 0.

Automated proof with integro-differential polynomial coefficients
in F{f, g}, hence internalizing integro-differential axioms.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence Proofs

Typical critical pair
r
g
r
f∂

↙ ↘
(
r
· g)
r
f∂ −

r
(
r
· g) f∂

r
gf +

r
g
r
f ′ −

r
g (e · g) e

Three generations of parametrized confluence proof:
Original formulation in [JSC’05] with 36 relations, running 2000 lines
of automated proof, using integro-differential axioms.
Current formulation in [JSC’08] with 9 relations, handwritten proof
filling one page. Typical reduction runs as

(
r
· g)

r
f∂ −

r
(
r
· g) f∂ −

r
gf +

r
g
r
f ′ +

r
g (e · g) e

= (
r
· g)f − (

r
· g)

r
f ′ − (

r
· g) (e · f) e− (

r
· g)f +

r
∂ · ((

r
· g) · f)

+ (e · ((
r
· g) · f) e−

r
(g · f) + (

r
· g)

r
f ′ −

r
(
r
· g)f ′ + (e · f)(

r
· g) e

=
r
∂ · ((

r
· g) · f) + (e · ((

r
· g) · f) e−

r
(g · f)−

r
(
r
· g)f ′

=
r

(g · f) +
r

(
r
· g)f ′ + 0−

r
(g · f)−

r
(
r
· g)f ′ = 0.

Automated proof with integro-differential polynomial coefficients
in F{f, g}, hence internalizing integro-differential axioms.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence Proofs

Typical critical pair
r
g
r
f∂

↙ ↘
(
r
· g)
r
f∂ −

r
(
r
· g) f∂

r
gf +

r
g
r
f ′ −

r
g (e · g) e

Three generations of parametrized confluence proof:

Original formulation in [JSC’05] with 36 relations, running 2000 lines
of automated proof, using integro-differential axioms.
Current formulation in [JSC’08] with 9 relations, handwritten proof
filling one page. Typical reduction runs as

(
r
· g)

r
f∂ −

r
(
r
· g) f∂ −

r
gf +

r
g
r
f ′ +

r
g (e · g) e

= (
r
· g)f − (

r
· g)

r
f ′ − (

r
· g) (e · f) e− (

r
· g)f +

r
∂ · ((

r
· g) · f)

+ (e · ((
r
· g) · f) e−

r
(g · f) + (

r
· g)

r
f ′ −

r
(
r
· g)f ′ + (e · f)(

r
· g) e

=
r
∂ · ((

r
· g) · f) + (e · ((

r
· g) · f) e−

r
(g · f)−

r
(
r
· g)f ′

=
r

(g · f) +
r

(
r
· g)f ′ + 0−

r
(g · f)−

r
(
r
· g)f ′ = 0.

Automated proof with integro-differential polynomial coefficients
in F{f, g}, hence internalizing integro-differential axioms.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence Proofs

Typical critical pair
r
g
r
f∂

↙ ↘
(
r
· g)
r
f∂ −

r
(
r
· g) f∂

r
gf +

r
g
r
f ′ −

r
g (e · g) e

Three generations of parametrized confluence proof:
Original formulation in [JSC’05] with 36 relations, running 2000 lines
of automated proof, using integro-differential axioms.

Current formulation in [JSC’08] with 9 relations, handwritten proof
filling one page. Typical reduction runs as

(
r
· g)

r
f∂ −

r
(
r
· g) f∂ −

r
gf +

r
g
r
f ′ +

r
g (e · g) e

= (
r
· g)f − (

r
· g)

r
f ′ − (

r
· g) (e · f) e− (

r
· g)f +

r
∂ · ((

r
· g) · f)

+ (e · ((
r
· g) · f) e−

r
(g · f) + (

r
· g)

r
f ′ −

r
(
r
· g)f ′ + (e · f)(

r
· g) e

=
r
∂ · ((

r
· g) · f) + (e · ((

r
· g) · f) e−

r
(g · f)−

r
(
r
· g)f ′

=
r

(g · f) +
r

(
r
· g)f ′ + 0−

r
(g · f)−

r
(
r
· g)f ′ = 0.

Automated proof with integro-differential polynomial coefficients
in F{f, g}, hence internalizing integro-differential axioms.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence Proofs

Typical critical pair
r
g
r
f∂

↙ ↘
(
r
· g)
r
f∂ −

r
(
r
· g) f∂

r
gf +

r
g
r
f ′ −

r
g (e · g) e

Three generations of parametrized confluence proof:
Original formulation in [JSC’05] with 36 relations, running 2000 lines
of automated proof, using integro-differential axioms.
Current formulation in [JSC’08] with 9 relations, handwritten proof
filling one page.

Typical reduction runs as

(
r
· g)

r
f∂ −

r
(
r
· g) f∂ −

r
gf +

r
g
r
f ′ +

r
g (e · g) e

= (
r
· g)f − (

r
· g)

r
f ′ − (

r
· g) (e · f) e− (

r
· g)f +

r
∂ · ((

r
· g) · f)

+ (e · ((
r
· g) · f) e−

r
(g · f) + (

r
· g)

r
f ′ −

r
(
r
· g)f ′ + (e · f)(

r
· g) e

=
r
∂ · ((

r
· g) · f) + (e · ((

r
· g) · f) e−

r
(g · f)−

r
(
r
· g)f ′

=
r

(g · f) +
r

(
r
· g)f ′ + 0−

r
(g · f)−

r
(
r
· g)f ′ = 0.

Automated proof with integro-differential polynomial coefficients
in F{f, g}, hence internalizing integro-differential axioms.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence Proofs

Typical critical pair
r
g
r
f∂

↙ ↘
(
r
· g)
r
f∂ −

r
(
r
· g) f∂

r
gf +

r
g
r
f ′ −

r
g (e · g) e

Three generations of parametrized confluence proof:
Original formulation in [JSC’05] with 36 relations, running 2000 lines
of automated proof, using integro-differential axioms.
Current formulation in [JSC’08] with 9 relations, handwritten proof
filling one page. Typical reduction runs as

(
r
· g)

r
f∂ −

r
(
r
· g) f∂ −

r
gf +

r
g
r
f ′ +

r
g (e · g) e

= (
r
· g)f − (

r
· g)

r
f ′ − (

r
· g) (e · f) e− (

r
· g)f +

r
∂ · ((

r
· g) · f)

+ (e · ((
r
· g) · f) e−

r
(g · f) + (

r
· g)

r
f ′ −

r
(
r
· g)f ′ + (e · f)(

r
· g) e

=
r
∂ · ((

r
· g) · f) + (e · ((

r
· g) · f) e−

r
(g · f)−

r
(
r
· g)f ′

=
r

(g · f) +
r

(
r
· g)f ′ + 0−

r
(g · f)−

r
(
r
· g)f ′ = 0.

Automated proof with integro-differential polynomial coefficients
in F{f, g}, hence internalizing integro-differential axioms.

Markus Rosenkranz Symbolic BPs: Software & Applications

Confluence Proofs

Typical critical pair
r
g
r
f∂

↙ ↘
(
r
· g)
r
f∂ −

r
(
r
· g) f∂

r
gf +

r
g
r
f ′ −

r
g (e · g) e

Three generations of parametrized confluence proof:
Original formulation in [JSC’05] with 36 relations, running 2000 lines
of automated proof, using integro-differential axioms.
Current formulation in [JSC’08] with 9 relations, handwritten proof
filling one page. Typical reduction runs as

(
r
· g)

r
f∂ −

r
(
r
· g) f∂ −

r
gf +

r
g
r
f ′ +

r
g (e · g) e

= (
r
· g)f − (

r
· g)

r
f ′ − (

r
· g) (e · f) e− (

r
· g)f +

r
∂ · ((

r
· g) · f)

+ (e · ((
r
· g) · f) e−

r
(g · f) + (

r
· g)

r
f ′ −

r
(
r
· g)f ′ + (e · f)(

r
· g) e

=
r
∂ · ((

r
· g) · f) + (e · ((

r
· g) · f) e−

r
(g · f)−

r
(
r
· g)f ′

=
r

(g · f) +
r

(
r
· g)f ′ + 0−

r
(g · f)−

r
(
r
· g)f ′ = 0.

Automated proof with integro-differential polynomial coefficients
in F{f, g}, hence internalizing integro-differential axioms.

Markus Rosenkranz Symbolic BPs: Software & Applications

Short Demo of IntDiffOp

Current version for download at:
http://www.risc.jku.at/~akorpora/

Markus Rosenkranz Symbolic BPs: Software & Applications

http://www.risc.jku.at/~akorpora/

Short Demo of IntDiffOp

Current version for download at:
http://www.risc.jku.at/~akorpora/

Markus Rosenkranz Symbolic BPs: Software & Applications

http://www.risc.jku.at/~akorpora/

Outline

1 Noncommutative Gröbner Bases

2 Integro-Differential Weyl Algebra

3 Symbolic Software for Boundary Problems

4 Applications in Actuarial Mathematics

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u
Premium income at constant rate c
Renewal process for number of claims
Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):

Initial capital u
Premium income at constant rate c
Renewal process for number of claims
Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u

Premium income at constant rate c
Renewal process for number of claims
Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u
Premium income at constant rate c

Renewal process for number of claims
Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u
Premium income at constant rate c
Renewal process for number of claims

Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u
Premium income at constant rate c
Renewal process for number of claims
Claim sizes Xk and inter-claim times τk

All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u
Premium income at constant rate c
Renewal process for number of claims
Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u
Premium income at constant rate c
Renewal process for number of claims
Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u
Premium income at constant rate c
Renewal process for number of claims
Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u
Premium income at constant rate c
Renewal process for number of claims
Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}

Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u
Premium income at constant rate c
Renewal process for number of claims
Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

A Simple Insurance Model

First scenario (zero interest rate):
Initial capital u
Premium income at constant rate c
Renewal process for number of claims
Claim sizes Xk and inter-claim times τk
All distributions i.i.d.

5 10 15 t

-2

2

4

6

8

U H tL

u x

y

Hence free capital accumulates as U(t) = u+ ct−
N(t)∑
k=1

Xk.

Time of ruin Tu = inf{t | U(t) < 0}
Ruin Probability ψ(u) = P (Tu <∞ | U(0) = u)

Net profit condition cE(τk) > E(Xk)

Markus Rosenkranz Symbolic BPs: Software & Applications

The Gerber-Shiu Function

Definition
Let f(x, y, t|u) be the joint pdf of x = U(Tu−) and y = −U(Tu)
and t = Tu such that

t
f(x, y, z | u) dx dy dt = ψ(u).

Then the Gerber-Shiu function is given by

m(u) = E

(
e−δTu w

(
U(Tu−),−U(Tu)

)
1Tu<∞ | U(0) = u

)
=
y

e−δtw(x, y) f(x, y, t|u) dx dy dt

where w(x, y) is a given penalty function.

We need a formulation

Tm = f
β1(m) = · · · = βn(m) = 0

to be solved by u = Gf .

How does one get a differential equation?
Where do the boundary conditions come from?

Markus Rosenkranz Symbolic BPs: Software & Applications

The Gerber-Shiu Function

Definition
Let f(x, y, t|u) be the joint pdf of x = U(Tu−) and y = −U(Tu)
and t = Tu such that

t
f(x, y, z | u) dx dy dt = ψ(u).

Then the Gerber-Shiu function is given by

m(u) = E

(
e−δTu w

(
U(Tu−),−U(Tu)

)
1Tu<∞ | U(0) = u

)
=
y

e−δtw(x, y) f(x, y, t|u) dx dy dt

where w(x, y) is a given penalty function.

We need a formulation

Tm = f
β1(m) = · · · = βn(m) = 0

to be solved by u = Gf .

How does one get a differential equation?
Where do the boundary conditions come from?

Markus Rosenkranz Symbolic BPs: Software & Applications

The Gerber-Shiu Function

Definition
Let f(x, y, t|u) be the joint pdf of x = U(Tu−) and y = −U(Tu)
and t = Tu such that

t
f(x, y, z | u) dx dy dt = ψ(u).

Then the Gerber-Shiu function is given by

m(u) = E

(
e−δTu w

(
U(Tu−),−U(Tu)

)
1Tu<∞ | U(0) = u

)
=
y

e−δtw(x, y) f(x, y, t|u) dx dy dt

where w(x, y) is a given penalty function.

We need a formulation

Tm = f
β1(m) = · · · = βn(m) = 0

to be solved by u = Gf .

How does one get a differential equation?
Where do the boundary conditions come from?

Markus Rosenkranz Symbolic BPs: Software & Applications

The Gerber-Shiu Function

Definition
Let f(x, y, t|u) be the joint pdf of x = U(Tu−) and y = −U(Tu)
and t = Tu such that

t
f(x, y, z | u) dx dy dt = ψ(u).

Then the Gerber-Shiu function is given by

m(u) = E

(
e−δTu w

(
U(Tu−),−U(Tu)

)
1Tu<∞ | U(0) = u

)
=
y

e−δtw(x, y) f(x, y, t|u) dx dy dt

where w(x, y) is a given penalty function.

We need a formulation

Tm = f
β1(m) = · · · = βn(m) = 0

to be solved by u = Gf .

How does one get a differential equation?

Where do the boundary conditions come from?

Markus Rosenkranz Symbolic BPs: Software & Applications

The Gerber-Shiu Function

Definition
Let f(x, y, t|u) be the joint pdf of x = U(Tu−) and y = −U(Tu)
and t = Tu such that

t
f(x, y, z | u) dx dy dt = ψ(u).

Then the Gerber-Shiu function is given by

m(u) = E

(
e−δTu w

(
U(Tu−),−U(Tu)

)
1Tu<∞ | U(0) = u

)
=
y

e−δtw(x, y) f(x, y, t|u) dx dy dt

where w(x, y) is a given penalty function.

We need a formulation

Tm = f
β1(m) = · · · = βn(m) = 0

to be solved by u = Gf .

How does one get a differential equation?
Where do the boundary conditions come from?

Markus Rosenkranz Symbolic BPs: Software & Applications

Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.
Standard renewal argument (Feller 1971) → integral equation
C0-Semigroup (Constantinescu 2006) → integro-differential equation
Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!

Markus Rosenkranz Symbolic BPs: Software & Applications

Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.

Standard renewal argument (Feller 1971) → integral equation
C0-Semigroup (Constantinescu 2006) → integro-differential equation
Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!

Markus Rosenkranz Symbolic BPs: Software & Applications

Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.
Standard renewal argument (Feller 1971) → integral equation

C0-Semigroup (Constantinescu 2006) → integro-differential equation
Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!

Markus Rosenkranz Symbolic BPs: Software & Applications

Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.
Standard renewal argument (Feller 1971) → integral equation
C0-Semigroup (Constantinescu 2006) → integro-differential equation

Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!

Markus Rosenkranz Symbolic BPs: Software & Applications

Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.
Standard renewal argument (Feller 1971) → integral equation
C0-Semigroup (Constantinescu 2006) → integro-differential equation
Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!

Markus Rosenkranz Symbolic BPs: Software & Applications

Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.
Standard renewal argument (Feller 1971) → integral equation
C0-Semigroup (Constantinescu 2006) → integro-differential equation
Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!

Markus Rosenkranz Symbolic BPs: Software & Applications

Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.
Standard renewal argument (Feller 1971) → integral equation
C0-Semigroup (Constantinescu 2006) → integro-differential equation
Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!

Markus Rosenkranz Symbolic BPs: Software & Applications

Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.
Standard renewal argument (Feller 1971) → integral equation
C0-Semigroup (Constantinescu 2006) → integro-differential equation
Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!

Markus Rosenkranz Symbolic BPs: Software & Applications

Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.
Standard renewal argument (Feller 1971) → integral equation
C0-Semigroup (Constantinescu 2006) → integro-differential equation
Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!

Markus Rosenkranz Symbolic BPs: Software & Applications

Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.
Standard renewal argument (Feller 1971) → integral equation
C0-Semigroup (Constantinescu 2006) → integro-differential equation
Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!

Markus Rosenkranz Symbolic BPs: Software & Applications

Formulation as Boundary Problem

Assuming fτ and fX are of phase type:.
Standard renewal argument (Feller 1971) → integral equation
C0-Semigroup (Constantinescu 2006) → integro-differential equation
Integration by parts → differential equation

With ω(u) :=
∫∞
u w(u, y − u) dFX(y) obtain differential equation

pX(∂u) p∗τ (c∂u − δ)m(u)− a0b0m(u)︸ ︷︷ ︸
Tm

= a0 pX(∂u)ω(u)︸ ︷︷ ︸
f

.

From initial values and net profit condition extract boundary conditions

m(0) = M0,m
′(0) = M1, . . . ,m

(m−1)(0) = 0
m(∞) = 0

Here T = (∂u − ρ1) · · · (∂u − ρn)(∂u − σ1) · · · (∂u − σm),
[

Re (ρi) > 0
Re (σj) < 0

]
.

Note: We have m+ 1 conditions and not m+ n ones!

Markus Rosenkranz Symbolic BPs: Software & Applications

Parametric Solution

Basic steps:
Lift factorization of T to boundary problems.
Distinguish stable and instable Green’s operators.
Introduce function space C1

0 (R) instead of C∞[a, b].
Calculate Mk values (Vandermonde-like determinants).

Theorem (Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010)

If X ∼ E(m) and τ ∼ E(n) then

m(u) =

m∑
i=1

n∑
j=1

cij

((∫ u

0
eσi(u−ξ) +

∫ ∞
u

eρj(u−ξ)
)

× f(ξ) dξ − f̂(ρj)e
σiu
)

+mp(u),

where f̂ is the Laplace transform and cij = cij(ρ, σ) ∈ R.

Markus Rosenkranz Symbolic BPs: Software & Applications

Parametric Solution

Basic steps:
Lift factorization of T to boundary problems.

Distinguish stable and instable Green’s operators.
Introduce function space C1

0 (R) instead of C∞[a, b].
Calculate Mk values (Vandermonde-like determinants).

Theorem (Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010)

If X ∼ E(m) and τ ∼ E(n) then

m(u) =

m∑
i=1

n∑
j=1

cij

((∫ u

0
eσi(u−ξ) +

∫ ∞
u

eρj(u−ξ)
)

× f(ξ) dξ − f̂(ρj)e
σiu
)

+mp(u),

where f̂ is the Laplace transform and cij = cij(ρ, σ) ∈ R.

Markus Rosenkranz Symbolic BPs: Software & Applications

Parametric Solution

Basic steps:
Lift factorization of T to boundary problems.
Distinguish stable and instable Green’s operators.

Introduce function space C1
0 (R) instead of C∞[a, b].

Calculate Mk values (Vandermonde-like determinants).

Theorem (Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010)

If X ∼ E(m) and τ ∼ E(n) then

m(u) =

m∑
i=1

n∑
j=1

cij

((∫ u

0
eσi(u−ξ) +

∫ ∞
u

eρj(u−ξ)
)

× f(ξ) dξ − f̂(ρj)e
σiu
)

+mp(u),

where f̂ is the Laplace transform and cij = cij(ρ, σ) ∈ R.

Markus Rosenkranz Symbolic BPs: Software & Applications

Parametric Solution

Basic steps:
Lift factorization of T to boundary problems.
Distinguish stable and instable Green’s operators.
Introduce function space C1

0 (R) instead of C∞[a, b].

Calculate Mk values (Vandermonde-like determinants).

Theorem (Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010)

If X ∼ E(m) and τ ∼ E(n) then

m(u) =

m∑
i=1

n∑
j=1

cij

((∫ u

0
eσi(u−ξ) +

∫ ∞
u

eρj(u−ξ)
)

× f(ξ) dξ − f̂(ρj)e
σiu
)

+mp(u),

where f̂ is the Laplace transform and cij = cij(ρ, σ) ∈ R.

Markus Rosenkranz Symbolic BPs: Software & Applications

Parametric Solution

Basic steps:
Lift factorization of T to boundary problems.
Distinguish stable and instable Green’s operators.
Introduce function space C1

0 (R) instead of C∞[a, b].
Calculate Mk values (Vandermonde-like determinants).

Theorem (Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010)

If X ∼ E(m) and τ ∼ E(n) then

m(u) =

m∑
i=1

n∑
j=1

cij

((∫ u

0
eσi(u−ξ) +

∫ ∞
u

eρj(u−ξ)
)

× f(ξ) dξ − f̂(ρj)e
σiu
)

+mp(u),

where f̂ is the Laplace transform and cij = cij(ρ, σ) ∈ R.

Markus Rosenkranz Symbolic BPs: Software & Applications

Parametric Solution

Basic steps:
Lift factorization of T to boundary problems.
Distinguish stable and instable Green’s operators.
Introduce function space C1

0 (R) instead of C∞[a, b].
Calculate Mk values (Vandermonde-like determinants).

Theorem (Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010)

If X ∼ E(m) and τ ∼ E(n) then

m(u) =

m∑
i=1

n∑
j=1

cij

((∫ u

0
eσi(u−ξ) +

∫ ∞
u

eρj(u−ξ)
)

× f(ξ) dξ − f̂(ρj)e
σiu
)

+mp(u),

where f̂ is the Laplace transform and cij = cij(ρ, σ) ∈ R.

Markus Rosenkranz Symbolic BPs: Software & Applications

Special Case and Perturbation

Theorem ((Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010))

Setting m = 1, n = 2 one has

m(u) =
eσu

ρ1 − ρ2

(
f̂(ρ1)

ρ1 − σ
−

f̂(ρ2)

ρ2 − σ
−
(
λ

c

)2

(ω̂(ρ1)− ω̂(ρ2))

)

−
1

ρ1 − ρ2

∫ ∞
u

(
1

ρ1 − σ
eρ1(u−ξ) −

1

ρ2 − σ
eρ2(u−ξ)

)
f(ξ) dξ

+
1

ρ1 − σ
1

ρ2 − σ

∫ u

0
eσ(u−ξ) f(ξ) dξ,

Adding Browning motion (double order) for m = n = 1 yields

m(u) = −
1

(ρ− σ1)(ρ− σ2)

∫ ∞
u

eρ(u−ξ)f(ξ) dξ −
f̂(ρ)

σ2 − σ1

(
eσ1u

ρ− σ1
−

eσ2u

ρ− σ2

)
+

1

σ2 − σ1

∫ u

0

(
eσ1(u−ξ)

ρ− σ1
−
eσ2(u−ξ)

ρ− σ2

)
f(ξ) dξ

+
1

σ2 − σ1

(
[σ2m(0)−m′(0)]eσ1u + [−σ1m(0) +m′(0)]eσ2u

)
,

generalizing the representations of [Chen et al.’07] and [Li-Garrido’05].

Markus Rosenkranz Symbolic BPs: Software & Applications

Special Case and Perturbation

Theorem ((Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010))

Setting m = 1, n = 2 one has

m(u) =
eσu

ρ1 − ρ2

(
f̂(ρ1)

ρ1 − σ
−

f̂(ρ2)

ρ2 − σ
−
(
λ

c

)2

(ω̂(ρ1)− ω̂(ρ2))

)

−
1

ρ1 − ρ2

∫ ∞
u

(
1

ρ1 − σ
eρ1(u−ξ) −

1

ρ2 − σ
eρ2(u−ξ)

)
f(ξ) dξ

+
1

ρ1 − σ
1

ρ2 − σ

∫ u

0
eσ(u−ξ) f(ξ) dξ,

Adding Browning motion (double order) for m = n = 1 yields

m(u) = −
1

(ρ− σ1)(ρ− σ2)

∫ ∞
u

eρ(u−ξ)f(ξ) dξ −
f̂(ρ)

σ2 − σ1

(
eσ1u

ρ− σ1
−

eσ2u

ρ− σ2

)
+

1

σ2 − σ1

∫ u

0

(
eσ1(u−ξ)

ρ− σ1
−
eσ2(u−ξ)

ρ− σ2

)
f(ξ) dξ

+
1

σ2 − σ1

(
[σ2m(0)−m′(0)]eσ1u + [−σ1m(0) +m′(0)]eσ2u

)
,

generalizing the representations of [Chen et al.’07] and [Li-Garrido’05].

Markus Rosenkranz Symbolic BPs: Software & Applications

Special Case and Perturbation

Theorem ((Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010))

Setting m = 1, n = 2 one has

m(u) =
eσu

ρ1 − ρ2

(
f̂(ρ1)

ρ1 − σ
−

f̂(ρ2)

ρ2 − σ
−
(
λ

c

)2

(ω̂(ρ1)− ω̂(ρ2))

)

−
1

ρ1 − ρ2

∫ ∞
u

(
1

ρ1 − σ
eρ1(u−ξ) −

1

ρ2 − σ
eρ2(u−ξ)

)
f(ξ) dξ

+
1

ρ1 − σ
1

ρ2 − σ

∫ u

0
eσ(u−ξ) f(ξ) dξ,

Adding Browning motion (double order) for m = n = 1 yields

m(u) = −
1

(ρ− σ1)(ρ− σ2)

∫ ∞
u

eρ(u−ξ)f(ξ) dξ −
f̂(ρ)

σ2 − σ1

(
eσ1u

ρ− σ1
−

eσ2u

ρ− σ2

)
+

1

σ2 − σ1

∫ u

0

(
eσ1(u−ξ)

ρ− σ1
−
eσ2(u−ξ)

ρ− σ2

)
f(ξ) dξ

+
1

σ2 − σ1

(
[σ2m(0)−m′(0)]eσ1u + [−σ1m(0) +m′(0)]eσ2u

)
,

generalizing the representations of [Chen et al.’07] and [Li-Garrido’05].

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:

Premium accumulates as
∫ t

0 p(U(s)) ds for monotone p(u).
Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:
Premium accumulates as

∫ t
0 p(U(s)) ds for monotone p(u).

Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:
Premium accumulates as

∫ t
0 p(U(s)) ds for monotone p(u).

Otherwise same as before

(regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:
Premium accumulates as

∫ t
0 p(U(s)) ds for monotone p(u).

Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:
Premium accumulates as

∫ t
0 p(U(s)) ds for monotone p(u).

Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:
Premium accumulates as

∫ t
0 p(U(s)) ds for monotone p(u).

Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.

� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:
Premium accumulates as

∫ t
0 p(U(s)) ds for monotone p(u).

Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:
Premium accumulates as

∫ t
0 p(U(s)) ds for monotone p(u).

Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:
Premium accumulates as

∫ t
0 p(U(s)) ds for monotone p(u).

Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :

Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:
Premium accumulates as

∫ t
0 p(U(s)) ds for monotone p(u).

Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.

Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:
Premium accumulates as

∫ t
0 p(U(s)) ds for monotone p(u).

Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.

Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Premium Accumulation with Interest Rate

Generalize basic model from above:
Premium accumulates as

∫ t
0 p(U(s)) ds for monotone p(u).

Otherwise same as before (regained by setting p(u) = c).

Hence free capital is U(t) = u+
∫ t

0 p(U(s)) ds−
N(t)∑
k=1

Xk.

� Differential equation with variable coefficients.
� Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σi and instable ones ρj :
Let T have the fundamental system s1, . . . , sm, r1, . . . , rn.
Then we call si(u) stable if si(∞) = 0.
Likewise we call rj(u) instable if rj(∞) =∞.

Markus Rosenkranz Symbolic BPs: Software & Applications

Factoring Stable and Instable Green’s Operators

Lemma
The Gerber-Shiu function is m(u) = c1s1(u) + · · ·+ cmsm(u) +Gg (u)
with G = GsGr and Gs = As1 · · ·Asm , Gr = (−1)nBr1 · · ·Brn where

Ati = ω(i)
ω(i−1) A

ω(i−1)
ω(i) for 1 ≤ i ≤ m,

Btj = Brj−m = ω(j)
ω(j−1) B

ω(j−1)
ω(j) for m+ 1 ≤ j ≤ m+ n,

setting ω(0) = 1 for convenience.

Proposition
The above Green’s operator can be decomposed as

G =

m+n∑
i=1

tiCi
di(m+n)
ω(m+n) −

n∑
j=1

ãj F
dm+j(m+n)
ω(m+n) ,

where Ci is
r x

0 for 1 ≤ i ≤ m and
r x
∞ for 1 ≤ i−m ≤ n, with F :=

∫∞
0

and certain constants ãj . Here ω is the Wronskian with minors di.

Markus Rosenkranz Symbolic BPs: Software & Applications

Factoring Stable and Instable Green’s Operators

Lemma
The Gerber-Shiu function is m(u) = c1s1(u) + · · ·+ cmsm(u) +Gg (u)
with G = GsGr and Gs = As1 · · ·Asm , Gr = (−1)nBr1 · · ·Brn where

Ati = ω(i)
ω(i−1) A

ω(i−1)
ω(i) for 1 ≤ i ≤ m,

Btj = Brj−m = ω(j)
ω(j−1) B

ω(j−1)
ω(j) for m+ 1 ≤ j ≤ m+ n,

setting ω(0) = 1 for convenience.

Proposition
The above Green’s operator can be decomposed as

G =

m+n∑
i=1

tiCi
di(m+n)
ω(m+n) −

n∑
j=1

ãj F
dm+j(m+n)
ω(m+n) ,

where Ci is
r x

0 for 1 ≤ i ≤ m and
r x
∞ for 1 ≤ i−m ≤ n, with F :=

∫∞
0

and certain constants ãj . Here ω is the Wronskian with minors di.

Markus Rosenkranz Symbolic BPs: Software & Applications

Factoring Stable and Instable Green’s Operators

Lemma
The Gerber-Shiu function is m(u) = c1s1(u) + · · ·+ cmsm(u) +Gg (u)
with G = GsGr and Gs = As1 · · ·Asm , Gr = (−1)nBr1 · · ·Brn where

Ati = ω(i)
ω(i−1) A

ω(i−1)
ω(i) for 1 ≤ i ≤ m,

Btj = Brj−m = ω(j)
ω(j−1) B

ω(j−1)
ω(j) for m+ 1 ≤ j ≤ m+ n,

setting ω(0) = 1 for convenience.

Proposition
The above Green’s operator can be decomposed as

G =

m+n∑
i=1

tiCi
di(m+n)
ω(m+n) −

n∑
j=1

ãj F
dm+j(m+n)
ω(m+n) ,

where Ci is
r x

0 for 1 ≤ i ≤ m and
r x
∞ for 1 ≤ i−m ≤ n, with F :=

∫∞
0

and certain constants ãj . Here ω is the Wronskian with minors di.

Markus Rosenkranz Symbolic BPs: Software & Applications

General Representation of Solution

Theorem (Albrecher, Constantinescu, Palmowski, Regensburger, Rosenkranz)

For τ ∼ E(1/λ) and X ∼ E(µ) we have

m(u) = γ s(u)
(
− s(u)

∫ u

0

r(v)
w(v)

− r(u)
∫ ∞
u

s(v)
w(v)

+ r(0)
s(0)

s(u)

∫ ∞
0

s(v)
w(v)

)
f(v) dv,

where γ =
(
λω(0)+c r(0)s

′(0)−r′(0)s(0)
s(0)

∫∞
0

s(v)
w(v)

f(v) dv
)
/
(
(λ+δ) s(0)−c s′(0)

)
∈ R.

Corollary (Albrecher, Constantinescu, Palmowski, Regensburger, Rosenkranz)

In the special case δ = 0 one gets

m(u) =
λω(0)− p(0) s

′(0)
s(0)

∫∞
0

s(v)
s′(v) f(v) dv

λs(0)− p(0)s′(0) s(u)

+
(
s(u)

∫ u

0

1
s′(v) +

∫ ∞
u

s(v)
s′(v) −

s(u)
s(0)

∫ ∞
0

s(v)
s′(v)

)
f(v) dv

where γ is already included.

Markus Rosenkranz Symbolic BPs: Software & Applications

General Representation of Solution

Theorem (Albrecher, Constantinescu, Palmowski, Regensburger, Rosenkranz)

For τ ∼ E(1/λ) and X ∼ E(µ) we have

m(u) = γ s(u)
(
− s(u)

∫ u

0

r(v)
w(v)

− r(u)
∫ ∞
u

s(v)
w(v)

+ r(0)
s(0)

s(u)

∫ ∞
0

s(v)
w(v)

)
f(v) dv,

where γ =
(
λω(0)+c r(0)s

′(0)−r′(0)s(0)
s(0)

∫∞
0

s(v)
w(v)

f(v) dv
)
/
(
(λ+δ) s(0)−c s′(0)

)
∈ R.

Corollary (Albrecher, Constantinescu, Palmowski, Regensburger, Rosenkranz)

In the special case δ = 0 one gets

m(u) =
λω(0)− p(0) s

′(0)
s(0)

∫∞
0

s(v)
s′(v) f(v) dv

λs(0)− p(0)s′(0) s(u)

+
(
s(u)

∫ u

0

1
s′(v) +

∫ ∞
u

s(v)
s′(v) −

s(u)
s(0)

∫ ∞
0

s(v)
s′(v)

)
f(v) dv

where γ is already included.

Markus Rosenkranz Symbolic BPs: Software & Applications

Some Special Closed Forms

Closed-form solutions have been obtained for:

Linear premium p(u) = c+ εu: Kummer functions.
Exponential premium p(u) = c(1 + e−u): Hypergeometric functions.
Rational premium p(u) = c+ 1/(1 + u): Up to quadratures (exp).
Quadratic premium p(u) = c+ u2: Up to quadratures (exp, arctan).

Markus Rosenkranz Symbolic BPs: Software & Applications

Some Special Closed Forms

Closed-form solutions have been obtained for:
Linear premium p(u) = c+ εu: Kummer functions.

Exponential premium p(u) = c(1 + e−u): Hypergeometric functions.
Rational premium p(u) = c+ 1/(1 + u): Up to quadratures (exp).
Quadratic premium p(u) = c+ u2: Up to quadratures (exp, arctan).

Markus Rosenkranz Symbolic BPs: Software & Applications

Some Special Closed Forms

Closed-form solutions have been obtained for:
Linear premium p(u) = c+ εu: Kummer functions.
Exponential premium p(u) = c(1 + e−u): Hypergeometric functions.

Rational premium p(u) = c+ 1/(1 + u): Up to quadratures (exp).
Quadratic premium p(u) = c+ u2: Up to quadratures (exp, arctan).

Markus Rosenkranz Symbolic BPs: Software & Applications

Some Special Closed Forms

Closed-form solutions have been obtained for:
Linear premium p(u) = c+ εu: Kummer functions.
Exponential premium p(u) = c(1 + e−u): Hypergeometric functions.
Rational premium p(u) = c+ 1/(1 + u): Up to quadratures (exp).

Quadratic premium p(u) = c+ u2: Up to quadratures (exp, arctan).

Markus Rosenkranz Symbolic BPs: Software & Applications

Some Special Closed Forms

Closed-form solutions have been obtained for:
Linear premium p(u) = c+ εu: Kummer functions.
Exponential premium p(u) = c(1 + e−u): Hypergeometric functions.
Rational premium p(u) = c+ 1/(1 + u): Up to quadratures (exp).
Quadratic premium p(u) = c+ u2: Up to quadratures (exp, arctan).

Markus Rosenkranz Symbolic BPs: Software & Applications

Generic Case Asymptotics for u→∞

Probability of ruin:
If p(∞) <∞ then ψ(u) ∼ µγ

λ exp
(
− µu+ λ

∫ u
0 p(w)−1 dw

)
.

If p(∞) =∞ then ψ(u) ∼ µγ
λ

1
p(u) exp

(
. . .
)
.

Homogeneous solutions t1, t2:
ti(u) ∼ exp

(∫ u
0 (%i(t) + %̃i(t)) dt

)
where

2%1,2 = −
(
µ+ p′(u)

p(u)
− λ+δ

p(u)

)
±
√(

µ+ p′(u)
p(u)

− λ+δ
p(u)

)2
+ 4 δµ

p(u)

%̃1,2 = − %′1,2(u)

2%1,2(u)+
(
µ+

p′(u)
p(u)

− λ+δ
p(u)

)
Gerber-Shiu function:

If p(∞) <∞ then m(u) ∼ (γ −
∫∞

0
s(v)
s′(v) f(v) dv) s(u) +K1 f(u).

If p(∞) explodes polynomially then m(u) ∼ (. . .) s(u) +K2u f(u)

Markus Rosenkranz Symbolic BPs: Software & Applications

Generic Case Asymptotics for u→∞

Probability of ruin:

If p(∞) <∞ then ψ(u) ∼ µγ
λ exp

(
− µu+ λ

∫ u
0 p(w)−1 dw

)
.

If p(∞) =∞ then ψ(u) ∼ µγ
λ

1
p(u) exp

(
. . .
)
.

Homogeneous solutions t1, t2:
ti(u) ∼ exp

(∫ u
0 (%i(t) + %̃i(t)) dt

)
where

2%1,2 = −
(
µ+ p′(u)

p(u)
− λ+δ

p(u)

)
±
√(

µ+ p′(u)
p(u)

− λ+δ
p(u)

)2
+ 4 δµ

p(u)

%̃1,2 = − %′1,2(u)

2%1,2(u)+
(
µ+

p′(u)
p(u)

− λ+δ
p(u)

)
Gerber-Shiu function:

If p(∞) <∞ then m(u) ∼ (γ −
∫∞

0
s(v)
s′(v) f(v) dv) s(u) +K1 f(u).

If p(∞) explodes polynomially then m(u) ∼ (. . .) s(u) +K2u f(u)

Markus Rosenkranz Symbolic BPs: Software & Applications

Generic Case Asymptotics for u→∞

Probability of ruin:
If p(∞) <∞ then ψ(u) ∼ µγ

λ exp
(
− µu+ λ

∫ u
0 p(w)−1 dw

)
.

If p(∞) =∞ then ψ(u) ∼ µγ
λ

1
p(u) exp

(
. . .
)
.

Homogeneous solutions t1, t2:
ti(u) ∼ exp

(∫ u
0 (%i(t) + %̃i(t)) dt

)
where

2%1,2 = −
(
µ+ p′(u)

p(u)
− λ+δ

p(u)

)
±
√(

µ+ p′(u)
p(u)

− λ+δ
p(u)

)2
+ 4 δµ

p(u)

%̃1,2 = − %′1,2(u)

2%1,2(u)+
(
µ+

p′(u)
p(u)

− λ+δ
p(u)

)
Gerber-Shiu function:

If p(∞) <∞ then m(u) ∼ (γ −
∫∞

0
s(v)
s′(v) f(v) dv) s(u) +K1 f(u).

If p(∞) explodes polynomially then m(u) ∼ (. . .) s(u) +K2u f(u)

Markus Rosenkranz Symbolic BPs: Software & Applications

Generic Case Asymptotics for u→∞

Probability of ruin:
If p(∞) <∞ then ψ(u) ∼ µγ

λ exp
(
− µu+ λ

∫ u
0 p(w)−1 dw

)
.

If p(∞) =∞ then ψ(u) ∼ µγ
λ

1
p(u) exp

(
. . .
)
.

Homogeneous solutions t1, t2:
ti(u) ∼ exp

(∫ u
0 (%i(t) + %̃i(t)) dt

)
where

2%1,2 = −
(
µ+ p′(u)

p(u)
− λ+δ

p(u)

)
±
√(

µ+ p′(u)
p(u)

− λ+δ
p(u)

)2
+ 4 δµ

p(u)

%̃1,2 = − %′1,2(u)

2%1,2(u)+
(
µ+

p′(u)
p(u)

− λ+δ
p(u)

)
Gerber-Shiu function:

If p(∞) <∞ then m(u) ∼ (γ −
∫∞

0
s(v)
s′(v) f(v) dv) s(u) +K1 f(u).

If p(∞) explodes polynomially then m(u) ∼ (. . .) s(u) +K2u f(u)

Markus Rosenkranz Symbolic BPs: Software & Applications

Generic Case Asymptotics for u→∞

Probability of ruin:
If p(∞) <∞ then ψ(u) ∼ µγ

λ exp
(
− µu+ λ

∫ u
0 p(w)−1 dw

)
.

If p(∞) =∞ then ψ(u) ∼ µγ
λ

1
p(u) exp

(
. . .
)
.

Homogeneous solutions t1, t2:
ti(u) ∼ exp

(∫ u
0 (%i(t) + %̃i(t)) dt

)
where

2%1,2 = −
(
µ+ p′(u)

p(u)
− λ+δ

p(u)

)
±
√(

µ+ p′(u)
p(u)

− λ+δ
p(u)

)2
+ 4 δµ

p(u)

%̃1,2 = − %′1,2(u)

2%1,2(u)+
(
µ+

p′(u)
p(u)

− λ+δ
p(u)

)

Gerber-Shiu function:
If p(∞) <∞ then m(u) ∼ (γ −

∫∞
0

s(v)
s′(v) f(v) dv) s(u) +K1 f(u).

If p(∞) explodes polynomially then m(u) ∼ (. . .) s(u) +K2u f(u)

Markus Rosenkranz Symbolic BPs: Software & Applications

Generic Case Asymptotics for u→∞

Probability of ruin:
If p(∞) <∞ then ψ(u) ∼ µγ

λ exp
(
− µu+ λ

∫ u
0 p(w)−1 dw

)
.

If p(∞) =∞ then ψ(u) ∼ µγ
λ

1
p(u) exp

(
. . .
)
.

Homogeneous solutions t1, t2:
ti(u) ∼ exp

(∫ u
0 (%i(t) + %̃i(t)) dt

)
where

2%1,2 = −
(
µ+ p′(u)

p(u)
− λ+δ

p(u)

)
±
√(

µ+ p′(u)
p(u)

− λ+δ
p(u)

)2
+ 4 δµ

p(u)

%̃1,2 = − %′1,2(u)

2%1,2(u)+
(
µ+

p′(u)
p(u)

− λ+δ
p(u)

)
Gerber-Shiu function:

If p(∞) <∞ then m(u) ∼ (γ −
∫∞

0
s(v)
s′(v) f(v) dv) s(u) +K1 f(u).

If p(∞) explodes polynomially then m(u) ∼ (. . .) s(u) +K2u f(u)

Markus Rosenkranz Symbolic BPs: Software & Applications

Generic Case Asymptotics for u→∞

Probability of ruin:
If p(∞) <∞ then ψ(u) ∼ µγ

λ exp
(
− µu+ λ

∫ u
0 p(w)−1 dw

)
.

If p(∞) =∞ then ψ(u) ∼ µγ
λ

1
p(u) exp

(
. . .
)
.

Homogeneous solutions t1, t2:
ti(u) ∼ exp

(∫ u
0 (%i(t) + %̃i(t)) dt

)
where

2%1,2 = −
(
µ+ p′(u)

p(u)
− λ+δ

p(u)

)
±
√(

µ+ p′(u)
p(u)

− λ+δ
p(u)

)2
+ 4 δµ

p(u)

%̃1,2 = − %′1,2(u)

2%1,2(u)+
(
µ+

p′(u)
p(u)

− λ+δ
p(u)

)
Gerber-Shiu function:

If p(∞) <∞ then m(u) ∼ (γ −
∫∞

0
s(v)
s′(v) f(v) dv) s(u) +K1 f(u).

If p(∞) explodes polynomially then m(u) ∼ (. . .) s(u) +K2u f(u)

Markus Rosenkranz Symbolic BPs: Software & Applications

Future Work in Actuarial Mathematics

Currently working on generalized model with tax
→ LPDE instead of LODE.

Derivation of integro-differential from integral equation
very cumbersome → package.

Combine with variable coefficient case to derive asymptotics.

THANK YOU

Markus Rosenkranz Symbolic BPs: Software & Applications

Future Work in Actuarial Mathematics

Currently working on generalized model with tax
→ LPDE instead of LODE.

Derivation of integro-differential from integral equation
very cumbersome → package.

Combine with variable coefficient case to derive asymptotics.

THANK YOU

Markus Rosenkranz Symbolic BPs: Software & Applications

Future Work in Actuarial Mathematics

Currently working on generalized model with tax
→ LPDE instead of LODE.

Derivation of integro-differential from integral equation
very cumbersome → package.

Combine with variable coefficient case to derive asymptotics.

THANK YOU

Markus Rosenkranz Symbolic BPs: Software & Applications

Future Work in Actuarial Mathematics

Currently working on generalized model with tax
→ LPDE instead of LODE.

Derivation of integro-differential from integral equation
very cumbersome → package.

Combine with variable coefficient case to derive asymptotics.

THANK YOU

Markus Rosenkranz Symbolic BPs: Software & Applications

Future Work in Actuarial Mathematics

Currently working on generalized model with tax
→ LPDE instead of LODE.

Derivation of integro-differential from integral equation
very cumbersome → package.

Combine with variable coefficient case to derive asymptotics.

THANK YOU

Markus Rosenkranz Symbolic BPs: Software & Applications

References

H. Albrecher, C. Constantinescu, Z. Palmowski, G. Regensburger, M.
Rosenkranz.
Exact and asymptotic results for insurance risk models with
surplus-dependent premiums. SIAM J. Appl. Math, 73(1):47–66, 2012.

H. Albrecher, C. Constantinescu, G. Pirsic, G. Regensburger, M.
Rosenkranz.
An algebraic operator approach to the analysis of Gerber-Shiu
functions. Insurance Math. Econom, 46:42–51, 2010.

George M. Bergman.
The diamond lemma for ring theory, Advances in Mathematics 29/2,
179–218, 1978.

B. Buchberger, M. Rosenkranz.
Transforming boundary problems from analysis to algebra: A case
study in boundary problems. J. Symbolic Comput, 47(6):589–609,
2012.

Markus Rosenkranz Symbolic BPs: Software & Applications

References

B. Buchberger, G. Regensburger, M. Rosenkranz, L. Tec.
General polynomial reduction with Theorema functors: Applications to
integro-differential operators and polynomials.
ACM Commun. Comput. Algebra, 42(3):135–137, 2008.

A. Korporal, G. Regensburger, M. Rosenkranz.
Regular and singular boundary problems in Maple. Proceedings of
CASC’11, Springer LNCS:6885, 2011.

G. Regensburger, M. Rosenkranz, J. Middeke.
A skew polynomial approach to integro-differential operators. In
Proceedings of ISSAC’09, 287–294, ACM, 2009.

M. Rosenkranz, N. Phisanbut.
A symbolic approach to boundary problems for linear partial
differential equations: Applications to the completely reducible case of
the Cauchy problem with constant coefficients. Proceedings of
CASC’13, Springer LNCS:8136, 2013.

Markus Rosenkranz Symbolic BPs: Software & Applications

References

M. Rosenkranz, G. Regensburger, L. Tec, B. Buchberger.
Symbolic analysis for boundary problems: From rewriting to
parametrized Gröbner bases. In U. Langer, P. Paule, Numerical and
Symbolic Scientific Computing: Progress and Prospects, Springer,
2011.

M. Rosenkranz, G. Regensburger.
Integro-differential polynomials and operators. In Proceedings of
ISSAC’08, 261–268, ACM, 2008.

L. Tec, G. Regensburger, M. Rosenkranz, B. Buchberger.
An automated confluence proof for an infinite rewrite system
parametrized over an integro-differential algebra. In Proceedings of
ICMS’10, Springer LNCS 6327, 2010.

Markus Rosenkranz Symbolic BPs: Software & Applications

Table of Contents

1. Overview
2. Monoid Algebras
3. Recursively Presented Algebras
4. Noetherianity for Recursively Presented Algebras
5. Confluence for Recursively Presented Algebras
6. Overlap Ambiguities and Their Resolution
7. The Diamond Lemma for Ring Theory
8. A Brief Look at the History of Gröbner Bases
9. Skew Polynomial Rings
10. Examples of Ore Algebras
11. The Integro-Weyl Algebra
12. Two-Sided Ideals in the Integro Weyl Algebra
13. Bases in the Integro Weyl Algebra
14. Differential versus Integro Weyl Algebra
15. Integro-Differential Weyl Algebra
16. Canonical Decomposition and Basis
17. Isomorphisms via Localization and Specialization
18. Localization versus Specialization
19. Generalization to Higher Dimensions
20. The General Ring of Integro-Differential Operators
21. Software Systems Past and Present
22. The TH∃OREM∀ System

23. Functors in TH∃OREM∀
24. Functor Example: Word Monoid
25. Functor Example: Monoid Algebra
26. Computational Strategy in GenPolyDom
27. Computational Strategy in IntDiffOp
28. Confluence Proofs
29. Short Demo of IntDiffOp
30. A Simple Insurance Model
31. The Gerber-Shiu Function
32. Formulation as Boundary Problem
33. Parametric Solution
34. Special Case and Perturbation
35. Premium Accumulation with Interest Rate
36. Factoring Stable and Instable Green’s Operators
37. General Representation of Solution
38. Some Special Closed Forms
39. Generic Case Asymptotics for u→∞
40. Future Work in Actuarial Mathematics
41. References
42. References
43. References

Markus Rosenkranz Symbolic BPs: Software & Applications

	Noncommutative Gröbner Bases
	Integro-Differential Weyl Algebra
	Symbolic Software for Boundary Problems
	Applications in Actuarial Mathematics

