Software for Symbolic Boundary Problems and Applications in Actuarial Mathematics

Markus Rosenkranz

 $\langle M.Rosenkranz@kent.ac.uk \rangle$

School of Mathematics, Statistics and Actuarial Science University of Kent, United Kingdom

Kolchin Seminar in Differential Algebra 8 July 2014

We acknowledge support from EPSRC First Grant EP/I037474/1.

< ∂ >

< (1)

O Noncommutative Gröbner Bases

Mainly summarizing [Bergman1978].

Noncommutative Gröbner Bases
 Mainly and 10791

Mainly summarizing [Bergman1978].

Integro-Differential Weyl Algebra

Joint work with J. Middeke and G. Regensburger [ISSAC09].

- Noncommutative Gröbner Bases Mainly summarizing [Bergman1978].
- Integro-Differential Weyl Algebra Joint work with J. Middeke and G. Regensburger [ISSAC09].
- Symbolic Software for Boundary Problems
 Joint work with B. Buchberger [JSC12], A. Korporal [CASC11],
 N. Phisanbut [CASC13], G. Regensburger [SFB11, ISSAC08],
 L. Tec [CCA08, ICMS10].

< (2))

- Noncommutative Gröbner Bases Mainly summarizing [Bergman1978].
- Integro-Differential Weyl Algebra Joint work with J. Middeke and G. Regensburger [ISSAC09].
- Symbolic Software for Boundary Problems
 Joint work with B. Buchberger [JSC12], A. Korporal [CASC11],
 N. Phisanbut [CASC13], G. Regensburger [SFB11, ISSAC08],
 L. Tec [CCA08, ICMS10].
- Applications in Actuarial Mathematics

Joint work with G. Regensburger and our great actuarial maths collaborators [SIAM12, IME10].

Integro-Differential Weyl Algebra

Symbolic Software for Boundary Problems

Applications in Actuarial Mathematics

∢ ∄)

Fix a commutative unital ring \mathbf{k} .

(日)

Fix a commutative unital ring \mathbf{k} .

Definition

If M is a monoid, one calls $\mathbf{k}M := \{p \colon M \to \mathbf{k} \mid |\operatorname{supp} p| < \infty\}$ the monoid algebra of M over \mathbf{k} .

Fix a commutative unital ring \mathbf{k} .

Definition

If M is a monoid, one calls $\mathbf{k}M := \{p \colon M \to \mathbf{k} \mid |\operatorname{supp} p| < \infty\}$ the monoid algebra of M over \mathbf{k} .

Write $p = (w_1 \mapsto \lambda_1, \cdots, w_m \mapsto \lambda_m) \in \mathbf{k}M$ as $\lambda_1 w_1 + \cdots + \lambda_m w_m$.

Fix a commutative unital ring \mathbf{k} .

Definition

If M is a monoid, one calls $\mathbf{k}M := \{p \colon M \to \mathbf{k} \mid |\operatorname{supp} p| < \infty\}$ the monoid algebra of M over \mathbf{k} .

Write $p = (w_1 \mapsto \lambda_1, \cdots, w_m \mapsto \lambda_m) \in \mathbf{k}M$ as $\lambda_1 w_1 + \cdots + \lambda_m w_m$. Important special cases:

• $M = [x_1, \ldots, x_n] \cong \mathbb{N}^n$: Commutative polynomials $\mathbf{k}[x_1, \ldots, x_n]$

Fix a commutative unital ring \mathbf{k} .

Definition

If M is a monoid, one calls $\mathbf{k}M := \{p \colon M \to \mathbf{k} \mid |\operatorname{supp} p| < \infty\}$ the monoid algebra of M over \mathbf{k} .

Write $p = (w_1 \mapsto \lambda_1, \cdots, w_m \mapsto \lambda_m) \in \mathbf{k}M$ as $\lambda_1 w_1 + \cdots + \lambda_m w_m$. Important special cases:

• $M = [x_1, \dots, x_n] \cong \mathbb{N}^n$: Commutative polynomials $\mathbf{k}[x_1, \dots, x_n]$ • $M = [x_1, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}] \cong \mathbb{Z}^n$: Laurent polynomials

Fix a commutative unital ring \mathbf{k} .

Definition

If M is a monoid, one calls $\mathbf{k}M := \{p \colon M \to \mathbf{k} \mid |\operatorname{supp} p| < \infty\}$ the monoid algebra of M over \mathbf{k} .

Write $p = (w_1 \mapsto \lambda_1, \cdots, w_m \mapsto \lambda_m) \in \mathbf{k}M$ as $\lambda_1 w_1 + \cdots + \lambda_m w_m$. Important special cases:

• $M = [x_1, \ldots, x_n] \cong \mathbb{N}^n$: Commutative polynomials $\mathbf{k}[x_1, \ldots, x_n]$ • $M = [x_1, \ldots, x_n, x_1^{-1}, \ldots, x_n^{-1}] \cong \mathbb{Z}^n$: Laurent polynomials • $M = \langle x_1, \ldots, x_n \rangle$: Noncommutative polynomials $\mathbf{k} \langle x_1, \ldots, x_n \rangle$

Fix a commutative unital ring \mathbf{k} .

Definition

If M is a monoid, one calls $\mathbf{k}M := \{p \colon M \to \mathbf{k} \mid |\operatorname{supp} p| < \infty\}$ the monoid algebra of M over \mathbf{k} .

Write $p = (w_1 \mapsto \lambda_1, \cdots, w_m \mapsto \lambda_m) \in \mathbf{k}M$ as $\lambda_1 w_1 + \cdots + \lambda_m w_m$. Important special cases:

M = [x₁,...,x_n] ≅ Nⁿ: Commutative polynomials k[x₁,...,x_n]
M = [x₁,...,x_n,x₁⁻¹,...,x_n⁻¹] ≅ Zⁿ: Laurent polynomials
M = ⟨x₁,...,x_n⟩: Noncommutative polynomials k⟨x₁,...,x_n⟩
Same for (recursive) infinite sets X:

Fix a commutative unital ring \mathbf{k} .

Definition

If M is a monoid, one calls $\mathbf{k}M := \{p \colon M \to \mathbf{k} \mid |\operatorname{supp} p| < \infty\}$ the monoid algebra of M over \mathbf{k} .

Write $p = (w_1 \mapsto \lambda_1, \cdots, w_m \mapsto \lambda_m) \in \mathbf{k}M$ as $\lambda_1 w_1 + \cdots + \lambda_m w_m$. Important special cases:

• $M = [x_1, \ldots, x_n] \cong \mathbb{N}^n$: Commutative polynomials $\mathbf{k}[x_1, \ldots, x_n]$ • $M = [x_1, \ldots, x_n, x_1^{-1}, \ldots, x_n^{-1}] \cong \mathbb{Z}^n$: Laurent polynomials • $M = \langle x_1, \ldots, x_n \rangle$: Noncommutative polynomials $\mathbf{k} \langle x_1, \ldots, x_n \rangle$ Same for (recursive) infinite sets X:

•
$$M = [X] \cong \mathbb{N}^{(\omega)}$$
: For example $\mathbf{k}[X] = \mathbf{k}\{u\}$ for $X = \mathbb{N}$

Fix a commutative unital ring \mathbf{k} .

Definition

If M is a monoid, one calls $\mathbf{k}M := \{p \colon M \to \mathbf{k} \mid |\operatorname{supp} p| < \infty\}$ the monoid algebra of M over \mathbf{k} .

Write $p = (w_1 \mapsto \lambda_1, \cdots, w_m \mapsto \lambda_m) \in \mathbf{k}M$ as $\lambda_1 w_1 + \cdots + \lambda_m w_m$. Important special cases:

- M = [x₁,...,x_n] ≅ Nⁿ: Commutative polynomials k[x₁,...,x_n]
 M = [x₁,...,x_n,x₁⁻¹,...,x_n⁻¹] ≅ Zⁿ: Laurent polynomials
 M = ⟨x₁,...,x_n⟩: Noncommutative polynomials k⟨x₁,...,x_n⟩
 Same for (recursive) infinite sets X:
 - $M = [X] \cong \mathbb{N}^{(\omega)}$: For example $\mathbf{k}[X] = \mathbf{k}\{u\}$ for $X = \mathbb{N}$
 - $M = [X, X^{-1}]$: Group algebra generated by X

Fix a commutative unital ring \mathbf{k} .

Definition

If M is a monoid, one calls $\mathbf{k}M := \{p \colon M \to \mathbf{k} \mid |\operatorname{supp} p| < \infty\}$ the monoid algebra of M over \mathbf{k} .

Write $p = (w_1 \mapsto \lambda_1, \cdots, w_m \mapsto \lambda_m) \in \mathbf{k}M$ as $\lambda_1 w_1 + \cdots + \lambda_m w_m$. Important special cases:

• $M = [x_1, \dots, x_n] \cong \mathbb{N}^n$: Commutative polynomials $\mathbf{k}[x_1, \dots, x_n]$ • $M = [x_1, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}] \cong \mathbb{Z}^n$: Laurent polynomials • $M = \langle x_1, \dots, x_n \rangle$: Noncommutative polynomials $\mathbf{k} \langle x_1, \dots, x_n \rangle$

Same for (recursive) infinite sets X:

- $M = [X] \cong \mathbb{N}^{(\omega)}$: For example $\mathbf{k}[X] = \mathbf{k}\{u\}$ for $X = \mathbb{N}$
- $M = [X, X^{-1}]$: Group algebra generated by X

•
$$M = \langle X \rangle$$
: Free algebra $\mathbf{k} \langle X \rangle$

Fix a commutative unital ring \mathbf{k} .

Definition

If M is a monoid, one calls $\mathbf{k}M := \{p \colon M \to \mathbf{k} \mid |\operatorname{supp} p| < \infty\}$ the monoid algebra of M over \mathbf{k} .

Write $p = (w_1 \mapsto \lambda_1, \cdots, w_m \mapsto \lambda_m) \in \mathbf{k}M$ as $\lambda_1 w_1 + \cdots + \lambda_m w_m$. Important special cases:

• $M = [x_1, \dots, x_n] \cong \mathbb{N}^n$: Commutative polynomials $\mathbf{k}[x_1, \dots, x_n]$ • $M = [x_1, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}] \cong \mathbb{Z}^n$: Laurent polynomials • $M = \langle x_1, \dots, x_n \rangle$: Noncommutative polynomials $\mathbf{k} \langle x_1, \dots, x_n \rangle$

Same for (recursive) infinite sets X:

- $M = [X] \cong \mathbb{N}^{(\omega)}$: For example $\mathbf{k}[X] = \mathbf{k}\{u\}$ for $X = \mathbb{N}$
- $M = [X, X^{-1}]$: Group algebra generated by X
- $M = \langle X \rangle$: Free algebra $\mathbf{k} \langle X \rangle$

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

< (2))

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

• This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

• This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.

• Both X and R may be infinite but recursive.

(日)

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

- This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.
- Both X and R may be infinite but recursive.
- Relations $(W, f) \in R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ meaning W = f in A.

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

- This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.
- Both X and R may be infinite but recursive.
- Relations $(W, f) \in R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ meaning $W \rightarrow f$ in A.

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

- This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.
- Both X and R may be infinite but recursive.
- Relations $(W, f) \in R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ meaning $W \rightarrow f$ in A.

Relation $\rho = (W, f) \in R$ with prefix A and postfix B induces reduction

 $A\rho B \colon \mathbf{k}\langle X \rangle \to \mathbf{k}\langle X \rangle$

as k-linear map $AWB \mapsto AfB$ fixing all other words.

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

- This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.
- Both X and R may be infinite but recursive.
- Relations $(W, f) \in R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ meaning $W \rightarrow f$ in A.

Relation $\rho = (W, f) \in R$ with prefix A and postfix B induces reduction

 $A\rho B\colon \mathbf{k}\langle X\rangle\to \mathbf{k}\langle X\rangle$

as k-linear map $AWB \mapsto AfB$ fixing all other words.

Define $g \to g'$ for $g, g' \in \mathbf{k}\langle X \rangle$ iff $\exists \rho \in R \ \exists A, B \in \langle X \rangle \colon A\rho B(g) = g'$.

(日)

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

- This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.
- Both X and R may be infinite but recursive.
- Relations $(W, f) \in R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ meaning $W \rightarrow f$ in A.

Relation $\rho = (W, f) \in R$ with prefix A and postfix B induces reduction

 $A\rho B\colon \mathbf{k}\langle X\rangle\to \mathbf{k}\langle X\rangle$

as k-linear map $AWB \mapsto AfB$ fixing all other words.

Define $g \to g'$ for $g, g' \in \mathbf{k}\langle X \rangle$ iff $\exists \rho \in R \ \exists A, B \in \langle X \rangle \colon A\rho B(g) = g'$. Write $g \stackrel{+}{\to} g'$ iff $g \to \cdots \to g'$

(∂)

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

- This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.
- Both X and R may be infinite but recursive.
- Relations $(W, f) \in R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ meaning $W \rightarrow f$ in A.

Relation $\rho = (W, f) \in R$ with prefix A and postfix B induces reduction

 $A\rho B\colon \mathbf{k}\langle X\rangle\to \mathbf{k}\langle X\rangle$

as k-linear map $AWB \mapsto AfB$ fixing all other words.

Define $g \to g'$ for $g, g' \in \mathbf{k}\langle X \rangle$ iff $\exists \rho \in R \ \exists A, B \in \langle X \rangle : A\rho B(g) = g'$. Write $g \stackrel{+}{\to} g'$ iff $g \to \cdots \to g'$ and $g \stackrel{*}{\to} g'$ when g = g' is allowed.

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

- This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.
- Both X and R may be infinite but recursive.
- Relations $(W, f) \in R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ meaning $W \rightarrow f$ in A.

Relation $\rho = (W, f) \in R$ with prefix A and postfix B induces reduction

 $A\rho B\colon \mathbf{k}\langle X\rangle\to \mathbf{k}\langle X\rangle$

as k-linear map $AWB \mapsto AfB$ fixing all other words.

Define $g \to g'$ for $g, g' \in \mathbf{k}\langle X \rangle$ iff $\exists \rho \in R \ \exists A, B \in \langle X \rangle : A\rho B(g) = g'$. Write $g \stackrel{+}{\to} g'$ iff $g \to \cdots \to g'$ and $g \stackrel{*}{\to} g'$ when g = g' is allowed.

• Call g irreducible if $\nexists g' \colon g \xrightarrow{+} g'$.

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

- This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.
- Both X and R may be infinite but recursive.
- Relations $(W, f) \in R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ meaning $W \rightarrow f$ in A.

Relation $\rho = (W, f) \in R$ with prefix A and postfix B induces reduction

 $A\rho B\colon \mathbf{k}\langle X\rangle\to \mathbf{k}\langle X\rangle$

as k-linear map $AWB \mapsto AfB$ fixing all other words.

Define $g \to g'$ for $g, g' \in \mathbf{k}\langle X \rangle$ iff $\exists \rho \in R \ \exists A, B \in \langle X \rangle : A\rho B(g) = g'$. Write $g \stackrel{+}{\to} g'$ iff $g \to \cdots \to g'$ and $g \stackrel{*}{\to} g'$ when g = g' is allowed.

- Call g irreducible if $\nexists g' \colon g \xrightarrow{+} g'$.
- If $g \xrightarrow{*} g'$ with g' irreducible, g' is called a normal form of g.

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

- This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.
- Both X and R may be infinite but recursive.
- Relations $(W, f) \in R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ meaning $W \rightarrow f$ in A.

Relation $\rho = (W, f) \in R$ with prefix A and postfix B induces reduction

 $A\rho B\colon \mathbf{k}\langle X\rangle\to \mathbf{k}\langle X\rangle$

as k-linear map $AWB \mapsto AfB$ fixing all other words.

Define $g \to g'$ for $g, g' \in \mathbf{k}\langle X \rangle$ iff $\exists \rho \in R \ \exists A, B \in \langle X \rangle : A\rho B(g) = g'$. Write $g \stackrel{+}{\to} g'$ iff $g \to \cdots \to g'$ and $g \stackrel{*}{\to} g'$ when g = g' is allowed.

- Call g irreducible if $\nexists g' \colon g \xrightarrow{+} g'$.
- If $g \xrightarrow{*} g'$ with g' irreducible, g' is called a normal form of g.

Two properties crucial for algorithmic treatment:

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

- This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.
- Both X and R may be infinite but recursive.
- Relations $(W, f) \in R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ meaning $W \rightarrow f$ in A.

Relation $\rho = (W, f) \in R$ with prefix A and postfix B induces reduction

 $A\rho B\colon \mathbf{k}\langle X\rangle\to \mathbf{k}\langle X\rangle$

as k-linear map $AWB \mapsto AfB$ fixing all other words.

Define $g \to g'$ for $g, g' \in \mathbf{k}\langle X \rangle$ iff $\exists \rho \in R \ \exists A, B \in \langle X \rangle : A\rho B(g) = g'$. Write $g \stackrel{+}{\to} g'$ iff $g \to \cdots \to g'$ and $g \stackrel{*}{\to} g'$ when g = g' is allowed.

- Call g irreducible if $\nexists g' \colon g \xrightarrow{+} g'$.
- If $g \xrightarrow{*} g'$ with g' irreducible, g' is called a normal form of g.

Two properties crucial for algorithmic treatment:

O Noetherianity: Normal forms exist.

Presentation $A = \mathbf{k} \langle X | R \rangle$ with generators X and relations R:

- This means $A \cong \mathbf{k} \langle X \rangle / \mathrm{Id}(R)$.
- Both X and R may be infinite but recursive.
- Relations $(W, f) \in R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ meaning $W \rightarrow f$ in A.

Relation $\rho = (W, f) \in R$ with prefix A and postfix B induces reduction

 $A\rho B\colon \mathbf{k}\langle X\rangle\to \mathbf{k}\langle X\rangle$

as k-linear map $AWB \mapsto AfB$ fixing all other words.

Define $g \to g'$ for $g, g' \in \mathbf{k}\langle X \rangle$ iff $\exists \rho \in R \ \exists A, B \in \langle X \rangle : A\rho B(g) = g'$. Write $g \stackrel{+}{\to} g'$ iff $g \to \cdots \to g'$ and $g \stackrel{*}{\to} g'$ when g = g' is allowed.

- Call g irreducible if $\nexists g' \colon g \xrightarrow{+} g'$.
- If $g \xrightarrow{*} g'$ with g' irreducible, g' is called a normal form of g.

Two properties crucial for algorithmic treatment:

- O Noetherianity: Normal forms exist.
- Onfluence: Normal forms are unique.

(日)

Noetherianity for Recursively Presented Algebras

Definition

A word order is a partial order \leq on the monoid $\langle X \rangle$ such that B < B' implies ABC < AB'C.
A word order is a partial order \leq on the monoid $\langle X \rangle$ such that B < B'implies ABC < AB'C. A reduction order for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ is a <u>Noetherian</u> word order with W > f for all $(W, f) \in R$.

A word order is a partial order \leq on the monoid $\langle X \rangle$ such that B < B'implies ABC < AB'C. A reduction order for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ is a <u>Noetherian</u> word order with W > f for all $(W, f) \in R$.

Clearly rules out infinite descending chains \implies normal forms exist.

A word order is a partial order \leq on the monoid $\langle X \rangle$ such that B < B'implies ABC < AB'C. A reduction order for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ is a <u>Noetherian</u> word order with W > f for all $(W, f) \in R$.

Clearly rules out infinite descending chains \implies normal forms exist. Converse valid iff k is free of zero divisors:

< 🗗)

A word order is a partial order \leq on the monoid $\langle X \rangle$ such that B < B'implies ABC < AB'C. A reduction order for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ is a <u>Noetherian</u> word order with W > f for all $(W, f) \in R$.

Clearly rules out infinite descending chains \implies normal forms exist. Converse valid iff k is free of zero divisors:

• Define < as least transitive relation on $\langle X \rangle$ with C < D iff $C \in A\rho B(D) \neq D$ for some $\rho \in R$ and $A, B \in \langle X \rangle$.

(∂)

A word order is a partial order \leq on the monoid $\langle X \rangle$ such that B < B'implies ABC < AB'C. A reduction order for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ is a <u>Noetherian</u> word order with W > f for all $(W, f) \in R$.

Clearly rules out infinite descending chains \implies normal forms exist. Converse valid iff k is free of zero divisors:

• Define < as least transitive relation on $\langle X\rangle$ with C < D iff $C \in A\rho B(D) \neq D$

for some $\rho \in R$ and $A, B \in \langle X \rangle$. Respects $(\langle X \rangle, \cdot)$ and R.

A word order is a partial order \leq on the monoid $\langle X \rangle$ such that B < B'implies ABC < AB'C. A reduction order for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ is a <u>Noetherian</u> word order with W > f for all $(W, f) \in R$.

Clearly rules out infinite descending chains \implies normal forms exist. Converse valid iff k is free of zero divisors:

• Define < as least transitive relation on $\langle X\rangle$ with C < D iff $C \in A\rho B(D) \neq D$

for some $\rho \in R$ and $A, B \in \langle X \rangle$. Respects $(\langle X \rangle, \cdot)$ and R.

• Normal forms imply irreflexivity and Noetherianity of >.

A word order is a partial order \leq on the monoid $\langle X \rangle$ such that B < B'implies ABC < AB'C. A reduction order for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ is a <u>Noetherian</u> word order with W > f for all $(W, f) \in R$.

Clearly rules out infinite descending chains \implies normal forms exist. Converse valid iff k is free of zero divisors:

• Define < as least transitive relation on $\langle X\rangle$ with C < D iff $C \in A\rho B(D) \neq D$

for some $\rho \in R$ and $A, B \in \langle X \rangle$. Respects $(\langle X \rangle, \cdot)$ and R.

- Normal forms imply irreflexivity and Noetherianity of >.
- If ab = 0 in k consider $ux \to a uy, yu \to b xu$ in $\langle u, x, y \rangle$.

A word order is a partial order \leq on the monoid $\langle X \rangle$ such that B < B'implies ABC < AB'C. A reduction order for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ is a <u>Noetherian</u> word order with W > f for all $(W, f) \in R$.

Clearly rules out infinite descending chains \implies normal forms exist. Converse valid iff k is free of zero divisors:

• Define < as least transitive relation on $\langle X\rangle$ with C < D iff $C \in A\rho B(D) \neq D$

for some $\rho \in R$ and $A, B \in \langle X \rangle$. Respects $(\langle X \rangle, \cdot)$ and R.

- Normal forms imply irreflexivity and Noetherianity of >.
- If ab = 0 in k consider $ux \to a uy, yu \to b xu$ in $\langle u, x, y \rangle$. Then $\underline{uxu} \to a uyu \to (ab) uxu = 0$ but $uxu > uyu > uxu \notin$.

A word order is a partial order \leq on the monoid $\langle X \rangle$ such that B < B'implies ABC < AB'C. A reduction order for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ is a <u>Noetherian</u> word order with W > f for all $(W, f) \in R$.

Clearly rules out infinite descending chains \implies normal forms exist. Converse valid iff k is free of zero divisors:

• Define < as least transitive relation on $\langle X\rangle$ with C < D iff $C \in A\rho B(D) \neq D$

for some $\rho \in R$ and $A, B \in \langle X \rangle$. Respects $(\langle X \rangle, \cdot)$ and R.

- Normal forms imply irreflexivity and Noetherianity of >.
- If ab = 0 in k consider $ux \to a \, uy, yu \to b \, xu$ in $\langle u, x, y \rangle$. Then $\underline{ux}u \to a \, \underline{uyu} \to (ab) \, uxu = 0$ but $uxu > uyu > uxu \notin$.

Note: Any Noetherian partial order extends to a well-order.

A word order is a partial order \leq on the monoid $\langle X \rangle$ such that B < B'implies ABC < AB'C. A reduction order for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$ is a <u>Noetherian</u> word order with W > f for all $(W, f) \in R$.

Clearly rules out infinite descending chains \implies normal forms exist. Converse valid iff k is free of zero divisors:

• Define < as least transitive relation on $\langle X\rangle$ with C < D iff $C \in A\rho B(D) \neq D$

for some $\rho \in R$ and $A, B \in \langle X \rangle$. Respects $(\langle X \rangle, \cdot)$ and R.

- Normal forms imply irreflexivity and Noetherianity of >.
- If ab = 0 in k consider $ux \to a uy, yu \to b xu$ in $\langle u, x, y \rangle$. Then $\underline{uxu} \to a uyu \to (ab) uxu = 0$ but $uxu > uyu > uxu \notin$.
- Note: Any Noetherian partial order extends to a well-order. But a <u>Noetherian word order</u> need not extend to <u>word well-order</u>.

Assume $A = \mathbf{k} \langle X | R \rangle$ has normal forms for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$. When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is locally confluent, meaning for all nodes a, b, b' with $b \stackrel{+}{\leftarrow} a \stackrel{+}{\rightarrow} b'$ there is a node a' with $b \stackrel{*}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$.

Assume $A = \mathbf{k} \langle X | R \rangle$ has normal forms for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$. When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is **locally confluent**, meaning for all nodes a, b, b' with $b \stackrel{+}{\leftarrow} a \stackrel{+}{\rightarrow} b'$ there is a node a' with $b \stackrel{*}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$. Then every connected component has a unique minimal node.

Assume $A = \mathbf{k} \langle X | R \rangle$ has normal forms for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$. When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is **locally confluent**, meaning for all nodes a, b, b' with $b \stackrel{+}{\leftarrow} a \stackrel{+}{\rightarrow} b'$ there is a node a' with $b \stackrel{*}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$. Then every connected component has a unique minimal node.

Assume $A = \mathbf{k} \langle X | R \rangle$ has normal forms for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$. When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is **locally confluent**, meaning for all nodes a, b, b' with $b \stackrel{+}{\leftarrow} a \stackrel{+}{\rightarrow} b'$ there is a node a' with $b \stackrel{+}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$. Then every connected component has a unique minimal node.

All nodes a, b, b' with $b \stackrel{*}{\leftarrow} a \stackrel{*}{\rightarrow} b'$ there is a node a' with $b \stackrel{*}{\rightarrow} a' \stackrel{\leftarrow}{\leftarrow} b'$.

(日)

Assume $A = \mathbf{k} \langle X | R \rangle$ has normal forms for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$. When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is **locally confluent**, meaning for all nodes a, b, b' with $b \stackrel{+}{\leftarrow} a \stackrel{+}{\rightarrow} b'$ there is a node a' with $b \stackrel{+}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$. Then every connected component has a unique minimal node.

Conclusion equivalent to confluence:

All nodes a, b, b' with $b \stackrel{*}{\leftarrow} a \stackrel{*}{\rightarrow} b'$ there is a node a' with $b \stackrel{*}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$.

Strengthen this result for $G = \mathbf{k} \langle X \rangle$ with $\stackrel{*}{\rightarrow}$ from $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$:

Assume $A = \mathbf{k} \langle X | R \rangle$ has normal forms for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$. When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is **locally confluent**, meaning for all nodes a, b, b' with $b \stackrel{+}{\leftarrow} a \stackrel{+}{\rightarrow} b'$ there is a node a' with $b \stackrel{*}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$. Then every connected component has a unique minimal node.

Conclusion equivalent to confluence:

All nodes a, b, b' with $b \stackrel{*}{\leftarrow} a \stackrel{*}{\rightarrow} b'$ there is a node a' with $b \stackrel{*}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$.

Strengthen this result for $G = \mathbf{k} \langle X \rangle$ with $\xrightarrow{*}$ from $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$: • Only $a \in \langle X \rangle$ needed.

(∂)

Assume $A = \mathbf{k} \langle X | R \rangle$ has normal forms for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$. When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is **locally confluent**, meaning for all nodes a, b, b' with $b \stackrel{+}{\leftarrow} a \stackrel{+}{\rightarrow} b'$ there is a node a' with $b \stackrel{*}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$. Then every connected component has a unique minimal node.

Conclusion equivalent to confluence:

All nodes a, b, b' with $b \stackrel{*}{\leftarrow} a \stackrel{*}{\rightarrow} b'$ there is a node a' with $b \stackrel{*}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$.

Strengthen this result for $G = \mathbf{k} \langle X \rangle$ with $\stackrel{*}{\rightarrow}$ from $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$:

- Only $a \in \langle X \rangle$ needed.
- Suffices to check "minimal ambiguities".

Assume $A = \mathbf{k} \langle X | R \rangle$ has normal forms for $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$. When are they unique?

Lemma (Newman 1942)

Let G be a Noetherian graph that is **locally confluent**, meaning for all nodes a, b, b' with $b \stackrel{+}{\leftarrow} a \stackrel{+}{\rightarrow} b'$ there is a node a' with $b \stackrel{*}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$. Then every connected component has a unique minimal node.

Conclusion equivalent to confluence:

All nodes a, b, b' with $b \stackrel{*}{\leftarrow} a \stackrel{*}{\rightarrow} b'$ there is a node a' with $b \stackrel{*}{\rightarrow} a' \stackrel{*}{\leftarrow} b'$.

Strengthen this result for $G = \mathbf{k} \langle X \rangle$ with $\stackrel{*}{\rightarrow}$ from $R \subseteq \langle X \rangle \times \mathbf{k} \langle X \rangle$:

- Only $a \in \langle X \rangle$ needed.
- Suffices to check "minimal ambiguities".
- May further restrict $b \xrightarrow{*} a' \xleftarrow{*} b'$ below a.

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

< 🗇 >

Definition

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

Definition

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

We prefer harmless ambiguities:

Definition

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

fU' fU'

We prefer harmless ambiguities:

• It is resolvable if $\operatorname{spol}(\rho) := fU' - Uf' \stackrel{*}{\to} 0.$

Definition

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

We prefer harmless ambiguities:

- It is resolvable if $\operatorname{spol}(\rho) := fU' Uf' \stackrel{*}{\to} 0.$
- It is resolvable below if $spol(\rho) \in I_{UVU'}$.

Definition

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

We prefer harmless ambiguities:

• It is resolvable if $\operatorname{spol}(\rho) := fU' - Uf' \stackrel{*}{\to} 0.$

• It is resolvable below if $spol(\rho) \in I_{UVU'}$.

Here I_A is the k-submodule of $\mathbf{k}\langle X \rangle$ spanned by all U(W - f)U'with $(W, f) \in R$ and UWU' < A.

(日)

Definition

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

We prefer harmless ambiguities:

• It is resolvable if $\operatorname{spol}(\rho) := fU' - Uf' \stackrel{*}{\to} 0.$

• It is resolvable below if $spol(\rho) \in I_{UVU'}$.

Here I_A is the k-submodule of $\mathbf{k}\langle X \rangle$ spanned by all U(W - f)U'with $(W, f) \in R$ and UWU' < A. Write $I_R := I_{\infty}$ for full ideal.

Definition

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

We prefer harmless ambiguities:

• It is resolvable if $\operatorname{spol}(\rho) := fU' - Uf' \stackrel{*}{\to} 0.$

• It is resolvable below if $spol(\rho) \in I_{UVU'}$.

Here I_A is the k-submodule of $\mathbf{k}\langle X \rangle$ spanned by all U(W - f)U'with $(W, f) \in R$ and UWU' < A. Write $I_R := I_\infty$ for full ideal. Clearly resolvability below \implies plain resolvability.

Definition

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

We prefer harmless ambiguities:

• It is resolvable if $\operatorname{spol}(\rho) := fU' - Uf' \stackrel{*}{\to} 0.$

• It is resolvable below if $spol(\rho) \in I_{UVU'}$.

Here I_A is the k-submodule of $\mathbf{k}\langle X \rangle$ spanned by all U(W - f)U'with $(W, f) \in R$ and UWU' < A. Write $I_R := I_\infty$ for full ideal. Clearly resolvability below \implies plain resolvability.

• Buchberger's Process: Every R is resolved by adding all $spol(\rho)$.

Definition

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

We prefer harmless ambiguities:

• It is resolvable if $\operatorname{spol}(\rho) := fU' - Uf' \stackrel{*}{\to} 0.$

• It is resolvable below if $spol(\rho) \in I_{UVU'}$.

Here I_A is the k-submodule of $\mathbf{k}\langle X \rangle$ spanned by all U(W - f)U'with $(W, f) \in R$ and UWU' < A. Write $I_R := I_\infty$ for full ideal. Clearly resolvability below \implies plain resolvability.

- Buchberger's Process: Every R is resolved by adding all $spol(\rho)$.
- The new R may be infinite (unlike in the commutative world).

Definition

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

We prefer harmless ambiguities:

• It is resolvable if $\operatorname{spol}(\rho) := fU' - Uf' \stackrel{*}{\to} 0.$

• It is resolvable below if $spol(\rho) \in I_{UVU'}$.

Here I_A is the k-submodule of $\mathbf{k}\langle X \rangle$ spanned by all U(W - f)U'with $(W, f) \in R$ and UWU' < A. Write $I_R := I_\infty$ for full ideal. Clearly resolvability below \implies plain resolvability.

- Buchberger's Process: Every R is resolved by adding all $spol(\rho)$.
- The new R may be infinite (unlike in the commutative world).
- It may even be nonrecursive (unsolvable word problems).

For $A = \mathbf{k}\langle X|R \rangle$ as above, $\lambda = (\rho, \rho', U, V, U')$ is called an overlap if $\rho = (W, f)$ and $\rho' = (W', f')$ such that W = UV and W' = VU'.

We prefer harmless ambiguities:

• It is resolvable if $\operatorname{spol}(\rho) := fU' - Uf' \stackrel{*}{\to} 0.$

• It is resolvable below if $spol(\rho) \in I_{UVU'}$.

Here I_A is the k-submodule of $\mathbf{k}\langle X \rangle$ spanned by all U(W - f)U'with $(W, f) \in R$ and UWU' < A. Write $I_R := I_\infty$ for full ideal. Clearly resolvability below \implies plain resolvability.

- Buchberger's Process: Every R is resolved by adding all $spol(\rho)$.
- The new R may be infinite (unlike in the commutative world).
- It may even be nonrecursive (unsolvable word problems).

For $R \subseteq \mathbf{k}[X]$ with term order >, think of adding $x \to y$ for $x > y \in X$.

Theorem (Bergman 1978)

Let $A = \mathbf{k} \langle X | R \rangle$ be a presentation of a k-algebra with reduction order \leq . Then the following are equivalent

< 🗇 >

Theorem (Bergman 1978)

Let $A = \mathbf{k} \langle X | R \rangle$ be a presentation of a k-algebra with reduction order \leq . Then the following are equivalent [no inclusion ambiguities]:

Theorem (Bergman 1978)

Let $A = \mathbf{k} \langle X | R \rangle$ be a presentation of a k-algebra with reduction order \leq . Then the following are equivalent [*no inclusion ambiguities*]:

• All overlaps are resolvable.

< 合)
- All overlaps are resolvable.
- All overlaps are resolvable below (relative to \leq).

- All overlaps are resolvable.
- All overlaps are resolvable below (relative to \leq).
- Every element of $\mathbf{k}\langle X\rangle$ has a unique normal form under R.

- All overlaps are resolvable.
- All overlaps are resolvable below (relative to \leq).
- Every element of $\mathbf{k}\langle X\rangle$ has a unique normal form under R.
- The normal forms $\mathbf{k}\langle X \rangle_{\downarrow}$ yield representatives for $A \cong \mathbf{k}\langle X \rangle / R$.

- All overlaps are resolvable.
- All overlaps are resolvable below (relative to \leq).
- Every element of $\mathbf{k}\langle X\rangle$ has a unique normal form under R.
- The normal forms $\mathbf{k}\langle X \rangle_{\downarrow}$ yield representatives for $A \cong \mathbf{k}\langle X \rangle / R$.
- We have $\mathbf{k}\langle X \rangle = \mathbf{k}\langle X \rangle_{\downarrow} \dotplus I_R$ as k-modules.

Let $A = \mathbf{k} \langle X | R \rangle$ be a presentation of a k-algebra with reduction order \leq . Then the following are equivalent [no inclusion ambiguities]:

- All overlaps are resolvable.
- All overlaps are resolvable below (relative to \leq).
- Every element of $\mathbf{k}\langle X\rangle$ has a unique normal form under R.
- The normal forms $\mathbf{k}\langle X \rangle_{\downarrow}$ yield representatives for $A \cong \mathbf{k}\langle X \rangle / R$.
- We have $\mathbf{k}\langle X \rangle = \mathbf{k}\langle X \rangle_{\downarrow} + I_R$ as k-modules.

In this case, we call

 $G := \{W - f \mid (W, f) \in R\}$

a noncommutative Gröbner basis for I_R .

Let $A = \mathbf{k} \langle X | R \rangle$ be a presentation of a k-algebra with reduction order \leq . Then the following are equivalent [*no inclusion ambiguities*]:

- All overlaps are resolvable.
- All overlaps are resolvable below (relative to \leq).
- Every element of $\mathbf{k}\langle X\rangle$ has a unique normal form under R.
- The normal forms $\mathbf{k}\langle X \rangle_{\downarrow}$ yield representatives for $A \cong \mathbf{k}\langle X \rangle / R$.
- We have $\mathbf{k}\langle X \rangle = \mathbf{k}\langle X \rangle_{\downarrow} \dotplus I_R$ as k-modules.

In this case, we call

 $G := \{W - f \mid (W, f) \in R\}$

a noncommutative Gröbner basis for I_R .

If $(\mathbf{k}, +, -, \cdot, /)$ as well as X and R are recursive, then so is $A \cong \mathbf{k} \langle X \rangle_{\downarrow}$ with operations $f(\bar{a}_1, \dots, \bar{a}_n) := f(a_1, \dots, a_n) \downarrow$.

(日)

Naturally, there are many different views-here is mine:

• Macaulay 1916: H-Bases for $\mathbf{k}[X]$

- Macaulay 1916: H-Bases for $\mathbf{k}[X]$
- Ritt 1932: Characteristic sets for $\mathbf{k}[X]$

- Macaulay 1916: H-Bases for $\mathbf{k}[X]$
- Ritt 1932: Characteristic sets for $\mathbf{k}[X]$
- P.M. Cohn 1956: Diamond lemma for sg(X|R)

- Macaulay 1916: H-Bases for $\mathbf{k}[X]$
- Ritt 1932: Characteristic sets for $\mathbf{k}[X]$
- P.M. Cohn 1956: Diamond lemma for sg(X|R)
- Shirshov 1962: Shirshov bases, compositions for Lie polynomials

- Macaulay 1916: H-Bases for $\mathbf{k}[X]$
- Ritt 1932: Characteristic sets for $\mathbf{k}[X]$
- P.M. Cohn 1956: Diamond lemma for $\mathrm{sg}(X|R)$
- Shirshov 1962: Shirshov bases, compositions for Lie polynomials
- Hironaka 1964: Standard bases for $\mathbf{k}[[X]]$

Naturally, there are many different views-here is mine:

- Macaulay 1916: H-Bases for $\mathbf{k}[X]$
- Ritt 1932: Characteristic sets for $\mathbf{k}[X]$
- P.M. Cohn 1956: Diamond lemma for $\mathrm{sg}(X|R)$
- Shirshov 1962: Shirshov bases, compositions for Lie polynomials
- Hironaka 1964: Standard bases for $\mathbf{k}[[X]]$
- Buchberger 1965: Gröbner bases, S-polynomials for ${f k}[X]$

< ()

- Macaulay 1916: H-Bases for $\mathbf{k}[X]$
- Ritt 1932: Characteristic sets for $\mathbf{k}[X]$
- P.M. Cohn 1956: Diamond lemma for $\mathrm{sg}(X|R)$
- Shirshov 1962: Shirshov bases, compositions for Lie polynomials
- Hironaka 1964: Standard bases for $\mathbf{k}[[X]]$
- Buchberger 1965: Gröbner bases, S-polynomials for ${f k}[X]$
- Robinson 1965: Resolution principle for $L_{\Sigma}(X)$

- Macaulay 1916: H-Bases for $\mathbf{k}[X]$
- Ritt 1932: Characteristic sets for $\mathbf{k}[X]$
- P.M. Cohn 1956: Diamond lemma for $\mathrm{sg}(X|R)$
- Shirshov 1962: Shirshov bases, compositions for Lie polynomials
- Hironaka 1964: Standard bases for $\mathbf{k}[[X]]$
- Buchberger 1965: Gröbner bases, S-polynomials for ${f k}[X]$
- Robinson 1965: Resolution principle for $L_{\Sigma}(X)$
- Knuth/Bendix 1970: Term rewriting, critical pairs for $\mathcal{T}_{\Sigma}(X)$

Naturally, there are many different views-here is mine:

- Macaulay 1916: H-Bases for $\mathbf{k}[X]$
- Ritt 1932: Characteristic sets for $\mathbf{k}[X]$
- P.M. Cohn 1956: Diamond lemma for sg(X|R)
- Shirshov 1962: Shirshov bases, compositions for Lie polynomials
- Hironaka 1964: Standard bases for $\mathbf{k}[[X]]$
- Buchberger 1965: Gröbner bases, S-polynomials for ${f k}[X]$
- Robinson 1965: Resolution principle for $L_{\Sigma}(X)$
- Knuth/Bendix 1970: Term rewriting, critical pairs for $\mathcal{T}_{\Sigma}(X)$
- Bergman 1978: Diamond lemma for ${f k}\langle X
 angle$

< (2))

- Macaulay 1916: H-Bases for $\mathbf{k}[X]$
- Ritt 1932: Characteristic sets for $\mathbf{k}[X]$
- P.M. Cohn 1956: Diamond lemma for sg(X|R)
- Shirshov 1962: Shirshov bases, compositions for Lie polynomials
- Hironaka 1964: Standard bases for $\mathbf{k}[[X]]$
- Buchberger 1965: Gröbner bases, S-polynomials for ${f k}[X]$
- Robinson 1965: Resolution principle for $L_{\Sigma}(X)$
- Knuth/Bendix 1970: Term rewriting, critical pairs for $\mathcal{T}_{\Sigma}(X)$
- Bergman 1978: Diamond lemma for ${f k}\langle X
 angle$
- Mora 1988: Effective computation of noncommutative Gröbner bases

Integro-Differential Weyl Algebra

Symbolic Software for Boundary Problems

Applications in Actuarial Mathematics

(日)

Before turning to $\mathcal{F}[\partial, \int]$ consider special case $\mathcal{F} = \mathbf{k}[x]$.

Before turning to $\mathcal{F}[\partial, \int]$ consider special case $\mathcal{F} = \mathbf{k}[x]$. Comes out as quotient of an integro-differential Weyl algebra $A_1(\partial, \ell)$.

< 🗇 >

Before turning to $\mathcal{F}[\partial, \int]$ consider special case $\mathcal{F} = \mathbf{k}[x]$. Comes out as quotient of an integro-differential Weyl algebra $A_1(\partial, \ell)$.

Shall construct $A_1(\partial, \ell)$ as a skew polynomial ring:

Before turning to $\mathcal{F}[\partial, \int]$ consider special case $\mathcal{F} = \mathbf{k}[x]$. Comes out as quotient of an integro-differential Weyl algebra $A_1(\partial, \ell)$.

Shall construct $A_1(\partial, \ell)$ as a skew polynomial ring:

• Let σ be a k-endomorphism ("twist").

Before turning to $\mathcal{F}[\partial, \int]$ consider special case $\mathcal{F} = \mathbf{k}[x]$. Comes out as quotient of an integro-differential Weyl algebra $A_1(\partial, \ell)$.

Shall construct $A_1(\partial, \ell)$ as a skew polynomial ring:

- Let σ be a k-endomorphism ("twist").
- Let δ be a σ -derivation, meaning $\delta(ab) = \sigma(a) \, \delta(b) + \delta(a) \, b$.

Before turning to $\mathcal{F}[\partial, \int]$ consider special case $\mathcal{F} = \mathbf{k}[x]$. Comes out as quotient of an integro-differential Weyl algebra $A_1(\partial, \ell)$.

Shall construct $A_1(\partial, \ell)$ as a skew polynomial ring:

- Let σ be a k-endomorphism ("twist").
- Let δ be a σ -derivation, meaning $\delta(ab) = \sigma(a) \, \delta(b) + \delta(a) \, b$.
- Now define $\mathbf{k}[x; \sigma, \delta] := \mathbf{k} \langle x | xa = \sigma(a)x + \delta(a) \rangle$.

Before turning to $\mathcal{F}[\partial, \int]$ consider special case $\mathcal{F} = \mathbf{k}[x]$. Comes out as quotient of an integro-differential Weyl algebra $A_1(\partial, \ell)$.

Shall construct $A_1(\partial, \ell)$ as a skew polynomial ring:

- Let σ be a k-endomorphism ("twist").
- Let δ be a σ -derivation, meaning $\delta(ab) = \sigma(a) \, \delta(b) + \delta(a) \, b$.
- Now define $\mathbf{k}[x;\sigma,\delta] := \mathbf{k} \langle x | xa = \sigma(a)x + \delta(a) \rangle$.

Definition

Hence we have $\mathbf{k}[x;\sigma,\delta] := \bigoplus_{n=0}^{\infty} \mathbf{k} x^n$ with multiplication induced by $xa = \sigma(a) x + \delta(a)$

and associativity.

Before turning to $\mathcal{F}[\partial, \int]$ consider special case $\mathcal{F} = \mathbf{k}[x]$. Comes out as quotient of an integro-differential Weyl algebra $A_1(\partial, \ell)$.

Shall construct $A_1(\partial, \ell)$ as a skew polynomial ring:

- Let σ be a k-endomorphism ("twist").
- Let δ be a σ -derivation, meaning $\delta(ab) = \sigma(a) \, \delta(b) + \delta(a) \, b$.
- Now define $\mathbf{k}[x;\sigma,\delta] := \mathbf{k} \langle x | xa = \sigma(a)x + \delta(a) \rangle$.

Definition

Hence we have $\mathbf{k}[x;\sigma,\delta] := \bigoplus_{n=0}^{\infty} \mathbf{k} x^n$ with multiplication induced by $xa = \sigma(a) x + \delta(a)$

and associativity. If $\sigma = 1_k$ one writes $k[x; \delta]$.

Before turning to $\mathcal{F}[\partial, \int]$ consider special case $\mathcal{F} = \mathbf{k}[x]$. Comes out as quotient of an integro-differential Weyl algebra $A_1(\partial, \ell)$.

Shall construct $A_1(\partial, \ell)$ as a skew polynomial ring:

- Let σ be a k-endomorphism ("twist").
- Let δ be a σ -derivation, meaning $\delta(ab) = \sigma(a) \, \delta(b) + \delta(a) \, b$.
- Now define $\mathbf{k}[x; \sigma, \delta] := \mathbf{k} \langle x | xa = \sigma(a)x + \delta(a) \rangle$.

Definition

Hence we have $\mathbf{k}[x;\sigma,\delta] := \bigoplus_{n=0}^{\infty} \mathbf{k} x^n$ with multiplication induced by $xa = \sigma(a) x + \delta(a)$

and associativity. If $\sigma = 1_k$ one writes $k[x; \delta]$.

An Ore algebra is an iterated adjunction $\mathbf{k}[x_1; \sigma_1, \delta_1] \cdots [x_r; \sigma_r, \delta_r]$ with

• commuting σ_i and δ_j for $i \neq j$

< ♂)

Before turning to $\mathcal{F}[\partial, \int]$ consider special case $\mathcal{F} = \mathbf{k}[x]$. Comes out as quotient of an integro-differential Weyl algebra $A_1(\partial, \ell)$.

Shall construct $A_1(\partial, \ell)$ as a skew polynomial ring:

- Let σ be a k-endomorphism ("twist").
- Let δ be a σ -derivation, meaning $\delta(ab) = \sigma(a) \, \delta(b) + \delta(a) \, b$.
- Now define $\mathbf{k}[x;\sigma,\delta] := \mathbf{k} \langle x | xa = \sigma(a)x + \delta(a) \rangle$.

Definition

Hence we have $\mathbf{k}[x;\sigma,\delta] := \bigoplus_{n=0}^{\infty} \mathbf{k} x^n$ with multiplication induced by $xa = \sigma(a) x + \delta(a)$

and associativity. If $\sigma = 1_k$ one writes $k[x; \delta]$.

An Ore algebra is an iterated adjunction $\mathbf{k}[x_1; \sigma_1, \delta_1] \cdots [x_r; \sigma_r, \delta_r]$ with

- commuting σ_i and δ_j for $i \neq j$
- and constancy constraints $\sigma_i(x_j) = x_j$, $\delta_i(x_j) = 0$ for i > j.

(日)

Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$

< 🗇 >

Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$

• Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.

- Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$
 - Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.
 - Shift algebra: Twists $\sigma_i(f) = E_i(f) := f|_{x_i \mapsto x_i+1}$, trivial derivations.

- Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$
 - Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.
 - Shift algebra: Twists $\sigma_i(f) = E_i(f) := f|_{x_i \mapsto x_i+1}$, trivial derivations.
 - Difference algebra: Twists $\sigma_i = E_i$, derivations $\delta_i = E_i 1_k$.

- Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$
 - Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.
 - Shift algebra: Twists $\sigma_i(f) = E_i(f) := f|_{x_i \mapsto x_i+1}$, trivial derivations.
 - Difference algebra: Twists $\sigma_i = E_i$, derivations $\delta_i = E_i 1_k$.
 - Quantum Weyl algebra: Take $\sigma_i(f) := f|_{x_i \mapsto qx_i}$ and $\delta_i(f) = \frac{\sigma_i(f) f}{(q-1)x_i}$.
- Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$
 - Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.
 - Shift algebra: Twists $\sigma_i(f) = E_i(f) := f|_{x_i \mapsto x_i+1}$, trivial derivations.
 - Difference algebra: Twists $\sigma_i = E_i$, derivations $\delta_i = E_i 1_k$.
 - Quantum Weyl algebra: Take $\sigma_i(f) := f|_{x_i \mapsto qx_i}$ and $\delta_i(f) = \frac{\sigma_i(f) f}{(q-1)x_i}$. • ...

< 🗗)

- Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$
 - Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.
 - Shift algebra: Twists $\sigma_i(f) = E_i(f) := f|_{x_i \mapsto x_i+1}$, trivial derivations.
 - Difference algebra: Twists $\sigma_i = E_i$, derivations $\delta_i = E_i 1_k$.
 - Quantum Weyl algebra: Take $\sigma_i(f) := f|_{x_i \mapsto qx_i}$ and $\delta_i(f) = \frac{\sigma_i(f) f}{(q-1)x_i}$. • ...
 - Combinations of these (\rightarrow relations for orthogonal polynomials).

Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$

- Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.
- Shift algebra: Twists $\sigma_i(f) = E_i(f) := f|_{x_i \mapsto x_i+1}$, trivial derivations.
- Difference algebra: Twists $\sigma_i = E_i$, derivations $\delta_i = E_i 1_k$.
- Quantum Weyl algebra: Take $\sigma_i(f) := f|_{x_i \mapsto qx_i}$ and $\delta_i(f) = \frac{\sigma_i(f) f}{(q-1)x_i}$. • ...
- Combinations of these (\rightarrow relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$

- Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.
- Shift algebra: Twists $\sigma_i(f) = E_i(f) := f|_{x_i \mapsto x_i+1}$, trivial derivations.
- Difference algebra: Twists $\sigma_i = E_i$, derivations $\delta_i = E_i 1_k$.
- Quantum Weyl algebra: Take $\sigma_i(f) := f|_{x_i \mapsto qx_i}$ and $\delta_i(f) = \frac{\sigma_i(f) f}{(q-1)x_i}$. • ...
- Combinations of these (\rightarrow relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and $\sigma = 1_k$.

(∂)

Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$

- Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.
- Shift algebra: Twists $\sigma_i(f) = E_i(f) := f|_{x_i \mapsto x_i+1}$, trivial derivations.
- Difference algebra: Twists $\sigma_i = E_i$, derivations $\delta_i = E_i 1_k$.
- Quantum Weyl algebra: Take σ_i(f) := f|_{xi→qxi} and δ_i(f) = σ_i(f)-f/((q-1)xi).
 ...
- Combinations of these (\rightarrow relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and $\sigma = 1_k$. Reconsider first example:

$$A_1(\mathbf{k}) = \left\{ \sum_{ij} a_{ij} \, x^i \partial^j \mid a_{ij} \in \mathbf{k} \right\}$$

Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$

- Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.
- Shift algebra: Twists $\sigma_i(f) = E_i(f) := f|_{x_i \mapsto x_i+1}$, trivial derivations.
- Difference algebra: Twists $\sigma_i = E_i$, derivations $\delta_i = E_i 1_k$.
- Quantum Weyl algebra: Take $\sigma_i(f) := f|_{x_i \mapsto qx_i}$ and $\delta_i(f) = \frac{\sigma_i(f) f}{(q-1)x_i}$. • ...
- Combinations of these (\rightarrow relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and $\sigma = 1_k$. Reconsider first example:

$$A_1(\mathbf{k}) = \left\{ \sum_{ij} a_{ij} \, x^i \partial^j \mid a_{ij} \in \mathbf{k} \right\} =: \mathbf{A_1}(\partial)$$

Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$

- Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.
- Shift algebra: Twists $\sigma_i(f) = E_i(f) := f|_{x_i \mapsto x_i+1}$, trivial derivations.
- Difference algebra: Twists $\sigma_i = E_i$, derivations $\delta_i = E_i 1_k$.
- Quantum Weyl algebra: Take $\sigma_i(f) := f|_{x_i \mapsto qx_i}$ and $\delta_i(f) = \frac{\sigma_i(f) f}{(q-1)x_i}$. • ...
- Combinations of these (\rightarrow relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and $\sigma = 1_k$. Reconsider first example:

$$A_1(\mathbf{k}) = \left\{ \sum_{ij} a_{ij} \, x^i \partial^j \mid a_{ij} \in \mathbf{k} \right\} =: \mathbf{A_1}(\partial)$$

Observe $[\partial, f] := \partial f - f \partial = f'$:

• Taking $\mathbf{k} = K[x]$ and $\xi = \partial$ means $\delta(f) := f'$.

Fix $\mathbf{k} = K[\xi_1, \ldots, \xi_r].$

- Weyl algebra: Derivations $\delta_i(f) = \partial f / \partial \xi_i$, trivial twists.
- Shift algebra: Twists $\sigma_i(f) = E_i(f) := f|_{x_i \mapsto x_i+1}$, trivial derivations.
- Difference algebra: Twists $\sigma_i = E_i$, derivations $\delta_i = E_i 1_k$.
- Quantum Weyl algebra: Take $\sigma_i(f) := f|_{x_i \mapsto qx_i}$ and $\delta_i(f) = \frac{\sigma_i(f) f}{(q-1)x_i}$. • ...
- Combinations of these (\rightarrow relations for orthogonal polynomials).

See for example [Chyzak/Salvy, JSC 1998].

Henceforth just need r = 1 and $\sigma = 1_k$. Reconsider first example:

$$A_1(\mathbf{k}) = \left\{ \sum_{ij} a_{ij} \, x^i \partial^j \mid a_{ij} \in \mathbf{k} \right\} =: \mathbf{A_1}(\partial)$$

Observe $[\partial, f] := \partial f - f \partial = f'$:

- Taking $\mathbf{k} = K[x]$ and $\xi = \partial$ means $\delta(f) := f'$.
- Solution Can also take $\mathbf{k} = K[\partial]$ and $\xi = x$ with $\delta(f) := -f'$.

67

(日)

Write $\ell \colon K[x] \to K[x]$ for $x^n \mapsto x^{n+1}/(n+1)$.

< 合)

Write $\ell \colon K[x] \to K[x]$ for $x^n \mapsto x^{n+1}/(n+1)$.

• Observe $[\ell(f), \ell] = \ell f \ell$ and in particular $[x^n, \ell] = n \, \ell x^{n-1} \ell$.

< 合)

Write $\ell \colon K[x] \to K[x]$ for $x^n \mapsto x^{n+1}/(n+1)$.

• Observe $[\ell(f), \ell] = \ell f \ell$ and in particular $[x^n, \ell] = n \, \ell x^{n-1} \ell$.

• Specifically we have $[x, \ell] = \ell^2$,

< 合)

Write $\ell \colon K[x] \to K[x]$ for $x^n \mapsto x^{n+1}/(n+1)$.

• Observe $[\ell(f), \ell] = \ell f \ell$ and in particular $[x^n, \ell] = n \, \ell x^{n-1} \ell$.

• Specifically we have $[x, \ell] = \ell^2$, in contrast to $[\partial, x] = \partial^0$.

(日)

Write $\ell \colon K[x] \to K[x]$ for $x^n \mapsto x^{n+1}/(n+1)$.

• Observe $[\ell(f), \ell] = \ell f \ell$ and in particular $[x^n, \ell] = n \, \ell x^{n-1} \ell$.

- Specifically we have $[x, \ell] = \ell^2$, in contrast to $[\partial, x] = \partial^0$.
- Method Q: For $\mathbf{k} = K[x]$ use $\xi = \ell$ to obtain $\delta(\xi) = -\ell^2 \notin \mathbf{k} \not {\mathbf{k}}$.

Write $\ell \colon K[x] \to K[x]$ for $x^n \mapsto x^{n+1}/(n+1)$.

- Observe $[\ell(f), \ell] = \ell f \ell$ and in particular $[x^n, \ell] = n \, \ell x^{n-1} \ell$.
- Specifically we have $[x, \ell] = \ell^2$, in contrast to $[\partial, x] = \partial^0$.
- Method Q: For $\mathbf{k} = K[x]$ use $\xi = \ell$ to obtain $\delta(\xi) = -\ell^2 \notin \mathbf{k} \not {\mathbf{k}}$.
- Method Q: For $\mathbf{k} = K[\ell]$ use $\xi = x$ to obtain $\delta(\xi) = +\ell^2 \in \mathbf{k}\checkmark$.

Write $\ell \colon K[x] \to K[x]$ for $x^n \mapsto x^{n+1}/(n+1)$.

- Observe $[\ell(f), \ell] = \ell f \ell$ and in particular $[x^n, \ell] = n \, \ell x^{n-1} \ell$.
- Specifically we have $[x, \ell] = \ell^2$, in contrast to $[\partial, x] = \partial^0$.
- Method Q: For $\mathbf{k} = K[x]$ use $\xi = \ell$ to obtain $\delta(\xi) = -\ell^2 \notin \mathbf{k} \not {\mathbf{k}}$.
- Method Q: For $\mathbf{k} = K[\ell]$ use $\xi = x$ to obtain $\delta(\xi) = +\ell^2 \in \mathbf{k}\checkmark$.

Definition

We write $A_1(\ell)$ for the integro Weyl algebra $K[\ell][x; \delta]$ with $\delta(\ell) = \ell^2$,

< 合)

Write $\ell \colon K[x] \to K[x]$ for $x^n \mapsto x^{n+1}/(n+1)$.

• Observe $[\ell(f), \ell] = \ell f \ell$ and in particular $[x^n, \ell] = n \, \ell x^{n-1} \ell$.

- Specifically we have $[x, \ell] = \ell^2$, in contrast to $[\partial, x] = \partial^0$.
- Method Q: For $\mathbf{k} = K[x]$ use $\xi = \ell$ to obtain $\delta(\xi) = -\ell^2 \notin \mathbf{k} \not {\mathbf{k}}$.
- Method Q: For $\mathbf{k} = K[\ell]$ use $\xi = x$ to obtain $\delta(\xi) = +\ell^2 \in \mathbf{k}\checkmark$.

Definition

We write $A_1(\ell)$ for the integro Weyl algebra $K[\ell][x; \delta]$ with $\delta(\ell) = \ell^2$, $A_1(\partial)$ for the differential Weyl algebra $K[\partial][x; \delta]$ with $\delta(\partial) = -1$.

Write $\ell \colon K[x] \to K[x]$ for $x^n \mapsto x^{n+1}/(n+1)$.

- Observe $[\ell(f), \ell] = \ell f \ell$ and in particular $[x^n, \ell] = n \, \ell x^{n-1} \ell$.
- Specifically we have $[x, \ell] = \ell^2$, in contrast to $[\partial, x] = \partial^0$.
- Method Q: For $\mathbf{k} = K[x]$ use $\xi = \ell$ to obtain $\delta(\xi) = -\ell^2 \notin \mathbf{k} \not {\mathbf{k}}$.
- Method ②: For $\mathbf{k} = K[\ell]$ use $\xi = x$ to obtain $\delta(\xi) = +\ell^2 \in \mathbf{k}\checkmark$.

Definition

We write $A_1(\ell)$ for the integro Weyl algebra $K[\ell][x; \delta]$ with $\delta(\ell) = \ell^2$, $A_1(\partial)$ for the differential Weyl algebra $K[\partial][x; \delta]$ with $\delta(\partial) = -1$.

From the definition, $\delta(\ell^n) = +n \, \ell^{n+1}$, in contrast to $\delta(\partial^n) = -n \, \partial^{n-1}$.

Write $\ell \colon K[x] \to K[x]$ for $x^n \mapsto x^{n+1}/(n+1)$.

• Observe $[\ell(f), \ell] = \ell f \ell$ and in particular $[x^n, \ell] = n \, \ell x^{n-1} \ell$.

- Specifically we have $[x, \ell] = \ell^2$, in contrast to $[\partial, x] = \partial^0$.
- Method Q: For $\mathbf{k} = K[x]$ use $\xi = \ell$ to obtain $\delta(\xi) = -\ell^2 \notin \mathbf{k} \not {\mathbf{k}}$.
- Method Q: For $\mathbf{k} = K[\ell]$ use $\xi = x$ to obtain $\delta(\xi) = +\ell^2 \in \mathbf{k}\checkmark$.

Definition

We write $A_1(\ell)$ for the integro Weyl algebra $K[\ell][x; \delta]$ with $\delta(\ell) = \ell^2$, $A_1(\partial)$ for the differential Weyl algebra $K[\partial][x; \delta]$ with $\delta(\partial) = -1$.

From the definition, $\delta(\ell^n) = +n \, \ell^{n+1}$, in contrast to $\delta(\partial^n) = -n \, \partial^{n-1}$. Striking similarities as well as differences between $A_1(\ell)$ and $A_1(\partial)$.

First look at the differential ring $(K[\ell], \delta)$:

First look at the differential ring $(K[\ell], \delta)$:

Lemma

An ideal $I \leq K[\ell]$ is a nontrivial δ -ideal if and only if $I = (\ell^n)$ with n > 0.

< 🗗 >

First look at the differential ring $(K[\ell], \delta)$:

Lemma

An ideal $I \leq K[\ell]$ is a nontrivial δ -ideal if and only if $I = (\ell^n)$ with n > 0.

Recall well-known characterization of simplicity for skew rings:

First look at the differential ring $(K[\ell], \delta)$:

Lemma

An ideal $I \leq K[\ell]$ is a nontrivial δ -ideal if and only if $I = (\ell^n)$ with n > 0.

Recall well-known characterization of simplicity for skew rings:

Theorem (Lam, First Course §3.15)

Let K be a ring of characteristic zero. Then $K[\xi; \delta]$ is a simple ring iff δ is not an inner derivation and K is δ -simple.

< ()

First look at the differential ring $(K[\ell], \delta)$:

Lemma

An ideal $I \leq K[\ell]$ is a nontrivial δ -ideal if and only if $I = (\ell^n)$ with n > 0.

Recall well-known characterization of simplicity for skew rings:

Theorem (Lam, First Course §3.15)

Let K be a ring of characteristic zero. Then $K[\xi; \delta]$ is a simple ring iff δ is not an inner derivation and K is δ -simple.

Corollary

The ring $A_1(\ell) = K[x; \delta]$ is not simple.

First look at the differential ring $(K[\ell], \delta)$:

Lemma

An ideal $I \leq K[\ell]$ is a nontrivial δ -ideal if and only if $I = (\ell^n)$ with n > 0.

Recall well-known characterization of simplicity for skew rings:

Theorem (Lam, First Course §3.15)

Let K be a ring of characteristic zero. Then $K[\xi; \delta]$ is a simple ring iff δ is not an inner derivation and K is δ -simple.

Corollary

The ring $A_1(\ell) = K[x; \delta]$ is not simple.

In fact, one has (two-sided) ideals $\left\{\sum_{i} a_{i}(\ell) x^{i} \mid a_{i} \in (\ell^{n})\right\}$ for n > 0.

As in $A_1(\partial)$, interchangeable left and right bases:

< (2))

As in $A_1(\partial),$ interchangeable left and right bases:

Fact

We have the identities

$$x^{n}\ell^{m} \leftarrow \sum_{k=0}^{n} \frac{(-m)^{\underline{k}} n^{\underline{k}}}{k!} (-1)^{k} \ell^{m+k} x^{n-k}, \qquad \ell^{m} x^{n} \to \sum_{k=0}^{n} \frac{(-m)^{\underline{k}} n^{\underline{k}}}{k!} x^{n-k} \ell^{m+k},$$

where $n^{\underline{k}} = n(n-1) \dots (n-k+1)$ is the falling factorial.

As in $A_1(\partial),$ interchangeable left and right bases:

Fact

We have the identities

$$x^{n}\ell^{m} \leftarrow \sum_{k=0}^{n} \frac{(-m)^{\underline{k}} n^{\underline{k}}}{k!} (-1)^{k} \ell^{m+k} x^{n-k}, \qquad \ell^{m} x^{n} \to \sum_{k=0}^{n} \frac{(-m)^{\underline{k}} n^{\underline{k}}}{k!} x^{n-k} \ell^{m+k},$$

where $n^{\underline{k}} = n(n-1) \dots (n-k+1)$ is the falling factorial.

Unlike in $A_1(\partial)$ there is also a mid basis in $A_1(\ell)$,

As in $A_1(\partial),$ interchangeable left and right bases:

Fact

We have the identities

$$x^{n}\ell^{m} \leftarrow \sum_{k=0}^{n} \frac{(-m)^{\underline{k}} n^{\underline{k}}}{k!} (-1)^{k} \ell^{m+k} x^{n-k}, \qquad \ell^{m} x^{n} \to \sum_{k=0}^{n} \frac{(-m)^{\underline{k}} n^{\underline{k}}}{k!} x^{n-k} \ell^{m+k},$$

where $n^{\underline{k}} = n(n-1) \dots (n-k+1)$ is the falling factorial.

Unlike in $A_1(\partial)$ there is also a mid basis in $A_1(\ell)$, namely $(x^m, x^m \ell x^n)$:

As in $A_1(\partial)\text{, interchangeable left and right bases:}$

Fact

We have the identities

$$\begin{aligned} x^n\ell^m &\leftarrow \sum_{k=0}^n \frac{(-m)^{\underline{k}} n^{\underline{k}}}{k!} \, (-1)^k \, \ell^{m+k} x^{n-k}, \qquad \ell^m x^n \to \sum_{k=0}^n \frac{(-m)^{\underline{k}} n^{\underline{k}}}{k!} \, x^{n-k} \ell^{m+k}, \end{aligned}$$
 where $n^{\underline{k}} = n(n-1) \dots (n-k+1)$ is the falling factorial.

Unlike in $A_1(\partial)$ there is also a mid basis in $A_1(\ell)$, namely $(x^m, x^m \ell x^n)$:

Fact

We have the identities

$$\begin{aligned} x^{m}\ell x^{n} &= \sum_{k=0}^{m} \frac{m!}{k!} \,\ell^{m-k+1} x^{k+n}, \qquad x^{m}\ell x^{n} = \sum_{k=0}^{n} \frac{n!}{k!} \,(-1)^{n-k} x^{m+k} \ell^{n-k+1}, \\ \ell^{m+1} &= \sum_{k=0}^{m} \frac{(-1)^{k}}{k! \,(m-k)!} \,x^{m-k} \ell x^{k} \end{aligned}$$

for changing between the left/right and the mid basis.

67

Differential versus Integro Weyl Algebra

Summing up similarities/differences between $A_1(\partial)$ and $A_1(\ell)$:

< 🗇 >

Differential versus Integro Weyl Algebra

Summing up similarities/differences between $A_1(\partial)$ and $A_1(\ell)$:

• Both are Noetherian integral domains.

< (2))

Differential versus Integro Weyl Algebra

Summing up similarities/differences between $A_1(\partial)$ and $A_1(\ell)$:

- Both are Noetherian integral domains.
- Only $A_1(\partial)$ is simple.
Summing up similarities/differences between $A_1(\partial)$ and $A_1(\ell)$:

- Both are Noetherian integral domains.
- Only $A_1(\partial)$ is simple.
- But $A_1(\ell)$ has a natural grading (by total degree).

Summing up similarities/differences between $A_1(\partial)$ and $A_1(\ell)$:

- Both are Noetherian integral domains.
- Only $A_1(\partial)$ is simple.
- But $A_1(\ell)$ has a natural grading (by total degree).
- While $A_1(\partial)$ acts on K[x], what is $\ell \cdot 1$?

Summing up similarities/differences between $A_1(\partial)$ and $A_1(\ell)$:

- Both are Noetherian integral domains.
- Only $A_1(\partial)$ is simple.
- But $A_1(\ell)$ has a natural grading (by total degree).
- While $A_1(\partial)$ acts on K[x], what is $\ell \cdot 1$?
- In addition to the left and right basis, $A_1(\ell)$ also has a mid basis.

Summing up similarities/differences between $A_1(\partial)$ and $A_1(\ell)$:

- Both are Noetherian integral domains.
- Only $A_1(\partial)$ is simple.
- But $A_1(\ell)$ has a natural grading (by total degree).
- While $A_1(\partial)$ acts on K[x], what is $\ell \cdot 1$?
- In addition to the left and right basis, $A_1(\ell)$ also has a mid basis.

In particular, one concludes $A_1(\ell) \cong K[x][\int]$.

< 🗗 >

Summing up similarities/differences between $A_1(\partial)$ and $A_1(\ell)$:

- Both are Noetherian integral domains.
- Only $A_1(\partial)$ is simple.
- But $A_1(\ell)$ has a natural grading (by total degree).
- While $A_1(\partial)$ acts on K[x], what is $\ell \cdot 1$?
- In addition to the left and right basis, $A_1(\ell)$ also has a mid basis.

In particular, one concludes $A_1(\ell) \cong K[x][\int]$. Bergman Setting: $A_1(\ell) \cong K\langle X, L \rangle / (XL = LX + L^2)$

< 🗗 >

Summing up similarities/differences between $A_1(\partial)$ and $A_1(\ell)$:

- Both are Noetherian integral domains.
- Only $A_1(\partial)$ is simple.
- But $A_1(\ell)$ has a natural grading (by total degree).
- While $A_1(\partial)$ acts on K[x], what is $\ell \cdot 1$?
- In addition to the left and right basis, $A_1(\ell)$ also has a mid basis.

In particular, one concludes $A_1(\ell) \cong K[x][\int]$. Bergman Setting: $A_1(\ell) \cong K\langle X, L \rangle / (XL = LX + L^2)$

Can we combine $A_1(\partial)$ and $A_1(\ell)$ in a single skew polynomial ring?

Summing up similarities/differences between $A_1(\partial)$ and $A_1(\ell)$:

- Both are Noetherian integral domains.
- Only $A_1(\partial)$ is simple.
- But $A_1(\ell)$ has a natural grading (by total degree).
- While $A_1(\partial)$ acts on K[x], what is $\ell \cdot 1$?
- In addition to the left and right basis, $A_1(\ell)$ also has a mid basis.

In particular, one concludes $A_1(\ell) \cong K[x][\int]$. Bergman Setting: $A_1(\ell) \cong K\langle X, L \rangle / (XL = LX + L^2)$

Can we combine $A_1(\partial)$ and $A_1(\ell)$ in a single skew polynomial ring? Will this give $K[x][\partial, \int]$?

The ring of constant-coefficient integro-differential operators is

$$K\langle\partial,\ell\rangle = K\langle D,L\rangle/(DL-1)$$

with derivation $\delta(\partial) = -1$ and $\delta(\ell) = \ell^2$.

The ring of constant-coefficient integro-differential operators is

$$K\langle\partial,\ell\rangle = K\langle D,L\rangle/(DL-1)$$

with derivation $\delta(\partial) = -1$ and $\delta(\ell) = \ell^2$.

Beware of zero divisors: $\partial(1-\ell\partial) = \partial - \partial\ell\partial = \partial - \partial = 0$

The ring of constant-coefficient integro-differential operators is $K\langle\partial,\ell\rangle = K\langle D,L\rangle/(DL-1)$

with derivation $\delta(\partial) = -1$ and $\delta(\ell) = \ell^2$.

Beware of zero divisors: $\partial(1 - \ell \partial) = \partial - \partial \ell \partial = \partial - \partial = 0$ Moreover, $K \langle \partial, \ell \rangle$ is not Noetherian [Jacobson'50, Gerrizten'00].

The ring of constant-coefficient integro-differential operators is $K\langle\partial,\ell\rangle = K\langle D,L\rangle/(DL-1)$ with derivation $\delta(\partial) = -1$ and $\delta(\ell) = \ell^2$.

Beware of zero divisors: $\partial(1 - \ell \partial) = \partial - \partial \ell \partial = \partial - \partial = 0$ Moreover, $K \langle \partial, \ell \rangle$ is not Noetherian [Jacobson'50, Gerrizten'00].

But skew polynomials still work except now $\deg fg \leq \deg f + \deg g$.

< 🗗)

The ring of constant-coefficient integro-differential operators is $K\langle\partial,\ell\rangle = K\langle D,L\rangle/(DL-1)$ with derivation $\delta(\partial) = -1$ and $\delta(\ell) = \ell^2$.

Beware of zero divisors: $\partial(1 - \ell \partial) = \partial - \partial \ell \partial = \partial - \partial = 0$ Moreover, $K \langle \partial, \ell \rangle$ is not Noetherian [Jacobson'50, Gerrizten'00].

But skew polynomials still work except now $\deg fg \leq \deg f + \deg g$.

Definition

The integro-differential Weyl algebra is the skew polynomial ring $K\langle \partial, \ell \rangle[x; \delta]$ denoted by $A_1(\partial, \ell)$.

The ring of constant-coefficient integro-differential operators is $K\langle\partial,\ell\rangle = K\langle D,L\rangle/(DL-1)$ with derivation $\delta(\partial) = -1$ and $\delta(\ell) = \ell^2$.

Beware of zero divisors: $\partial(1 - \ell \partial) = \partial - \partial \ell \partial = \partial - \partial = 0$ Moreover, $K \langle \partial, \ell \rangle$ is not Noetherian [Jacobson'50, Gerrizten'00].

But skew polynomials still work except now $\deg fg \leq \deg f + \deg g$.

Definition

The integro-differential Weyl algebra is the skew polynomial ring $K\langle \partial, \ell \rangle[x; \delta]$ denoted by $A_1(\partial, \ell)$.

Neither Noetherian nor simple but...

The ring of constant-coefficient integro-differential operators is $K\langle\partial,\ell\rangle = K\langle D,L\rangle/(DL-1)$ with derivation $\delta(\partial) = -1$ and $\delta(\ell) = \ell^2$.

Beware of zero divisors: $\partial(1 - \ell \partial) = \partial - \partial \ell \partial = \partial - \partial = 0$ Moreover, $K \langle \partial, \ell \rangle$ is not Noetherian [Jacobson'50, Gerrizten'00].

But skew polynomials still work except now $\deg fg \leq \deg f + \deg g$.

Definition

The integro-differential Weyl algebra is the skew polynomial ring $K\langle \partial, \ell \rangle[x; \delta]$ denoted by $A_1(\partial, \ell)$.

Neither Noetherian nor simple but... Bergman Setting: $A_1(\partial, \ell) \cong K\langle X, L, D \rangle / (DL = 1, XD = XD + 1, XL = LX + L^2)$

< (2) →

Define evaluation $\mathbf{E} = 1 - \ell \partial \in K(\partial, \ell) \subset A_1(\partial, \ell).$

Define evaluation $\mathbf{E} = 1 - \ell \partial \in K(\partial, \ell) \subset A_1(\partial, \ell).$

Induced evaluation ideal (E) $\subset A_1(\partial, \ell)$

< (2))

Define evaluation $\mathbf{E} = 1 - \ell \partial \in K(\partial, \ell) \subset A_1(\partial, \ell).$

Induced evaluation ideal (E) $\subset A_1(\partial, \ell)$

= Skew polynomials with coefficients in $(E) \subset K\langle \partial, \ell \rangle$

< (2))

Define evaluation $\mathbf{E} = 1 - \ell \partial \in K(\partial, \ell) \subset A_1(\partial, \ell).$

Induced evaluation ideal (E) $\subset A_1(\partial, \ell)$

= Skew polynomials with coefficients in (E) $\subset K\!\langle\partial,\ell\rangle$

 \triangleright Contained in every nonzero ideal of $K\langle \partial, \ell \rangle$.

Define evaluation $\mathbf{E} = 1 - \ell \partial \in K(\partial, \ell) \subset A_1(\partial, \ell).$

Induced evaluation ideal (E) $\subset A_1(\partial, \ell)$

- = Skew polynomials with coefficients in $(E) \subset K\langle \partial, \ell \rangle$
 - \triangleright Contained in every nonzero ideal of $K\langle \partial, \ell \rangle$.

 \triangleright Only proper δ -ideal of $K\langle \partial, \ell \rangle$.

Define evaluation $\mathbf{E} = 1 - \ell \partial \in K(\partial, \ell) \subset A_1(\partial, \ell).$

Induced evaluation ideal $(E) \subset A_1(\partial, \ell)$

= Skew polynomials with coefficients in (E) $\subset K\!\langle\partial,\ell\rangle$

- \triangleright Contained in every nonzero ideal of $K\langle \partial, \ell \rangle$.
- \triangleright Only proper δ -ideal of $K\langle \partial, \ell \rangle$.

Proposition

We have

$$K\langle\partial,\ell\rangle = K[\partial] \dotplus K[\ell]\ell \dotplus (\mathbf{E})$$

as a direct sum of K-vector spaces.

< (2))

Define evaluation $\mathbf{E} = 1 - \ell \partial \in K(\partial, \ell) \subset A_1(\partial, \ell).$

Induced evaluation ideal (E) $\subset A_1(\partial, \ell)$

= Skew polynomials with coefficients in $(E) \subset K\langle \partial, \ell \rangle$

- \triangleright Contained in every nonzero ideal of $K\langle \partial, \ell \rangle$.
- \triangleright Only proper δ -ideal of $K\langle \partial, \ell \rangle$.

Proposition

We have

$$A_1(\partial, \ell) = A_1(\partial) \dotplus A_1(\ell)\ell \dotplus (\mathbf{E})$$

as a direct sum of K-vector spaces.

< (2))

Define evaluation $\mathbf{E} = 1 - \ell \partial \in K(\partial, \ell) \subset A_1(\partial, \ell).$

Induced evaluation ideal (E) $\subset A_1(\partial, \ell)$

= Skew polynomials with coefficients in (E) $\subset K\!\langle\partial,\ell\rangle$

- \triangleright Contained in every nonzero ideal of $K\langle \partial, \ell \rangle$.
- \triangleright Only proper δ -ideal of $K\langle \partial, \ell \rangle$.

Proposition

We have

$$A_1(\partial, \ell) = A_1(\partial) \dotplus A_1(\ell)\ell \dotplus (\mathbf{E})$$

as a direct sum of K-vector spaces.

Hence a K-basis of $A_1(\partial, \ell)$ consists of $(x^i \partial^j, x^i \ell^j, x^i e_{ik})$ with

Define evaluation $\mathbf{E} = 1 - \ell \partial \in K(\partial, \ell) \subset A_1(\partial, \ell).$

Induced evaluation ideal (E) $\subset A_1(\partial, \ell)$

= Skew polynomials with coefficients in (E) $\subset K\!\langle\partial,\ell\rangle$

- \triangleright Contained in every nonzero ideal of $K\langle \partial, \ell \rangle$.
- \triangleright Only proper δ -ideal of $K\langle \partial, \ell \rangle$.

Proposition

We have

$$A_1(\partial, \ell) = A_1(\partial) \dotplus A_1(\ell)\ell \dotplus (\mathbf{E})$$

as a direct sum of K-vector spaces.

Hence a K-basis of $A_1(\partial, \ell)$ consists of $(x^i \partial^j, x^i \ell^j, x^i e_{jk})$ with $e_{jk} := \ell^j E \partial^k$ forming a K-basis of $(E) \subset K \langle \partial, \ell \rangle$,

(∂)

Define evaluation $\mathbf{E} = 1 - \ell \partial \in K(\partial, \ell) \subset A_1(\partial, \ell).$

Induced evaluation ideal (E) $\subset A_1(\partial, \ell)$

= Skew polynomials with coefficients in (E) $\subset K\!\langle\partial,\ell\rangle$

- \triangleright Contained in every nonzero ideal of $K\langle \partial, \ell \rangle$.
- \triangleright Only proper δ -ideal of $K\langle \partial, \ell \rangle$.

Proposition

We have

$$A_1(\partial, \ell) = A_1(\partial) \dotplus A_1(\ell)\ell \dotplus (\mathbf{E})$$

as a direct sum of K-vector spaces.

Hence a K-basis of $A_1(\partial, \ell)$ consists of $(x^i \partial^j, x^i \ell^j, x^i e_{jk})$ with $e_{jk} := \ell^j E \partial^k$ forming a K-basis of $(E) \subset K \langle \partial, \ell \rangle$, multiplying as the matrix units of $K^{\infty \times \infty}$ do [Jacobson'50].

Define evaluation $\mathbf{E} = 1 - \ell \partial \in K \langle \partial, \ell \rangle \subset A_1(\partial, \ell).$

Induced evaluation ideal (E) $\subset A_1(\partial, \ell)$

= Skew polynomials with coefficients in (E) $\subset K\!\langle\partial,\ell\rangle$

- \triangleright Contained in every nonzero ideal of $K\langle \partial, \ell \rangle$.
- \triangleright Only proper δ -ideal of $K\langle \partial, \ell \rangle$.

Proposition

We have

$$A_1(\partial, \ell) = A_1(\partial) \dotplus A_1(\ell)\ell \dotplus (\mathbf{E})$$

as a direct sum of K-vector spaces.

Hence a *K*-basis of $A_1(\partial, \ell)$ consists of $(x^i \partial^j, x^i \ell^j, x^i e_{jk})$ with $e_{jk} := \ell^j E \partial^k$ forming a *K*-basis of $(E) \subset K \langle \partial, \ell \rangle$, multiplying as the matrix units of $K^{\infty \times \infty}$ do [Jacobson'50]. Enables 3×3 block scheme for multiplication (see below).

Markus Rosenkranz Symbolic BPs: Software & Applications

(日)

The map $\varphi \colon K\langle \partial, \ell \rangle / (\mathbf{E}) \to K[\partial, \partial^{-1}]$ defined by $\partial + (\mathbf{E}) \mapsto \partial$ and $\ell + (\mathbf{E}) \mapsto \partial^{-1}$ is a differential isomorphism, inducing the isomorphisms $K[\partial, \partial^{-1}][x; \delta] \cong A_1(\partial, \ell) / (\mathbf{E}) \cong K[\ell, \partial^{-1}][x; \delta].$ of rings.

The map $\varphi : K\langle \partial, \ell \rangle / (\mathbf{E}) \to K[\partial, \partial^{-1}]$ defined by $\partial + (\mathbf{E}) \mapsto \partial$ and $\ell + (\mathbf{E}) \mapsto \partial^{-1}$ is a differential isomorphism, inducing the isomorphisms $K[\partial, \partial^{-1}][x; \delta] \cong A_1(\partial, \ell) / (\mathbf{E}) \cong K[\ell, \partial^{-1}][x; \delta].$ of rings. So-called pseudo-differential operators.

The map $\varphi \colon K\langle \partial, \ell \rangle / (\mathbf{E}) \to K[\partial, \partial^{-1}]$ defined by $\partial + (\mathbf{E}) \mapsto \partial$ and $\ell + (\mathbf{E}) \mapsto \partial^{-1}$ is a differential isomorphism, inducing the isomorphisms $K[\partial, \partial^{-1}][x; \delta] \cong A_1(\partial, \ell) / (\mathbf{E}) \cong K[\ell, \partial^{-1}][x; \delta].$ of rings. So-called pseudo-differential operators.

More interesting to "fix" the constant of integration:

The map $\varphi \colon K\langle \partial, \ell \rangle / (\mathbf{E}) \to K[\partial, \partial^{-1}]$ defined by $\partial + (\mathbf{E}) \mapsto \partial$ and $\ell + (\mathbf{E}) \mapsto \partial^{-1}$ is a differential isomorphism, inducing the isomorphisms $K[\partial, \partial^{-1}][x; \delta] \cong A_1(\partial, \ell) / (\mathbf{E}) \cong K[\ell, \partial^{-1}][x; \delta].$ of rings. So-called pseudo-differential operators.

More interesting to "fix" the constant of integration:

Theorem (Specialization)

If \int is an integral operator for the standard derivation ∂ on K[x], we have $K[x][\partial, \int] \cong A_1(\partial, \ell)/(Ex - cE)$

with $c = \mathbf{E} \cdot x \in K$ as the constant of integration.

The map $\varphi \colon K\langle \partial, \ell \rangle / (\mathbf{E}) \to K[\partial, \partial^{-1}]$ defined by $\partial + (\mathbf{E}) \mapsto \partial$ and $\ell + (\mathbf{E}) \mapsto \partial^{-1}$ is a differential isomorphism, inducing the isomorphisms $K[\partial, \partial^{-1}][x; \delta] \cong A_1(\partial, \ell) / (\mathbf{E}) \cong K[\ell, \partial^{-1}][x; \delta].$ of rings. So-called pseudo-differential operators.

More interesting to "fix" the constant of integration:

Theorem (Specialization)

If \int is an integral operator for the standard derivation ∂ on K[x], we have $K[x][\partial, \int] \cong A_1(\partial, \ell)/(Ex - cE) \xrightarrow{\Phi} K[x]$

with $c = \mathbf{E} \cdot x \in K$ as the constant of integration.

The map $\varphi \colon K\langle \partial, \ell \rangle / (\mathbf{E}) \to K[\partial, \partial^{-1}]$ defined by $\partial + (\mathbf{E}) \mapsto \partial$ and $\ell + (\mathbf{E}) \mapsto \partial^{-1}$ is a differential isomorphism, inducing the isomorphisms $K[\partial, \partial^{-1}][x; \delta] \cong A_1(\partial, \ell) / (\mathbf{E}) \cong K[\ell, \partial^{-1}][x; \delta].$ of rings. So-called pseudo-differential operators.

More interesting to "fix" the constant of integration:

Theorem (Specialization)

If \int is an integral operator for the standard derivation ∂ on K[x], we have $K[x][\partial, \int] \cong A_1(\partial, \ell)/(Ex - cE) \xrightarrow{\bullet} K[x]$

with $c = \mathbf{E} \cdot x \in K$ as the constant of integration.

Bergman Setting:

 $K[x][\partial, \int] \cong K \langle X, L, D \rangle \big/ (DL = 1, XD = XD + 1, XL = LX + L^2, \mathbf{e}X = c\mathbf{e})$

Integro-Differential Weyl Algebra $A_1(\partial, \ell)$ Here ℓ is some right inverse of ∂ .

< 🗇 >

Integro-Differential Weyl Algebra $A_1(\partial, \ell)$ Here ℓ is some right inverse of ∂ .

 \swarrow

Make ℓ into a left inverse and hence a two-sided inverse.
Integro-Differential Weyl Algebra $A_1(\partial, \ell)$

Here ℓ is some right inverse of ∂ .

 \checkmark

Make ℓ into a left inverse and hence a two-sided inverse. Make ℓ into an **integral** with integration constant $c \in K$.

Integro-Differential Weyl Algebra $A_1(\partial, \ell)$

Here ℓ is some right inverse of ∂ .

 \checkmark

Make ℓ into a left inverse and hence a two-sided inverse.

 \searrow

Make ℓ into an integral with integration constant $c \in K$.

Pseudo-Differential Operators $K[\partial, \partial^{-1}][x; \delta]$

Integro-Differential Weyl Algebra $A_1(\partial, \ell)$

Here ℓ is some right inverse of ∂ .

 \swarrow

Make ℓ into a left inverse and hence a two-sided inverse.

 \searrow

Make ℓ into an integral with integration constant $c \in K$.

.

Pseudo-Differential Operators $K[\partial, \partial^{-1}][x; \delta]$

Integro-Differential Operators $K[x][\partial, \int]$

∢ ि⊉)

Define $\mathbb{I}_n = K\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n, \ell_1, \ldots, \ell_n \rangle \subset \operatorname{End}_K K[x_1, \ldots, x_n].$

Define $\mathbb{I}_n = K\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n, \ell_1, \ldots, \ell_n \rangle \subset \operatorname{End}_K K[x_1, \ldots, x_n].$ Note that $\mathbb{I}_1 \cong K[x][\int]$ and $\mathbb{I}_n = \mathbb{I}_1 \otimes \cdots \otimes \mathbb{I}_1.$

< (2))

Define $\mathbb{I}_n = K\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n, \ell_1, \dots, \ell_n \rangle \subset \operatorname{End}_K K[x_1, \dots, x_n].$ Note that $\mathbb{I}_1 \cong K[x][\int]$ and $\mathbb{I}_n = \mathbb{I}_1 \otimes \dots \otimes \mathbb{I}_1.$

Wealth of results in [Bavula 2009]:

• Each \mathbb{I}_n is a prime, central, catenary and self-dual algebra.

Define $\mathbb{I}_n = K\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n, \ell_1, \dots, \ell_n \rangle \subset \operatorname{End}_K K[x_1, \dots, x_n].$ Note that $\mathbb{I}_1 \cong K[x][\int]$ and $\mathbb{I}_n = \mathbb{I}_1 \otimes \dots \otimes \mathbb{I}_1.$

- Each \mathbb{I}_n is a prime, central, catenary and self-dual algebra.
- Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.

Define $\mathbb{I}_n = K\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n, \ell_1, \dots, \ell_n \rangle \subset \operatorname{End}_K K[x_1, \dots, x_n].$ Note that $\mathbb{I}_1 \cong K[x][\int]$ and $\mathbb{I}_n = \mathbb{I}_1 \otimes \dots \otimes \mathbb{I}_1.$

- Each \mathbb{I}_n is a prime, central, catenary and self-dual algebra.
- Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
- Explicit enumeration of its $\mathfrak{d}_n \leq 2^{2^n}$ ideals.

Define $\mathbb{I}_n = K\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n, \ell_1, \dots, \ell_n \rangle \subset \operatorname{End}_K K[x_1, \dots, x_n].$ Note that $\mathbb{I}_1 \cong K[x][\int]$ and $\mathbb{I}_n = \mathbb{I}_1 \otimes \dots \otimes \mathbb{I}_1.$

- Each \mathbb{I}_n is a prime, central, catenary and self-dual algebra.
- Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
- Explicit enumeration of its $\mathfrak{d}_n \leq 2^{2^n}$ ideals.
- Unique maximal ideal $\mathfrak{m} = \langle \mathtt{E}_1, \dots, \mathtt{E}_n \rangle$.

Define $\mathbb{I}_n = K\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n, \ell_1, \dots, \ell_n \rangle \subset \operatorname{End}_K K[x_1, \dots, x_n].$ Note that $\mathbb{I}_1 \cong K[x][\int]$ and $\mathbb{I}_n = \mathbb{I}_1 \otimes \dots \otimes \mathbb{I}_1.$

- Each \mathbb{I}_n is a prime, central, catenary and self-dual algebra.
- Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
- Explicit enumeration of its $\mathfrak{d}_n \leq 2^{2^n}$ ideals.
- Unique maximal ideal $\mathfrak{m} = \langle \mathtt{E}_1, \ldots, \mathtt{E}_n \rangle$.
- All ideals are idempotent and commute.

Define $\mathbb{I}_n = K\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n, \ell_1, \dots, \ell_n \rangle \subset \operatorname{End}_K K[x_1, \dots, x_n].$ Note that $\mathbb{I}_1 \cong K[x][\int]$ and $\mathbb{I}_n = \mathbb{I}_1 \otimes \dots \otimes \mathbb{I}_1.$

- Each \mathbb{I}_n is a prime, central, catenary and self-dual algebra.
- Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
- Explicit enumeration of its $\mathfrak{d}_n \leq 2^{2^n}$ ideals.
- Unique maximal ideal $\mathfrak{m} = \langle \mathtt{E}_1, \ldots, \mathtt{E}_n \rangle$.
- All ideals are idempotent and commute.
- The ideal lattice is distributive.

Define $\mathbb{I}_n = K\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n, \ell_1, \dots, \ell_n \rangle \subset \operatorname{End}_K K[x_1, \dots, x_n].$ Note that $\mathbb{I}_1 \cong K[x][\int]$ and $\mathbb{I}_n = \mathbb{I}_1 \otimes \dots \otimes \mathbb{I}_1.$

- Each \mathbb{I}_n is a prime, central, catenary and self-dual algebra.
- Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
- Explicit enumeration of its $\mathfrak{d}_n \leq 2^{2^n}$ ideals.
- Unique maximal ideal $\mathfrak{m} = \langle \mathtt{E}_1, \ldots, \mathtt{E}_n \rangle$.
- All ideals are idempotent and commute.
- The ideal lattice is distributive.
- Huge group of units $K^* \times (1 + \mathfrak{m})^* \supseteq K^* \times \mathrm{GL}_{\infty}^{\ltimes (2^n 1)}$

Define $\mathbb{I}_n = K\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n, \ell_1, \dots, \ell_n \rangle \subset \operatorname{End}_K K[x_1, \dots, x_n].$ Note that $\mathbb{I}_1 \cong K[x][\int]$ and $\mathbb{I}_n = \mathbb{I}_1 \otimes \dots \otimes \mathbb{I}_1.$

Wealth of results in [Bavula 2009]:

- Each \mathbb{I}_n is a prime, central, catenary and self-dual algebra.
- Gelfand-Kirillov dimension is 2n, classical Krull dimension is n.
- Explicit enumeration of its $\mathfrak{d}_n \leq 2^{2^n}$ ideals.
- Unique maximal ideal $\mathfrak{m} = \langle \mathtt{E}_1, \ldots, \mathtt{E}_n \rangle$.
- All ideals are idempotent and commute.
- The ideal lattice is distributive.
- Huge group of units $K^* \times (1 + \mathfrak{m})^* \supseteq K^* \times \mathrm{GL}_{\infty}^{\ltimes (2^n 1)}$

Close relations to Jacobian algebra $\mathbb{A}_n := A_n \langle (\partial_1 x_1)^{-1}, \dots, (\partial_n x_n)^{-1} \rangle$.

(日)

Integro-Differential Weyl Algebra

3 Symbolic Software for Boundary Problems

Applications in Actuarial Mathematics

(日)

Generalize coefficients of $K[x][\int] \cong A_1(\partial, \ell)/E$:

< 🗇 >

Generalize coefficients of $K[x][\int] \cong A_1(\partial, \ell)/E$:

Definition and Theorem (R. 2005; Rosenkranz/R. 2008

Let $(\mathcal{F}, \partial, \int)$ be an ordinary integro-differential algebra. Then the ring of integro-differential operators $\mathcal{F}[\partial, \int]$ is the *K*-algebra generated by $\{\partial, \int\} \cup \mathcal{F} \cup \mathcal{F}^{\bullet}$ modulo the Gröbner basis below.

< 🗗)

Generalize coefficients of $K[x][\int] \cong A_1(\partial, \ell)/E$:

Definition and Theorem (R. 2005; Rosenkranz/R. 2008

Let $(\mathcal{F}, \partial, \int)$ be an ordinary integro-differential algebra. Then the ring of integro-differential operators $\mathcal{F}[\partial, \int]$ is the *K*-algebra generated by $\{\partial, \int\} \cup \mathcal{F} \cup \mathcal{F}^{\bullet}$ modulo the Gröbner basis below.

Generalize coefficients of $K[x][\int] \cong A_1(\partial, \ell)/E$:

Definition and Theorem (R. 2005; Rosenkranz/R. 2008

Let $(\mathcal{F}, \partial, \int)$ be an ordinary integro-differential algebra. Then the ring of integro-differential operators $\mathcal{F}[\partial, \int]$ is the *K*-algebra generated by $\{\partial, \int\} \cup \mathcal{F} \cup \mathcal{F}^{\bullet}$ modulo the Gröbner basis below.

Proposition (R. 2005; Rosenkranz/R. 2008)

One has $\mathcal{F}[\partial, \int] = \mathcal{F}[\partial] \dotplus \mathcal{F}[\int] \dotplus (\mathcal{F}^{\bullet})$, and the evaluation ideal (\mathcal{F}^{\bullet}) is generated by $|\mathcal{F}^{\bullet})$ as a left \mathcal{F} -module.

Generalize coefficients of $K[x][\int] \cong A_1(\partial, \ell)/E$:

Definition and Theorem (R. 2005; Rosenkranz/R. 2008

Let $(\mathcal{F}, \partial, \int)$ be an ordinary integro-differential algebra. Then the ring of integro-differential operators $\mathcal{F}[\partial, \int]$ is the *K*-algebra generated by $\{\partial, \int\} \cup \mathcal{F} \cup \mathcal{F}^{\bullet}$ modulo the Gröbner basis below.

Proposition (R. 2005; Rosenkranz/R. 2008)

One has $\mathcal{F}[\partial, \int] = \mathcal{F}[\partial] \dotplus \mathcal{F}[\int] \dotplus (\mathcal{F}^{\bullet})$, and the evaluation ideal (\mathcal{F}^{\bullet}) is generated by $|\mathcal{F}^{\bullet})$ as a left \mathcal{F} -module.

Arithemtic in $\mathcal{F}[\partial, \int]$ is basis of all operations on boundary problems.

< 🗗 >

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in the *Mathematica*/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in $\mathcal{F}[\partial, \int]$, Green's operators for $\mathbb{C}[\partial]$.

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in the *Mathematica*/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in $\mathcal{F}[\partial, \int]$, Green's operators for $\mathbb{C}[\partial]$.

GenPolyDom: Implemented in L. Tec's 2011 thesis (co-supervised with B. Buchberger and G. Regensburger) as a functor library *ibidem*.

(日)

Software Systems Past and Present

GreenEvaluator: Implemented in my 2003 thesis as external evaluator in the *Mathematica*/TH∃OREM∀ system. Obsolete.

Base line: Arithmetic in $\mathcal{F}[\partial, \int]$, Green's operators for $\mathbb{C}[\partial]$.

GenPolyDom: Implemented in L. Tec's 2011 thesis (co-supervised with B. Buchberger and G. Regensburger) as a functor library *ibidem*.

Added composition/factorization, bivariate operator ring and integro-differential polynomials.

Base line: Arithmetic in $\mathcal{F}[\partial, \int]$, Green's operators for $\mathbb{C}[\partial]$.

GenPolyDom: Implemented in L. Tec's 2011 thesis (co-supervised with B. Buchberger and G. Regensburger) as a functor library *ibidem*.

Added composition/factorization, bivariate operator ring and integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal's 2012 thesis (co-supervised with G. Regensburger) as a Maple package.

Base line: Arithmetic in $\mathcal{F}[\partial, \int]$, Green's operators for $\mathbb{C}[\partial]$.

GenPolyDom: Implemented in L. Tec's 2011 thesis (co-supervised with B. Buchberger and G. Regensburger) as a functor library *ibidem*.

Added composition/factorization, bivariate operator ring and integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal's 2012 thesis (co-supervised with G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

Base line: Arithmetic in $\mathcal{F}[\partial, \int]$, Green's operators for $\mathbb{C}[\partial]$.

GenPolyDom: Implemented in L. Tec's 2011 thesis (co-supervised with B. Buchberger and G. Regensburger) as a functor library *ibidem*.

Added composition/factorization, bivariate operator ring and integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal's 2012 thesis (co-supervised with G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain *Mathematica*, using nested algebraic domains in functorial style.

Base line: Arithmetic in $\mathcal{F}[\partial, \int]$, Green's operators for $\mathbb{C}[\partial]$.

GenPolyDom: Implemented in L. Tec's 2011 thesis (co-supervised with B. Buchberger and G. Regensburger) as a functor library *ibidem*.

Added composition/factorization, bivariate operator ring and integro-differential polynomials.

IntDiffOp: Implemented in A. Korporal's 2012 thesis (co-supervised with G. Regensburger) as a Maple package.

Added composition/factorization, and singular problems.

OPIDO: Prototype implemented by N. Phisanbut in plain *Mathematica*, using nested algebraic domains in functorial style.

Focused on bivariate operator ring and simple LPDEs.

The TH \exists OREM \forall System

< 🗇 >

Integrated environment for

- proving,
- solving,
- computing

in various mathematical domains (general and special).

< 🗗)

Integrated environment for

- proving,
- solving,
- computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for

Integrated environment for

- proving,
- solving,
- computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for

• generic programming by functors,

Integrated environment for

- proving,
- solving,
- computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for

- generic programming by functors,
- proving (e.g. preservation theorems, correctness of specifications).

Integrated environment for

- proving,
- solving,
- computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for

- generic programming by functors,
- proving (e.g. preservation theorems, correctness of specifications).

Both universal and domain-specific reasoners (provers, solvers, evaluators).
The TH∃OREM∀ System

Integrated environment for

- proving,
- solving,
- computing

in various mathematical domains (general and special).

Unified logical frame (classical higher-order logic) for

• generic programming by functors,

• proving (e.g. preservation theorems, correctness of specifications).

Both universal and domain-specific reasoners (provers, solvers, evaluators).

For more information please refer to:

http://www.risc.jku.at/research/theorema/software/

Functors in TH \exists OREM \forall

< 🗗 >

Functors in TH \exists OREM \forall

Terminology in this context:

< 🗗 ►

Functors in TH \exists OREM \forall

Terminology in this context:

Domain: Carrier predicate and implemented operations.

(∂)

Domain: Carrier predicate and implemented operations.

Category: Collection of domains specified by higher-order predicate.

< ()

Domain: Carrier predicate and implemented operations.

- Category: Collection of domains specified by higher-order predicate.
 - Functor: Higher-order function mapping domains to domains.

< 🗗)

Domain: Carrier predicate and implemented operations.

- Category: Collection of domains specified by higher-order predicate.
 - Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):

< 🗗)

- Domain: Carrier predicate and implemented operations.
- Category: Collection of domains specified by higher-order predicate.
 - Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):

• **Computational aspect**: Carrier/operations of result domain defined in terms of carriers/operations of input domain(s).

- Domain: Carrier predicate and implemented operations.
- Category: Collection of domains specified by higher-order predicate.
 - Functor: Higher-order function mapping domains to domains.

Dual aspect (TH∃OREM∀ integrates computing & proving):

- **Computational aspect**: Carrier/operations of result domain defined in terms of carriers/operations of input domain(s).
- Reasoning aspect: Transport properties from input domain(s) to result domains (e.g. preservation of properties.

Functor Example: Word Monoid

$$\begin{split} & \text{Definition} \left[\text{"Word Monoid", any}[L], \\ & \text{LexWords}[L] = \text{Functor} \left[\mathbb{W}, \text{ any} \left[\mathbf{v}, \mathbf{w}, \xi, \eta, \bar{\xi}, \bar{\eta} \right], \\ & \frac{\mathbf{s} = \langle \rangle}{\underbrace{\mathbf{e}} \left[\mathbb{W} \right] \Leftrightarrow \bigwedge \left\{ \begin{array}{l} \text{is-tuple}[\mathbb{W}] \\ & \forall & \mathbf{e} \left[\mathbb{W}_{1} \right] \\ & \forall & \mathbf{e} \left[\mathbb{W}_{1} \right] \\ & & \vdots \\ & \mathbf{w} = \langle \rangle \\ & \mathbf{v} \neq \mathbf{w} = \mathbf{v} \neq \mathbf{w} \\ & \left(\langle \eta, \bar{\eta} \rangle \underset{W}{\geq} \langle \rangle \right) \Leftrightarrow \text{True} \\ & \left(\langle \gamma, \bar{\eta} \rangle \underset{W}{\geq} \langle \xi, \bar{\xi} \rangle \right) \Leftrightarrow \text{False} \\ & \left(\langle \eta, \bar{\eta} \rangle \underset{W}{\geq} \langle \xi, \bar{\xi} \rangle \right) \Leftrightarrow \bigvee \left\{ \begin{array}{l} \eta > \xi \\ & \eta = \xi \rangle \\ & & \eta \in \xi \rangle \\ & & & (\eta = \xi) \end{pmatrix} \land \langle \bar{\eta} \rangle \underset{W}{\geq} \langle \bar{\xi} \rangle \end{split} \right. \end{split}$$

(日)

Functor Example: Monoid Algebra

$$\begin{split} & \text{MonoidAlgebra}[K, W] = \text{where} \Big[V = \text{FreeModule}[K, W] \,, \\ & \text{Functor} \Big[P, \, \text{any}[c, d, f, g, \xi, \eta, \bar{\mathfrak{m}}, \bar{\mathfrak{n}}] \,, \\ & \\ & \frac{s = \langle \rangle}{\dots (* \text{ linear operations from } V \ *)} \\ & \hline & (* \text{ multiplication } *) \\ & \langle \rangle_{p}^{*}g = \langle \rangle \\ & f_{p}^{*} \langle \rangle = \langle \rangle \\ & f_{p}^{*} \langle \rangle = \langle \rangle \\ & \langle \langle c, \xi \rangle, \bar{\mathfrak{m}} \rangle_{p}^{*} \langle \langle d, \eta \rangle, \bar{\mathfrak{n}} \rangle = \left\langle \left\langle c_{k}^{*}d, \xi_{k}^{*}\eta \right\rangle \right\rangle_{p}^{*} \langle \langle c, \xi \rangle \rangle_{p}^{*} \langle \bar{\mathfrak{m}} \rangle_{p}^{*} \langle \langle d, \eta \rangle, \bar{\mathfrak{n}} \rangle \end{split}$$

(日)

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations.

(日)

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations. Introduced in [Buchberger, SYNASC'01] for commutative setting.

< (2))

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations. Introduced in [Buchberger, SYNASC'01] for commutative setting.

• Reduction Multiplier: Prepare reduction from left and right by

$$\operatorname{Irdm}_{K[T]}(au + \dots, bv + \dots) = \begin{cases} \operatorname{Irdm}_{K}(a, b) \cdot_{K[T]} \operatorname{Iquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise,} \end{cases}$$
$$\operatorname{Irrdm}_{V(T)}(au + \dots, bv + \dots) = \begin{cases} \operatorname{Irdm}_{K}(a, b) \cdot_{K[T]} \operatorname{Iquot}_{T}(u, v) & \text{if } v \mid_{T} u, \end{cases}$$

$$\operatorname{trum}_{K[T]}(uu + \dots, u + \dots) = \begin{cases} 0_{K[T]} & \text{otherwise.} \end{cases}$$

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations. Introduced in [Buchberger, SYNASC'01] for commutative setting.

• Reduction Multiplier: Prepare reduction from left and right by

$$\operatorname{lrdm}_{K[T]}(au + \dots, bv + \dots) = \begin{cases} \operatorname{lrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{lquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise} \end{cases}$$

$$\operatorname{rrdm}_{K[T]}(au + \ldots, bv + \ldots) = \begin{cases} \operatorname{rrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{rquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise.} \end{cases}$$

Least Common Reducible: Build S-polynomials via

 $\operatorname{lcr}_{K[T]}(au + \ldots, bv + \ldots) = \operatorname{lrcd}_{K}(a, b) \cdot_{K[T]} \operatorname{lcm}_{T}(u, v).$

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations. Introduced in [Buchberger, SYNASC'01] for commutative setting.

• Reduction Multiplier: Prepare reduction from left and right by

$$\operatorname{lrdm}_{K[T]}(au + \dots, bv + \dots) = \begin{cases} \operatorname{lrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{lquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise} \end{cases}$$

$$\operatorname{rrdm}_{K[T]}(au + \ldots, bv + \ldots) = \begin{cases} \operatorname{rrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{rquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise} \end{cases}$$

Least Common Reducible: Build S-polynomials via

 $\operatorname{lcr}_{K[T]}(au + \ldots, bv + \ldots) = \operatorname{lrcd}_{K}(a, b) \cdot_{K[T]} \operatorname{lcm}_{T}(u, v).$

Axioms like $v \mid_T u \Rightarrow u = \operatorname{lquot}_T \cdot T v \cdot T \operatorname{rquot}_T$ and $b < \operatorname{lrdm}_D(a, b) \cdot D a \cdot D \operatorname{rrdm}_D(a, b)$.

< (2))

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations. Introduced in [Buchberger, SYNASC'01] for commutative setting.

• Reduction Multiplier: Prepare reduction from left and right by

$$\operatorname{Irdm}_{K[T]}(au + \dots, bv + \dots) = \begin{cases} \operatorname{Irdm}_{K}(a, b) \cdot_{K[T]} \operatorname{lquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise}, \end{cases}$$

$$\operatorname{rrdm}_{K[T]}(au + \ldots, bv + \ldots) = \begin{cases} \operatorname{rrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{rquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise.} \end{cases}$$

• Least Common Reducible: Build S-polynomials via

 $\operatorname{lcr}_{K[T]}(au + \ldots, bv + \ldots) = \operatorname{lrcd}_{K}(a, b) \cdot_{K[T]} \operatorname{lcm}_{T}(u, v).$

Axioms like $v |_T u \Rightarrow u = \text{lquot}_T \cdot T v \cdot T \text{rquot}_T$ and $b < \text{lrdm}_D(a, b) \cdot D a \cdot D \text{rrdm}_D(a, b)$. Functorial construction, hence iteration possible.

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations. Introduced in [Buchberger, SYNASC'01] for commutative setting.

• Reduction Multiplier: Prepare reduction from left and right by

$$\operatorname{lrdm}_{K[T]}(au + \dots, bv + \dots) = \begin{cases} \operatorname{lrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{lquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise} \end{cases}$$

$$\operatorname{rrdm}_{K[T]}(au + \ldots, bv + \ldots) = \begin{cases} \operatorname{rrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{rquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise.} \end{cases}$$

• Least Common Reducible: Build S-polynomials via

 $\operatorname{lcr}_{K[T]}(au + \ldots, bv + \ldots) = \operatorname{lrcd}_{K}(a, b) \cdot_{K[T]} \operatorname{lcm}_{T}(u, v).$

Axioms like $v |_T u \Rightarrow u = \operatorname{lquot}_T \cdot T v \cdot T \operatorname{rquot}_T$ and $b < \operatorname{lrdm}_D(a, b) \cdot D a \cdot D \operatorname{rrdm}_D(a, b)$. Functorial construction, hence iteration possible. Base case for K is

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations. Introduced in [Buchberger, SYNASC'01] for commutative setting.

• Reduction Multiplier: Prepare reduction from left and right by

$$\operatorname{lrdm}_{K[T]}(au + \dots, bv + \dots) = \begin{cases} \operatorname{lrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{lquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise} \end{cases}$$

$$\operatorname{rrdm}_{K[T]}(au + \ldots, bv + \ldots) = \begin{cases} \operatorname{rrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{rquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise} \end{cases}$$

• Least Common Reducible: Build S-polynomials via

 $\operatorname{lcr}_{K[T]}(au + \ldots, bv + \ldots) = \operatorname{lrcd}_{K}(a, b) \cdot_{K[T]} \operatorname{lcm}_{T}(u, v).$

Axioms like $v |_T u \Rightarrow u = lquot_T \cdot T v \cdot T rquot_T$ and $b < lrdm_D(a, b) \cdot D a \cdot D rrdm_D(a, b)$. Functorial construction, hence iteration possible. Base case for K is

 $\mathrm{lrdm}_K(a,b)=a/_Kb,\quad\mathrm{rrdm}_K(a,b)=1_K,\quad\mathrm{lcr}_K(a,b)=1_K.$

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations. Introduced in [Buchberger, SYNASC'01] for commutative setting.

• Reduction Multiplier: Prepare reduction from left and right by

$$\operatorname{lrdm}_{K[T]}(au + \dots, bv + \dots) = \begin{cases} \operatorname{lrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{lquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise} \end{cases}$$

$$\operatorname{rrdm}_{K[T]}(au + \ldots, bv + \ldots) = \begin{cases} \operatorname{rrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{rquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise.} \end{cases}$$

• Least Common Reducible: Build S-polynomials via

 $\operatorname{lcr}_{K[T]}(au + \ldots, bv + \ldots) = \operatorname{lrcd}_{K}(a, b) \cdot_{K[T]} \operatorname{lcm}_{T}(u, v).$

Axioms like $v |_T u \Rightarrow u = \operatorname{lquot}_T \cdot T v \cdot T \operatorname{rquot}_T$ and $b < \operatorname{lrdm}_D(a, b) \cdot D a \cdot D \operatorname{rrdm}_D(a, b)$. Functorial construction, hence iteration possible. Base case for K is

$$\mathrm{lrdm}_K(a,b)=a/_Kb,\quad\mathrm{rrdm}_K(a,b)=1_K,\quad\mathrm{lcr}_K(a,b)=1_K.$$

Now define

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations. Introduced in [Buchberger, SYNASC'01] for commutative setting.

• Reduction Multiplier: Prepare reduction from left and right by

$$\operatorname{Irdm}_{K[T]}(au + \ldots, bv + \ldots) = \begin{cases} \operatorname{Irdm}_{K}(a, b) \cdot_{K[T]} \operatorname{lquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise} \end{cases}$$

$$\operatorname{rrdm}_{K[T]}(au + \ldots, bv + \ldots) = \begin{cases} \operatorname{rrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{rquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise.} \end{cases}$$

• Least Common Reducible: Build S-polynomials via

 $\operatorname{lcr}_{K[T]}(au + \ldots, bv + \ldots) = \operatorname{lrcd}_{K}(a, b) \cdot_{K[T]} \operatorname{lcm}_{T}(u, v).$

Axioms like $v |_T u \Rightarrow u = \operatorname{lquot}_T \cdot T v \cdot T \operatorname{rquot}_T$ and $b < \operatorname{lrdm}_D(a, b) \cdot D a \cdot D \operatorname{rrdm}_D(a, b)$. Functorial construction, hence iteration possible. Base case for K is

$$\mathrm{lrdm}_K(a,b)=a/_Kb,\quad\mathrm{rrdm}_K(a,b)=1_K,\quad\mathrm{lcr}_K(a,b)=1_K.$$

Now define $\operatorname{red}_{K[T]}(f,g) := f - K[T] \operatorname{lrdm}_{K[T]}(f,g) \cdot K[T] g \cdot K[T] \operatorname{rrdm}_{K[T]}(f,g)$,

Reduction Ring: Partially ordered monoid algebra plus 2/3 operations. Introduced in [Buchberger, SYNASC'01] for commutative setting.

• Reduction Multiplier: Prepare reduction from left and right by

$$\operatorname{lrdm}_{K[T]}(au + \ldots, bv + \ldots) = \begin{cases} \operatorname{lrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{lquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise,} \end{cases}$$

$$\operatorname{rrdm}_{K[T]}(au + \ldots, bv + \ldots) = \begin{cases} \operatorname{rrdm}_{K}(a, b) \cdot_{K[T]} \operatorname{rquot}_{T}(u, v) & \text{if } v \mid_{T} u, \\ 0_{K[T]} & \text{otherwise.} \end{cases}$$

• Least Common Reducible: Build S-polynomials via

 $\operatorname{lcr}_{K[T]}(au + \ldots, bv + \ldots) = \operatorname{lrcd}_{K}(a, b) \cdot_{K[T]} \operatorname{lcm}_{T}(u, v).$

Axioms like $v |_T u \Rightarrow u = lquot_T \cdot T v \cdot T rquot_T$ and $b < lrdm_D(a, b) \cdot D a \cdot D rrdm_D(a, b)$. Functorial construction, hence iteration possible. Base case for K is

$$\mathrm{lrdm}_K(a,b)=a/_Kb,\quad\mathrm{rrdm}_K(a,b)=1_K,\quad\mathrm{lcr}_K(a,b)=1_K.$$

Now define $\operatorname{red}_{K[T}(f,g) := f - {}_{K[T]} \operatorname{lrdm}_{K[T]}(f,g) \cdot {}_{K[T]} g \cdot {}_{K[T]} \operatorname{rrdm}_{K[T]}(f,g),$ $\operatorname{spol}_{K[T]}(f,g) := \operatorname{red}_{K[T]}(\operatorname{lcr}_{K[T]}(f,g), f) - \operatorname{red}_{K[T]}(\operatorname{lcr}_{K[T]}(f,g), f).$

Recall canonical decomposition $\mathcal{F}[\partial, \int] = \mathcal{F}[\partial] \dotplus \mathcal{F}[\int] \dotplus (\mathcal{F}^{\bullet}).$

< 67 →

Recall canonical decomposition $\mathcal{F}[\partial, \int] = \mathcal{F}[\partial] \dotplus \mathcal{F}[\int] \dotplus (\mathcal{F}^{\bullet})$. Use 3×3 block scheme for multiplication as in $A_1(\partial, \ell)$:

< 🗇 >

Recall canonical decomposition $\mathcal{F}[\partial, \int] = \mathcal{F}[\partial] \dotplus \mathcal{F}[\int] \dotplus (\mathcal{F}^{\bullet})$. Use 3×3 block scheme for multiplication as in $A_1(\partial, \ell)$:

• Split polynomial representation into three components.

< 🗗)

- Split polynomial representation into three components.
- Hence INTDIFFOP(DIFFOP(...), INTOP(...), BOUNDOP(...)).

- Split polynomial representation into three components.
- Hence INTDIFFOP(DIFFOP(...), INTOP(...), BOUNDOP(...)).
- Differential operators $DIFFOP(f_0, f_1, ...)$.

- Split polynomial representation into three components.
- Hence INTDIFFOP(DIFFOP(...), INTOP(...), BOUNDOP(...)).
- Differential operators DIFFOP (f_0, f_1, \ldots) .
- Integral operators INTOP(INTTERM(f_1, g_1), INTTERM(f_2, g_2), ...).

- Split polynomial representation into three components.
- Hence INTDIFFOP(DIFFOP(...), INTOP(...), BOUNDOP(...)).
- Differential operators DIFFOP (f_0, f_1, \ldots) .
- Integral operators INTOP(INTTERM(f_1, g_1), INTTERM(f_2, g_2), ...).
- Local boundary operators BOUNDOP(EVOP(c, EVDIFFOP($f_0, \ldots), \ldots$)).

- Split polynomial representation into three components.
- Hence INTDIFFOP(DIFFOP(...), INTOP(...), BOUNDOP(...)).
- Differential operators DIFFOP (f_0, f_1, \ldots) .
- Integral operators INTOP(INTTERM(f_1, g_1), INTTERM(f_2, g_2), ...).
- Local boundary operators BOUNDOP(EVOP(c, EVDIFFOP($f_0, \ldots), \ldots$)).
- Global boundop(evop(c, evintop(evintterm(g_1, h_1), ...), ...)).

Recall canonical decomposition $\mathcal{F}[\partial, \int] = \mathcal{F}[\partial] \dotplus \mathcal{F}[\int] \dotplus (\mathcal{F}^{\bullet})$. Use 3×3 block scheme for multiplication as in $A_1(\partial, \ell)$:

- Split polynomial representation into three components.
- Hence INTDIFFOP(DIFFOP(...), INTOP(...), BOUNDOP(...)).
- Differential operators $DIFFOP(f_0, f_1, ...)$.
- Integral operators INTOP(INTTERM(f_1, g_1), INTTERM(f_2, g_2), ...).
- Local boundary operators BOUNDOP(EVOP(c, EVDIFFOP($f_0, \ldots), \ldots$)).
- Global boundop(evop(c, evintop(evintterm(g_1, h_1), ...), ...)).

Nine cases for multiplications, for example:

< 🗗 >

Recall canonical decomposition $\mathcal{F}[\partial, \int] = \mathcal{F}[\partial] \dotplus \mathcal{F}[\int] \dotplus (\mathcal{F}^{\bullet})$. Use 3×3 block scheme for multiplication as in $A_1(\partial, \ell)$:

- Split polynomial representation into three components.
- Hence INTDIFFOP(DIFFOP(...), INTOP(...), BOUNDOP(...)).
- Differential operators $DIFFOP(f_0, f_1, ...)$.
- Integral operators INTOP(INTTERM(f_1, g_1), INTTERM(f_2, g_2), ...).
- Local boundary operators BOUNDOP(EVOP(c, EVDIFFOP($f_0, \ldots), \ldots$)).
- Global boundop(evop(c, evintop(evintterm(g_1, h_1), ...), ...)).

Nine cases for multiplications, for example:

$$\begin{split} \partial^{i} \cdot f \mathbf{E} \partial^{j} &= (\partial^{i} \cdot f) \mathbf{E} \partial^{j}, \\ \mathbf{E} \partial^{i} \cdot f \partial^{j} &= \sum_{k} (\mathbf{E} \cdot f_{k}) \mathbf{E} \partial^{j+k}, \\ \int b \cdot f \mathbf{E} \partial^{i} &= (\int b \cdot f) \mathbf{E} \partial^{i}, \\ \mathbf{E} \partial^{i} \cdot f \int b &= \sum_{k} (\mathbf{E} \cdot g_{k}) \mathbf{E} \partial^{l}, \end{split}$$

< 🗇 >

< (1)

Confluence Proofs

 $\begin{array}{ccc} \text{Typical critical pair} & \int g \int f \partial \\ \swarrow & \searrow \\ (\int \cdot g) \int f \partial - \int \left(\int \cdot g \right) f \partial & \int g f + \int g \int f' - \int g \left(\mathbf{E} \cdot g \right) \mathbf{E} \end{array}$

< 🗇 >
$\begin{array}{ccc} \text{Typical critical pair} & \int g \int f \partial \\ \swarrow & & \searrow \\ (\int \cdot g) \int f \partial - \int (\int \cdot g) f \partial & & \int g f + \int g \int f' - \int g \left(\mathbf{E} \cdot g \right) \mathbf{E} \end{array}$

Three generations of parametrized confluence proof:

Typical critical pair $$\begin{split} \int g \int f \partial \\ \swarrow & \searrow \\ (\int \cdot g) \int f \partial - \int (\int \cdot g) f \partial & \int g f + \int g \int f' - \int g \left(\mathbf{E} \cdot g \right) \mathbf{E} \end{split}$$

Three generations of parametrized confluence proof:

• Original formulation in [JSC'05] with 36 relations, running 2000 lines of automated proof, using integro-differential axioms.

Typical critical pair $$\begin{split} \int g \int f \partial \\ \swarrow & \searrow \\ (\int \cdot g) \int f \partial - \int (\int \cdot g) f \partial & \int g f + \int g \int f' - \int g \left(\mathbf{E} \cdot g \right) \mathbf{E} \end{split}$$

Three generations of parametrized confluence proof:

- Original formulation in [JSC'05] with 36 relations, running 2000 lines of automated proof, using integro-differential axioms.
- Current formulation in [JSC'08] with 9 relations, handwritten proof filling one page.

Typical critical pair $\int g \int f \partial$ $(\int \cdot g) \int f \partial - \int (\int \cdot g) f \partial$ $\int g f + \int g \int f' - \int g (\mathbf{E} \cdot g) \mathbf{E}$

Three generations of parametrized confluence proof:

- Original formulation in [JSC'05] with 36 relations, running 2000 lines of automated proof, using integro-differential axioms.
- Current formulation in [JSC'08] with 9 relations, handwritten proof filling one page. Typical reduction runs as

$$\begin{split} &(\int \cdot g) \int f \partial - \int \left(\int \cdot g \right) f \partial - \int g f + \int g \int f' + \int g \left(\mathbf{E} \cdot g \right) \mathbf{E} \\ &= \left(\int \cdot g \right) f - \left(\int \cdot g \right) \int f' - \left(\int \cdot g \right) \left(\mathbf{E} \cdot f \right) \mathbf{E} - \left(\int \cdot g \right) f + \int \partial \cdot \left(\left(\int \cdot g \right) \cdot f \right) \\ &+ \left(\mathbf{E} \cdot \left(\left(\int \cdot g \right) \cdot f \right) \mathbf{E} - \int (g \cdot f) + \left(\int \cdot g \right) \int f' - \int \left(\int \cdot g \right) f' + \left(\mathbf{E} \cdot f \right) \left(\int \cdot g \right) \mathbf{E} \\ &= \int \partial \cdot \left(\left(\int \cdot g \right) \cdot f \right) + \left(\mathbf{E} \cdot \left(\left(\int \cdot g \right) \cdot f \right) \mathbf{E} - \int (g \cdot f) - \int \left(\int \cdot g \right) f' \\ &= \int (g \cdot f) + \int \left(\int \cdot g \right) f' + 0 - \int (g \cdot f) - \int \left(\int \cdot g \right) f' = 0. \end{split}$$

(日)

Typical critical pair
$$\begin{split} \int g \int f \partial \\ \swarrow & \searrow \\ (\int \cdot g) \int f \partial - \int (\int \cdot g) f \partial & \int g f + \int g \int f' - \int g \left(\mathbf{E} \cdot g \right) \mathbf{E} \end{split}$$

Three generations of parametrized confluence proof:

- Original formulation in [JSC'05] with 36 relations, running 2000 lines of automated proof, using integro-differential axioms.
- Current formulation in [JSC'08] with 9 relations, handwritten proof filling one page. Typical reduction runs as

$$\begin{split} &(\int \cdot g) \int f \partial - \int \left(\int \cdot g \right) f \partial - \int g f + \int g \int f' + \int g \left(\mathbf{E} \cdot g \right) \mathbf{E} \\ &= \left(\int \cdot g \right) f - \left(\int \cdot g \right) \int f' - \left(\int \cdot g \right) \left(\mathbf{E} \cdot f \right) \mathbf{E} - \left(\int \cdot g \right) f + \int \partial \cdot \left(\left(\int \cdot g \right) \cdot f \right) \\ &+ \left(\mathbf{E} \cdot \left(\left(\int \cdot g \right) \cdot f \right) \mathbf{E} - \int (g \cdot f) + \left(\int \cdot g \right) \int f' - \int \left(\int \cdot g \right) f' + \left(\mathbf{E} \cdot f \right) \left(\int \cdot g \right) \mathbf{E} \\ &= \int \partial \cdot \left(\left(\int \cdot g \right) \cdot f \right) + \left(\mathbf{E} \cdot \left(\left(\int \cdot g \right) \cdot f \right) \mathbf{E} - \int (g \cdot f) - \int \left(\int \cdot g \right) f' \\ &= \int (g \cdot f) + \int \left(\int \cdot g \right) f' + 0 - \int (g \cdot f) - \int \left(\int \cdot g \right) f' = 0. \end{split}$$

• Automated proof with integro-differential polynomial coefficients in $\mathcal{F}{f,g}$, hence internalizing integro-differential axioms.

Short Demo of IntDiffOp

< 🗇 >

Current version for download at:

http://www.risc.jku.at/~akorpora/

Integro-Differential Weyl Algebra

Symbolic Software for Boundary Problems

Applications in Actuarial Mathematics

< 🗇 >

First scenario (zero interest rate):

(日)

First scenario (zero interest rate):

• Initial capital u

< (2))

First scenario (zero interest rate):

- ${\scriptstyle \bullet }$ Initial capital u
- Premium income at constant rate c

(日)

- ${\scriptstyle \bullet }$ Initial capital u
- Premium income at constant rate c
- Renewal process for number of claims

- ullet Initial capital u
- Premium income at constant rate c
- Renewal process for number of claims
- Claim sizes X_k and inter-claim times τ_k

- ullet Initial capital u
- Premium income at constant rate c
- Renewal process for number of claims
- Claim sizes X_k and inter-claim times τ_k
- All distributions i.i.d.

- Initial capital u
- Premium income at constant rate c
- Renewal process for number of claims
- Claim sizes X_k and inter-claim times τ_k
- All distributions i.i.d.

First scenario (zero interest rate):

- Initial capital u
- Premium income at constant rate c
- Renewal process for number of claims
- Claim sizes X_k and inter-claim times τ_k
- All distributions i.i.d.

Hence free capital accumulates as $U(t) = u + ct - \sum_{k=1}^{n} X_k$.

< 🗇 >

First scenario (zero interest rate):

- Initial capital u
- Premium income at constant rate c
- Renewal process for number of claims
- Claim sizes X_k and inter-claim times τ_k
- All distributions i.i.d.

Hence free capital accumulates as $U(t) = u + ct - \sum_{k=1}^{\infty} X_k$.

Time of run $T_u = \inf\{t \mid U(t) < 0\}$

(∂))

First scenario (zero interest rate):

- Initial capital u
- Premium income at constant rate c
- Renewal process for number of claims
- Claim sizes X_k and inter-claim times τ_k
- All distributions i.i.d.

Hence free capital accumulates as $U(t) = u + ct - \sum_{k=1}^{\infty} X_k$.

Time of ruin $T_u = \inf\{t \mid U(t) < 0\}$ Ruin Probability $\psi(u) = P(T_u < \infty \mid U(0) = u)$

< 🗗 >

First scenario (zero interest rate):

- Initial capital u
- Premium income at constant rate c
- Renewal process for number of claims
- Claim sizes X_k and inter-claim times τ_k
- All distributions i.i.d.

Hence free capital accumulates as $U(t) = u + ct - \sum_{k=1}^{\infty} X_k$.

Time of ruin
$$T_u = \inf\{t \mid U(t) < 0\}$$

Ruin Probability $\psi(u) = P(T_u < \infty \mid U(0) = u)$

Net profit condition $c \mathbb{E}(\tau_k) > \mathbb{E}(X_k)$

•∂•

< 🗇 >

Definition

Let f(x, y, t|u) be the joint pdf of $x = U(T_u)$ and $y = -U(T_u)$ and $t = T_u$ such that $\iiint f(x, y, z \mid u) dx dy dt = \psi(u)$.

Then the Gerber-Shiu function is given by

$$m(u) = \mathbb{E}\left(e^{-\delta T_u} w(U(T_u-), -U(T_u)) \mathbf{1}_{T_u < \infty} \mid U(0) = u\right)$$
$$= \iiint e^{-\delta t} w(x, y) f(x, y, t|u) \, dx \, dy \, dt$$

where w(x, y) is a given penalty function.

Definition

Let f(x, y, t|u) be the joint pdf of $x = U(T_u)$ and $y = -U(T_u)$ and $t = T_u$ such that $\iiint f(x, y, z \mid u) dx dy dt = \psi(u)$.

Then the Gerber-Shiu function is given by

$$m(u) = \mathbb{E}\left(e^{-\delta T_u} w(U(T_u-), -U(T_u)) 1_{T_u < \infty} \mid U(0) = u\right)$$
$$= \iiint e^{-\delta t} w(x, y) f(x, y, t|u) dx dy dt$$

where w(x, y) is a given penalty function.

We need a formulation

Tm = f $\beta_1(m) = \dots = \beta_n(m) = 0$

to be solved by u = Gf.

Definition

Let f(x, y, t|u) be the joint pdf of $x = U(T_u)$ and $y = -U(T_u)$ and $t = T_u$ such that $\iiint f(x, y, z \mid u) dx dy dt = \psi(u)$.

Then the Gerber-Shiu function is given by

$$m(u) = \mathbb{E}\left(e^{-\delta T_u} w(U(T_u-), -U(T_u)) 1_{T_u < \infty} \mid U(0) = u\right)$$
$$= \iiint e^{-\delta t} w(x, y) f(x, y, t|u) dx dy dt$$

where w(x, y) is a given penalty function.

We need a formulation

Tm = f $\beta_1(m) = \dots = \beta_n(m) = 0$

to be solved by u = Gf.

• How does one get a differential equation?

Definition

Let f(x, y, t|u) be the joint pdf of $x = U(T_u)$ and $y = -U(T_u)$ and $t = T_u$ such that $\iiint f(x, y, z \mid u) dx dy dt = \psi(u)$.

Then the Gerber-Shiu function is given by

$$m(u) = \mathbb{E}\left(e^{-\delta T_u} w(U(T_u-), -U(T_u)) 1_{T_u < \infty} \mid U(0) = u\right)$$
$$= \iiint e^{-\delta t} w(x, y) f(x, y, t|u) dx dy dt$$

where w(x, y) is a given penalty function.

We need a formulation

Tm = f $\beta_1(m) = \dots = \beta_n(m) = 0$

to be solved by u = Gf.

- How does one get a differential equation?
- Where do the boundary conditions come from?

Assuming f_{τ} and f_X are of phase type:.

Assuming f_{τ} and f_X are of phase type:.

 $\bullet\,$ Standard renewal argument (Feller 1971) $\rightarrow\,$ integral equation

< (2))

Assuming f_{τ} and f_X are of phase type:.

- ullet Standard renewal argument (Feller 1971) ightarrow integral equation
- C_0 -Semigroup (Constantinescu 2006) \rightarrow integro-differential equation

Assuming f_{τ} and f_X are of phase type:.

- ullet Standard renewal argument (Feller 1971) ightarrow integral equation
- C_0 -Semigroup (Constantinescu 2006) \rightarrow integro-differential equation
- $\bullet~$ Integration by parts $\rightarrow~$ differential equation

Assuming f_{τ} and f_X are of phase type:.

- Standard renewal argument (Feller 1971) ightarrow integral equation
- C_0 -Semigroup (Constantinescu 2006) \rightarrow integro-differential equation
- Integration by parts ightarrow differential equation

With $\omega(u) := \int_{u}^{\infty} w(u, y - u) dF_X(y)$ obtain differential equation

Assuming f_{τ} and f_X are of phase type:.

- ullet Standard renewal argument (Feller 1971) ightarrow integral equation
- C_0 -Semigroup (Constantinescu 2006) \rightarrow integro-differential equation
- Integration by parts ightarrow differential equation

With $\omega(u) := \int_{u}^{\infty} w(u, y - u) dF_X(y)$ obtain differential equation

$$\underbrace{p_X(\partial_u) \, p_\tau^*(c\partial_u - \delta) \, m(u) - a_0 b_0 \, m(u)}_{Tm} = \underbrace{a_0 \, p_X(\partial_u) \, \omega(u)}_f \, .$$

< ()

Assuming f_{τ} and f_X are of phase type:.

- ullet Standard renewal argument (Feller 1971) ightarrow integral equation
- C_0 -Semigroup (Constantinescu 2006) \rightarrow integro-differential equation
- Integration by parts ightarrow differential equation

With $\omega(u) := \int_u^\infty w(u, y - u) \, dF_X(y)$ obtain differential equation

$$\underbrace{p_X(\partial_u) \, p_\tau^*(c\partial_u - \delta) \, m(u) - a_0 b_0 \, m(u)}_{Tm} = \underbrace{a_0 \, p_X(\partial_u) \, \omega(u)}_f \, .$$

From initial values and net profit condition extract boundary conditions

Assuming f_{τ} and f_X are of phase type:.

- Standard renewal argument (Feller 1971) ightarrow integral equation
- C_0 -Semigroup (Constantinescu 2006) \rightarrow integro-differential equation
- Integration by parts ightarrow differential equation

With $\omega(u) := \int_u^\infty w(u, y - u) \, dF_X(y)$ obtain differential equation

$$\underbrace{p_X(\partial_u) \, p_\tau^*(c\partial_u - \delta) \, m(u) - a_0 b_0 \, m(u)}_{Tm} = \underbrace{a_0 \, p_X(\partial_u) \, \omega(u)}_f \, .$$

From initial values and net profit condition extract boundary conditions

$$m(0) = M_0, m'(0) = M_1, \dots, m^{(m-1)}(0) = 0$$

 $m(\infty) = 0$

Assuming f_{τ} and f_X are of phase type:.

- Standard renewal argument (Feller 1971) ightarrow integral equation
- C_0 -Semigroup (Constantinescu 2006) \rightarrow integro-differential equation
- Integration by parts ightarrow differential equation

With $\omega(u) := \int_u^\infty w(u, y - u) \, dF_X(y)$ obtain differential equation

$$\underbrace{p_X(\partial_u) \, p_\tau^*(c\partial_u - \delta) \, m(u) - a_0 b_0 \, m(u)}_{Tm} = \underbrace{a_0 \, p_X(\partial_u) \, \omega(u)}_f \, .$$

From initial values and net profit condition extract boundary conditions

$$m(0) = M_0, m'(0) = M_1, \dots, m^{(m-1)}(0) = 0$$

 $m(\infty) = 0$

Here
$$T = (\partial_u - \rho_1) \cdots (\partial_u - \rho_n)(\partial_u - \sigma_1) \cdots (\partial_u - \sigma_m)$$
, $\begin{bmatrix} \operatorname{Re}(\rho_i) > 0 \\ \operatorname{Re}(\sigma_j) < 0 \end{bmatrix}$

< 🗗 I

Assuming f_{τ} and f_X are of phase type:.

- ullet Standard renewal argument (Feller 1971) ightarrow integral equation
- C_0 -Semigroup (Constantinescu 2006) \rightarrow integro-differential equation
- ullet Integration by parts ightarrow differential equation

With $\omega(u) := \int_u^\infty w(u, y - u) \, dF_X(y)$ obtain differential equation

$$\underbrace{p_X(\partial_u) \, p_\tau^*(c\partial_u - \delta) \, m(u) - a_0 b_0 \, m(u)}_{Tm} = \underbrace{a_0 \, p_X(\partial_u) \, \omega(u)}_f \, .$$

From initial values and net profit condition extract boundary conditions

$$m(0) = M_0, m'(0) = M_1, \dots, m^{(m-1)}(0) = 0$$

 $m(\infty) = 0$

Here $T = (\partial_u - \rho_1) \cdots (\partial_u - \rho_n)(\partial_u - \sigma_1) \cdots (\partial_u - \sigma_m)$, $\begin{bmatrix} \operatorname{Re}(\rho_i) > 0 \\ \operatorname{Re}(\sigma_j) < 0 \end{bmatrix}$. <u>Note:</u> We have m + 1 conditions and not m + n ones!
(日)

• Lift factorization of T to boundary problems.

< (2))

- Lift factorization of T to boundary problems.
- Distinguish stable and instable Green's operators.

< (2))

- Lift factorization of T to boundary problems.
- Distinguish stable and instable Green's operators.
- Introduce function space $C_0^1(\mathbb{R})$ instead of $C^{\infty}[a, b]$.

- Lift factorization of T to boundary problems.
- Distinguish stable and instable Green's operators.
- Introduce function space $C_0^1(\mathbb{R})$ instead of $C^{\infty}[a,b]$.
- Calculate M_k values (Vandermonde-like determinants).

- Lift factorization of T to boundary problems.
- Distinguish stable and instable Green's operators.
- Introduce function space $C_0^1(\mathbb{R})$ instead of $C^{\infty}[a,b]$.
- Calculate M_k values (Vandermonde-like determinants).

Theorem (Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010) If $X \sim E(m)$ and $\tau \sim E(n)$ then $m(u) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \left(\left(\int_{0}^{u} e^{\sigma_{i}(u-\xi)} + \int_{u}^{\infty} e^{\rho_{j}(u-\xi)} \right) \times f(\xi) d\xi - \hat{f}(\rho_{j}) e^{\sigma_{i}u} \right) + m^{p}(u),$

where \hat{f} is the Laplace transform and $c_{ij} = c_{ij}(\rho, \sigma) \in \mathbb{R}$.

< 🗗)

< (2) →

Special Case and Perturbation

Theorem ((Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010))

Setting m = 1, n = 2 one has

$$m(u) = \frac{e^{\sigma u}}{\rho_1 - \rho_2} \left(\frac{\hat{f}(\rho_1)}{\rho_1 - \sigma} - \frac{\hat{f}(\rho_2)}{\rho_2 - \sigma} - \left(\frac{\lambda}{c}\right)^2 (\hat{\omega}(\rho_1) - \hat{\omega}(\rho_2)) \right) - \frac{1}{\rho_1 - \rho_2} \int_u^\infty \left(\frac{1}{\rho_1 - \sigma} e^{\rho_1(u-\xi)} - \frac{1}{\rho_2 - \sigma} e^{\rho_2(u-\xi)} \right) f(\xi) d\xi + \frac{1}{\rho_1 - \sigma} \frac{1}{\rho_2 - \sigma} \int_0^u e^{\sigma(u-\xi)} f(\xi) d\xi,$$

(日)

Theorem ((Albrecher, Constantinescu, Pirsic, Regensburger, Rosenkranz 2010))

Setting m = 1, n = 2 one has

$$\begin{split} n(u) &= \frac{e^{\sigma u}}{\rho_1 - \rho_2} \left(\frac{\hat{f}(\rho_1)}{\rho_1 - \sigma} - \frac{\hat{f}(\rho_2)}{\rho_2 - \sigma} - \left(\frac{\lambda}{c} \right)^2 \left(\hat{\omega}(\rho_1) - \hat{\omega}(\rho_2) \right) \right) \\ &- \frac{1}{\rho_1 - \rho_2} \int_u^\infty \left(\frac{1}{\rho_1 - \sigma} e^{\rho_1(u-\xi)} - \frac{1}{\rho_2 - \sigma} e^{\rho_2(u-\xi)} \right) f(\xi) \, d\xi \\ &+ \frac{1}{\rho_1 - \sigma} \frac{1}{\rho_2 - \sigma} \int_0^u e^{\sigma(u-\xi)} f(\xi) \, d\xi, \end{split}$$

Adding Browning motion (double order) for m = n = 1 yields

$$\begin{split} m(u) &= -\frac{1}{(\rho - \sigma_1)(\rho - \sigma_2)} \int_u^\infty e^{\rho(u - \xi)} f(\xi) \, d\xi - \frac{\hat{f}(\rho)}{\sigma_2 - \sigma_1} \left(\frac{e^{\sigma_1 u}}{\rho - \sigma_1} - \frac{e^{\sigma_2 u}}{\rho - \sigma_2} \right) \\ &+ \frac{1}{\sigma_2 - \sigma_1} \int_0^u \left(\frac{e^{\sigma_1(u - \xi)}}{\rho - \sigma_1} - \frac{e^{\sigma_2(u - \xi)}}{\rho - \sigma_2} \right) f(\xi) \, d\xi \\ &+ \frac{1}{\sigma_2 - \sigma_1} \Big([\sigma_2 m(0) - m'(0)] e^{\sigma_1 u} + [-\sigma_1 m(0) + m'(0)] e^{\sigma_2 u} \Big), \end{split}$$

generalizing the representations of [Chen et al.'07] and [Li-Garrido'05].

Generalize basic model from above:

< 🗇 >

Generalize basic model from above:

• Premium accumulates as $\int_0^t p(U(s)) ds$ for monotone p(u).

< 🗗)

Generalize basic model from above:

- Premium accumulates as $\int_0^t p(U(s)) ds$ for monotone p(u).
- Otherwise same as before

Generalize basic model from above:

- Premium accumulates as $\int_0^t p(U(s)) ds$ for monotone p(u).
- Otherwise same as before (regained by setting p(u) = c).

Generalize basic model from above:

- Premium accumulates as $\int_0^t p(U(s)) ds$ for monotone p(u).
- Otherwise same as before (regained by setting p(u) = c).

Hence free capital is $U(t) = u + \int_0^t p(U(s)) \, ds - \sum_{k=1}^{N(t)} X_k.$

< 🗗)

Generalize basic model from above:

- Premium accumulates as $\int_0^t p(U(s)) ds$ for monotone p(u).
- Otherwise same as before (regained by setting p(u) = c).

Hence free capital is $U(t) = u + \int_0^t p(U(s)) \, ds - \sum_{k=1}^{N(t)} X_k.$

▷ Differential equation with variable coefficients.

Generalize basic model from above:

- Premium accumulates as $\int_0^t p(U(s)) ds$ for monotone p(u).
- Otherwise same as before (regained by setting p(u) = c).

Hence free capital is
$$U(t) = u + \int_0^t p(U(s)) \, ds - \sum_{k=1}^{N(t)} X_k.$$

- \triangleright Differential equation with variable coefficients.
- \triangleright Closed-form solutions in terms of p(x) unrealistic!

Generalize basic model from above:

- Premium accumulates as $\int_0^t p(U(s)) ds$ for monotone p(u).
- Otherwise same as before (regained by setting p(u) = c).

Hence free capital is
$$U(t) = u + \int_0^t p(U(s)) \, ds - \sum_{k=1}^{N(t)} X_k.$$

 \triangleright Differential equation with variable coefficients. \triangleright Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize basic model from above:

- Premium accumulates as $\int_0^t p(U(s)) ds$ for monotone p(u).
- Otherwise same as before (regained by setting p(u) = c).

Hence free capital is
$$U(t) = u + \int_0^t p(U(s)) \, ds - \sum_{k=1}^{N(t)} X_k.$$

 \triangleright Differential equation with variable coefficients. \triangleright Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σ_i and instable ones ρ_j :

Generalize basic model from above:

- Premium accumulates as $\int_0^t p(U(s)) ds$ for monotone p(u).
- Otherwise same as before (regained by setting p(u) = c).

Hence free capital is
$$U(t) = u + \int_0^t p(U(s)) \, ds - \sum_{k=1}^{N(t)} X_k.$$

 \triangleright Differential equation with variable coefficients. \triangleright Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σ_i and instable ones ρ_j :

• Let T have the fundamental system $s_1, \ldots, s_m, r_1, \ldots, r_n$.

Generalize basic model from above:

- Premium accumulates as $\int_0^t p(U(s)) ds$ for monotone p(u).
- Otherwise same as before (regained by setting p(u) = c).

Hence free capital is
$$U(t) = u + \int_0^t p(U(s)) \, ds - \sum_{k=1}^{N(t)} X_k.$$

 \triangleright Differential equation with variable coefficients. \triangleright Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σ_i and instable ones ρ_j :

- Let T have the fundamental system $s_1, \ldots, s_m, r_1, \ldots, r_n$.
- Then we call $s_i(u)$ stable if $s_i(\infty) = 0$.

Generalize basic model from above:

- Premium accumulates as $\int_0^t p(U(s)) ds$ for monotone p(u).
- Otherwise same as before (regained by setting p(u) = c).

Hence free capital is
$$U(t) = u + \int_0^t p(U(s)) \, ds - \sum_{k=1}^{N(t)} X_k.$$

 \triangleright Differential equation with variable coefficients. \triangleright Closed-form solutions in terms of p(x) unrealistic!

Obtain closed-form special solutions & asymptotic results.

Generalize idea of stable roots σ_i and instable ones ρ_j :

- Let T have the fundamental system $s_1, \ldots, s_m, r_1, \ldots, r_n$.
- Then we call $s_i(u)$ stable if $s_i(\infty) = 0$.
- Likewise we call $r_j(u)$ instable if $r_j(\infty) = \infty$.

Factoring Stable and Instable Green's Operators

Lemma

The Gerber-Shiu function is $m(u) = c_1s_1(u) + \cdots + c_ms_m(u) + Gg(u)$ with $G = G_sG_r$ and $G_s = A_{s_1} \cdots A_{s_m}$, $G_r = (-1)^n B_{r_1} \cdots B_{r_n}$ where

$$\begin{split} A_{t_i} &= \frac{\omega(i)}{\omega(i-1)} A \frac{\omega(i-1)}{\omega(i)} & \text{for } 1 \leq i \leq m, \\ B_{t_j} &= B_{r_{j-m}} = \frac{\omega(j)}{\omega(j-1)} B \frac{\omega(j-1)}{\omega(j)} & \text{for } m+1 \leq j \leq m+n, \end{split}$$

setting $\omega(0)=1$ for convenience.

Factoring Stable and Instable Green's Operators

Lemma

The Gerber-Shiu function is $m(u) = c_1s_1(u) + \cdots + c_ms_m(u) + Gg(u)$ with $G = G_sG_r$ and $G_s = A_{s_1} \cdots A_{s_m}$, $G_r = (-1)^n B_{r_1} \cdots B_{r_n}$ where

$$\begin{split} A_{t_i} &= \frac{\omega(i)}{\omega(i-1)} A \frac{\omega(i-1)}{\omega(i)} & \text{for } 1 \leq i \leq m, \\ B_{t_j} &= B_{r_{j-m}} = \frac{\omega(j)}{\omega(j-1)} B \frac{\omega(j-1)}{\omega(j)} & \text{for } m+1 \leq j \leq m+n, \end{split}$$

setting $\omega(0)=1$ for convenience.

Proposition

The above Green's operator can be decomposed as

$$G = \sum_{i=1}^{m+n} t_i C_i \frac{d_i(m+n)}{\omega(m+n)} - \sum_{j=1}^n \tilde{a}_j F \frac{d_{m+j}(m+n)}{\omega(m+n)},$$

where C_i is \int_0^x for $1 \le i \le m$ and \int_{∞}^x for $1 \le i - m \le n$, with $F := \int_0^{\infty}$ and certain constants \tilde{a}_j . Here ω is the Wronskian with minors d_i .

General Representation of Solution

Theorem (Albrecher, Constantinescu, Palmowski, Regensburger, Rosenkranz) For $\tau \sim E(1/\lambda)$ and $X \sim E(\mu)$ we have

$$m(u) = \gamma \, s(u) \left(-s(u) \int_0^u \frac{r(v)}{w(v)} - r(u) \int_u^\infty \frac{s(v)}{w(v)} + \frac{r(0)}{s(0)} s(u) \int_0^\infty \frac{s(v)}{w(v)} \right) f(v) \, dv,$$

where
$$\gamma = \left(\lambda \,\omega(0) + c \, \frac{r(0)s'(0) - r'(0)s(0)}{s(0)} \int_0^\infty \frac{s(v)}{w(v)} f(v) \, dv\right) / \left((\lambda + \delta) \, s(0) - c \, s'(0)\right) \in \mathbb{R}.$$

General Representation of Solution

Theorem (Albrecher, Constantinescu, Palmowski, Regensburger, Rosenkranz) For $\tau \sim E(1/\lambda)$ and $X \sim E(\mu)$ we have

$$m(u) = \gamma \, s(u) \Big(-s(u) \int_0^u \frac{r(v)}{w(v)} - r(u) \int_u^\infty \frac{s(v)}{w(v)} + \frac{r(0)}{s(0)} s(u) \int_0^\infty \frac{s(v)}{w(v)} \Big) f(v) \, dv,$$

where
$$\gamma = \left(\lambda \,\omega(0) + c \, \frac{r(0)s'(0) - r'(0)s(0)}{s(0)} \int_0^\infty \frac{s(v)}{w(v)} \, f(v) \, dv\right) / \left((\lambda + \delta) \, s(0) - c \, s'(0)\right) \in \mathbb{R}.$$

Corollary (Albrecher, Constantinescu, Palmowski, Regensburger, Rosenkranz)

In the special case $\delta=0$ one gets

$$\begin{split} m(u) &= \frac{\lambda\omega(0) - p(0)\frac{s'(0)}{s(0)}\int_0^\infty \frac{s(v)}{s'(v)}f(v)\,dv}{\lambda s(0) - p(0)s'(0)}\,s(u) \\ &+ \left(s(u)\int_0^u \frac{1}{s'(v)} + \int_u^\infty \frac{s(v)}{s'(v)} - \frac{s(u)}{s(0)}\int_0^\infty \frac{s(v)}{s'(v)}\right)f(v)\,dv \end{split}$$

where γ is already included.

< (1)

Closed-form solutions have been obtained for:

< (2))

Closed-form solutions have been obtained for:

• Linear premium $p(u) = c + \varepsilon u$: Kummer functions.

Closed-form solutions have been obtained for:

- Linear premium $p(u) = c + \varepsilon u$: Kummer functions.
- Exponential premium $p(u) = c(1 + e^{-u})$: Hypergeometric functions.

Closed-form solutions have been obtained for:

- Linear premium $p(u) = c + \varepsilon u$: Kummer functions.
- Exponential premium $p(u) = c(1 + e^{-u})$: Hypergeometric functions.
- Rational premium p(u) = c + 1/(1+u): Up to quadratures (exp).

Closed-form solutions have been obtained for:

- Linear premium $p(u) = c + \varepsilon u$: Kummer functions.
- Exponential premium $p(u) = c(1 + e^{-u})$: Hypergeometric functions.
- Rational premium p(u) = c + 1/(1+u): Up to quadratures (exp).
- Quadratic premium $p(u) = c + u^2$: Up to quadratures (exp, arctan).

< (2) →

Probability of ruin:

< 合)

Probability of ruin:

• If $p(\infty) < \infty$ then $\psi(u) \sim \frac{\mu\gamma}{\lambda} \exp\left(-\mu u + \lambda \int_0^u p(w)^{-1} dw\right)$.

Probability of ruin:

- If $p(\infty) < \infty$ then $\psi(u) \sim \frac{\mu\gamma}{\lambda} \exp\big(-\mu u + \lambda \int_0^u p(w)^{-1} \, dw\big).$
- If $p(\infty) = \infty$ then $\psi(u) \sim \frac{\mu\gamma}{\lambda} \frac{1}{p(u)} \exp\left(\dots\right)$.

< 🗗)

Probability of ruin:

• If
$$p(\infty) < \infty$$
 then $\psi(u) \sim \frac{\mu\gamma}{\lambda} \exp\left(-\mu u + \lambda \int_0^u p(w)^{-1} dw\right)$.
• If $p(\infty) = \infty$ then $\psi(u) \sim \frac{\mu\gamma}{\lambda} \frac{1}{p(u)} \exp\left(\dots\right)$.

Homogeneous solutions t_1, t_2 :

•
$$t_i(u) \sim \exp\left(\int_0^u (\varrho_i(t) + \tilde{\varrho}_i(t)) dt\right)$$
 where

$$2\varrho_{1,2} = -\left(\mu + \frac{p'(u)}{p(u)} - \frac{\lambda+\delta}{p(u)}\right) \pm \sqrt{\left(\mu + \frac{p'(u)}{p(u)} - \frac{\lambda+\delta}{p(u)}\right)^2 + 4\frac{\delta\mu}{p(u)}}$$
 $\tilde{\varrho}_{1,2} = -\frac{\varrho'_{1,2}(u)}{2\varrho_{1,2}(u) + \left(\mu + \frac{p'(u)}{p(u)} - \frac{\lambda+\delta}{p(u)}\right)}$

(∂)
Generic Case Asymptotics for $u \to \infty$

Probability of ruin:

• If
$$p(\infty) < \infty$$
 then $\psi(u) \sim \frac{\mu\gamma}{\lambda} \exp\left(-\mu u + \lambda \int_0^u p(w)^{-1} dw\right)$.
• If $p(\infty) = \infty$ then $\psi(u) \sim \frac{\mu\gamma}{\lambda} \frac{1}{p(u)} \exp\left(\dots\right)$.

Homogeneous solutions t_1, t_2 :

•
$$t_i(u) \sim \exp\left(\int_0^u (\varrho_i(t) + \tilde{\varrho}_i(t)) dt\right)$$
 where

$$2\varrho_{1,2} = -\left(\mu + \frac{p'(u)}{p(u)} - \frac{\lambda+\delta}{p(u)}\right) \pm \sqrt{\left(\mu + \frac{p'(u)}{p(u)} - \frac{\lambda+\delta}{p(u)}\right)^2 + 4\frac{\delta\mu}{p(u)}}$$
 $\tilde{\varrho}_{1,2} = -\frac{\varrho'_{1,2}(u)}{2\varrho_{1,2}(u) + \left(\mu + \frac{p'(u)}{p(u)} - \frac{\lambda+\delta}{p(u)}\right)}$

Gerber-Shiu function:

• If
$$p(\infty) < \infty$$
 then $m(u) \sim (\gamma - \int_0^\infty \frac{s(v)}{s'(v)} f(v) dv) s(u) + K_1 f(u)$.

(∂)

Generic Case Asymptotics for $u \to \infty$

Probability of ruin:

• If
$$p(\infty) < \infty$$
 then $\psi(u) \sim \frac{\mu\gamma}{\lambda} \exp\left(-\mu u + \lambda \int_0^u p(w)^{-1} dw\right)$.
• If $p(\infty) = \infty$ then $\psi(u) \sim \frac{\mu\gamma}{\lambda} \frac{1}{p(u)} \exp\left(\dots\right)$.

Homogeneous solutions t_1, t_2 :

•
$$t_i(u) \sim \exp\left(\int_0^u (\varrho_i(t) + \tilde{\varrho}_i(t)) dt\right)$$
 where

$$2\varrho_{1,2} = -\left(\mu + \frac{p'(u)}{p(u)} - \frac{\lambda+\delta}{p(u)}\right) \pm \sqrt{\left(\mu + \frac{p'(u)}{p(u)} - \frac{\lambda+\delta}{p(u)}\right)^2 + 4\frac{\delta\mu}{p(u)}}$$
 $\tilde{\varrho}_{1,2} = -\frac{\varrho'_{1,2}(u)}{2\varrho_{1,2}(u) + \left(\mu + \frac{p'(u)}{p(u)} - \frac{\lambda+\delta}{p(u)}\right)}$

Gerber-Shiu function:

- If $p(\infty) < \infty$ then $m(u) \sim (\gamma \int_0^\infty \frac{s(v)}{s'(v)} f(v) dv) s(u) + K_1 f(u)$.
- If $p(\infty)$ explodes polynomially then $m(u) \sim (\dots) \, s(u) + K_2 u \, f(u)$

• Currently working on generalized model with tax \rightarrow LPDE instead of LODE.

- Currently working on generalized model with tax → LPDE instead of LODE.
- Derivation of integro-differential from integral equation very cumbersome → package.

- Ourrently working on generalized model with tax
 → LPDE instead of LODE.
- Derivation of integro-differential from integral equation very cumbersome → package.
- Combine with variable coefficient case to derive asymptotics.

- Ourrently working on generalized model with tax → LPDE instead of LODE.
- Derivation of integro-differential from integral equation very cumbersome → package.
- Combine with variable coefficient case to derive asymptotics.

THANK YOU

References

H. Albrecher, C. Constantinescu, Z. Palmowski, G. Regensburger, M. Rosenkranz.

Exact and asymptotic results for insurance risk models with surplus-dependent premiums. *SIAM J. Appl. Math*, 73(1):47–66, 2012.

H. Albrecher, C. Constantinescu, G. Pirsic, G. Regensburger, M. Rosenkranz.

An algebraic operator approach to the analysis of Gerber-Shiu functions. *Insurance Math. Econom*, 46:42–51, 2010.

George M. Bergman.

The diamond lemma for ring theory, *Advances in Mathematics* **29**/**2**, 179–218, 1978.

B. Buchberger, M. Rosenkranz.

Transforming boundary problems from analysis to algebra: A case study in boundary problems. *J. Symbolic Comput*, 47(6):589–609, 2012.

References

B. Buchberger, G. Regensburger, M. Rosenkranz, L. Tec. General polynomial reduction with Theorema functors: Applications to integro-differential operators and polynomials. ACM Commun. Comput. Algebra, 42(3):135–137, 2008.

A. Korporal, G. Regensburger, M. Rosenkranz. Regular and singular boundary problems in Maple. *Proceedings of CASC'11*, Springer LNCS:6885, 2011.

G. Regensburger, M. Rosenkranz, J. Middeke.

A skew polynomial approach to integro-differential operators. In *Proceedings of ISSAC'09*, 287–294, ACM, 2009.

M. Rosenkranz, N. Phisanbut.

A symbolic approach to boundary problems for linear partial differential equations: Applications to the completely reducible case of the Cauchy problem with constant coefficients. *Proceedings of CASC'13*, Springer LNCS:8136, 2013.

(日)

References

- M. Rosenkranz, G. Regensburger, L. Tec, B. Buchberger. Symbolic analysis for boundary problems: From rewriting to parametrized Gröbner bases. In U. Langer, P. Paule, *Numerical and Symbolic Scientific Computing: Progress and Prospects*, Springer, 2011.
- 📔 M. Rosenkranz, G. Regensburger.

Integro-differential polynomials and operators. In *Proceedings of ISSAC'08*, 261–268, ACM, 2008.

L. Tec, G. Regensburger, M. Rosenkranz, B. Buchberger. An automated confluence proof for an infinite rewrite system parametrized over an integro-differential algebra. In *Proceedings of ICMS'10*, Springer LNCS 6327, 2010.

- 1. Overview
- 2. Monoid Algebras
- 3. Recursively Presented Algebras
- 4. Noetherianity for Recursively Presented Algebras
- 5. Confluence for Recursively Presented Algebras
- 6. Overlap Ambiguities and Their Resolution
- 7. The Diamond Lemma for Ring Theory
- 8. A Brief Look at the History of Gröbner Bases
- 9. Skew Polynomial Rings
- 10. Examples of Ore Algebras
- 11. The Integro-Weyl Algebra
- 12. Two-Sided Ideals in the Integro Weyl Algebra
- 13. Bases in the Integro Weyl Algebra
- 14. Differential versus Integro Weyl Algebra
- 15. Integro-Differential Weyl Algebra
- 16. Canonical Decomposition and Basis
- 17. Isomorphisms via Localization and Specialization
- 18. Localization versus Specialization
- 19. Generalization to Higher Dimensions
- 20. The General Ring of Integro-Differential Operators
- 21. Software Systems Past and Present
- 22. The TH∃OREM∀ System

- 23. Functors in TH \exists OREM \forall
- 24. Functor Example: Word Monoid
- 25. Functor Example: Monoid Algebra
- 26. Computational Strategy in GenPolyDom
- 27. Computational Strategy in IntDiffOp
- 28. Confluence Proofs
- 29. Short Demo of IntDiffOp
- 30. A Simple Insurance Model
- 31. The Gerber-Shiu Function
- 32. Formulation as Boundary Problem
- 33. Parametric Solution
- 34. Special Case and Perturbation
- 35. Premium Accumulation with Interest Rate
- 36. Factoring Stable and Instable Green's Operators
- 37. General Representation of Solution
- 38. Some Special Closed Forms
- 39. Generic Case Asymptotics for $u
 ightarrow \infty$
- 40. Future Work in Actuarial Mathematics
- 41. References
- 42. References
- 43. References