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Generalized Inverses for Linear Maps

Fix K-spaces V,W. Think of V' = C"(R) and W = C(R).

Definition
Forgiven T:V — W,wecall G: W — V
o an inner inverse of T if TGT =T and
o an outer inverse of T if GTG = G.
If G is both, we call it an (algebraic) generalized inverse TF of T

They always exist—in abundance: T

> Choose B + ker(T) = V. \ /
Projector P onto ker(T') .

> Choose S +im(7T) = W. B— ~ (T

Projector Q onto im(7). / X
Roughly T+ := (T|5)~tQ. 1 povs w

Bijection (P, Q) <+ T+ (P, Q). Special case: Moore-Penrose inverse 7.
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Regain T for maximal B, meaning ker(T) + B = V.
Contracts T by shrinking T(B) = B.

Direct sums V = B+ T~ Y(E) and W = E + T(B).
Corresponding projectors P: V — V and Q: W — W.
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Also written as T™(B, E).

more constraints
more exceptions

Regain T for maximal B, meaning ker(T) + B = V.
Contracts T by shrinking T(B) = B.

Direct sums V = B+ T~ Y(E) and W = E + T(B).
Corresponding projectors P: V — V and Q: W — W.
Outer inverse again via T(P,Q) := T|3'Q « (P, Q).
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Characterization of Inner Inverses
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Now keep ker(T') + B =V and im(T) + E = W but select

|A: E—-V arbitrary| as an extension of im(7) = B.
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Characterization of Inner Inverses

For generalized inverses ker(7') +im(G) =V and im(7T) + ker(G) = W.
B E

Now keep ker(T') + B =V and im(T) + E = W but select

|A: E—-V arbitrary| as an extension of im(7) = B.

o Use again projectors P: V — V and Q: W — W.

o Inner inverse given by 7% (P,Q) :=T|z" & A. Also T!(B, E).

o Expands T7 by using A on E, hence ker(G) < E and B < im(G).
@ We need fewer constraints—fewer exceptions.

°

Regain T'" for trivial extension A = 0.
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Characterization of Inner Inverses

For generalized inverses ker(7') +im(G) =V and im(7T) + ker(G) = W.
T T/

Now keep ker(T') + B =V and im(T) + E = W but select

|A: E—-V arbitrary| as an extension of im(7) = B.

o Use again projectors P: V — V and Q: W — W.

o Inner inverse given by 7% (P,Q) :=T|z" & A. Also T!(B, E).

o Expands T7 by using A on E, hence ker(G) < E and B < im(G).
@ We need fewer constraints—fewer exceptions.

°

Regain T'" for trivial extension A = 0.

Note that G is an outer inverse of T' iff T is an inner inverse of G.
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Characterization of Inner Inverses

For generalized inverses ker(7') +im(G) =V and im(7T) + ker(G) = W.
Y T/

Now keep ker(T') + B =V and im(T) + E = W but select

|A: E—-V arbitrary| as an extension of im(7) = B.

o Use again projectors P: V — V and Q: W — W.

o Inner inverse given by 7% (P,Q) :=T|z" & A. Also T!(B, E).

o Expands T7 by using A on E, hence ker(G) < E and B < im(G).
@ We need fewer constraints—fewer exceptions.

°

Regain T'" for trivial extension A = 0.
Note that G is an outer inverse of T iff T is an inner inverse of G.

In the sequel we shall only use outer inverses.
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Finite Dimension and Codimension

A linear map T' € L(V,W) is a Fredholm operator if dimker(T") < oo
and codimim(7) < oo.
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A linear map T' € L(V,W) is a Fredholm operator if dimker(T") < oo
and codimim(7) < oo.

As we shall see, generalized Green's operators for LODEs are Fredholm.
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Finite Dimension and Codimension

A linear map T' € L(V,W) is a Fredholm operator if dimker(T") < oo
and codimim(7) < oo.

As we shall see, generalized Green's operators for LODEs are Fredholm.

Let F' <V be generated by u1,...,u, and B < V* by 51,..., Bx.
Choosing a basis ki1, ..., k. € K™ for ker(8(u)) and K1,...,ks € F"
for ker(B(u) "), the intersections F N B+ and FX N B are generated by

ky-(uiy .oy tm)y ooy ke (U, Um)

and

K/l'(/Bla"':/Bn)a ceey F‘;s'(ﬁla"wﬂn)a

respectively.
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Evaluation Matrix and Disjointness

Recall evaluation matrix

Br(ur) - Bi(um)
Blu) = : :
for u = (ug,...,um) € V™ and 8= (B1,...,0,) € (V).
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Evaluation Matrix and Disjointness

Recall evaluation matrix

Br(ur) - Bi(um)
Blu) = : :

for u = (ug,...,um) € V™ and 8= (B1,...,0,) € (V).

Lemma

Let F' <V have basis u1,...,u; and B < V* have basis 1, ..., .
Then we have F'N B+ = O iff 3(u) has full column rank.
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Evaluation Matrix and Disjointness

Recall evaluation matrix

Br(ur) - Bi(um)
Blu) = : :
foru=(uy,...,um) € V™ and g = (f1,...,0n) € (V)™
Lemma

Let F' <V have basis u1,...,u; and B < V* have basis 1, ..., .
Then we have F'N B+ = O iff 3(u) has full column rank.

Moreover, we have V = I 4 B iff m = n and B(u) € GL,,(K).
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Recall evaluation matrix
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Blu) = : :
foru=(uy,...,um) € V™ and g = (f1,...,0n) € (V)™
Lemma

Let F' <V have basis u1,...,u; and B < V* have basis 1, ..., .
Then we have F'N B+ = O iff 3(u) has full column rank.

Moreover, we have V = I 4 B iff m = n and B(u) € GL,,(K).

First case corresponds to regular boundary problems,
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Evaluation Matrix and Disjointness

Recall evaluation matrix

Br(ur) - Bi(um)
Blu) = : :
foru=(uy,...,um) € V™ and g = (f1,...,0n) € (V)™
Lemma

Let F' <V have basis u1,...,u; and B < V* have basis 1, ..., .
Then we have F'N B+ = O iff 3(u) has full column rank.

Moreover, we have V = I 4 B iff m = n and B(u) € GL,,(K).

First case corresponds to regular boundary problems,
second case to regular generalized problems.
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Specification of Projectors

A projector is also a generalized inverse P = PT(1 — P, P).
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Specification of Projectors

A projector is also a generalized inverse P = PT(1 — P, P).

Recall that u; € V and f8; € V* are called biorthogonal if §;(u;) = ;5.
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Specification of Projectors

A projector is also a generalized inverse P = PT(1 — P, P).

Recall that u; € V and f8; € V* are called biorthogonal if §;(u;) = ;5.
>P = u1B1 + - - - + upfy projects onto [u1, . ..,u,] along [B1,.. ., Bu]*.
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Specification of Projectors

A projector is also a generalized inverse P = PT(1 — P, P).

Recall that u; € V and f8; € V* are called biorthogonal if §;(u;) = ;5.
>P = u1B1 + - - - + upfy projects onto [u1, . ..,u,] along [B1,.. ., Bu]*.

Proposition

Let U <V and B < V* be such that U N B+ = O. For arbitrary
bases u1,...,uy of U and Bi,..., B3, of B let B(u)# be any left inverse
of B(u) and define (B4, ..., Bm) = Bw)#(B1,...,Bn). Then

Pu=3Y7, Biu) u;
is a projector onto U along [B1,. .., Bm]* > BL.
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Specification of Projectors

A projector is also a generalized inverse P = PT(1 — P, P).

Recall that u; € V and f8; € V* are called biorthogonal if §;(u;) = ;5.
>P = u1B1 + - - - + upfy projects onto [u1, . ..,u,] along [B1,.. ., Bu]*.

Proposition

Let U <V and B < V* be such that U N B+ = O. For arbitrary
bases u1,...,uy of U and Bi,..., B3, of B let B(u)# be any left inverse
of B(u) and define (B4, ..., Bm) = Bw)#(B1,...,Bn). Then
P — 5 Bi(u) u;
is a projector onto U along [B1,. .., Bm]* > BL.
In particular, if V = U 4+ B then P projects along [51, ..., 8]+ = B
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Properties of the Transpose

Recall:  G:V — W injective =— G*: W* — V* surjective
G'T*=1for TG =1

Likewise: T: V' — W surjective =— T™: W* — V* injective
G'T*=1for TG =1

For T' € L(V, W) the transpose induces via B — T™(B) a monotonic
map P(W*) — P (V7).
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Properties of the Transpose

Recall:  G:V — W injective =— G*: W* — V* surjective
G'T*=1for TG =1

Likewise: T: V' — W surjective =— T™: W* — V* injective
G'T*=1for TG =1

For T' € L(V, W) the transpose induces via B — T™(B) a monotonic
map P(W*) — P (V7).

For T'e€ L(V,W) we have

TU)- = (YUY  T(BY)=(T")"'(B)*
T*(C’)J‘ — T—I(CJ_) T*(ZJ‘) — T—l(Z)J_

for subspaces U <V, Z < W, C < W* and orthogonally closed B < V*.
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Duality Principle for Generalized Inverses
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Duality Principle for Generalized Inverses

Special case of previous result:

Proposition
For T e L(V,W) we have

im(7)* = ker(T*) im(T) = ker(T*)*
im(7*)* = ker(T) im(T*) = ker(T)*

for relating the orthogonal with kernel and image.
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Duality Principle for Generalized Inverses

Special case of previous result:

Proposition
For T e L(V,W) we have

im(7)* = ker(T*) im(T) = ker(T*)*
im(7*)* = ker(T) im(T*) = ker(T)*

for relating the orthogonal with kernel and image.

Generalize: Given any valid statement get one for free by

o reversing all arrows and inclusions,
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Duality Principle for Generalized Inverses

Special case of previous result:

Proposition
For T e L(V,W) we have

im(7)* = ker(T*) im(T) = ker(T*)*
im(7*)* = ker(T) im(T*) = ker(T)*

for relating the orthogonal with kernel and image.

Generalize: Given any valid statement get one for free by
o reversing all arrows and inclusions,

o interchanging left and right inverses,
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Duality Principle for Generalized Inverses

Special case of previous result:

Proposition
For T e L(V,W) we have
im(7)* = ker(T*) im(T) = ker(T*)*
im(7*)* = ker(T) im(T*) = ker(T)*
for relating the orthogonal with kernel and image.
Generalize: Given any valid statement get one for free by
o reversing all arrows and inclusions,

o interchanging left and right inverses,

o interchanging + and N,
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Duality Principle for Generalized Inverses

Special case of previous result:

Proposition
For T e L(V,W) we have

im(7)* = ker(T*) im(T) = ker(T*)*
im(7*)* = ker(T) im(T*) = ker(T)*

for relating the orthogonal with kernel and image.

Generalize: Given any valid statement get one for free by

reversing all arrows and inclusions,

°
o interchanging left and right inverses,
o interchanging + and N,

°

interchanging kernels and images,
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Duality Principle for Generalized Inverses

Special case of previous result:

Proposition
For T e L(V,W) we have

im(7)* = ker(T*) im(T) = ker(T*)*
im(7*)* = ker(T) im(T*) = ker(T)*

for relating the orthogonal with kernel and image.

Generalize: Given any valid statement get one for free by
reversing all arrows and inclusions,

interchanging left and right inverses,

°
°

o interchanging + and N,

o interchanging kernels and images,
°

interchanging top space and zero space.
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Abstract Setting of Semi-Regular Problems

Recall that (T, B) is called a boundary problem
o if T'e L(V,W) is surjective and
o the boundary space B < V* is orthogonally closed.
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Abstract Setting of Semi-Regular Problems

Recall that (T, B) is called a boundary problem

o if T'e L(V,W) is surjective and

o the boundary space B < V* is orthogonally closed.
Moreover, (T, B) is regular if ker(T) + B+ = V.
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Interpretation of (7', B) as boundary problem: | s =0 e5)
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Abstract Setting of Semi-Regular Problems

Recall that (T, B) is called a boundary problem

o if T'e L(V,W) is surjective and

o the boundary space B < V* is orthogonally closed.
Moreover, (T, B) is regular if ker(T) + B+ = V.

. Tu = f
Interpretation of (7', B) as boundary problem: | s =0 e5)

o Here ker(T) + B+ = V means existence of solutions for all f € W.
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Abstract Setting of Semi-Regular Problems

Recall that (T, B) is called a boundary problem

o if T'e L(V,W) is surjective and

o the boundary space B < V* is orthogonally closed.
Moreover, (T, B) is regular if ker(T) + B+ = V.

. Tu = f
Interpretation of (7', B) as boundary problem: | s =0 e5)

o Here ker(T) + B+ = V means existence of solutions for all f € W.
o And ker(T) N B+ = O means uniqueness of the solution u € V.
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Abstract Setting of Semi-Regular Problems

Recall that (T, B) is called a boundary problem

o if T'e L(V,W) is surjective and

o the boundary space B < V* is orthogonally closed.
Moreover, (T, B) is regular if ker(T) + B+ = V.

. Tu = f
Interpretation of (7', B) as boundary problem: | s =0 e5)

o Here ker(T) + B+ = V means existence of solutions for all f € W.
o And ker(T) N B+ = O means uniqueness of the solution u € V.

The boundary problem (T, B) is called semi-regular if ker(T) N B+ = O.
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Abstract Setting of Semi-Regular Problems

Recall that (T, B) is called a boundary problem

o if T'e L(V,W) is surjective and

o the boundary space B < V* is orthogonally closed.
Moreover, (T, B) is regular if ker(T) + B+ = V.

. Tu = f
Interpretation of (7', B) as boundary problem: | s =0 e5)

o Here ker(T) + B+ = V means existence of solutions for all f € W.
o And ker(T) N B+ = O means uniqueness of the solution u € V.

The boundary problem (T, B) is called semi-regular if ker(T) N B+ = O.
This models overdetermined problems.
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Abstract Setting of Semi-Regular Problems
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o if T'e L(V,W) is surjective and

o the boundary space B < V* is orthogonally closed.
Moreover, (T, B) is regular if ker(T) + B+ = V.

. Tu = f
Interpretation of (7', B) as boundary problem: | s =0 e5)

o Here ker(T) + B+ = V means existence of solutions for all f € W.
o And ker(T) N B+ = O means uniqueness of the solution u € V.

The boundary problem (T, B) is called semi-regular if ker(T) N B+ = O.
This models overdetermined problems.

Regularity & semi-regularity are tested algorithmically (rank conditions).
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Abstract Setting of Semi-Regular Problems

Recall that (T, B) is called a boundary problem

o if T'e L(V,W) is surjective and

o the boundary space B < V* is orthogonally closed.
Moreover, (T, B) is regular if ker(T) + B+ = V.

. Tu = f
Interpretation of (7', B) as boundary problem: | s =0 e5)

o Here ker(T) + B+ = V means existence of solutions for all f € W.
o And ker(T) N B+ = O means uniqueness of the solution u € V.

The boundary problem (T, B) is called semi-regular if ker(T) N B+ = O.
This models overdetermined problems.

Regularity & semi-regularity are tested algorithmically (rank conditions).

> Necessary condition for semi-regularity: dimker(7") < dim B
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Abstract Setting of Semi-Regular Problems

Recall that (T, B) is called a boundary problem

o if T'e L(V,W) is surjective and

o the boundary space B < V* is orthogonally closed.
Moreover, (T, B) is regular if ker(T) + B+ = V.

. Tu = f
Interpretation of (7', B) as boundary problem: | s =0 e5)

o Here ker(T) + B+ = V means existence of solutions for all f € W.
o And ker(T) N B+ = O means uniqueness of the solution u € V.

The boundary problem (T, B) is called semi-regular if ker(T) N B+ = O.
This models overdetermined problems.

Regularity & semi-regularity are tested algorithmically (rank conditions).

> Necessary condition for semi-regularity: dimker(7") < dim B
> Necessary condition for regularity: dimker(7") = dim B
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Generalized Boundary Problems and Green’s Operators
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Generalized Boundary Problems and Green’s Operators

Definition

Let (T, B) be a semi-regular boundary problem with 7" € L(V, W)
and B < V*. Then E < W is called an exceptional space for (T, B)
if W=T(B') +E.
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Generalized Boundary Problems and Green’s Operators

Definition
Let (T, B) be a semi-regular boundary problem with 7" € L(V, W)
and B < V*. Then E < W is called an exceptional space for (T, B)

if W=T(B') +E.
The generalized boundary problem (7', B, E) is then called regular.
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Generalized Boundary Problems and Green’s Operators

Definition

Let (T, B) be a semi-regular boundary problem with 7" € L(V, W)
and B < V*. Then E < W is called an exceptional space for (T, B)
if W=T(B') +E.

The generalized boundary problem (7', B, E) is then called regular.
Its Green's operator is defined by G = T7(B+, E).
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Generalized Boundary Problems and Green’s Operators

Definition

Let (T, B) be a semi-regular boundary problem with 7" € L(V, W)
and B < V*. Then E < W is called an exceptional space for (T, B)
ifW=T(BY)+E.

The generalized boundary problem (7, B, E) is then called regular.
Its Green's operator is defined by G = T7(B+, E).

Alternative notation G = (T, B, E) L.
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Generalized Boundary Problems and Green’s Operators

Definition

Let (T, B) be a semi-regular boundary problem with 7" € L(V, W)
and B < V*. Then E < W is called an exceptional space for (T, B)
ifW=T(BY)+E.

The generalized boundary problem (7, B, E) is then called regular.
Its Green's operator is defined by G = T7(B+, E).

Alternative notation G = (T, B, E) L.
> Regular plain problems (T, B) = (T, B,0) and (T,B)~! = (T, B,E)~..
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Generalized Boundary Problems and Green’s Operators

Definition

Let (T, B) be a semi-regular boundary problem with 7" € L(V, W)
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Generalization of regularity decomposition (where E' = O):
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Generalized Boundary Problems and Green’s Operators

Definition

Let (T, B) be a semi-regular boundary problem with 7" € L(V, W)
and B < V*. Then E < W is called an exceptional space for (T, B)
ifW=T(BY)+E.

The generalized boundary problem (7, B, E) is then called regular.
Its Green's operator is defined by G = T7(B+, E).

Alternative notation G = (T, B, E) L.
> Regular plain problems (T, B) = (T, B,0) and (T,B)~! = (T, B,E)~..

Generalization of regularity decomposition (where E' = O):
V=B+T7YE)
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Generalized Boundary Problems and Green’s Operators

Definition

Let (T, B) be a semi-regular boundary problem with 7" € L(V, W)
and B < V*. Then E < W is called an exceptional space for (T, B)
ifW=T(BY)+E.

The generalized boundary problem (7, B, E) is then called regular.
Its Green’s operator is defined by G = T(B+, E).

Alternative notation G = (T, B, E) L.
> Regular plain problems (T, B) = (T, B,0) and (T,B)~! = (T, B,E)~..

Generalization of regularity decomposition (where E' = O):
V=B+T7YE)

Generalized boundary problem back from G via (T, im(G)*, ker(G)).
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Regular Cores

Recall G = T|3'Q for (T, B, E) with projector Q onto T(B") along E.
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Recall G = T|3'Q for (T, B, E) with projector Q onto T(B") along E.

Inconstructive since T'| 5 is in general unknown.
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Regular Cores

Recall G = T|3'Q for (T, B, E) with projector Q onto T(B") along E.

Inconstructive since T'| 5 is in general unknown.

Every semi-regular problem (7', B) has a regular core, meaning a regular
subproblem (7', B) < (T, B).
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Regular Cores

Recall G = T|3'Q for (T, B, E) with projector Q onto T(B") along E.

Inconstructive since T'| 5 is in general unknown.

Theorem

Every semi-regular problem (7', B) has a regular core, meaning a regular
subproblem (7', B) < (T, B).

Moreover, if G = (T, B)~! and if the generalized problem (7', B, E) is
regular with G = (T, B, E)~!, then we have G = GQ.
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Recall G = T|3'Q for (T, B, E) with projector Q onto T(B") along E.

Inconstructive since T'| 5 is in general unknown.
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Every semi-regular problem (7', B) has a regular core, meaning a regular
subproblem (7', B) < (T, B).

Moreover, if G = (T, B)~! and if the generalized problem (7', B, E) is
regular with G = (T, B, E)~!, then we have G = GQ.

Generally, (T, B) will have many regular cores.
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Recall G = T|3'Q for (T, B, E) with projector Q onto T(B") along E.

Inconstructive since T'| 5 is in general unknown.
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Every semi-regular problem (7', B) has a regular core, meaning a regular
subproblem (7', B) < (T, B).

Moreover, if G = (T, B)~! and if the generalized problem (7', B, E) is
regular with G = (T, B, E)~!, then we have G = GQ.

Generally, (T, B) will have many regular cores.

For computing some conditions B < B:
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Regular Cores

Recall G = T|3'Q for (T, B, E) with projector Q onto T(B") along E.

Inconstructive since T'| 5 is in general unknown.

Theorem

Every semi-regular problem (7', B) has a regular core, meaning a regular
subproblem (7', B) < (T, B).

Moreover, if G = (T, 8)~" and if the generalized problem (T, B, E) is
regular with G = (T, B, E)~!, then we have G = GQ.

Generally, (T, B) will have many regular cores.

For computing some conditions B < B:
> Determine projector onto ker(7') along B+ > Bt
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Regular Cores

Recall G = T|3'Q for (T, B, E) with projector Q onto T(B") along E.

Inconstructive since T'| 5 is in general unknown.

Theorem

Every semi-regular problem (7', B) has a regular core, meaning a regular
subproblem (7', B) < (T, B).

Moreover, if G = (T, 8)~" and if the generalized problem (T, B, E) is
regular with G = (T, B, E)~!, then we have G = GQ.

Generally, (T, B) will have many regular cores.

For computing some conditions B < B:

> Determine projector onto ker(7) along B+ > Bt
> Then clearly ker(T) + B+ = V.
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Example of Generalized Boundary Problem
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Example of Generalized Boundary Problem

u// — f
u(0) = u/(0) = u/(1)

> Note that {u(0) = u/(0) = 0} is a typical case of a regular core (IVP).
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Example of Generalized Boundary Problem

u// — f
u(0) = u/(0) = u/(1)

> Note that {u(0) = u/(0) = 0} is a typical case of a regular core (IVP).
> However, {«/(0) = u/(1) = 0} is not (prompts third condition).
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Example of Generalized Boundary Problem

u// — f
u(0) = u/(0) = u/(1)

> Note that {u(0) = u/(0) = 0} is a typical case of a regular core (IVP).
> However, {«/(0) = u/(1) = 0} is not (prompts third condition).

1 0
Evaluation matrix S(u) = (0 1)
0 1
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Example of Generalized Boundary Problem

u// — f
u(0) = u/(0) = u/(1)

> Note that {u(0) = u/(0) = 0} is a typical case of a regular core (IVP).
> However, {«/(0) = u/(1) = 0} is not (prompts third condition).

10
Evaluation matrix 8(u) = (0 1): full column rank — semi-regular v/
0 1
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Example of Generalized Boundary Problem

U” — f
u(0) = v'(0) = w'(1)

> Note that {u(0) = u/(0) = 0} is a typical case of a regular core (IVP).
> However, {«/(0) = u/(1) = 0} is not (prompts third condition).

10
Evaluation matrix S(u) = (0 1): full column rank — semi-regular v/
0 1

Green's operator for regular core (02, [Eo, Egd]) clearly G = A2
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Example of Generalized Boundary Problem

U” — f
u(0) = v'(0) = w'(1)

> Note that {u(0) = u/(0) = 0} is a typical case of a regular core (IVP).
> However, {«/(0) = u/(1) = 0} is not (prompts third condition).

10
Evaluation matrix S(u) = (0 1): full column rank — semi-regular v/
0 1

Green's operator for regular core (02, [Eo, Egd]) clearly G = A2
Choose exceptional space E:
o Observe that fé f(&)d¢ = 0 is necessary and sufficient for solving.
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Example of Generalized Boundary Problem

U” — f
u(0) = v'(0) = w'(1)

> Note that {u(0)
> However, {«/(0) = u/(1) = 0} is not (prompts third condition).

u'(0) = 0} is a typical case of a regular core (IVP).
/

10
Evaluation matrix S(u) = (0 1): full column rank — semi-regular v/
0 1

Green's operator for regular core (02, [Eo, Egd]) clearly G = A2
Choose exceptional space E:
o Observe that fé f(&)d¢ = 0 is necessary and sufficient for solving.
o Hence need E + [Ll)]L = C>[0,1].
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Example of Generalized Boundary Problem

u// — f
u(0) = /(0) = /(1)

> Note that {u(0)
> However, {«/(0) = u/(1) = 0} is not (prompts third condition).

u'(0) = 0} is a typical case of a regular core (IVP).
/

10
Evaluation matrix S(u) = (0 1): full column rank — semi-regular v/
0 1

Green's operator for regular core (02, [Eo, Egd]) clearly G = A2
Choose exceptional space E:
o Observe that f(l) f(&)d¢ = 0 is necessary and sufficient for solving.
o Hence need E + [f(l)]L = C>[0,1].
o For example E = [1] works since f(u) =1 € GL;(K).
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Example of Generalized Boundary Problem

u// — f
u(0) = /(0) = /(1)

> Note that {u(0)
> However, {«/(0) = u/(1) = 0} is not (prompts third condition).

u'(0) = 0} is a typical case of a regular core (IVP).
/

10
Evaluation matrix S(u) = (0 1): full column rank — semi-regular v/
0 1

Green's operator for regular core (02, [Eo, Egd]) clearly G = A2
Choose exceptional space E:
o Observe that f(l) f(&)d¢ = 0 is necessary and sufficient for solving.
o Hence need E + [f(l)]L = C>[0,1].
o For example E = [1] works since f(u) =1 € GL;(K).
o Also E = [z] works, now B(u) = 1/2 € GL1(K).
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Example of Generalized Boundary Problem

u// — f
u(0) = /(0) = /(1)

>> Note that {u(0) = u
> However, {u/(0) = u/(1) = 0} is not (prompts third condition).

1

0
Evaluation matrix S(u) = (0 1): full column rank — semi-regular v/
0 1

'(0) = 0} is a typical case of a regular core (IVP).

Green's operator for regular core (02, [Eo, Egd]) clearly G = A2
Choose exceptional space E:
o Observe that f(l) f(&)d¢ = 0 is necessary and sufficient for solving.
o Hence need E + [Ll)]L = C*|0,1].
o For example E = [1] works since f(u) =1 € GL;(K).
o Also E = [z] works, now B(u) = 1/2 € GL1(K).

For E = [1] obtain Q =1 — f(l) and G = GQ = zA — Az — ‘$2fo
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Example of Generalized Boundary Problem

u// — f
u(0) = /(0) = /(1)

> Note that {u(0)
> However, {«/(0) = u/(1) = 0} is not (prompts third condition).

1

0
Evaluation matrix S(u) = (0 1): full column rank — semi-regular v/
0 1

u'(0) = 0} is a typical case of a regular core (IVP).
/

Green's operator for regular core (02, [Eo, Egd]) clearly G = A2
Choose exceptional space E:
o Observe that f(l) f(&)d¢ = 0 is necessary and sufficient for solving.
o Hence need E + [Ll)]L = C*|0,1].
o For example E = [1] works since f(u) =1 € GL;(K).
o Also E = [z] works, now B(u) = 1/2 € GL1(K).
For E = [1] obtain Q =1 — f(l) and G = GQ = zA — Az — %xQI(l).
For £ = [z] then Q =1 — 2xf(1) and G = GQ = zA — Az — %m3f(1).
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In the example we guessed the constraint fé f(&)d¢ =o.
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Compatibility Conditions of Boundary Problems

In the example we guessed the constraint fé f(&)d¢ =o.
How to do this algorithmically?

Definition

Let (7, B) be any boundary problem with 7" € L(V,W). Then the
admissible subspace T(B+) < W is described implicitly by the space of
compatibility conditions C = T'(B+)L < W*.
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Compatibility Conditions of Boundary Problems

In the example we guessed the constraint fé f(&)d¢ =o.
How to do this algorithmically?

Definition

Let (7, B) be any boundary problem with 7" € L(V,W). Then the
admissible subspace T(B+) < W is described implicitly by the space of
compatibility conditions C = T'(B+)L < W*.

For LODEs we have dim T'(B+) = oo but dimC < oo.

Markus Rosenkranz Singular Boundary Problems



Compatibility Conditions of Boundary Problems

In the example we guessed the constraint fé f(&)d¢ =o.
How to do this algorithmically?

Definition
Let (7, B) be any boundary problem with 7" € L(V,W). Then the

admissible subspace T(B+) < W is described implicitly by the space of
compatibility conditions C = T'(B+)L < W*.

For LODEs we have dim T'(B+) = oo but dimC < oo.
Previous example: C = [fcl)]
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Compatibility Conditions of Boundary Problem

s
In the example we guessed the constraint fcl) f(&)d¢ =o.
How to do this algorithmically?

Let (7, B) be any boundary problem with 7" € L(V,W). Then the

admissible subspace T(B+) < W is described implicitly by the space of
compatibility conditions C = T'(B+)L < W*.

For LODEs we have dim T'(B+) = oo but dimC < oo.
Previous example: C = f(l)]

Let (7, B) be a semi-regular problem with dim B, dim ker(T") < oo.
Then we have dim C = dim B — dim ker(7T").
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Compatibility Conditions of Boundary Problem

s
In the example we guessed the constraint fcl) f(&)d¢ =o.
How to do this algorithmically?

Let (7, B) be any boundary problem with 7" € L(V,W). Then the

admissible subspace T(B+) < W is described implicitly by the space of
compatibility conditions C = T'(B+)L < W*.

For LODEs we have dim T'(B+) = oo but dimC < oo.
Previous example: C = f(l)]

Let (7, B) be a semi-regular problem with dim B, dim ker(T") < oo.
Then we have dim C = dim B — dim ker(7T").

Predicts number of conditions, for example dimC = 3 — 2 above.
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Determining Compatibility Conditions

Let (T, B) be a boundary problem and let G be any right inverse of T.
Then C = G*(BNker(T)') and dim C = dim(B N ker(T)4).
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Determining Compatibility Conditions

Theorem

Let (T, B) be a boundary problem and let G be any right inverse of T.
Then C = G*(BNker(T)') and dim C = dim(B N ker(T)4).

For dim B < oo, every exceptional space satisfies dimC = dim F.
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Determining Compatibility Conditions

Theorem

Let (T, B) be a boundary problem and let G be any right inverse of T.
Then C = G*(BNker(T)') and dim C = dim(B N ker(T)4).

For dim B < oo, every exceptional space satisfies dimC = dim F.

For regular plain problems (7', B) this implies dim C = 0.
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Determining Compatibility Conditions

Theorem

Let (T, B) be a boundary problem and let G be any right inverse of T.
Then C = G*(BNker(T)*) and dim C = dim(B N ker(T)1).

For dim B < oo, every exceptional space satisfies dimC = dim F.

For regular plain problems (7', B) this implies dim C = 0.

Improved calculation possible for semi-regular problems:
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Determining Compatibility Conditions

Theorem

Let (T, B) be a boundary problem and let G be any right inverse of T.
Then C = G*(BNker(T)*) and dim C = dim(B N ker(T)1).

For dim B < oo, every exceptional space satisfies dimC = dim F.
For regular plain problems (7', B) this implies dim C = 0.

Improved calculation possible for semi-regular problems:

Proposition

Let (T, B) be semi-regular with regular core (T, B).
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Determining Compatibility Conditions

Theorem

Let (T, B) be a boundary problem and let G be any right inverse of T.
Then C = G*(BNker(T)*) and dim C = dim(B N ker(T)1).

For dim B < oo, every exceptional space satisfies dimC = dim F.
For regular plain problems (7', B) this implies dim C = 0.

Improved calculation possible for semi-regular problems:

Proposition

Let (7', B) be semi-regular with regular core (7, B).
Then we have C = G*(B) for G = (T, B)~".
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Boundary Problems Failing Semi-Regularity
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Boundary Problems Failing Semi-Regularity

Let (T, B) be any boundary problem with C = T'(B+)~.
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Boundary Problems Failing Semi-Regularity

Let (T, B) be any boundary problem with C = T'(B+)~.
Assume ker(T') N B+ = O fails:
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Boundary Problems Failing Semi-Regularity

Let (T, B) be any boundary problem with C = T'(B+)~.

Assume ker(T') N B+ = O fails:
o Need expanded B > B such that ker(T) N B+ = O.
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Boundary Problems Failing Semi-Regularity

Let (T, B) be any boundary problem with C = T'(B+)~.

Assume ker(T') N B+ = O fails:
o Need expanded B > B such that ker(T) N B+ = O.

o But should not impose foreign compatibility conditions.
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o But should not impose foreign compatibility conditions.
o Hence want T(B+)+ = T(B+)*.
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Boundary Problems Failing Semi-Regularity

Let (T, B) be any boundary problem with C = T'(B+)~.

Assume ker(T') N B+ = O fails:
o Need expanded B > B such that ker(T) N B+ = O.
o But should not impose foreign compatibility conditions.
o Hence want T(B+)+ = T(B+)*.

Always possible: Take a basis biorthogonal to ker(7) N B*.
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Boundary Problems Failing Semi-Regularity

Let (T, B) be any boundary problem with C = T'(B+)~.

Assume ker(T') N B+ = O fails:
o Need expanded B > B such that ker(T) N B+ = O.
o But should not impose foreign compatibility conditions.
o Hence want T(B+)+ = T(B+)*.
Always possible: Take a basis biorthogonal to ker(7) N B*.
Example: (T,B) = (02, [00, E10])
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Boundary Problems Failing Semi-Regularity

Let (T, B) be any boundary problem with C = T'(B+)~.

Assume ker(T') N B+ = O fails:
o Need expanded B > B such that ker(T) N B+ = O.
o But should not impose foreign compatibility conditions.
o Hence want T(B+)+ = T(B+)*.
Always possible: Take a basis biorthogonal to ker(7) N B*.
Example: (T,B) = (02, [00, E10])

> Choosing 33 = Eg or 33 = Eq is fine.
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Boundary Problems Failing Semi-Regularity

Let (T, B) be any boundary problem with C = T'(B+)~.
Assume ker(T') N B+ = O fails:
o Need expanded B > B such that ker(T) N B+ = O.
o But should not impose foreign compatibility conditions.
o Hence want T(B+)+ = T(B+)*.
Always possible: Take a basis biorthogonal to ker(7) N B*.
Example: (T,B) = (02, [00, E10])

> Choosing 33 = Eg or 33 = Eq is fine.
> However, adding both creates new compatibility condition fé T.
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Boundary Problems Failing Semi-Regularity

Let (T, B) be any boundary problem with C = T'(B+)~.
Assume ker(T') N B+ = O fails:
o Need expanded B > B such that ker(T) N B+ = O.
o But should not impose foreign compatibility conditions.
o Hence want T(B+)+ = T(B+)*.
Always possible: Take a basis biorthogonal to ker(7) N B*.
Example: (T,B) = (02, [00, E10])

> Choosing 33 = Eg or 33 = Eq is fine.
> However, adding both creates new compatibility condition fé T.

Moral: Add “as few conditions as possible”. |
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Boundary Problems Failing Semi-Regularity

Let (T, B) be any boundary problem with C = T'(B+)~.
Assume ker(T') N B+ = O fails:
o Need expanded B > B such that ker(T) N B+ = O.
o But should not impose foreign compatibility conditions.
o Hence want T(B+)+ = T(B+)*.
Always possible: Take a basis biorthogonal to ker(7) N B*.
Example: (T,B) = (02, [00, E10])

> Choosing 33 = Eg or 33 = Eq is fine.
> However, adding both creates new compatibility condition fé T.

Moral: Add “as few conditions as possible”. |

In the sequel, restrict ourselves to semi-regular problems.
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Difficulties with Exceptional Space

Recall multiplication of plain boundary problems:
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Recall multiplication of plain boundary problems:

(T, B1) (T2, Ba) = (Th T, B2 + T5 (B1)
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Difficulties with Exceptional Space

Recall multiplication of plain boundary problems:
(T, B1) (T2, B2) = (T1T2, B2 + T3 (B1)

o Regularity: Whenever (71, B1) and (1%, Ba) are regular, then so is
the product (771, B1) (T2, B2).
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Difficulties with Exceptional Space

Recall multiplication of plain boundary problems:
(T, B1) (T2, B2) = (T1T2, B2 + T3 (B1)

o Regularity: Whenever (71, B1) and (1%, Ba) are regular, then so is
the product (77, B1) (1%, B2).

o Reverse Order Law: In that case, we have the expected relation
-1
((@1.B)(12.B2)) = (12, B2)"1(13, B1) .
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Difficulties with Exceptional Space

Recall multiplication of plain boundary problems:
(T, B1) (T2, B2) = (T1T2, B2 + T3 (B1)

o Regularity: Whenever (71, B1) and (1%, Ba) are regular, then so is
the product (77, B1) (1%, B2).

o Reverse Order Law: In that case, we have the expected relation
-1
((Tl»Bl)(T2,B2)> = (T», Bo)~N(T1, B1) ™"

Generalizing to (11, B1, E1), (T2, B2) leads to complications:

Markus Rosenkranz Singular Boundary Problems



Difficulties with Exceptional Space

Recall multiplication of plain boundary problems:
(T, B1) (T2, B2) = (T1T2, B2 + T3 (B1)

o Regularity: Whenever (71, B1) and (1%, Ba) are regular, then so is
the product (77, B1) (1%, B2).

o Reverse Order Law: In that case, we have the expected relation
-1
((Tl»Bl)(T2,B2)> = (T», Bo)~N(T1, B1) ™"

Generalizing to (11, B1, E1), (T2, B2) leads to complications:

o Regularity need not be preserved.
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Recall multiplication of plain boundary problems:
(T, B1) (T2, B2) = (T1T2, B2 + T3 (B1)

o Regularity: Whenever (71, B1) and (1%, Ba) are regular, then so is
the product (77, B1) (1%, B2).

o Reverse Order Law: In that case, we have the expected relation
-1
((Tl»Bl)(T2,B2)> = (T», Bo)~N(T1, B1) ™"

Generalizing to (11, B1, E1), (T2, B2) leads to complications:
o Regularity need not be preserved.

o Reverse order law can fail.
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Difficulties with Exceptional Space

Recall multiplication of plain boundary problems:
(T, B1) (T2, B2) = (T1T2, B2 + T3 (B1)

o Regularity: Whenever (71, B1) and (1%, Ba) are regular, then so is
the product (77, B1) (1%, B2).

o Reverse Order Law: In that case, we have the expected relation
-1
((Tl»Bl)(T2,B2)> = (T», Bo)~N(T1, B1) ™"

Generalizing to (11, B1, E1), (T2, B2) leads to complications:
o Regularity need not be preserved.
o Reverse order law can fail.

> Necessary and sufficient conditions for regularity.
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Difficulties with Exceptional Space

Recall multiplication of plain boundary problems:
(Th, B1)(12, B2) = (11 Ty, Bz + T5(B1)
o Regularity: Whenever (71, B1) and (1%, Ba) are regular, then so is
the product (77, B1) (1%, B2).
o Reverse Order Law: In that case, we have the expected relation

((Tl, Bl)(TQ, B2)> - = (Tg, Bg)_l(Tl, Bl)_l.

Generalizing to (11, B1, E1), (T2, B2) leads to complications:
o Regularity need not be preserved.
o Reverse order law can fail.

> Necessary and sufficient conditions for regularity.
> Ensure reverse order law by choosing good exceptional space.
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Reverse Order Law in Abstract Setting
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Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:
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Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:
> If T9T5 = T then how can we ensure GoG1 = G7
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Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:

> If T9T5 = T then how can we ensure GoG1 = G7
> Here the Gy 5) are (generalized, inner, outer, ...) inverses of Ty 3).
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Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:

> If T9T5 = T then how can we ensure GoG1 = G7
> Here the Gy 5) are (generalized, inner, outer, ...) inverses of Ty 3).

Proposition

Let 71 € L(V,W) and Ty € L(U, V) have outer inverses G and Go,
respectively. Writing P = G1T; and @ = T>Gs, the product GoG1 is an
outer inverse of ThTy iff QP in a projector.
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Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:

> If T9T5 = T then how can we ensure GoG1 = G7
> Here the Gy 5) are (generalized, inner, outer, ...) inverses of Ty 3).

Proposition

Let 71 € L(V,W) and Ty € L(U, V) have outer inverses G and Go,
respectively. Writing P = G1T; and @ = T>Gs, the product GoG1 is an
outer inverse of ThTy iff QP in a projector.

[By duality, similar statement for inner inverses.|

Markus Rosenkranz Singular Boundary Problems



Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:

> If T9T5 = T then how can we ensure GoG1 = G7
> Here the Gy 5) are (generalized, inner, outer, ...) inverses of Ty 3).

Proposition

Let 71 € L(V,W) and Ty € L(U, V) have outer inverses G and Go,
respectively. Writing P = G1T; and @ = T>Gs, the product GoG1 is an
outer inverse of ThTy iff QP in a projector.

[By duality, similar statement for inner inverses.|

Are there better necessary and sufficient conditions:
@ Should not require G1, Gs.
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Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:

> If T9T5 = T then how can we ensure GoG1 = G7
> Here the Gy 5) are (generalized, inner, outer, ...) inverses of Ty 3).

Proposition

Let 71 € L(V,W) and Ty € L(U, V) have outer inverses G and Go,
respectively. Writing P = G1T; and @ = T>Gs, the product GoG1 is an
outer inverse of ThTy iff QP in a projector.

[By duality, similar statement for inner inverses.|

Are there better necessary and sufficient conditions:
@ Should not require G1, Gs.

@ Should only involve T, T and “known" spaces.
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Conditions for Reverse Order Law
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Conditions for Reverse Order Law

Lemma

The following statements are equivalent for two projectors P and Q:

@ The composition PQ is a projector.
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Conditions for Reverse Order Law

Lemma

The following statements are equivalent for two projectors P and Q:

@ The composition PQ is a projector.
0 im(P) N (im(Q) + ker(P)) < im(Q) + (ker(P) Nker(Q))
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Conditions for Reverse Order Law

Lemma

The following statements are equivalent for two projectors P and Q:

@ The composition PQ is a projector.
0 im(P) N (im(Q) + ker(P)) < im(Q) + (ker(P) Nker(Q))
0 im(Q) < im(P) + (ker(P) Nim(Q)) + (ker(P) Nker(Q))
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Conditions for Reverse Order Law

Lemma

The following statements are equivalent for two projectors P and Q:

@ The composition PQ is a projector.

0 im(P) N (im(Q) + ker(P)) < im(Q) + (ker(P) Nker(Q))
0 im(Q) < im(P) + (ker(P) Nim(Q)) + (ker(P) Nker(Q))
0 ker(Q) + (ker(P)Nim(Q)) > ker(P) N (1m(Q) + im(P))
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Conditions for Reverse Order Law

Lemma

The following statements are equivalent for two projectors P and Q:

@ The composition PQ is a projector.

im(P) N (im(Q) + ker(P)) < im(Q) + (ker(P) Nker(Q))
im(Q) < im(P) + (ker(P) Nim(Q)) + (ker(P) Nker(Q))
ker(Q) + (ker(P) Nim(Q)) > ker(P) N (im( Q) + im(P))
ker(P) > ker(Q) N (im(Q) + ker(P)) N (im(Q) + im(P))

© 06 0 ©
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Conditions for Reverse Order Law

Lemma

The following statements are equivalent for two projectors P and Q:

(*]

The composition PQ is a projector.

im(P) N (im(Q) + ker(P)) < im(Q) + (ker(P) Nker(Q))
im(Q) < im(P) + (ker(P) Nim(Q)) + (ker(P) Nker(Q))
ker(Q) + (ker(P) Nim(Q)) > ker(P) N (im( Q) + im(P))
ker(P) > ker(Q) N (im(Q) + ker(P)) N (im(Q) + im(P))

Let Ty € L(V,W) and T> € L(U, V) have outer inverses G1 = T;'(Bi1, E1)
and G2 = T5' (B2, E»), respectively. Then the following conditions are equivalent:

© 06 0 ©

@ (G2G1 is an outer inverse of ThTh
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Conditions for Reverse Order Law

Lemma

The following statements are equivalent for two projectors P and Q:

(*]

The composition PQ is a projector.

im(P) N (im(Q) + ker(P)) < im(Q) + (ker(P) Nker(Q))
im(Q) < im(P) + (ker(P) Nim(Q)) + (ker P) Nker(Q))
ker(Q) + (ker(P) Nim(Q)) > ker(P) N (im(Q) + im(P))
ker(P) > ker(Q) N (im(Q) + ker(P)) N (im(Q) + im(P))

Let Ty € L(V,W) and T> € L(U, V) have outer inverses G1 = T;'(Bi1, E1)
and G2 = T5' (B2, E»), respectively. Then the following conditions are equivalent:

© 06 0 ©

@ G->@1 is an outer inverse of T1T%
0 T2BoN (Bi + E2) < By + (E2NTy 'Ey).
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Conditions for Reverse Order Law

Lemma

The following statements are equivalent for two projectors P and Q:

(*]

The composition PQ is a projector.

im(P) N (im(Q) + ker(P)) < im(Q) + (ker(P) Nker(Q))
im(Q) < im(P) + (ker(P) Nim(Q)) + (ker P) Nker(Q))
ker(Q) + (ker(P) Nim(Q)) > ker(P) N (im(Q) + im(P))
ker(P) > ker(Q) N (im(Q) + ker(P)) N (im(Q) + im(P))

Let Ty € L(V,W) and T> € L(U, V) have outer inverses G1 = T;'(Bi1, E1)
and G2 = T5' (B2, E»), respectively. Then the following conditions are equivalent:

© 06 0 ©

@ G2@Gq is an outer inverse of T1T»
0 T2BoN (Bi + E2) < By + (E2NTy 'Ey).
0 Bi <T2By+ (B2 N B1) + (B2 T 'EL)
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Conditions for Reverse Order Law

Lemma

The following statements are equivalent for two projectors P and Q:

(*]

The composition PQ is a projector.

im(P) N (im(Q) + ker(P)) < im(Q) + (ker(P) Nker(Q))
im(Q) < im(P) + (ker(P) Nim(Q)) + (ker P) Nker(Q))
ker(Q) + (ker(P) Nim(Q)) > ker(P) N (im(Q) + im(P))
ker(P) > ker(Q) N (im(Q) + ker(P)) N (im(Q) + im(P))

Let Ty € L(V,W) and T> € L(U, V) have outer inverses G1 = T;'(Bi1, E1)
and G2 = T5' (B2, E»), respectively. Then the following conditions are equivalent:

© 06 0 ©

@ G2@G; is an outer inverse of ThTh

0 T2BoN (Bi + E2) < By + (E2NTy 'Ey).
0 Bi <T2By+ (B2 N B1) + (B2 T 'EL)
O Ty 'E1 + (E2NB1) > E2N (B +ToB2)
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Conditions for Reverse Order Law

Lemma

The following statements are equivalent for two projectors P and Q:

(*]

The composition PQ is a projector.

im(P) N (im(Q) + ker(P)) < im(Q) + (ker(P) Nker(Q))
im(Q) < im(P) + (ker(P) Nim(Q)) + (ker P) Nker(Q))
ker(Q) + (ker(P) Nim(Q)) > ker(P) N (im(Q) + im(P))
ker(P) > ker(Q) N (im(Q) + ker(P)) N (im(Q) + im(P))

Let Ty € L(V,W) and T> € L(U, V) have outer inverses G1 = T;'(Bi1, E1)
and G2 = T5' (B2, E»), respectively. Then the following conditions are equivalent:

© 06 0 ©

@ G->@1 is an outer inverse of T1T%

ToB> N (Bi + E2) < B1 + (B2 N Ty 'Ey).
By <T2Bs + (E2N B1) 4+ (B2 N Ty 'Ex)
T7'Er + (B2 N By) > B> N (B1 + T2Bs)
Eo > T7'Ey N (B 4 E2) N (B1 + T2 Bs)

© 06 06 ©

Markus Rosenkranz Singular Boundary Problems



Product of Generalized Boundary Problems

Markus Rosenkranz Singular Boundary Problems



Product of Generalized Boundary Problems

Let (T4, B1, E1) and (T3, B2, E2) be generalized problems. Then

(T1, By, E1)(Ts, Bz, By) = (TvT, Bo + T3 (B, N Ey ), By + T (B N Es)

is their product.
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Product of Generalized Boundary Problems

Let (T4, B1, E1) and (T3, B2, E2) be generalized problems. Then

(T1, By, B1) (T2, Ba, B) = (T1To, By + T3 (B1 N Ex), By + T1(Bf N E»)
is their product.

Special case F1 = E3 = O reduces to product of plain problems.
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Product of Generalized Boundary Problems

Let (T4, B1, E1) and (T3, B2, E2) be generalized problems. Then

(T1, By, B1)(Ta, By, Bz) = (T1To, Bz + T3 (By N Ey ), By + Ta(Bi N Ez)
is their product.
Special case F1 = E3 = O reduces to product of plain problems.

Now for the reverse order law:
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Product of Generalized Boundary Problems

Let (T4, B1, E1) and (T3, B2, E2) be generalized problems. Then

(T1, By, B1)(Ta, By, Bz) = (T1To, Bz + T3 (By N Ey ), By + Ta(Bi N Ez)
is their product.
Special case F1 = E3 = O reduces to product of plain problems.

Now for the reverse order law:

Let (11, B1, E1) and (T3, Ba, E>) be regular with Gy = (11, By, E1) ™!
and Gy = (T, By, E2)~1. If GoG1 is an outer inverse of T1T5 then

(@B, B) (T2, By, Ba)) = (T, By, B) ™ (11, By, Ey) 7

with direct sums By 4 T (B1 N Es) and By + T1(Bi N Ey).
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Ensuring the Reverse Order Law
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Ensuring the Reverse Order Law

Theorem (Good Exceptions)

Let (71, B1) and (T3, B2) be semi-regular with Ty € L(V, W) and T» € L(U,V).
Then there exists an exceptional space Fy < V for (T3, B2) such that the reverse
order law holds with all possible exceptional spaces Ey < W for (11, By).
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Ensuring the Reverse Order Law

Theorem (Good Exceptions)
Let (71, B1) and (T3, B2) be semi-regular with Ty € L(V, W) and T» € L(U,V).
Then there exists an exceptional space Fy < V for (T3, B2) such that the reverse
order law holds with all possible exceptional spaces Ey < W for (11, By).
Constructive Proof.
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Ensuring the Reverse Order Law

Theorem (Good Exceptions)
Let (71, B1) and (T3, B2) be semi-regular with Ty € L(V, W) and T» € L(U,V).
Then there exists an exceptional space Fy < V for (T3, B2) such that the reverse

order law holds with all possible exceptional spaces E; < W for (11, B;).
Constructive Proof.

Proposition (Sufficient Conditions)

Let (Tl,Bl,El) and (TQ,BQ,EQ) be regular with G = (Tl,Bl,El)_l
and Gg = (Ty, By, E5)~1. Then G2G is the Green's operator of the product if
one of the following five conditions hold:

0 By <T{'Ey or T 'Ey < By
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Ensuring the Reverse Order Law

Theorem (Good Exceptions)
Let (71, B1) and (T3, B2) be semi-regular with Ty € L(V, W) and T» € L(U,V).
Then there exists an exceptional space Fy < V for (T3, B2) such that the reverse

order law holds with all possible exceptional spaces E; < W for (11, B;).
Constructive Proof.

Proposition (Sufficient Conditions)

Let (Tl,Bl,El) and (TQ,BQ,EQ) be regular with G = (Tl,BhEl)_l
and Gg = (Ty, By, E5)~1. Then G2G is the Green's operator of the product if
one of the following five conditions hold:

0 By <T{'Ey or T 'Ey < By o By, < Bt
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Ensuring the Reverse Order Law

Theorem (Good Exceptions)
Let (71, B1) and (T3, B2) be semi-regular with Ty € L(V, W) and T» € L(U,V).
Then there exists an exceptional space Fy < V for (T3, B2) such that the reverse

order law holds with all possible exceptional spaces E; < W for (11, B;).
Constructive Proof.

Proposition (Sufficient Conditions)

Let (Tl,Bl,El) and (TQ,BQ,EQ) be regular with G = (Tl,BhEl)_l
and Gg = (Ty, By, E5)~1. Then G2G is the Green's operator of the product if
one of the following five conditions hold:

0 By <T{'Ey or T 'Ey < By o By <Bf

Qo C2§BQ OI’Bl SCQ
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Ensuring the Reverse Order Law

Theorem (Good Exceptions)

Let (71, B1) and (T3, B2) be semi-regular with Ty € L(V, W) and T» € L(U,V).
Then there exists an exceptional space Fy < V for (T3, B2) such that the reverse
order law holds with all possible exceptional spaces E; < W for (11, B;).
Constructive Proof.

Proposition (Sufficient Conditions)

Let (Tl,Bl,El) and (TQ,BQ,EQ) be regular with G = (Tl,BhEl)_l
and Gg = (Ty, By, E5)~1. Then G2G is the Green's operator of the product if
one of the following five conditions hold:

0 By <T{'Ey or T 'Ey < By o By <Bf

Qo C2§BQ OI’Bl SCQ

Corollary

For regular boundary problems (7%, B1,C1) and (T3, B2) the reverse order law
always holds, and the product is given by (T1T%, Ba + Ty (B1), E1).
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Ensuring Semi-Regularity

Regular problems are not closed under multiplication:
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Ensuring Semi-Regularity

Regular problems are not closed under multiplication:

Counterexample: Use e(z) = 223 — 322 + 22 — 1 on previous example.
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Ensuring Semi-Regularity

Regular problems are not closed under multiplication:

Counterexample: Use e(z) = 223 — 322 + 22 — 1 on previous example.
(Ta Bv E) = (827 [EUa E08> Ela]a [6(:17)])
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Ensuring Semi-Regularity

Regular problems are not closed under multiplication:
Counterexample: Use e(z) = 223 — 322 + 22 — 1 on previous example.
(Ta Bv E) = (827 [EUa E08> Ela]a [6(:17)])
(T, B, E)2 = (64, [EO, an, E18, EI()a2 + %Elas, E083 — E183], [6(37)])
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Ensuring Semi-Regularity

Regular problems are not closed under multiplication:

Counterexample: Use e(z) = 223 — 322 + 22 — 1 on previous example.
(T,B,E) = (8%, [E0, EgO, E1 ), [e(x)])
(T, B, E)? = (9%, [Eo, EoD, E10, EgD* + 3E10°,E00® — E10%], [e(2)])

One checks that (T, B, E) is regular but (T, B, E)? is not:
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Ensuring Semi-Regularity

Regular problems are not closed under multiplication:

Counterexample: Use e(z) = 223 — 322 + 22 — 1 on previous example.
(T,B,E) = (8%, [E0, EgO, E1 ), [e(x)])
(T, B, E)? = (9%, [Eo, EoD, E10, EgD* + 3E10°,E00® — E10%], [e(2)])

One checks that (T, B, E) is regular but (T, B, E)? is not:

> (0%, [Eo, E0O, E10, Egd? + §E163, EgD> — E1) not even semi-regular!

Markus Rosenkranz Singular Boundary Problems



Ensuring Semi-Regularity

Regular problems are not closed under multiplication:
Counterexample: Use e(z) = 223 — 322 + 22 — 1 on previous example.
(T,B,E) = (8%, [E0, EgO, E1 ), [e(x)])
(T, B, E)? = (9%, [Eo, EoD, E10, EgD* + 3E10°,E00® — E10%], [e(2)])
One checks that (T, B, E) is regular but (T, B, E)? is not:

> (0%, [Eo, E0O, E10, Egd? + §E163, EgD> — E1) not even semi-regular!

Theorem

Let (71, B1, E1) and (T», Ba, Es) be regular. Then the plain part of the
product, (1175, Ba + T5(B1 N EQL) is a semi-regular boundary problem iff
we have ker(T}) N (B + E2) NCs- = O.
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Ensuring Semi-Regularity

Regular problems are not closed under multiplication:

Counterexample: Use e(z) = 223 — 322 + 22 — 1 on previous example.
(T,B,E) = (8%, [E0, EgO, E1 ), [e(x)])
(T, B, E)? = (9%, [Eo, EoD, E10, EgD* + 3E10°,E00® — E10%], [e(2)])

One checks that (T, B, E) is regular but (T, B, E)? is not:

> (0%, [Eo, E0O, E10, Egd? + %Elﬁg, EgD> — E1) not even semi-regular!

Theorem
Let (71, B1, E1) and (T», Ba, Es) be regular. Then the plain part of the

product, (1175, Ba + T5(B1 N EQL) is a semi-regular boundary problem iff
we have ker(T}) N (B + E2) NCs- = O.

Can be check algorithmically.
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Failure of Reverse Order Law
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Failure of Reverse Order Law

Even for regular products, reverse order law may faill
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Failure of Reverse Order Law

Even for regular products, reverse order law may faill

3

Counterexample: Now use e(x) = z° on earlier example.
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Failure of Reverse Order Law

Even for regular products, reverse order law may faill

3

Counterexample: Now use e(x) = z° on earlier example.

P = (T,B,E) = (8%, [0, E0d, E10)], [e(z)])
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Failure of Reverse Order Law

Even for regular products, reverse order law may faill

3 on earlier example.

Counterexample: Now use e(z) =z
P = (T,B,E) = (8% [Eo, E0D, E1 0], [e()])

Q= (T,B,E)? = (0%, [Eo, E00, E10, EgD?, E0°], [e()])
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Failure of Reverse Order Law

Even for regular products, reverse order law may faill

3 on earlier example.

Counterexample: Now use e(z) =z
P = (T,B,E) = (0% [Eo, E0D, E10], [e()])
Q = (T, B, E)2 = (84, [Eo, an, 1-:18, E062, an3], [6(3’))])

One checks that (T, B, E) and (T, B, E)? are both regular but:
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Failure of Reverse Order Law

Even for regular products, reverse order law may faill

3

Counterexample: Now use e(x) = z° on earlier example.

P = (T,B,E) = (8 [Eo, E0d, E1 ), [e(z)])
Q= (T,B,E)? = (0%, [E0, E0D, E10, Eg0?, Eg 0], [e(z)])

One checks that (T, B, E) and (T, B, E)? are both regular but:
>Gi=P l=XA-AX - XF
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Failure of Reverse Order Law

Even for regular products, reverse order law may faill

3 on earlier example.

Counterexample: Now use e(z) =z
P = (T,B,E) = (0% [E0, E0D, E10], [e()])
Q= (T,B,E)? = (0%, [E0, E0D, E10, Eg0?, Eg 0], [e(z)])
One checks that (T, B, E) and (T, B, E)? are both regular but:
>Gi=P l=XA-AX - XF
>G?=§X3A+ § XAX? - § AX® — L X?AX

— (s XT = 2 X F - L X FX?+ L X°FX
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Failure of Reverse Order Law

Even for regular products, reverse order law may faill

Counterexample: Now use e(x) = 23 on earlier example.
P = (T,B,E) = (0% [E0, E0D, E10], [e()])
Q = (T, B, E)? = (9%, [Eo, EoD, E10, EgD?, Eg0°], [e(z)])
One checks that (T, B, E) and (T, B, E)? are both regular but:
>Gi=P l=XA-AX - XF
>G?=§X3A+ § XAX? - § AX® — L X?AX
— (s XT = 2 X F - L X FX?+ L X°FX
> Q1 =1X3A+1XAX? - L AX? - L1 X?AX
—- 4 X F+LiFX - L FX?
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Failure of Reverse Order Law

Even for regular products, reverse order law may faill

Counterexample: Now use e(x) = 23 on earlier example.
P = (T,B,E) = (0% [E0, E0D, E10], [e()])
Q= (T,B,E)? = (0%, [E0, E0D, E10, Eg0?, Eg 0], [e(z)])
One checks that (T, B, E) and (T, B, E)? are both regular but:
>Gi=P l=XA-AX - XF
>G?=§X3A+ § XAX? - § AX® — L X?AX
— (s XT = 2 X F - L X FX?+ L X°FX
> Q1 =1X3A+1XAX? - L AX? - L1 X?AX
- H X F+iFX - LFX?#G?
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Failure of Reverse Order Law

Even for regular products, reverse order law may faill

Counterexample: Now use e(x) = 23 on earlier example.
P = (T,B,E) = (0% [E0, E0D, E10], [e()])
Q= (T,B,E)? = (0%, [Eo, E0D, E10, EgD?, EgD], [e(x)])
One checks that (T, B, E) and (T, B, E)? are both regular but:
>Gi=P l=XA-AX - XF
>G?=§X3A+ § XAX? - § AX® — L X?AX
— (s XT = 2 X F - L X FX?+ L X°FX
> Q1 =1X3A+1XAX? - L AX? - L1 X?AX
- H X F+iFX - LFX?#G?

In general, one needs necessary & sufficient conditions similar to earlier
ones.
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Necessary and Sufficient Conditions
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Necessary and Sufficient Conditions

Let (T4, B1, E1) and (T2, Ba, E2) be regular boundary problems with
Green's operators G1 = (T, By, E1) ™! and Gy = (T, B2, E3) L. Then
the following are equivalent:
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Necessary and Sufficient Conditions

Theorem

Let (T4, B1, E1) and (T2, Ba, E2) be regular boundary problems with
Green's operators G1 = (T, By, E1) ™! and Gy = (T, B2, E3) L. Then
the following are equivalent:

o (Go@Gq is an outer inverse of T T5
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Necessary and Sufficient Conditions

Let (T4, B1, E1) and (T2, Ba, E2) be regular boundary problems with
Green's operators G1 = (T, By, E1) ™! and Gy = (T, B2, E3) L. Then
the following are equivalent:

o GG is an outer inverse of T} T,
0 Co+ (B1N Eé‘) > BN (BN Tl_lEl)J‘
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Necessary and Sufficient Conditions

Theorem

Let (T4, B1, E1) and (T2, Ba, E2) be regular boundary problems with
Green's operators G1 = (T, By, E1) ™! and Gy = (T, B2, E3) L. Then
the following are equivalent:

o GG is an outer inverse of T} T,
0 Co+ (B1N Eé‘) > BN (BN Tl_lEl)J‘
0 B >ConN(ENBH)tn(BynTE)*
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Necessary and Sufficient Conditions

Theorem

Let (T4, B1, E1) and (T2, Ba, E2) be regular boundary problems with
Green's operators G1 = (T, By, E1) ™! and Gy = (T, B2, E3) L. Then
the following are equivalent:

o GG is an outer inverse of T} T,

0 Co+ (BiNEy) > BN (ExNTyEy)*
0 B >ConN(ENBH)tn(BynTE)*
o T 'Ey + (BaNBi) > Ea N (B NCo)*
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Necessary and Sufficient Conditions

Theorem

Let (T4, B1, E1) and (T2, Ba, E2) be regular boundary problems with
Green's operators G1 = (T, By, E1) ™! and Gy = (T, B2, E3) L. Then
the following are equivalent:

o GG is an outer inverse of T} T,

0 Co+ (BiNEy) > BN (ExNTyEy)*
0 B >ConN(ENBH)tn(BynTE)*
o T 'Ey + (BaNBi) > Ea N (B NCo)*
o By >T7'Eyn(BiNESH)E N (BiNCy)*
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Necessary and Sufficient Conditions

Theorem

Let (T4, B1, E1) and (T2, Ba, E2) be regular boundary problems with
Green's operators G1 = (T, By, E1) ™! and Gy = (T, B2, E3) L. Then
the following are equivalent:

o GG is an outer inverse of T} T,

0 Co+ (BiNEy) > BN (ExNTyEy)*

0 B >ConN(ENBH)tn(BynTE)*

o T 'Ey + (BaNBi) > Ea N (B NCo)*

o By >T7'Eyn(BiNESH)E N (BiNCy)*
In this case, the reverse order law holds.
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Necessary and Sufficient Conditions

Theorem

Let (T4, B1, E1) and (T2, Ba, E2) be regular boundary problems with
Green's operators G1 = (T, By, E1) ™! and Gy = (T, B2, E3) L. Then
the following are equivalent:

o GG is an outer inverse of T} T,

0 Co+ (BiNEy) > BN (ExNTyEy)*

0 B >ConN(ENBH)tn(BynTE)*

o T 'Ey + (BaNBi) > Ea N (B NCo)*

o By >T7'Eyn(BiNESH)E N (BiNCy)*
In this case, the reverse order law holds.

Result algorithmic for Fredholm operators (— outer inverses Fredholm).
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@ Factorization of Generalized Boundary Problems
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Recap: Factorization of Plain Boundary Problems
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Recap: Factorization of Plain Boundary Problems

Theorem (Regensburger/R. 2009)

Let (T, B) € BnProb* and T' = 71T a factorization into epimorphisms.
Then (T, B) = (T1,B1) - (T2, B) is a factorization in BnProb™ iff

B = H;(Bﬂ KQJ‘) with K9 :=kerTy and ToHy =1
and By < B is orthogonally closed such that B = (BN KQL) + Bs.
In that case, G1 = ThG.
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Recap: Factorization of Plain Boundary Problems

Theorem (Regensburger/R. 2009)

Let (T, B) € BnProb* and T' = 71T a factorization into epimorphisms.
Then (T, B) = (T1,B1) - (T2, B) is a factorization in BnProb™ iff
B = H;(Bﬂ KQJ‘) with K9 :=kerTy and ToHy =1

and By < B is orthogonally closed such that B = (BN KQL) + Bs.
In that case, G1 = ThG.

For fixed T = T1 T5:
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Recap: Factorization of Plain Boundary Problems

Theorem (Regensburger/R. 2009)

Let (T, B) € BnProb* and T' = 71T a factorization into epimorphisms.
Then (T, B) = (T1,B1) - (T2, B) is a factorization in BnProb™ iff
B = H;(Bﬂ KQJ‘) with K9 :=kerTy and ToHy =1

and By < B is orthogonally closed such that B = (BN KQL) + Bs.
In that case, G1 = ThG.

For fixed T = T1 T5:

{B2 | (T2,B2) € BnProb*} <«— {Ls| Ko+ Ly =kerT}
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Recap: Factorization of Plain Boundary Problems

Theorem (Regensburger/R. 2009)

Let (T, B) € BnProb* and T' = 71T a factorization into epimorphisms.
Then (T, B) = (T1,B1) - (T2, B) is a factorization in BnProb™ iff
B = H;(Bﬂ KQJ‘) with K9 :=kerTy and ToHy =1

and By < B is orthogonally closed such that B = (BN KQL) + Bs.
In that case, G1 = ThG.

For fixed T = T1 T5:

{B2 | (T2,B2) € BnProb*} <«— {Ls| Ko+ Ly =kerT}

By Bﬁ- NkerT
BQL%‘ < L2
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Complications for Generalized Boundary Problems
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Complications for Generalized Boundary Problems

Now try to lift T' = T1T5 to generalized boundary problems:
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Complications for Generalized Boundary Problems

Now try to lift T' = T1T5 to generalized boundary problems:

(TaB7E) = (TlaBlaEl)(T27827E2)
= (TlTQ,BQ + TQ*(Bl N E%‘),El + Tl(Bf‘ N Eg)
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Complications for Generalized Boundary Problems

Now try to lift T' = T1T5 to generalized boundary problems:

(T>B7E) = (TlaBlaEl)(T27827E2)
= (TlTQ,BQ + TQ*(Bl N E%‘),El + Tl(Bf‘ N Eg)

As to be expected, new complications arise:
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Complications for Generalized Boundary Problems

Now try to lift T' = T1T5 to generalized boundary problems:

(T>B7E) = (Tla‘BlaEl)(T27827E2)
= (TlTQ,BQ + TQ*(Bl N E%‘),El + Tl(Bf‘ N Eg)

As to be expected, new complications arise:

o Possible loss of information on B; and E5 in intersections.
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Complications for Generalized Boundary Problems

Now try to lift T' = T1T5 to generalized boundary problems:

(T>B7E) = (Tla‘BlaEl)(T27827E2)
= (TlTQ,BQ + TQ*(Bl N E%‘),El + Tl(Bf‘ N Eg)

As to be expected, new complications arise:
o Possible loss of information on B; and E5 in intersections.

o Choice of B; influences choice of E; in view of regularity.
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Complications for Generalized Boundary Problems

Now try to lift T' = T1T5 to generalized boundary problems:

(T>B7E) = (Tla‘BlaEl)(T27827E2)
= (TlTQ,BQ + TQ*(Bl N E%‘),El + Tl(Bf‘ N Eg)

As to be expected, new complications arise:
o Possible loss of information on B; and E5 in intersections.
o Choice of B; influences choice of E; in view of regularity.

o Reverse order law intertwines choice of B and Exs.
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Complications for Generalized Boundary Problems

Now try to lift T' = T1T5 to generalized boundary problems:

(T>B7E) = (Tla‘BlaEl)(T27827E2)
= (Tng,BQ + TQ*(Bl N E%‘),El + Tl(Bf‘ N Eg)

As to be expected, new complications arise:
o Possible loss of information on B; and E5 in intersections.
o Choice of B; influences choice of E; in view of regularity.
o Reverse order law intertwines choice of B and Exs.

No comprehensive result as yet.
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Complications for Generalized Boundary Problems

Now try to lift T' = T1T5 to generalized boundary problems:

(T>B7E) = (Tla‘BlaEl)(T27827E2)
= (Tng,BQ + TQ*(Bl N E%‘),El + Tl(Bf‘ N Eg)

As to be expected, new complications arise:
o Possible loss of information on B; and E5 in intersections.
o Choice of B; influences choice of E; in view of regularity.
o Reverse order law intertwines choice of B and Exs.

No comprehensive result as yet. (Why is the plain case so plain?)
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Complications for Generalized Boundary Problems

Now try to lift T' = T1T5 to generalized boundary problems:

(Ta B, E) = (Tla By, El)(T2> By, E2)
= (Tng, Ba + TQ*(Bl N E%‘), FEq + Tl(Bf‘ M Eg)
As to be expected, new complications arise:
o Possible loss of information on B; and E5 in intersections.
o Choice of B; influences choice of E; in view of regularity.

o Reverse order law intertwines choice of B and Exs.

No comprehensive result as yet. (Why is the plain case so plain?)

> We consider important special cases.
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Factorization for Small Exception Spaces

Two possibilities:
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Factorization for Small Exception Spaces

Two possibilities:

o Assume Ey < ker(7T7):
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Factorization for Small Exception Spaces

Two possibilities:

o Assume Ey < ker(7T7):

(T1, By, 1 )(Ty, By, Ey) = (T1Ty, By + T (B N Ey ), Ey)
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Factorization for Small Exception Spaces

Two possibilities:

o Assume Ey < ker(7T7):
(T1, By, 1 )(Ty, By, Ey) = (T1Ty, By + T (B N Ey ), Ey)

Advantage: No need to invert 77 since 177 (E2 N Bf) =0.
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Factorization for Small Exception Spaces

Two possibilities:

o Assume Ey < ker(7T7):
(T1, By, Ey)(T2, By, B2) = (TyT2, By + T5 (By N Ey), Ey)
Advantage: No need to invert 77 since 177 (E2 N Bf) =0.

o Assume Ey < Bll:
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Factorization for Small Exception Spaces

Two possibilities:

o Assume Ey < ker(7T7):
(T1, By, Er)(Ty, B, Ba) = (T1 T, Bo + T5 (B1 N Ey), Ey)
Advantage: No need to invert 77 since 177 (E2 N Bf) =0.
o Assume Ey < Bll:

(T, By, Er) (T2, B2, E2) = (Th T2, Bo + T5 By, E1 + Th E2)
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Factorization for Small Exception Spaces

Two possibilities:

o Assume E3 < ker(T}):
(Th, By, E1) (T3, B, Eo) = (T1 T2, By + T3 (B N By ), E1)
Advantage: No need to invert 77 since 177 (E2 N Bf) =0.
o Assume Ey < Bll:
(Th, B, E1) (T3, Be, Es) = (1112, By + T5 By, E1 + TV E»)

Advantage: Need not compute intersections Bi- N E> and By N E5-
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Factorization for Small Exception Spaces

Two possibilities:

o Assume Ey < ker(7T7):
(Th, By, E1) (T3, B, Eo) = (T1 T2, By + T3 (B N By ), E1)
Advantage: No need to invert 77 since 177 (E2 N Bf) =0.
o Assume Ey < Bll:
(Th, B, E1) (T3, Be, Es) = (1112, By + T5 By, E1 + TV E»)
Advantage: Need not compute intersections Bi- N E> and By N E5-

In both cases, reverse order law applies.
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Factorizations with Plain Right Factor
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Factorizations with Plain Right Factor

Recall that (Tl,Bl,El)(Tz,Bg) = (T1T27B—|—T2*(Bl),E1).
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Factorizations with Plain Right Factor
Recall that (Tl, B, El)(Tz, Bg) = (TlTQ7 B+ TQ*(Bl), El).

Lemma

Let (T, B) be semi-regular with factorization 7" = T} 7% into epimorphisms.
Then there exists a regular core (Ty, B2) < (T2, B).
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Factorizations with Plain Right Factor

Recall that (Tl, B, El)(Tz, Bg) (T1T27 B+ T2 (Bl E1

Lemma

Let (T, B) be semi-regular with factorization 7" = T} 7% into epimorphisms.
Then there exists a regular core (T, Bs) < (13, B).

Let (T, B, E) be regular with factorization 7" = T17T% into epimorphisms.
Then there exists a unique regular boundary problem (71, B;, E) such
that for each By < B with (T3, B2) regular we have

(Tv Bv E) = (Tl,BlaE)(T%B?) = (T1T27B2 + T;(Bl)7E)
and (T, B,E)~! = (T3, B2) " H(Th, Bi, E)*
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Factorizations with Plain Right Factor
Recall that (Tl, B, El)(Tz, Bg) = (T1T27 B+ TQ*(Bl), El).

Lemma

Let (T, B) be semi-regular with factorization 7" = T17T» into epimorphisms.
Then there exists a regular core (T, B2) < (T3, B).

Let (T, B, E) be regular with factorization 7" = T17T% into epimorphisms.
Then there exists a unique regular boundary problem (71, B;, E) such
that for each By < B with (T3, B2) regular we have

(T,B,E) = (T1, B1, E) (T2, B2) = (ThT2, B2 + 15 (B1), E)
and (T, B, E)_l = (TQ,BQ)_l(Tl,Bl,E)_l.

Moreover, the left boundary conditions are By = Hj (B Nker(T)*) for an
arbitrary right inverse Hy of T.
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Algorithm 6.1

Algorithm 6.1 (Intersection 1).

Input Generating sets f1,...,fs € % and f1,...,5, € |P) of F1 <F and %1 <|D).

Output A generating set of 1 n ,%’f

1. Compute the evaluation matrix M = f(f) € F"*5.
2. Compute a basis v?,...,v* € F* of Ker M.
3. Forl<i<ksetg;= jljfj

4. Return g1,...,8.
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Algorithm 6.2

Algorithm 6.2 (Intersection 2).

Input Generating sets f1,...,fs € ¥ and f1,...,B, € |P) of F1 < F and %1 < |D).
Output A generating set of F{-n 4.

1. Compute the evaluation matrix M = (f) € F"**.

2. Compute a basis v?,...,v* € 7 of Ker M.

3. For1<i<kseta; :Z;ﬂvjuj.

4. Return ay,...,az.
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Algorithm 6.3

Algorithm 6.3 (Direct Sum Test).

Input Bases f1,...,fr € % and f1,...,0, €|®) of F1 < F and % <|D).
Output true if #1 -+ % = Z and false otherwise.

1. Compute the evaluation matrix M = f(f) e F"*".

2. Compute the determinant d = det M of the evaluation matrix.

3. If d #0, return true, else return false.
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Algorithm 6.4

Algorithm 6.4 (Projector).

Input Bases f1,...,fs € Z and f1,...,0; € |®) of F1 <F and H; < |P) such that 71 n
@f = {0}

Output A projector P with Im P = span(f,...,fs) and KerP < span(fy,..., B)*.
1. Compute the evaluation matrix M = S(f) € F***.
2. Compute a left inverse M~ = (m; ;)1<i<s 1<j<¢ of the evaluation matrix.
3. Forl<issseta; =Y,  m;.pr.
4. SetP=Y7_, fja;.

5. Return P.
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Algorithm 6.6

Algorithm 6.6 (Fundamental Right Inverse).

Input A regular fundamental system s1,...,s, of a monic differential operator T'.
Output The fundamental right inverse T of T.

1. Compute the Wronskian matrix W and d = detW.

2. For 1<i<n compute d; = detW; for W; as in Proposition 6.5.

3. Compute T* =37 s;[d"'d; € Z[0, 1.

4. Return T*.
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Algorithm 6.7

Algorithm 6.7 (Compatibility Conditions).

Input A boundary problem (7', %) where f1,..., [, is a basis of Z. A regular funda-
mental system s1,...,5,, of T

Output A basis of the space of compatibility conditions ¥’ = T(%*)*.
1. Compute the fundamental right inverse 7'* of T' with Algorithm 6.6.
2. Compute a basis a7, ..., a, of (span(sy,...,sm))" N2 with Algorithm 6.2.
3. For 1 <i <r multiply y; = aiT’ €§°"q>(6,f).

4. Return yq,...,7,.
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Algorithm 6.8

Algorithm 6.8 (Compatibility Conditions 2).

Input A semi-regular boundary problem (7, %) where f1,...,[, is a basis of . A
regular fundamental system sj,...,s,, of T

Output A basis of the space of compatibility conditions T'(%+)*.
1. Compute the fundamental right inverse T'* of T (Algorithm 6.6).
2. Compute a projector P with ImP = S and %+ < KerP with Algorithm 6.4.
3. Multiply G = (1 -P)T* € F4,(0, [).
4. For 1<i<n multiply y; = ;G &%p(d,f).

5. Return a basis of span(yi,...,7,).
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Algorithm 6.9a

Algorithm 6.9 (Regularity Test).

Input A boundary problem (T, %,E) where f1,...,[, is a basis of # and ej,...,e, is
a basis of E. A regular fundamental system s1,...,s,, of T.

Output true if the problem is regular and false otherwise.

1. If E = {0} and m # n: Return false.
2. If E ={0} and m = n: Test if - +span(sy,...,s,) = F with Algorithm 6.3.
3. If E # {0} and m = n: Return false.

4. If E #{0} and m < n: Compute the evaluation matrix M = f(s) € F"*™.
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Algorithm 6.9b

(a) If rank M < m: return false.
(b) If rank M =m:

i. Compute the compatibility conditions y1,...,y, of (T, %) with Algo-
rithm 6.7.
ii. Test if E +span(yy,...,y,)" =% with Algorithm 6.3.
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Algorithm 6.10

Algorithm 6.10 (Generalized Green’s Operator).

Input A regular boundary problem (T, %4,E) where f1,...,0, is a basis of % and
e1,...,er is a basis of E. A regular fundamental system sy,...,s,, of T.

Output The generalized Green’s operator G with InG = %+ and KerG =E.

1. Compute the fundamental right inverse T'* of T' (Algorithm 6.6).

2. Compute a projector P with ImP =S and %+ < KerP (Algorithm 6.4).
3. Multiply G = (1-P)T* € %9, [).

4. If E = {0} return G, else

5. Compute the compatibility conditions & of (T', %) with Algorithm 6.8.

6. Compute the projector @ with Im@ = E and ¢ < Ker@ (Algorithm 6.4).
7. Multiply G = G(1 - Q) € (0, ).

8. Return G.
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Algorithm 6.11

Algorithm 6.11 (Inhomogeneous Boundary Conditions).

Input A regular boundary problem (7, %) where f1,...,8, is a basis of %, bound-
ary values cy,...,c,, and a forcing function f. A regular fundamental system
81,...8m of T'.

Output The solution of the boundary problem (6.3).
1. Compute the evaluation matrix M = f(s) € F"*".
2. Compute the Green’s operator G of (T, %) with Algorithm 6.10.
3. Compute the solution A € F” of the linear system MA = (cq,...,c,)".
4. Setk=3%7 ,A;si.
5. Compute the application of the Green’s operator u = G(f) € &.

6. Return u +k.
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Algorithm 6.12

Algorithm 6.12 (T~ 1(E)).

Input A monic differential operator 7' and a subspace E < %, where ej,...,e, is a
basis of E. A regular fundamental system s1,...s,, of T

Output A basis of T-1(E).
1. Compute the fundamental right inverse T'* with Algorithm 6.6.
2. For 1<i<r compute %; = T’(ei).

3. Return sq,...8;,k1,..., k.
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Algorithm 6.13

Algorithm 6.13 (Check Reverse Order Law).

Input Two regular boundary problems (T'1,%1,E1) and (T2, $B2,E2), where f1,...,0n
and Bl,...,ﬁv are bases for % and %y and eq,...,e; and é1,...,é, are bases for
Eq and Es. Fundamental systems si,...,s,, of T and §1,...,5, of To.

Output true if (T, Bo,E9)"T1,%1,E1) 71 = (T1,%51,E1)o(T9, Bs,E2))"! and false
otherwise.

1. Compute T} Y(E) with Algorithm 6.6.

2. Compute a basis of = EanN Tl’l(El).

3. Compute a basis of B = %1 NI+ with Algorithm 6.2.

4. Compute a basis of K = %, nEé' with Algorithm 6.2.

5. Compute the compatibility conditions y1,...,y, of (T'9,%As) with Algorithm 6.7.
6. Compute C =span(yq,...,y,) + K.

7. If B < C return true, else return false.
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Algorithm 6.14

Algorithm 6.14 (Composition).

Input Two boundary problems (T'1,%1,E1) and (T, %2,E9), where f1,...,5, and
B1,..., By are bases of % and %y and ey, ...,e; and é1,...,é, are bases of E;
and Es.

Output The composite boundary problem (71, %1,E1)o (T, %2,E5).
1. Multiply T = T1 T3 € F/0, [).
2. Compute a basis b1,...,by of % r‘nEzL with Algorithm 6.2.
3. Compute a basis v1,...,vy of I = 33{' NEgy with Algorithm 6.1.
4. For 1<i <k multiply ¢; =b;T2 € F(0, [).
5. For 1< j =</ compute the application ¢; = T1(v;) € &F.
6. Compute a basis ay,...,a4 ofﬁl,...,ﬁt,cl,...,ck.
7. Compute a basis f1,...,fr of e1,...,es,t1,...,t¢.

8. Return (T, (aq,...,aq),(f1,....f7).
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Algorithm 6

Algorithm 6.15 (Right Regular Factorization).

Input A regular boundary problem (7T',%,E), where f1,...,0, is a basis of # and
e1,...,e, is a basis of E. A factorization 7' =TTy and a regular fundamental
system s1,...,s, of T'3.

Output Two regular boundary problems (T'1,%1,E) and (Te,%2) with (T, %,E) =
(T1,%1,E) 0 (T2, %s).

1. Compute the evaluation matrix M = f(s) € F**F.

2. Compute C =(c; j)1<i,j<n € F"*" such that CM is in reduced row echelon form.
3. Forl<i<nsetf; = o1 CikBr-

4. Compute a right inverse Hy of Ty with Algorithm 6.6.

5. For pu+1<j<nmultiply a;_, = f;Hs € Fo (0, [).

6. Return (T'1,(a1,...,an—p),(e1,...,e;) and (To,(B1, ..., By)).
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That's all folks. ..

THANK You
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