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Generalized Inverses for Linear Maps

Fix K-spaces V,W . Think of V = Cn(R) and W = C(R).

Definition
For given T : V →W , we call G : W → V

an inner inverse of T if TGT = T and
an outer inverse of T if GTG = G.

If G is both, we call it an (algebraic) generalized inverse T+ of T .

They always exist—in abundance:
� Choose B u ker(T ) = V .
Projector P onto ker(T )

� Choose S u im(T ) = W .
Projector Q onto im(T ).

Roughly T+ := (T |B)−1Q.
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Bijection (P,Q)↔ T+(P,Q). Special case: Moore-Penrose inverse T †.
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Characterization of Outer Inverses

For generalized inverses ker(T ) u im(G)︸ ︷︷ ︸
B

= V and im(T ) u ker(G)︸ ︷︷ ︸
E

= W .

For solving Tu = f we enforce
uniqueness by imposing the constraint u ∈ B = B⊥ and
existence by removing exceptions f 7→ f − f̃ (f̃ ∈ E).

Keep choice of B = im(G) and E = ker(G) but stipulate:

ker(T ) ∩B = O and W = T (B) u E
more constraints
more exceptions

Must first choose B and then E.
Regain T+ for maximal B, meaning ker(T ) uB = V .
Contracts T+ by shrinking T (B)

∼→ B.
Direct sums V = B u T−1(E) and W = E u T (B).
Corresponding projectors P : V → V and Q : W →W .
Outer inverse again via Ta(P,Q) := T |−1B Q↔ (P,Q).
Also written as Ta(B,E).
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Characterization of Inner Inverses

For generalized inverses ker(T ) u im(G)︸ ︷︷ ︸
B

= V and im(T ) u ker(G)︸ ︷︷ ︸
E

= W .

Now keep ker(T ) uB = V and im(T ) u E = W but select

A : E → V arbitrary as an extension of im(T )
∼→ B.

Use again projectors P : V → V and Q : W →W .
Inner inverse given by T`A(P,Q) := T |−1B ⊕A. Also T`A(B,E).
Expands T+ by using A on E, hence ker(G) ≤ E and B ≤ im(G).
We need fewer constraints—fewer exceptions.
Regain T+ for trivial extension A = 0.

Note that G is an outer inverse of T iff T is an inner inverse of G.

In the sequel we shall only use outer inverses.
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Finite Dimension and Codimension

Definition
A linear map T ∈ L(V,W ) is a Fredholm operator if dim ker(T ) <∞
and codim im(T ) <∞.

As we shall see, generalized Green’s operators for LODEs are Fredholm.

Proposition
Let F ≤ V be generated by u1, . . . , um and B ≤ V ∗ by β1, . . . , βn.
Choosing a basis k1, . . . , kr ∈ Km for ker(β(u)) and κ1, . . . , κs ∈ Fn

for ker(β(u)>), the intersections F ∩B⊥ and F⊥ ∩B are generated by

k1 · (u1, . . . , um), . . . , kr · (u1, . . . , um)

and

κ1 · (β1, . . . , βn), . . . , κs · (β1, . . . , βn),

respectively.
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Evaluation Matrix and Disjointness

Recall evaluation matrix

β(u) =

β1(u1) · · · β1(um)
...

. . .
...

βn(u1) · · · βn(um)


for u = (u1, . . . , um) ∈ V m and β = (β1, . . . , βn) ∈ (V ∗)n.

Lemma
Let F ≤ V have basis u1, . . . , um and B ≤ V ∗ have basis β1, . . . , βn.
Then we have F ∩B⊥ = O iff β(u) has full column rank.
Moreover, we have V = F uB⊥ iff m = n and β(u) ∈ GLn(K).

First case corresponds to regular boundary problems,
second case to regular generalized problems.
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β1(u1) · · · β1(um)
...

. . .
...

βn(u1) · · · βn(um)


for u = (u1, . . . , um) ∈ V m and β = (β1, . . . , βn) ∈ (V ∗)n.

Lemma
Let F ≤ V have basis u1, . . . , um and B ≤ V ∗ have basis β1, . . . , βn.
Then we have F ∩B⊥ = O iff β(u) has full column rank.
Moreover, we have V = F uB⊥ iff m = n and β(u) ∈ GLn(K).

First case corresponds to regular boundary problems,

second case to regular generalized problems.

Markus Rosenkranz Singular Boundary Problems



Evaluation Matrix and Disjointness

Recall evaluation matrix

β(u) =

β1(u1) · · · β1(um)
...

. . .
...

βn(u1) · · · βn(um)


for u = (u1, . . . , um) ∈ V m and β = (β1, . . . , βn) ∈ (V ∗)n.

Lemma
Let F ≤ V have basis u1, . . . , um and B ≤ V ∗ have basis β1, . . . , βn.
Then we have F ∩B⊥ = O iff β(u) has full column rank.
Moreover, we have V = F uB⊥ iff m = n and β(u) ∈ GLn(K).

First case corresponds to regular boundary problems,
second case to regular generalized problems.

Markus Rosenkranz Singular Boundary Problems



Specification of Projectors

A projector is also a generalized inverse P = P+(1− P, P ).

Recall that uj ∈ V and βi ∈ V ∗ are called biorthogonal if βj(ui) = δij .
�P = u1β1 + · · ·+ unβn projects onto [u1, . . . , un] along [β1, . . . , βn]⊥.

Proposition

Let U ≤ V and B ≤ V ∗ be such that U ∩B⊥ = O. For arbitrary
bases u1, . . . , um of U and β1, . . . , βn of B let β(u)# be any left inverse
of β(u) and define (β̃1, . . . , β̃m) = β(u)#(β1, . . . , βn). Then

Pu =
∑m

i=1 β̃i(u)ui

is a projector onto U along [β̃1, . . . , β̃m]⊥ ≥ B⊥.
In particular, if V = U uB⊥ then P projects along [β̃1, . . . , β̃m]⊥ = B⊥.
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Properties of the Transpose

Recall: G : V →W injective =⇒ G∗ : W ∗ → V ∗ surjective
G∗T ∗ = 1 for TG = 1

Likewise: T : V →W surjective =⇒ T ∗ : W ∗ → V ∗ injective
G∗T ∗ = 1 for TG = 1

Proposition
For T ∈ L(V,W ) the transpose induces via B 7→ T ∗(B) a monotonic
map P̄(W ∗)→ P̄(V ∗).

Proposition
For T ∈ L(V,W ) we have

T (U)⊥ = (T ∗)−1(U⊥) T (B⊥) = (T ∗)−1(B)⊥

T ∗(C)⊥ = T−1(C⊥) T ∗(Z⊥) = T−1(Z)⊥

for subspaces U ≤ V , Z ≤W , C ≤W ∗ and orthogonally closed B ≤ V ∗.
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Duality Principle for Generalized Inverses

Special case of previous result:

Proposition
For T ∈ L(V,W ) we have

im(T )⊥ = ker(T ∗) im(T ) = ker(T ∗)⊥

im(T ∗)⊥ = ker(T ) im(T ∗) = ker(T )⊥

for relating the orthogonal with kernel and image.

Generalize: Given any valid statement get one for free by
reversing all arrows and inclusions,
interchanging left and right inverses,
interchanging + and ∩,
interchanging kernels and images,
interchanging top space and zero space.
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Abstract Setting of Semi-Regular Problems

Recall that (T,B) is called a boundary problem
if T ∈ L(V,W ) is surjective and
the boundary space B ≤ V ∗ is orthogonally closed.

Moreover, (T,B) is regular if ker(T ) u B⊥ = V .

Interpretation of (T,B) as boundary problem:
Tu = f
β(u) = 0 (β ∈ B)

Here ker(T ) + B⊥ = V means existence of solutions for all f ∈W .
And ker(T ) ∩ B⊥ = O means uniqueness of the solution u ∈ V .

The boundary problem (T,B) is called semi-regular if ker(T ) ∩ B⊥ = O.
This models overdetermined problems.

Regularity & semi-regularity are tested algorithmically (rank conditions).

� Necessary condition for semi-regularity: dim ker(T ) ≤ dimB
� Necessary condition for regularity: dim ker(T ) = dimB
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Generalized Boundary Problems and Green’s Operators

Definition
Let (T,B) be a semi-regular boundary problem with T ∈ L(V,W )
and B ≤ V ∗. Then E ≤W is called an exceptional space for (T,B)
if W = T (B⊥) u E.

The generalized boundary problem (T,B, E) is then called regular.

Its Green’s operator is defined by G = Ta(B⊥, E).

Alternative notation G = (T,B, E)−1.
� Regular plain problems (T,B) ∼= (T,B, O) and (T,B)−1 = (T,B, E)−1.

Generalization of regularity decomposition (where E = O):

V = B⊥ u T−1(E)

Generalized boundary problem back from G via (T, im(G)⊥, ker(G)).
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Regular Cores

Recall G = T |−1B Q for (T,B, E) with projector Q onto T (B⊥) along E.
Inconstructive since T |B is in general unknown.

Theorem
Every semi-regular problem (T,B) has a regular core, meaning a regular
subproblem (T, B̃) ≤ (T,B).

Moreover, if G̃ = (T, B̃)−1 and if the generalized problem (T,B, E) is
regular with G = (T,B, E)−1, then we have G = G̃Q.

Generally, (T,B) will have many regular cores.

For computing some conditions B̃ ≤ B:
� Determine projector onto ker(T ) along B̃⊥ ≥ B⊥.
� Then clearly ker(T ) u B̃⊥ = V .
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Example of Generalized Boundary Problem

u′′ = f
u(0) = u′(0) = u′(1)

� Note that {u(0) = u′(0) = 0} is a typical case of a regular core (IVP).
� However, {u′(0) = u′(1) = 0} is not (prompts third condition).

Evaluation matrix β(u) =

(
1 0
0 1
0 1

)
: full column rank → semi-regular X

Green’s operator for regular core (∂2, [e0, e0∂]) clearly G̃ = A2.
Choose exceptional space E:

Observe that
r 1
0 f(ξ) dξ = 0 is necessary and sufficient for solving.

Hence need E u [
r 1
0]
⊥ = C∞[0, 1].

For example E = [1] works since β(u) = 1 ∈ GL1(K).
Also E = [x] works, now β(u) = 1/2 ∈ GL1(K).

For E = [1] obtain Q = 1−
r 1
0 and G = G̃Q = xA−Ax− 1

2x
2
r 1
0.

For E = [x] then Q = 1− 2x
r 1
0 and G = G̃Q = xA−Ax− 1

3x
3
r 1
0.
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Compatibility Conditions of Boundary Problems

In the example we guessed the constraint
r 1
0 f(ξ) dξ = 0.

How to do this algorithmically?

Definition
Let (T,B) be any boundary problem with T ∈ L(V,W ). Then the
admissible subspace T (B⊥) ≤W is described implicitly by the space of
compatibility conditions C = T (B⊥)⊥ ≤W ∗.

For LODEs we have dimT (B⊥) =∞ but dim C <∞.
Previous example: C = [

r 1
0].

Proposition
Let (T,B) be a semi-regular problem with dimB,dim ker(T ) <∞.
Then we have dim C = dimB − dim ker(T ).

Predicts number of conditions, for example dim C = 3− 2 above.
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Determining Compatibility Conditions

Theorem
Let (T,B) be a boundary problem and let G be any right inverse of T .
Then C = G∗(B ∩ ker(T )⊥) and dim C = dim(B ∩ ker(T )⊥).
For dimB <∞, every exceptional space satisfies dim C = dimE.

For regular plain problems (T,B) this implies dim C = 0.

Improved calculation possible for semi-regular problems:

Proposition

Let (T,B) be semi-regular with regular core (T, B̃).
Then we have C = G̃∗(B) for G̃ = (T, B̃)−1.
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Boundary Problems Failing Semi-Regularity

Let (T,B) be any boundary problem with C = T (B⊥)⊥.

Assume ker(T ) ∩B⊥ = O fails:
Need expanded B̃ ≥ B such that ker(T ) ∩B⊥ = O.
But should not impose foreign compatibility conditions.
Hence want T (B̃⊥)⊥ = T (B⊥)⊥.

Always possible: Take a basis biorthogonal to ker(T ) ∩ B⊥.

Example: (T,B) = (∂2, [e0∂, e1∂])

� Choosing β3 = e0 or β3 = e1 is fine.
� However, adding both creates new compatibility condition

r 1
0 x.

Moral: Add “as few conditions as possible”.

In the sequel, restrict ourselves to semi-regular problems.
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But should not impose foreign compatibility conditions.
Hence want T (B̃⊥)⊥ = T (B⊥)⊥.

Always possible: Take a basis biorthogonal to ker(T ) ∩ B⊥.

Example: (T,B) = (∂2, [e0∂, e1∂])

� Choosing β3 = e0 or β3 = e1 is fine.
� However, adding both creates new compatibility condition

r 1
0 x.

Moral: Add “as few conditions as possible”.

In the sequel, restrict ourselves to semi-regular problems.
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Difficulties with Exceptional Space

Recall multiplication of plain boundary problems:

(T1,B1)(T2,B2) = (T1T2,B2 + T ∗2 (B1)

Regularity: Whenever (T1,B1) and (T2,B2) are regular, then so is
the product (T1,B1)(T2,B2).
Reverse Order Law: In that case, we have the expected relation(

(T1,B1)(T2,B2)
)−1

= (T2,B2)−1(T1,B1)−1.

Generalizing to (T1,B1, E1), (T2,B2) leads to complications:
Regularity need not be preserved.
Reverse order law can fail.

� Necessary and sufficient conditions for regularity.
� Ensure reverse order law by choosing good exceptional space.
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Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:
� If T1T2 = T then how can we ensure G2G1 = G?
� Here the G(1,2) are (generalized, inner, outer, . . . ) inverses of T(1,2).

Proposition
Let T1 ∈ L(V,W ) and T2 ∈ L(U, V ) have outer inverses G1 and G2,
respectively. Writing P = G1T1 and Q = T2G2, the product G2G1 is an
outer inverse of T1T2 iff QP in a projector.

[By duality, similar statement for inner inverses.]

Are there better necessary and sufficient conditions:
Should not require G1, G2.
Should only involve T1, T2 and “known” spaces.

Markus Rosenkranz Singular Boundary Problems



Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:

� If T1T2 = T then how can we ensure G2G1 = G?
� Here the G(1,2) are (generalized, inner, outer, . . . ) inverses of T(1,2).

Proposition
Let T1 ∈ L(V,W ) and T2 ∈ L(U, V ) have outer inverses G1 and G2,
respectively. Writing P = G1T1 and Q = T2G2, the product G2G1 is an
outer inverse of T1T2 iff QP in a projector.

[By duality, similar statement for inner inverses.]

Are there better necessary and sufficient conditions:
Should not require G1, G2.
Should only involve T1, T2 and “known” spaces.

Markus Rosenkranz Singular Boundary Problems



Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:
� If T1T2 = T then how can we ensure G2G1 = G?

� Here the G(1,2) are (generalized, inner, outer, . . . ) inverses of T(1,2).

Proposition
Let T1 ∈ L(V,W ) and T2 ∈ L(U, V ) have outer inverses G1 and G2,
respectively. Writing P = G1T1 and Q = T2G2, the product G2G1 is an
outer inverse of T1T2 iff QP in a projector.

[By duality, similar statement for inner inverses.]

Are there better necessary and sufficient conditions:
Should not require G1, G2.
Should only involve T1, T2 and “known” spaces.

Markus Rosenkranz Singular Boundary Problems



Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:
� If T1T2 = T then how can we ensure G2G1 = G?
� Here the G(1,2) are (generalized, inner, outer, . . . ) inverses of T(1,2).

Proposition
Let T1 ∈ L(V,W ) and T2 ∈ L(U, V ) have outer inverses G1 and G2,
respectively. Writing P = G1T1 and Q = T2G2, the product G2G1 is an
outer inverse of T1T2 iff QP in a projector.

[By duality, similar statement for inner inverses.]

Are there better necessary and sufficient conditions:
Should not require G1, G2.
Should only involve T1, T2 and “known” spaces.

Markus Rosenkranz Singular Boundary Problems



Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:
� If T1T2 = T then how can we ensure G2G1 = G?
� Here the G(1,2) are (generalized, inner, outer, . . . ) inverses of T(1,2).

Proposition
Let T1 ∈ L(V,W ) and T2 ∈ L(U, V ) have outer inverses G1 and G2,
respectively. Writing P = G1T1 and Q = T2G2, the product G2G1 is an
outer inverse of T1T2 iff QP in a projector.

[By duality, similar statement for inner inverses.]

Are there better necessary and sufficient conditions:
Should not require G1, G2.
Should only involve T1, T2 and “known” spaces.

Markus Rosenkranz Singular Boundary Problems



Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:
� If T1T2 = T then how can we ensure G2G1 = G?
� Here the G(1,2) are (generalized, inner, outer, . . . ) inverses of T(1,2).

Proposition
Let T1 ∈ L(V,W ) and T2 ∈ L(U, V ) have outer inverses G1 and G2,
respectively. Writing P = G1T1 and Q = T2G2, the product G2G1 is an
outer inverse of T1T2 iff QP in a projector.

[By duality, similar statement for inner inverses.]

Are there better necessary and sufficient conditions:
Should not require G1, G2.
Should only involve T1, T2 and “known” spaces.

Markus Rosenkranz Singular Boundary Problems



Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:
� If T1T2 = T then how can we ensure G2G1 = G?
� Here the G(1,2) are (generalized, inner, outer, . . . ) inverses of T(1,2).

Proposition
Let T1 ∈ L(V,W ) and T2 ∈ L(U, V ) have outer inverses G1 and G2,
respectively. Writing P = G1T1 and Q = T2G2, the product G2G1 is an
outer inverse of T1T2 iff QP in a projector.

[By duality, similar statement for inner inverses.]

Are there better necessary and sufficient conditions:
Should not require G1, G2.

Should only involve T1, T2 and “known” spaces.

Markus Rosenkranz Singular Boundary Problems



Reverse Order Law in Abstract Setting

Well-known problem in theory of generalized inverses:
� If T1T2 = T then how can we ensure G2G1 = G?
� Here the G(1,2) are (generalized, inner, outer, . . . ) inverses of T(1,2).

Proposition
Let T1 ∈ L(V,W ) and T2 ∈ L(U, V ) have outer inverses G1 and G2,
respectively. Writing P = G1T1 and Q = T2G2, the product G2G1 is an
outer inverse of T1T2 iff QP in a projector.

[By duality, similar statement for inner inverses.]

Are there better necessary and sufficient conditions:
Should not require G1, G2.
Should only involve T1, T2 and “known” spaces.

Markus Rosenkranz Singular Boundary Problems



Conditions for Reverse Order Law

Lemma
The following statements are equivalent for two projectors P and Q:

The composition PQ is a projector.
im(P ) ∩

(
im(Q) + ker(P )

)
≤ im(Q)u

(
ker(P ) ∩ ker(Q)

)
im(Q) ≤ im(P )u

(
ker(P ) ∩ im(Q)

)
u

(
ker(P ) ∩ ker(Q)

)
ker(Q)u

(
ker(P ) ∩ im(Q)

)
≥ ker(P ) ∩

(
im(Q) + im(P )

)
ker(P ) ≥ ker(Q) ∩

(
im(Q) + ker(P )

)
∩
(
im(Q) + im(P )

)
Theorem
Let T1 ∈ L(V,W ) and T2 ∈ L(U, V ) have outer inverses G1 = Ta1 (B1, E1)
and G2 = Ta2 (B2, E2), respectively. Then the following conditions are equivalent:

G2G1 is an outer inverse of T1T2

T2B2 ∩ (B1 + E2) ≤ B1 u (E2 ∩ T−1
1 E1).

B1 ≤ T2B2 u (E2 ∩B1)u (E2 ∩ T−1
1 E1)

T−1
1 E1 u (E2 ∩B1) ≥ E2 ∩ (B1 + T2B2)

E2 ≥ T−1
1 E1 ∩ (B1 + E2) ∩ (B1 + T2B2)
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Product of Generalized Boundary Problems

Definition
Let (T1,B1, E1) and (T2,B2, E2) be generalized problems. Then

(T1,B1, E1)(T2,B2, E2) = (T1T2,B2 + T ∗2 (B1 ∩ E⊥2 ), E1 + T1(B⊥1 ∩ E2)

is their product.

Special case E1 = E2 = O reduces to product of plain problems.

Now for the reverse order law:

Theorem

Let (T1,B1, E1) and (T2,B2, E2) be regular with G1 = (T1,B1, E1)
−1

and G2 = (T2,B2, E2)
−1. If G2G1 is an outer inverse of T1T2 then(

(T1,B1, E1)(T2,B2, E2)
)−1

= (T2,B2, E2)−1 (T1,B1, E1)−1,

with direct sums B2 u T ∗2 (B1 ∩ E⊥2 ) and E1 u T1(B⊥1 ∩ E2).
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Ensuring the Reverse Order Law

Theorem (Good Exceptions)

Let (T1,B1) and (T2,B2) be semi-regular with T1 ∈ L(V,W ) and T2 ∈ L(U, V ).
Then there exists an exceptional space E2 ≤ V for (T2,B2) such that the reverse
order law holds with all possible exceptional spaces E1 ≤W for (T1,B1).
Constructive Proof.

Proposition (Sufficient Conditions)

Let (T1,B1, E1) and (T2,B2, E2) be regular with G1 = (T1,B1, E1)−1

and G2 = (T2,B2, E2)−1. Then G2G1 is the Green’s operator of the product if
one of the following five conditions hold:

E2 ≤ T−11 E1 or T−11 E1 ≤ E2 E2 ≤ B⊥1
C2 ≤ B2 or B1 ≤ C2

Corollary

For regular boundary problems (T1,B1, C1) and (T2,B2) the reverse order law
always holds, and the product is given by (T1T2,B2 + T ∗2 (B1), E1).
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Ensuring Semi-Regularity

Regular problems are not closed under multiplication:
Counterexample: Use e(x) = 2x3 − 3x2 + 2x− 1 on previous example.

(T,B, E) = (∂2, [e0, e0∂, e1∂], [e(x)])

(T,B, E)2 = (∂4, [e0, e0∂, e1∂, e0∂2 + 1
2e1∂

3, e0∂3 − e1∂3], [e(x)])

One checks that (T,B, E) is regular but (T,B, E)2 is not:
� (∂4, [e0, e0∂, e1∂, e0∂2 + 1

2e1∂
3, e0∂3 − e1) not even semi-regular!

Theorem
Let (T1,B1, E1) and (T2,B2, E2) be regular. Then the plain part of the
product, (T1T2,B2 + T ∗2 (B1 ∩ E⊥2 ), is a semi-regular boundary problem iff
we have ker(T1) ∩ (B⊥1 + E2) ∩ C⊥2 = O.

Can be check algorithmically.
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� (∂4, [e0, e0∂, e1∂, e0∂2 + 1

2e1∂
3, e0∂3 − e1) not even semi-regular!

Theorem
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Failure of Reverse Order Law

Even for regular products, reverse order law may fail!

Counterexample: Now use e(x) = x3 on earlier example.

P = (T,B, E) = (∂2, [e0, e0∂, e1∂], [e(x)])

Q = (T,B, E)2 = (∂4, [e0, e0∂, e1∂, e0∂2, e0∂3], [e(x)])

One checks that (T,B, E) and (T,B, E)2 are both regular but:

� G := P−1 = XA−AX − X5

5 F

� G2 = 1
6 X

3A+ 1
2 XAX

2 − 1
6 AX

3 − 1
2 X

2AX

− ( 1
210 X

7 − 7
75 X

5)F − 1
10 X

5FX2 + 1
5 X

5FX

� Q−1 = 1
6 X

3A+ 1
2 XAX

2 − 1
6 AX

3 − 1
2 X

2AX

− 1
14 X

7F + 1
7 FX −

1
14 FX

2 6= G26= G26= G2

In general, one needs necessary & sufficient conditions similar to earlier
ones.
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Necessary and Sufficient Conditions

Theorem
Let (T1,B1, E1) and (T2,B2, E2) be regular boundary problems with
Green’s operators G1 = (T1,B1, E1)

−1 and G2 = (T2,B2, E2)
−1. Then

the following are equivalent:
G2G1 is an outer inverse of T1T2
C2 + (B1 ∩ E⊥2 ) ≥ B1 ∩ (E2 ∩ T−11 E1)

⊥

B1 ≥ C2 ∩ (E2 ∩ B⊥1 )⊥ ∩ (E2 ∩ T−11 E1)
⊥

T−11 E1 u (E2 ∩ B⊥1 ) ≥ E2 ∩ (B1 ∩ C2)⊥

E2 ≥ T−11 E1 ∩ (B1 ∩ E⊥2 )⊥ ∩ (B1 ∩ C2)⊥

In this case, the reverse order law holds.

Result algorithmic for Fredholm operators (→ outer inverses Fredholm).
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Recap: Factorization of Plain Boundary Problems

Theorem (Regensburger/R. 2009)

Let (T,B) ∈ BnProb∗ and T = T1T2 a factorization into epimorphisms.
Then (T,B) = (T1,B1) · (T2,B2) is a factorization in BnProb∗ iff
B1 = H∗2 (B ∩K⊥2 ) with K2 := kerT2 and T2H2 = 1

and B2 ≤ B is orthogonally closed such that B = (B ∩K⊥2 ) u B2.
In that case, G1 = T2G.

For fixed T = T1T2:

{B2 | (T2,B2) ∈ BnProb∗} ←→ {L2 | K2 u L2 = kerT}
B2 7→ B⊥2 ∩ kerT

B ∩ L⊥2 ←[ L2
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Then (T,B) = (T1,B1) · (T2,B2) is a factorization in BnProb∗ iff
B1 = H∗2 (B ∩K⊥2 ) with K2 := kerT2 and T2H2 = 1

and B2 ≤ B is orthogonally closed such that B = (B ∩K⊥2 ) u B2.
In that case, G1 = T2G.

For fixed T = T1T2:

{B2 | (T2,B2) ∈ BnProb∗} ←→ {L2 | K2 u L2 = kerT}
B2 7→ B⊥2 ∩ kerT

B ∩ L⊥2 ←[ L2
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Complications for Generalized Boundary Problems

Now try to lift T = T1T2 to generalized boundary problems:

(T,B, E) = (T1,B1, E1)(T2,B2, E2)

= (T1T2,B2 u T ∗2 (B1 ∩ E⊥2 ), E1 u T1(B⊥1 ∩ E2)

As to be expected, new complications arise:
Possible loss of information on B1 and E2 in intersections.
Choice of Bi influences choice of Ei in view of regularity.
Reverse order law intertwines choice of B1 and E2.

No comprehensive result as yet. (Why is the plain case so plain?)

� We consider important special cases.
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Factorization for Small Exception Spaces

Two possibilities:

Assume E2 ≤ ker(T1):

(T1,B1, E1)(T2,B2, E2) = (T1T2,B2 + T ∗2 (B1 ∩ E⊥2 ), E1)

Advantage: No need to invert T1 since T1(E2 ∩ B⊥1 ) = O.

Assume E2 ≤ B⊥1 :

(T1,B1, E1)(T2,B2, E2) = (T1T2,B2 + T ∗2B1, E1 + T1E2)

Advantage: Need not compute intersections B⊥1 ∩ E2 and B1 ∩ E⊥2

In both cases, reverse order law applies.
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Factorizations with Plain Right Factor

Recall that (T1,B1, E1)(T2,B2) = (T1T2,B + T ∗2 (B1), E1).

Lemma
Let (T,B) be semi-regular with factorization T = T1T2 into epimorphisms.
Then there exists a regular core (T2,B2) ≤ (T2,B).

Theorem
Let (T,B, E) be regular with factorization T = T1T2 into epimorphisms.
Then there exists a unique regular boundary problem (T1,B1, E) such
that for each B2 ≤ B with (T2,B2) regular we have

(T,B, E) = (T1,B1, E)(T2,B2) = (T1T2,B2 u T ∗2 (B1), E)

and (T,B, E)−1 = (T2,B2)−1(T1,B1, E)−1.

Moreover, the left boundary conditions are B1 = H∗2 (B ∩ ker(T )⊥) for an
arbitrary right inverse H2 of T2.

Markus Rosenkranz Singular Boundary Problems



Factorizations with Plain Right Factor

Recall that (T1,B1, E1)(T2,B2) = (T1T2,B + T ∗2 (B1), E1).

Lemma
Let (T,B) be semi-regular with factorization T = T1T2 into epimorphisms.
Then there exists a regular core (T2,B2) ≤ (T2,B).

Theorem
Let (T,B, E) be regular with factorization T = T1T2 into epimorphisms.
Then there exists a unique regular boundary problem (T1,B1, E) such
that for each B2 ≤ B with (T2,B2) regular we have

(T,B, E) = (T1,B1, E)(T2,B2) = (T1T2,B2 u T ∗2 (B1), E)

and (T,B, E)−1 = (T2,B2)−1(T1,B1, E)−1.

Moreover, the left boundary conditions are B1 = H∗2 (B ∩ ker(T )⊥) for an
arbitrary right inverse H2 of T2.

Markus Rosenkranz Singular Boundary Problems



Factorizations with Plain Right Factor

Recall that (T1,B1, E1)(T2,B2) = (T1T2,B + T ∗2 (B1), E1).

Lemma
Let (T,B) be semi-regular with factorization T = T1T2 into epimorphisms.
Then there exists a regular core (T2,B2) ≤ (T2,B).

Theorem
Let (T,B, E) be regular with factorization T = T1T2 into epimorphisms.
Then there exists a unique regular boundary problem (T1,B1, E) such
that for each B2 ≤ B with (T2,B2) regular we have

(T,B, E) = (T1,B1, E)(T2,B2) = (T1T2,B2 u T ∗2 (B1), E)

and (T,B, E)−1 = (T2,B2)−1(T1,B1, E)−1.

Moreover, the left boundary conditions are B1 = H∗2 (B ∩ ker(T )⊥) for an
arbitrary right inverse H2 of T2.

Markus Rosenkranz Singular Boundary Problems



Factorizations with Plain Right Factor

Recall that (T1,B1, E1)(T2,B2) = (T1T2,B + T ∗2 (B1), E1).

Lemma
Let (T,B) be semi-regular with factorization T = T1T2 into epimorphisms.
Then there exists a regular core (T2,B2) ≤ (T2,B).

Theorem
Let (T,B, E) be regular with factorization T = T1T2 into epimorphisms.
Then there exists a unique regular boundary problem (T1,B1, E) such
that for each B2 ≤ B with (T2,B2) regular we have

(T,B, E) = (T1,B1, E)(T2,B2) = (T1T2,B2 u T ∗2 (B1), E)

and (T,B, E)−1 = (T2,B2)−1(T1,B1, E)−1.

Moreover, the left boundary conditions are B1 = H∗2 (B ∩ ker(T )⊥) for an
arbitrary right inverse H2 of T2.

Markus Rosenkranz Singular Boundary Problems



Factorizations with Plain Right Factor

Recall that (T1,B1, E1)(T2,B2) = (T1T2,B + T ∗2 (B1), E1).

Lemma
Let (T,B) be semi-regular with factorization T = T1T2 into epimorphisms.
Then there exists a regular core (T2,B2) ≤ (T2,B).

Theorem
Let (T,B, E) be regular with factorization T = T1T2 into epimorphisms.
Then there exists a unique regular boundary problem (T1,B1, E) such
that for each B2 ≤ B with (T2,B2) regular we have

(T,B, E) = (T1,B1, E)(T2,B2) = (T1T2,B2 u T ∗2 (B1), E)

and (T,B, E)−1 = (T2,B2)−1(T1,B1, E)−1.

Moreover, the left boundary conditions are B1 = H∗2 (B ∩ ker(T )⊥) for an
arbitrary right inverse H2 of T2.

Markus Rosenkranz Singular Boundary Problems



Outline

1 Outer and Inner Inverses

2 Generalized Boundary Problems

3 Multiplying Generalized Boundary Problems

4 Factorization of Generalized Boundary Problems

5 Algorithm Library

Markus Rosenkranz Singular Boundary Problems



Algorithm 6.1

✻

❆❧❣♦$✐&❤♠) ❢♦$ ❖$❞✐♥❛$② ❇♦✉♥❞❛$② 2$♦❜❧❡♠)

In this chapter, we discuss how to realize the results of Chapter 4 algorithmically. We as-
sume that we have an ordinary integro-differential algebra (F ,∂,

r
) and the corresponding

integro-differential operators FΦ〈∂,
r
〉 with respect to an arbitrary character set Φ. For

the rest of this part, the term boundary problem is to be understood in the sense of Defini-
tion 5.6: A pair (T,B) with a monic differential operator T ∈F 〈∂〉 of order m and B ⊂ |Φ)
generated by n linearly independent Stieltjes conditions. A generalized boundary prob-
lem is the triple (T,B,E), where E is an appropriate exceptional space. In all algorithms,
we assume that we can compute with the functions in F and the Stieltjes conditions in-
volved. In particular, we assume that we can compute with the evaluation matrix. For
the special case of regular boundary problems (without exceptional space), the presented
algorithms are basically the same as in [31, 34, 37, 38].

6.1 Finite Codimensional Spaces

As a first step, we have to provide algorithms for finite codimensional spaces; see also
Section 2.2. The following algorithm is the first part of Proposition 2.15.

Algorithm 6.1 (Intersection 1).

Input Generating sets f1, . . . , fs ∈F and β1, . . . ,βr ∈ |Φ) of F1 ≤F and B1 ≤ |Φ).

Output A generating set of F1 ∩B⊥
1 .

1. Compute the evaluation matrix M =β( f ) ∈ Fr×s.

2. Compute a basis v1, . . . ,vk ∈ Fs of Ker M.

3. For 1≤ i ≤ k set g i =
∑s

j=1 vi
j f j.

4. Return g1, . . . , gk.
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Algorithm 6.2

Chapter 6. Algorithms for Ordinary Boundary Problems

The second part of Proposition 2.15, treating the intersection of a finite dimensional
subspace of |Φ) with a finite codimensional space, can be implemented similarly. In both
cases we obtain a basis of F1 ∩B⊥

1 and of F⊥
1 ∩B1 if the f i and the βi both are linearly

independent.

Algorithm 6.2 (Intersection 2).

Input Generating sets f1, . . . , fs ∈F and β1, . . . ,βr ∈ |Φ) of F1 ≤F and B1 ≤ |Φ).

Output A generating set of F⊥
1 ∩B1.

1. Compute the evaluation matrix M =β( f ) ∈ Fr×s.

2. Compute a basis v1, . . . ,vk ∈F r of Ker M t.

3. For 1≤ i ≤ k set αi =
∑r

j=1 vi
jα j.

4. Return α1, . . . ,αk.

We use the evaluation matrix for testing regularity according to Corollary 2.16. We
need algorithms from linear algebra to compute for example its determinant or a row
echelon form.

Algorithm 6.3 (Direct Sum Test).

Input Bases f1, . . . , fr ∈F and β1, . . . ,βr ∈ |Φ) of F1 ≤F and B1 ≤ |Φ).

Output true if F1∔B⊥
1 =F and false otherwise.

1. Compute the evaluation matrix M =β( f ) ∈ Fr×r.

2. Compute the determinant d = det M of the evaluation matrix.

3. If d 6= 0, return true, else return false.

Finally, we want to compute projectors on F with given kernel and image, where the
image is represented by a basis f1, . . . , fs ∈ F and the kernel is described implicitly via
linearly independent Stieltjes boundary conditions β1, . . . ,βs ∈ |Φ). We assume a computer
algebra system providing support for inverting matrices. The following algorithm imple-
menting Proposition 2.17 also works in a situation with more boundary conditions than
functions. For t > s linear independent boundary conditions the result is a projector P
with the given image span( f1, . . . , fs) whose kernel contains span(β1, . . . ,βt)⊥. In this case,
we need a left inverse—for example the Moore-Penrose inverse—of the evaluation matrix.
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Chapter 6. Algorithms for Ordinary Boundary Problems
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Algorithm 6.4 Chapter 6. Algorithms for Ordinary Boundary Problems

Algorithm 6.4 (Projector).

Input Bases f1, . . . , fs ∈F and β1, . . . ,βt ∈ |Φ) of F1 ≤F and B1 ≤ |Φ) such that F1 ∩
B⊥

1 = {0}.

Output A projector P with ImP = span( f1, . . . , fs) and KerP ≤ span(β1, . . . ,βt)⊥.

1. Compute the evaluation matrix M =β( f ) ∈ F t×s.

2. Compute a left inverse M− = (mi, j)1≤i≤s,1≤ j≤t of the evaluation matrix.

3. For 1≤ i ≤ s set αi =
∑t

k=1 mi,kβk.

4. Set P =∑s
j=1 f jα j.

5. Return P.

6.2 The Fundamental Right Inverse

The computation of Green’s operators according to Theorem 4.8 or compatibility condi-
tions according to 4.11 or 4.15 requires an arbitrary right inverse of the differential oper-
ator to be known. For a differential operator T of order n, we compute the right inverse
T� that solves the initial value problem

Tu = f
Eu =E∂u = . . .=E∂n−1u = 0,

(6.1)

where E is the evaluation E = 1− ∂ ◦
r

, assuming that we know a regular fundamen-
tal system u = (u1, . . . ,un) of T. The construction of this so-called fundamental right in-
verse is done with an algebraic version of the variation of constants formula; see also [36,
Prop. 15]. For examples of integro-differential algebras, where every monic differential
operator has a regular fundamental system, see Section 2.4.

Proposition 6.5. Let T ∈ F 〈∂〉 be a monic differential operator with ordT = n such that
T has a fundamental system u1, . . . ,un ∈F . If W is its Wronskian matrix and d = detW is
invertible in F , the initial value problem (6.1) has the unique solution

u =
n∑

i=1
ui

r
d−1 di f (6.2)

for every forcing function f ∈F . Here di = detWi, where Wi is the matrix obtained from W
by replacing the ith column by the nth unit vector.
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Algorithm 6.6Chapter 6. Algorithms for Ordinary Boundary Problems

Algorithm 6.6 (Fundamental Right Inverse).

Input A regular fundamental system s1, . . . , sn of a monic differential operator T.

Output The fundamental right inverse T� of T.

1. Compute the Wronskian matrix W and d = detW .

2. For 1≤ i ≤ n compute di = detWi for Wi as in Proposition 6.5.

3. Compute T� =∑n
i=1 si

r
d−1 di ∈F [∂,

r
].

4. Return T�.

6.3 Compatibility Conditions

In this section we present two algorithms for computing an implicit representation of
T(B⊥), i.e., the space of compatibility conditions C with C = T(B⊥)⊥. The following
algorithm—based on Theorem 4.11—works for arbitrary boundary problems, in particular
we do not assume semi-regularity.

Algorithm 6.7 (Compatibility Conditions).

Input A boundary problem (T,B) where β1, . . . ,βn is a basis of B. A regular funda-
mental system s1, . . . , sm of T.

Output A basis of the space of compatibility conditions C = T(B⊥)⊥.

1. Compute the fundamental right inverse T� of T with Algorithm 6.6.

2. Compute a basis α1, . . . ,αr of (span(s1, . . . , sm))⊥∩B with Algorithm 6.2.

3. For 1≤ i ≤ r multiply γi =αiT� ∈FΦ〈∂,
r
〉.

4. Return γ1, . . . ,γr.

In the previous algorithm, the γi are linearly independent by Corollary 4.12. The
second algorithm is based on Proposition 4.15. We now assume a semi-regular boundary
problem and construct a particular right inverse to avoid computing the intersections in
F∗ in Algorithm 6.7.

This method is, for example, useful in Algorithm 6.10: For computing the generalized
Green’s operator, we have to compute G as below. Implementing a version of 6.8 that
takes G as input avoids redundant computation.
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Algorithm 6.6 (Fundamental Right Inverse).

Input A regular fundamental system s1, . . . , sn of a monic differential operator T.

Output The fundamental right inverse T� of T.

1. Compute the Wronskian matrix W and d = detW .

2. For 1≤ i ≤ n compute di = detWi for Wi as in Proposition 6.5.

3. Compute T� =∑n
i=1 si

r
d−1 di ∈F [∂,

r
].

4. Return T�.

6.3 Compatibility Conditions

In this section we present two algorithms for computing an implicit representation of
T(B⊥), i.e., the space of compatibility conditions C with C = T(B⊥)⊥. The following
algorithm—based on Theorem 4.11—works for arbitrary boundary problems, in particular
we do not assume semi-regularity.

Algorithm 6.7 (Compatibility Conditions).

Input A boundary problem (T,B) where β1, . . . ,βn is a basis of B. A regular funda-
mental system s1, . . . , sm of T.

Output A basis of the space of compatibility conditions C = T(B⊥)⊥.

1. Compute the fundamental right inverse T� of T with Algorithm 6.6.

2. Compute a basis α1, . . . ,αr of (span(s1, . . . , sm))⊥∩B with Algorithm 6.2.

3. For 1≤ i ≤ r multiply γi =αiT� ∈FΦ〈∂,
r
〉.

4. Return γ1, . . . ,γr.

In the previous algorithm, the γi are linearly independent by Corollary 4.12. The
second algorithm is based on Proposition 4.15. We now assume a semi-regular boundary
problem and construct a particular right inverse to avoid computing the intersections in
F∗ in Algorithm 6.7.

This method is, for example, useful in Algorithm 6.10: For computing the generalized
Green’s operator, we have to compute G as below. Implementing a version of 6.8 that
takes G as input avoids redundant computation.
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Algorithm 6.8 (Compatibility Conditions 2).

Input A semi-regular boundary problem (T,B) where β1, . . . ,βn is a basis of B. A
regular fundamental system s1, . . . , sm of T.

Output A basis of the space of compatibility conditions T(B⊥)⊥.

1. Compute the fundamental right inverse T� of T (Algorithm 6.6).

2. Compute a projector P with ImP = S and B⊥ ≤KerP with Algorithm 6.4.

3. Multiply G = (1−P)T� ∈FΦ〈∂,
r
〉.

4. For 1≤ i ≤ n multiply γi =βiG ∈FΦ〈∂,
r
〉.

5. Return a basis of span(γ1, . . . ,γr).

In contrast to Algorithm 6.7, in the last step we have to compute a basis from a set
of linearly dependent boundary conditions; see Section 7.4 for a sample implementation.
The dependencies are generated since KerG∗ ≤B by construction.

6.4 Generalized Green’s Operators

Before computing generalized Green’s operators, we present a generalized regularity test
for boundary problems (T,B,E) that checks Definition 4.3 (for E = {0}) and Definition 4.5
(for E 6= {0}). If E = {0} we only have to test if B⊥∔KerT = F with Algorithm 6.3. Note
that this can only be the case if dimB = dimKerT by Corollary 2.16. For E 6= {0}, we have
to test semi-regularity, which—using also Corollary 2.16—means testing if the evaluation
matrix has full column rank. If this is the case, we test (4.3), meaning that we compute
the compatibility conditions C = T(B⊥)⊥ of (T,B) and test if C ⊥∔E = F . This is again
done using Algorithm 6.3.

Algorithm 6.9 (Regularity Test).

Input A boundary problem (T,B,E) where β1, . . . ,βn is a basis of B and e1, . . . , er is
a basis of E. A regular fundamental system s1, . . . , sm of T.

Output true if the problem is regular and false otherwise.

1. If E = {0} and m 6= n: Return false.

2. If E = {0} and m = n: Test if B⊥∔span(s1, . . . , sn)=F with Algorithm 6.3.

3. If E 6= {0} and m ≥ n: Return false.

4. If E 6= {0} and m < n: Compute the evaluation matrix M =β(s) ∈ Fn×m.
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Algorithm 6.8 (Compatibility Conditions 2).

Input A semi-regular boundary problem (T,B) where β1, . . . ,βn is a basis of B. A
regular fundamental system s1, . . . , sm of T.

Output A basis of the space of compatibility conditions T(B⊥)⊥.

1. Compute the fundamental right inverse T� of T (Algorithm 6.6).

2. Compute a projector P with ImP = S and B⊥ ≤KerP with Algorithm 6.4.

3. Multiply G = (1−P)T� ∈FΦ〈∂,
r
〉.

4. For 1≤ i ≤ n multiply γi =βiG ∈FΦ〈∂,
r
〉.

5. Return a basis of span(γ1, . . . ,γr).

In contrast to Algorithm 6.7, in the last step we have to compute a basis from a set
of linearly dependent boundary conditions; see Section 7.4 for a sample implementation.
The dependencies are generated since KerG∗ ≤B by construction.

6.4 Generalized Green’s Operators

Before computing generalized Green’s operators, we present a generalized regularity test
for boundary problems (T,B,E) that checks Definition 4.3 (for E = {0}) and Definition 4.5
(for E 6= {0}). If E = {0} we only have to test if B⊥∔KerT = F with Algorithm 6.3. Note
that this can only be the case if dimB = dimKerT by Corollary 2.16. For E 6= {0}, we have
to test semi-regularity, which—using also Corollary 2.16—means testing if the evaluation
matrix has full column rank. If this is the case, we test (4.3), meaning that we compute
the compatibility conditions C = T(B⊥)⊥ of (T,B) and test if C ⊥∔E = F . This is again
done using Algorithm 6.3.

Algorithm 6.9 (Regularity Test).

Input A boundary problem (T,B,E) where β1, . . . ,βn is a basis of B and e1, . . . , er is
a basis of E. A regular fundamental system s1, . . . , sm of T.

Output true if the problem is regular and false otherwise.

1. If E = {0} and m 6= n: Return false.

2. If E = {0} and m = n: Test if B⊥∔span(s1, . . . , sn)=F with Algorithm 6.3.

3. If E 6= {0} and m ≥ n: Return false.

4. If E 6= {0} and m < n: Compute the evaluation matrix M =β(s) ∈ Fn×m.
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(a) If rank M < m: return false.

(b) If rank M = m:

i. Compute the compatibility conditions γ1, . . . ,γr of (T,B) with Algo-
rithm 6.7.

ii. Test if E∔span(γ1, . . . ,γr)⊥ =F with Algorithm 6.3.

The following algorithm returns the generalized Green’s operator of a regular bound-
ary problem (T,B,E) according to Theorem 4.8. If E = {0}, the (generalized) Green’s oper-
ator is the right inverse due to (4.5). As already explained above, one can avoid redundant
computations using a modified version of Algorithm 6.8 in Step 5.

Algorithm 6.10 (Generalized Green’s Operator).

Input A regular boundary problem (T,B,E) where β1, . . . ,βn is a basis of B and
e1, . . . , er is a basis of E. A regular fundamental system s1, . . . , sm of T.

Output The generalized Green’s operator G with ImG =B⊥ and KerG = E.

1. Compute the fundamental right inverse T� of T (Algorithm 6.6).

2. Compute a projector P with ImP = S and B⊥ ≤KerP (Algorithm 6.4).

3. Multiply G̃ = (1−P)T� ∈FΦ〈∂,
r
〉.

4. If E = {0} return G̃, else

5. Compute the compatibility conditions C of (T,B) with Algorithm 6.8.

6. Compute the projector Q with ImQ = E and C ⊥ ≤KerQ (Algorithm 6.4).

7. Multiply G = G̃(1−Q) ∈FΦ〈∂,
r
〉.

8. Return G.

6.5 Inhomogeneous Boundary Conditions

In Chapter 4, we have considered homogeneous boundary conditions. In the general case,
we can proceed as follows: Let us assume that the boundary problem

Tu = f
β1(u)= c1, . . . ,βn(u)= cn

(6.3)

is regular—meaning uniquely solvable—and that we know a fundamental system s1, . . . , sn
of the differential operator T. Since there is a unique solution for f = 0, there is exactly
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(a) If rank M < m: return false.

(b) If rank M = m:

i. Compute the compatibility conditions γ1, . . . ,γr of (T,B) with Algo-
rithm 6.7.

ii. Test if E∔span(γ1, . . . ,γr)⊥ =F with Algorithm 6.3.

The following algorithm returns the generalized Green’s operator of a regular bound-
ary problem (T,B,E) according to Theorem 4.8. If E = {0}, the (generalized) Green’s oper-
ator is the right inverse due to (4.5). As already explained above, one can avoid redundant
computations using a modified version of Algorithm 6.8 in Step 5.

Algorithm 6.10 (Generalized Green’s Operator).

Input A regular boundary problem (T,B,E) where β1, . . . ,βn is a basis of B and
e1, . . . , er is a basis of E. A regular fundamental system s1, . . . , sm of T.

Output The generalized Green’s operator G with ImG =B⊥ and KerG = E.

1. Compute the fundamental right inverse T� of T (Algorithm 6.6).

2. Compute a projector P with ImP = S and B⊥ ≤KerP (Algorithm 6.4).

3. Multiply G̃ = (1−P)T� ∈FΦ〈∂,
r
〉.

4. If E = {0} return G̃, else

5. Compute the compatibility conditions C of (T,B) with Algorithm 6.8.

6. Compute the projector Q with ImQ = E and C ⊥ ≤KerQ (Algorithm 6.4).

7. Multiply G = G̃(1−Q) ∈FΦ〈∂,
r
〉.

8. Return G.

6.5 Inhomogeneous Boundary Conditions

In Chapter 4, we have considered homogeneous boundary conditions. In the general case,
we can proceed as follows: Let us assume that the boundary problem

Tu = f
β1(u)= c1, . . . ,βn(u)= cn

(6.3)

is regular—meaning uniquely solvable—and that we know a fundamental system s1, . . . , sn
of the differential operator T. Since there is a unique solution for f = 0, there is exactly
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one linear combination of u =∑n
i=1λisi that satisfies the boundary conditions in (6.3), i.e.,

the system 

β1(s1) . . . β1(sn)

...
. . .

...
βn(s1) . . . βn(sn)


 ·



λ1
...
λn


=




c1
...

cn




is uniquely solvable. Hence the evaluation matrix β(s) is regular, which implies that the
associated boundary problem (T,B)

Tu = f
β1(u)= ·· · =βn(u)= 0

(6.4)

with homogeneous boundary conditions is regular by Corollary 2.16 and we can compute
its Green’s operator G with Algorithm 6.10. One easily verifies that G f +∑n

i=1λisi is the
solution of (6.3).

Algorithm 6.11 (Inhomogeneous Boundary Conditions).

Input A regular boundary problem (T,B) where β1, . . . ,βn is a basis of B, bound-
ary values c1, . . . , cn, and a forcing function f. A regular fundamental system
s1, . . . sm of T.

Output The solution of the boundary problem (6.3).

1. Compute the evaluation matrix M =β(s) ∈ Fn×n.

2. Compute the Green’s operator G of (T,B) with Algorithm 6.10.

3. Compute the solution λ ∈ Fn of the linear system Mλ= (c1, . . . , cn)t.

4. Set k =∑n
i=1λisi.

5. Compute the application of the Green’s operator u =G( f ) ∈F .

6. Return u+k.

6.6 Composition of Boundary Problems

For testing the conditions of Corollary 3.28 algorithmically, we have to assume that for
finite-dimensional subspaces we can compute sums and intersections and check inclu-
sions, both in F and in F∗; see Section 7.4 for the implementation in the ■♥"❉✐❢❢❖♣

package.
Since each of the conditions of Corollary 3.28 includes the intersection T−1

1 (E1), as a
first step we compute T−1(E) for a regular boundary problem (T,B,E). We use Corol-
lary 3.6 for the case T1 = 1 and T2 = T and obtain T−1(E)=G(E)∔KerT, where G is any
right inverse of T.
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Algorithm 6.12 (T−1(E)).

Input A monic differential operator T and a subspace E ≤ F , where e1, . . . , er is a
basis of E. A regular fundamental system s1, . . . sm of T.

Output A basis of T−1(E).

1. Compute the fundamental right inverse T� with Algorithm 6.6.

2. For 1≤ i ≤ r compute ki = T�(e i).

3. Return s1, . . . sm,k1, . . . ,kr.

The functions s1, . . . , sm,k1, . . . ,kr are indeed linearly independent since the fundamen-
tal right inverse T� is injective.

Corollary 3.28 already presents conditions for the reverse order law in a form that
can be checked algorithmically for Fredholm operators. The following algorithm checks
Condition (ii). The others could be implemented similarly but none of the conditions seems
to be particularly preferable from computational aspects.

Algorithm 6.13 (Check Reverse Order Law).

Input Two regular boundary problems (T1,B1,E1) and (T2,B2,E2), where β1, . . . ,βn
and β̃1, . . . , β̃ν are bases for B1 and B2 and e1, . . . , e t and ẽ1, . . . , ẽτ are bases for
E1 and E2. Fundamental systems s1, . . . , sm of T1 and s̃1, . . . , s̃ℓ of T2.

Output true if (T2,B2,E2)−1(T1,B1,E1)−1 = ((T1,B1,E1)◦ (T2,B2,E2))−1 and false
otherwise.

1. Compute T−1
1 (E1) with Algorithm 6.6.

2. Compute a basis of I = E2 ∩T−1
1 (E1).

3. Compute a basis of B =B1 ∩ I⊥ with Algorithm 6.2.

4. Compute a basis of K =B1 ∩E⊥
2 with Algorithm 6.2.

5. Compute the compatibility conditions γ1, . . . ,γr of (T2,B2) with Algorithm 6.7.

6. Compute C = span(γ1, . . . ,γr)+K .

7. If B ≤ C return true, else return false.

We can compute the composition of two generalized boundary problems according to
Definition 4.17.
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Algorithm 6.12 (T−1(E)).

Input A monic differential operator T and a subspace E ≤ F , where e1, . . . , er is a
basis of E. A regular fundamental system s1, . . . sm of T.

Output A basis of T−1(E).

1. Compute the fundamental right inverse T� with Algorithm 6.6.

2. For 1≤ i ≤ r compute ki = T�(e i).

3. Return s1, . . . sm,k1, . . . ,kr.

The functions s1, . . . , sm,k1, . . . ,kr are indeed linearly independent since the fundamen-
tal right inverse T� is injective.

Corollary 3.28 already presents conditions for the reverse order law in a form that
can be checked algorithmically for Fredholm operators. The following algorithm checks
Condition (ii). The others could be implemented similarly but none of the conditions seems
to be particularly preferable from computational aspects.

Algorithm 6.13 (Check Reverse Order Law).

Input Two regular boundary problems (T1,B1,E1) and (T2,B2,E2), where β1, . . . ,βn
and β̃1, . . . , β̃ν are bases for B1 and B2 and e1, . . . , e t and ẽ1, . . . , ẽτ are bases for
E1 and E2. Fundamental systems s1, . . . , sm of T1 and s̃1, . . . , s̃ℓ of T2.

Output true if (T2,B2,E2)−1(T1,B1,E1)−1 = ((T1,B1,E1)◦ (T2,B2,E2))−1 and false
otherwise.

1. Compute T−1
1 (E1) with Algorithm 6.6.

2. Compute a basis of I = E2 ∩T−1
1 (E1).

3. Compute a basis of B =B1 ∩ I⊥ with Algorithm 6.2.

4. Compute a basis of K =B1 ∩E⊥
2 with Algorithm 6.2.

5. Compute the compatibility conditions γ1, . . . ,γr of (T2,B2) with Algorithm 6.7.

6. Compute C = span(γ1, . . . ,γr)+K .

7. If B ≤ C return true, else return false.

We can compute the composition of two generalized boundary problems according to
Definition 4.17.
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Algorithm 6.14 (Composition).

Input Two boundary problems (T1,B1,E1) and (T2,B2,E2), where β1, . . . ,βn and
β̃1, . . . , β̃ν are bases of B1 and B2 and e1, . . . , e t and ẽ1, . . . , ẽτ are bases of E1
and E2.

Output The composite boundary problem (T1,B1,E1)◦ (T2,B2,E2).

1. Multiply T = T1T2 ∈FΦ〈∂,
r
〉.

2. Compute a basis b1, . . . ,bk of B1 ∩E⊥
2 with Algorithm 6.2.

3. Compute a basis v1, . . . ,vℓ of I =B⊥
1 ∩E2 with Algorithm 6.1.

4. For 1≤ i ≤ k multiply ci = biT2 ∈FΦ〈∂,
r
〉.

5. For 1≤ j ≤ ℓ compute the application t j = T1(v j) ∈F .

6. Compute a basis α1, . . . ,αq of β̃1, . . . , β̃t, c1, . . . , ck.

7. Compute a basis f1, . . . , fr of e1, . . . , e t, t1, . . . , tℓ.

8. Return (T, (α1, . . . ,αq), ( f1, . . . , fr)).

6.7 Factorization of Boundary Problems

In order to factor a regular boundary problem (T,B,E) according to Theorem 4.27, we
start from a given factorization T = T1T2 of the differential operator. Let ordT1 = ν,
ordT2 = µ and let β1, . . . ,βn be a basis of B. Since (T,B) is regular, then ordT = ν+µ≤ n
must hold by Corollary 2.16. For constructing a right inverse of T2, we need a regular
fundamental system s1, . . . , sµ of T2, which we assume to be given. The exceptional space
E becomes the exceptional space of the left factor (T1,B1,E), so we only have to find
appropriate boundary spaces B1 and B2 ≤B.

We proceed as in [38]. The first step is to find B2 ≤ B such that (T2,B2) is regular.
Since KerT2 ≤KerT1T2, the problem (T2,B) is semi-regular, hence the evaluation matrix
M = β(s) of B and S has full column rank by Corollary 2.16. We compute the regular
matrix C = (ci, j) ∈ Fn×n that transfers M into its reduced row echelon form. Then the
boundary problem (T,B2) with

B2 = span(
n∑

k=1
c1,kβk, . . . ,

n∑

k=1
cµ,kβk)

is regular since the evaluation matrix β|B2(s) is the µ×µ identity matrix.
In a second step we compute B1. The lower part of the reduced row echelon form of

M is the (n−µ)×µ zero matrix, hence the lower n−µ rows of C contain the coefficients of
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n−µ linear combinations

β̃1 =
n∑

k=1
cn−µ+1,kβk, . . . , β̃n−µ =

n∑

k=1
cn,kβk

with span(β̃1, . . . , β̃n−µ) ≤ B∩ (KerT2)⊥. Since C is regular, the β̃i are linearly indepen-
dent. We show that the subspaces are equal by computing the dimension of the intersec-
tion B⊥∩ (KerT2)⊥: Since dimB <∞, we have

dim(B∩ (KerT2)⊥)= codim(B⊥+KerT2)= dim(KerT2 ∩B⊥)+codimB⊥−dimKerT2,

where for the first equality we have used Lemma 2.10 and Proposition 2.5, and the second
equality is due to Corollary 2.12. Since B∩KerT2 = {0}, this implies dim(B∩(KerT2)⊥)=
dimB−dimKerT2 = n−µ, and therefore

B∩ (KerT2)⊥ = span(β̃1, . . . , β̃n−µ).

From (4.21) in the proof of Theorem 4.27, we know that B1 is given by H∗
2 (B∩(KerT2)⊥),

where H2 is an arbitrary right inverse of T2.
These considerations give rise to the following algorithm, which for E = {0} is essen-

tially the method described in [31, 37].

Algorithm 6.15 (Right Regular Factorization).

Input A regular boundary problem (T,B,E), where β1, . . . ,βn is a basis of B and
e1, . . . , er is a basis of E. A factorization T = T1T2 and a regular fundamental
system s1, . . . , sµ of T2.

Output Two regular boundary problems (T1,B1,E) and (T2,B2) with (T,B,E) =
(T1,B1,E)◦ (T2,B2).

1. Compute the evaluation matrix M =β(s) ∈ Fn×µ.

2. Compute C = (ci, j)1≤i, j≤n ∈ Fn×n such that CM is in reduced row echelon form.

3. For 1≤ i ≤ n set β̃i =
∑n

k=1 ci,kβk.

4. Compute a right inverse H2 of T2 with Algorithm 6.6.

5. For µ+1≤ j ≤ n multiply α j−µ = β̃ jH2 ∈FΦ〈∂,
r
〉.

6. Return (T1, (α1, . . . ,αn−µ), (e1, . . . , er)) and (T2, (β̃1, . . . , β̃µ)).

We assume that matrix decompositions as in Step 2 are provided. In Step 5, we obtain
exactly n−µ linear independent boundary conditions since KerH∗

2 = (ImH2)⊥, and for
any right inverse H2 of T2 we have (ImH2)⊥ ∔ (KerT2)⊥ = F , so that H∗

2 is injective
on (KerT2)⊥.
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THANK YOU
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