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tient of two determinants, as done for the algebraic case (D’Andrea 2002).

improve the existing bounds for degree and order.

Development of methods to predict the support of the sparse differential
resultant⇒ Reduces elimination to an interpolation problem in (nume-
rical) linear algebra.
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Sparse resultant formulas for differential polynomials

The matrices in the algebraic case (D’Andrea 2002), are coefficient ma-
trices of sets of polynomials obtained by multiplying the original ones by
appropriate sets of monomials (Canny and Emiris 2000).

In the differential case, in addition, derivatives of the original polynomials
should be considered. Formulas by (Carrà-Ferro 1997) already in the linear
sparse generic case vanish often.

In the linear case, consider only the problem of taking the appropriate set
of derivatives of the elements in P.
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f1(x) = y′ + yx+ x′ + xx′ + yx2 + y′(x′)2,

f2(x) = y + y′x+ yx′ + y2xx′ + x2 + (x′)2.

CFRes(P) is the Macaulay algebraic resultant of the polynomial set

ps = {f1, f
′
1, f2, f

′
2}.

The gcd of the determinant of all the minors of maximal order of a matrix
M, whose columns are indexed by all the monomials in x, x′ and x′′ of
degree less than or equal to 5.

The rows ofM are the coefficients of polynomials obtained by multiplying
the polynomials in ps by certain monomials in x, x′ and x′′.

f1 and f2 are nonsparse in x and x′ but the extended system ps is sparse.
The polynomials in ps do not contain the monomial (x′′)2, thus the columns
indexed by (x′′)i, i = 2, . . . , 5 are all zero and CFRes(f1, f2) = 0.



Sparse resultant formulas for differential polynomials

P = {f1 = z + x+ y + y′, f2 = z + tx′ + y′′, f3 = z + x+ y′}

CFRes(P) = 0 is the determinant of the next coefficient matrix, whose
columns are indexed by yv, xv, . . . ,y′, x′, y,x,1,

1 0 1 1 0 0 0 0 0 0 z′′′

0 0 1 0 1 1 0 0 0 0 z′′

0 0 0 0 1 0 1 1 0 0 z′

0 0 0 0 0 0 1 0 1 1 z

1 0 0 t 0 2 0 0 0 0 z′′

0 0 1 0 0 t 0 1 0 0 z′

0 0 0 0 1 0 0 t 0 0 z

1 0 0 1 0 0 0 0 0 0 z′′′

0 0 1 0 0 1 0 0 0 0 z′′

0 0 0 0 1 0 0 1 0 0 z′

0 0 0 0 0 0 1 0 0 1 z



.



...for linear differential polynomials

Rueda, S.L. and Sendra, J.F., 2010. Linear complete differential re-
sultants and the implicitization of linear DPPEs. Journal of Symbolic
Computation, 45, 324-341.

Rueda, S.L., 2011. A perturbed differential resultant based implicitiza-
tion algorithm for linear DPPEs. Journal of Symbolic Computation, 46,
977-996.

Rueda, S.L., 2013. Linear sparse differential resultant formulas. Linear
Algebra and Its Applications 438, 4296 - 4321.
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Differential resultant formulas

...for nonlinear Laurent differential polynomials

Order and degree bounds for sparse differential resultants

Zhang Z.Y., Yuan C.M., Gao X.S, 2012. Matrix Formula of Differential Resul-
tant for First Order Generic Ordinary Differential Polynomials. arXiv:1204.3773.
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Differential resultant formulas

...for nonlinear Laurent differential polynomials

Order and degree bounds for sparse differential resultants

Zhang Z.Y., Yuan C.M., Gao X.S, 2012. Matrix Formula of Differential Resul-
tant for First Order Generic Ordinary Differential Polynomials. arXiv:1204.3773.

Rueda, S.L., 2014. Differential elimintation by differential specialization of
Sylvester Style matrices. arXiv: 1310.2081v1.
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D ordinary differential domain, with derivation ∂ (e.g. Q(t), ∂ = d
dt

)

U = {u1, . . . , un−1} set of differential indeterminates over D.

k ∈ N, uj,k = ∂kuj and uj = uj,0.

Ring of Laurent differential polynomials in the differential indeterminates U ,

D{U±} := D[uj,k, u
−1
j,k]

f =
∑m

ι=1 θιωι inD{U±}, withωι Laurent differential monomial inD{U±}.
Differential support in uj of f

Sj(f) = {k ∈ N | u±1
j,k/ωι for some ι ∈ {1, . . . ,m}}.

ord(f, uj) := maxSj(f), lord(f, uj) := minSj(f) if Sj(f) 6= ∅,
ord(f, uj) = lord(f, uj) = −∞ if Sj(f) = ∅.
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System of differential polynomials in D{U±}.
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1. The order of fi is oi ≥ 0, i = 1, . . . , n. So that no fi belongs to D.

2. P contains n distinct polynomials.
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Differential resultant formulas

The order of f equals
max{ord(f, uj)}.

System of differential polynomials in D{U±}.

P := {f1, . . . , fn}

1. The order of fi is oi ≥ 0, i = 1, . . . , n. So that no fi belongs to D.

2. P contains n distinct polynomials.

[P] differential ideal generated by P in D{U±}.

Goal: Define differential resultant formulas to compute elements of the dif-
ferential elimination ideal

[P] ∩ D.
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Differential resultant formulas

Lotka-Volterra equations, with α, β, γ and ρ algebraic constants,{
x′ = αx− βxy,
y′ = γy − ρxy,

system of two linear differential polynomials in D{x},

with coefficients a1, a2, b0, b1 in D = Q[α, β, γ, ρ]{y}.

f1(x) = (βy − α)x+ x′ = a1x+ a2x
′,

f2(x) = y′ − γy + ρyx = b0 + b1x,

Determinant of the coefficient matrix of f1(x), f2(x) and f ′2(x),

ρ((y′)2 − yy′′ + αyy′ − αγy2 − βy2y′ + βγy3)

in [f1(x), f2(x)] ∩ D.
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PS ⊂ ∂P := {∂kfi}, U ⊂ {U} and
sets of Laurent differential monomials Ωf , Ω in D[U±], f ∈ PS, verifying:

(ps1) PS = ∪ni=1f
[Li]
i = ∪ni=1{fi, ∂fi, . . . , ∂Lifi}, Li ∈ N,

(ps2) PS ⊂ D[U±] and |U| = |PS| − 1,

(ps3)
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f∈PS |Ωf | = |Ω| and ∪f∈PSΩff ∈ ⊕ω∈ΩDω.
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PS ⊂ ∂P := {∂kfi}, U ⊂ {U} and
sets of Laurent differential monomials Ωf , Ω in D[U±], f ∈ PS, verifying:

(ps1) PS = ∪ni=1f
[Li]
i = ∪ni=1{fi, ∂fi, . . . , ∂Lifi}, Li ∈ N,

(ps2) PS ⊂ D[U±] and |U| = |PS| − 1,

(ps3)
∑

f∈PS |Ωf | = |Ω| and ∪f∈PSΩff ∈ ⊕ω∈ΩDω.

Total set of differential polynomials TS := ∪f∈PSΩff whose elements are

p =
∑
ω∈Ω

θp,ωω, with θp,ω ∈ D.

M(TS,Ω) = (θp,ω), is an |Ω| × |Ω| matrix. We call

det(M(TS,Ω)) (1)

a differential resultant formula for P .
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P = {f1, . . . , fn} ∈ D{U±} and Pi := P\fi

O(P) = (oi,j) order matrix of P .

The diagonals of the matrix O(Pi) are indexed by the set Γi of all possible
bijections

µ : {1, . . . , n}\{i} → {1, . . . , n− 1}.

The Jacobi number Ji of the matrix O(Pi),

Ji := Jac(O(Pi)) = max

 ∑
j∈{1,...,n}\{i}

oj,µ(j) | µ ∈ Γi

 .
P = {f1, f2, f3, f4}

f1 = 2 + u1u1,1 + u1,2, f2 = u1u1,2, f3 = u2u3,1, f4 = u1,1u2,
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The situation where Ji ≥ 0, i = 1, . . . , n is of special interest.

xi,j algebraic indeterminates over Q
X(P) = (Xi,j) the n× (n− 1) matrix, such that

Xi,j :=

{
xi,j, Sj(fi) 6= ∅,
0, Sj(fi) = ∅. (2)

Ji ≥ 0⇔ det(X(Pi)) 6= 0.

P is super essential if det(X(Pi)) 6= 0, i = 1, . . . , n.

Every system P contains a super essential subsystem P∗.

If rank(X(P)) = n− 1 then P∗ is unique.
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Systems P = {f1, f2, f3, f4} and P ′ = {f1, f2, f3, f5}
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Systems P = {f1, f2, f3, f4} and P ′ = {f1, f2, f3, f5}

f1 = 2 + u1u1,1 + u1,2, f2 = u1u1,2, f3 = u2u3,1, f4 = u1,1u2, f5 = u1,2,

X(P) =


x1,1 0 0

x2,1 0 0

0 x3,2 x3,3

x4,1 x4,2 0

 and X(P ′) =


x1,1 0 0

x2,1 0 0

0 x3,2 x3,3

x4,1 0 0

 .
P is not super essential but since rank(X(P )) = 3, it has a unique super
essential subsystem, which is {f1, f2}.

P ′ is not super essential and rank(X(P ′)) < 3, super essential subsys-
tems are {f1, f2}, {f1, f3} and {f2, f3}.



...for nonlinear Laurent differential polynomials
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...for nonlinear Laurent differential polynomials

For j = 1, . . . , n− 1 let us define integers in N

γj := min{lord(fi, uj) | Sj(fi) 6= ∅, i = 1, . . . , n},

γ :=

n−1∑
j=1

γj.

Assuming Ji ≥ 0, i = 1, . . . , n define

ps(P) := ∪ni=1f
[Ji−γ]
i ,

containing L :=
∑n

i=1(Ji−γ+1) differential polynomials, whose variables
belong to

V(P) := {uj,k | k ∈ [γj,Mj] ∩ N, j = 1, . . . , n− 1},

with Mj := mj − γ and mj := max{oi,j + Ji − γ | i = 1, . . . , n}.



...for nonlinear Laurent differential polynomials

Li, Yuan, Gao 2013

Ji ≥ 0, i = 1, . . . , n⇒
n∑
i=1

Ji =

n−1∑
j=1

mj

Thus the number of elements of V(P) equals

n−1∑
j=1

(Mj−γj+1) =

n−1∑
j=1

(mj−γj−γ+1) =
n∑
i=1

Ji−nγ+n−1 = L− 1.
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...for nonlinear Laurent differential polynomials

Li, Yuan, Gao 2013

Ji ≥ 0, i = 1, . . . , n⇒
n∑
i=1

Ji =

n−1∑
j=1

mj

Thus the number of elements of V(P) equals

n−1∑
j=1

(Mj−γj+1) =

n−1∑
j=1

(mj−γj−γ+1) =
n∑
i=1

Ji−nγ+n−1 = L− 1.

Given j ∈ {1, . . . , n− 1} we have

∪f∈ps(P)Sj(f) ⊆ [γj,Mj] ∩ N. (3)

Can we guarantee that the equality holds?

If there exists j such that (3) is not an equality, P is sparse in the order.



...for nonlinear Laurent differential polynomials

Theorem If P is super essential then

∪f∈ps(P)Sj(f) = [γj,Mj] ∩ N, j = 1, . . . , n− 1.

P is a system of L polynomials in L− 1 algebraic indeterminates.
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Order and degree bounds for sparse differential resultants

Ordering on V(P) through a bijection β : V(P)→ {1, . . . , L− 1}.
Y = {y1, . . . , yL−1} algebraic indeterminates over Q.

A bijection υ : Y → V(P), by υ(yl) = β−1(l) extends to a ring isomorp-
hism

υ : D[Y±]→ D[V(P)±].

Monomials in D[Y±]

yα = yα1
1 · · · y

αL−1
L−1 , α = (α1, . . . , αL−1) ∈ ZL−1.

Algebraic support of f =
∑

α∈ZL−1 aαυ(yα) in D[V(P)±]

A(f) :=
{
α ∈ ZL−1 | aα 6= 0

}
.
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Order and degree bounds for sparse differential resultants

Ordering on ps(P) through a bijection λ : ps(P)→ {1, . . . , L}.

We define the algebraic generic system associated to P as

ags(P) :=

 ∑
α∈A(f)

cλ(f)
α yα | f ∈ ps(P)

 ,
where cλ(f)

α are algebraic indeterminates over Q.

ρ := λ−1 we have

ags(P) =

Pl :=
∑

α∈A(ρ(l))

clαy
α | l = 1, . . . , L

.
Pl = clTl +

hl∑
h=1

cl,hTl,h, with hl := |A(ρ(l))| − 1.
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∂t
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f1 = a2x+ (a1 + a4x)u+ u′ + (a3 + a6x)u2 + a5u
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f2 = x′ + (b1 + b3x)u+ (b2 + b5x)u2 + b4u
3,
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EXAMPLE System P = {f1, f2} in D{u}, D = Q(t)[ai, bj]{x}, ∂ = ∂
∂t

.

f1 = a2x+ (a1 + a4x)u+ u′ + (a3 + a6x)u2 + a5u
3,

f2 = x′ + (b1 + b3x)u+ (b2 + b5x)u2 + b4u
3,

ps(P) = {f1, f2, ∂f2}, with ∂f2

∂f2 = x′′+ b3x
′u+ (b3x+ b1)u

′+ b5x
′u2 + (2b5x+ 2b2)uu

′+ 3b4u
2u′

and V(P) = {u, u′}.
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EXAMPLE System P = {f1, f2} in D{u}, D = Q(t)[ai, bj]{x}, ∂ = ∂
∂t

.

f1 = a2x+ (a1 + a4x)u+ u′ + (a3 + a6x)u2 + a5u
3,

f2 = x′ + (b1 + b3x)u+ (b2 + b5x)u2 + b4u
3,

ps(P) = {f1, f2, ∂f2}, with ∂f2

∂f2 = x′′+ b3x
′u+ (b3x+ b1)u

′+ b5x
′u2 + (2b5x+ 2b2)uu

′+ 3b4u
2u′

and V(P) = {u, u′}.

System ags(P) = {P1, P2, P3} of generic polynomials in Y = {y1, y2}

P1 = c1 + c11y1 + c12y2 + c13y
2
1 + c14y

3
1,

P2 = c2 + c21y1 + c22y
2
1 + c23y

3
1,

P3 = c3 + c31y1 + c32y2 + c33y
2
1 + c34y1y2 + c35y

2
1y2
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ags(P) is included in K[Y±], with K := Q(C)

Cl := {clα | α ∈ A(ρ(l))} and C := ∪Ll=1Cl.

P super essential⇒ ags(P), L polynomials in L− 1 indeterminates Y .

Canny, J.F. and Emiris, I.Z., 2000. A Subdivision-Based Algorithm for the Sparse Re-
sultant, J. ACM 47,417-451.

D’Andrea, C., 2002. Macaulay Style Formulas for Sparse Resultants. Trans. of AMS,
354(7), 2595-2629.

Finite sets of monomials Λ1, . . . ,ΛL,Λ in K[Y±] are determined.

↓

The matrix Syl(ags(P)) in the monomial bases of the linear map

〈Λ1〉K ⊕ · · · ⊕ 〈ΛL〉K → 〈Λ〉K : (g1, . . . , gL) 7→
∑

glPl,

verifies det(Syl(ags(P))) 6= 0.
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S1(P) := Syl(ags(P)) assigns a special role to P1. The same construc-
tion can be done choosing Pl, l = 2, . . . , L as a distinguished polynomial,
obtaining a matrix denoted by Sl(P).
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det(Syl(ags(P))) ∈ (ags(P)) ∩ Q[C].
S1(P) := Syl(ags(P)) assigns a special role to P1. The same construc-
tion can be done choosing Pl, l = 2, . . . , L as a distinguished polynomial,
obtaining a matrix denoted by Sl(P).

Sl(P) has the minimum number of rows containing coefficients of Pl.

Dl = det(Sl(P)), l = 1, . . . , L.

Let Res(P) be the algebraic resultant of the system S = ags(P),

Res(P) = gcdQ[C](Dl).

If Res(P) 6= 1

(S) ∩ Q[C] = (Res(P)).
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If Res(P) 6= 1,

deg(Dl, Cl) = deg(Res(P), Cl) = MV−l(P) :=

M(Qh | h ∈ {1, . . . , L}\{l}) =
∑

J⊂{1,...,L}\{l}

(−1)L−|J |vol(
∑
j∈J

Qj)

Ql be the convex hull of A(ρ(l)) in RL−1

vol(Ql) its L− 1 dimensional volume∑
j∈J Qj the Minkowski sum ofQj, j ∈ J



Order and degree bounds for sparse differential resultants

Using ”toricres04”, Maple 9 code for sparse (toric) resultant matrices by I.Z.
Emiris, obtain a 12× 12 matrix S1(P) whose rows contain the coefficients
of the polynomials

y1P1, y1y2P1, y1y
2
2P1, y

2
1P2, y1y2P2, y

2
1y2P2,

y1y
2
2P2, y

2
1y

2
2P2, y1P3, y1y2P3, y1y

2
2P3, y1y

3
2P3

in the monomials

y1, y
2
1, y1y2, y

2
1y2, y1y

2
2, y

2
1y

2
2, y1y

3
2, y

2
1y

3
2, y1y

4
2, y

2
1y

4
2, y1y

5
2, y

2
1y

5
2.
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Using ”toricres04”, Maple 9 code for sparse (toric) resultant matrices by I.Z.
Emiris, obtain a 12× 12 matrix S1(P) whose rows contain the coefficients
of the polynomials

y1P1, y1y2P1, y1y
2
2P1, y

2
1P2, y1y2P2, y

2
1y2P2,

y1y
2
2P2, y

2
1y

2
2P2, y1P3, y1y2P3, y1y

2
2P3, y1y

3
2P3

in the monomials

y1, y
2
1, y1y2, y

2
1y2, y1y

2
2, y

2
1y

2
2, y1y

3
2, y

2
1y

3
2, y1y

4
2, y

2
1y

4
2, y1y

5
2, y

2
1y

5
2.

If the order of the input polynomials is P2, P3, P1, we get a 13× 13 matrix
S2(P) and if the order is P3, P1, P2, the matrix S3(P) obtained is 11× 11,



namely 

c1 c12 c11 0 c13 0 c14 0 0 0 0

c3 c32 c31 c34 c33 c35 0 0 0 0 0

0 0 c1 c12 c11 0 c13 0 c14 0 0

0 0 c3 c32 c31 c34 c33 c35 0 0 0

0 0 0 0 c1 c12 c11 0 c13 0 c14

0 0 0 0 c3 c32 c31 c34 c33 c35 0

c2 0 c21 0 c22 0 c23 0 0 0 0

0 c2 0 c21 0 c22 0 c23 0 0 0

0 0 c2 0 c21 0 c22 0 c23 0 0

0 0 0 c2 0 c21 0 c22 0 c23 0

0 0 0 0 c2 0 c21 0 c22 0 c23



.

The determinants of these matrices are

D1(P) = −c3Res(P), D2(P) = c2
1Res(P) and D3(P) = Res(P).
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SPECIALIZATION to the coefficient set of f =
∑

α∈A(f) a
f
αυ(yα) in ps(P)

A(P) := ∪f∈ps(P)Af , wtih Af := {afα | α ∈ A(f)}.
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SPECIALIZATION to the coefficient set of f =
∑

α∈A(f) a
f
αυ(yα) in ps(P)

A(P) := ∪f∈ps(P)Af , wtih Af := {afα | α ∈ A(f)}.

Given l ∈ {1, . . . , L}, such that ρ(l) = f , and clα ∈ Cl, aρ(l)
α ∈ Af .

Ring epimorphism

Ξ :Q[C][Y±]→ Q[A(P)][V±],

Ξ(clα) = aρ(l)
α

Ξ(yl) = υ(yl)

Ξ(Dl) ∈ [P] ∩ D is a differential resultant formula for P with

Li = Ji − γ, U = V(P) and Ωf = Ξ(Λλ(f)),Ω = Ξ(Λ),

f ∈ ps(P).
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Let us consider sets of differential indeterminates over Q,

Ai := {aiα | α ∈ A(fi)}, i = 1, . . . , n,
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ORDER AND DEGREE BOUNDS

Let us consider sets of differential indeterminates over Q,

Ai := {aiα | α ∈ A(fi)}, i = 1, . . . , n,

The generic polynomial Fi in D{U±} with algebraic support A(fi) is

Fi :=
∑

α∈A(fi)

aiαυ(yα).

P = {F1, . . . , Fn} sparse generic Laurent differential polynomials in

D{U±}, D = Q{∪ni=1Ai}.



Order and degree bounds for sparse differential resultants

If the differential elimination ideal [P] ∩D has dimension n− 1 then

[P] ∩D = sat(∂Res(P)),

∂Res(P) is the sparse differential resultant of P.

Li, W., Yuan, C.M., Gao, X.S., 2012. Sparse Differential Resultant for Laurent Differential
polynomials. In arXiv:1111.1084v3.
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Assuming P super essential, we can compute Dl, l = 1, . . . , L.

Dl ∈ (ags(P)) ∩ Q[C] prime ideal with generic zero ε.

Dl = Q1 · . . . ·Qr irreducible factors,

Q = {Q ∈ {Q1, . . . , Qr} | Q(ε) = 0} 6= ∅.

(*) If there exists Q ∈ Q such that (SQ) ∩ Q[CQ] = (Q) then

Ξ(Q) 6= 0⇒ Ξ(Q) = E∂Res(P)

Ξ(Dl) 6= 0⇒ Ξ(Dl) = E∂Res(P), E ∈ D.



Order and degree bounds for sparse differential resultants

Let P = {F1, F2, F3}, (J1 − γ, J2 − γ, J3 − γ) = (1, 1, 2).

ps(P) = ∪ni=1F
[Ji−γ]
i

{∂F1 = ∂a1 + ∂a11u1u2 + a11u11u2 + a11u1u21, F1 = a1 + a11u1u2,

∂F2 = ∂a2 + ∂a21u1u22 + a21u11u22 + a21u1u23, F2 = a2 + a21u1u22,

∂2F3 = ∂2a3 + ∂2a31u21 + 2∂a31u22 + a31u23,

∂F3 = ∂a3 + ∂a31u21 + a31u22, F3 = a3 + a31u21}.
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Let P = {F1, F2, F3}, (J1 − γ, J2 − γ, J3 − γ) = (1, 1, 2).

ps(P) = ∪ni=1F
[Ji−γ]
i

{∂F1 = ∂a1 + ∂a11u1u2 + a11u11u2 + a11u1u21, F1 = a1 + a11u1u2,

∂F2 = ∂a2 + ∂a21u1u22 + a21u11u22 + a21u1u23, F2 = a2 + a21u1u22,

∂2F3 = ∂2a3 + ∂2a31u21 + 2∂a31u22 + a31u23,

∂F3 = ∂a3 + ∂a31u21 + a31u22, F3 = a3 + a31u21}.

S = ags(P) =

{P1 = c10 + c11y2y1 + c12y2y3 + c13y4y1, P2 = c20 + c21y2y1,

P3 = c30 + c31y5y1 + c32y5y3 + c33y6y1, P4 = c40 + c41y5y1,

P5 = c50 + c51y4 + c52y5 + c53y6, P6 = c60 + c61y4 + c62y5,

P7 = c70 + c71y4}.
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We compute D1(P) which has the next irreducible factors

Q1 = c62, Q2 = c40, Q3 = −c70c62c51 + c70c61c52 − c60c71c52 + c62c50c71

Q4 = −c61c70 + c71c60, Q5 = c70, Q6 = c20c40c12c41c33c
2
71c62c50

− c62c40c70c53c32c13c21 − c62c40c70c20c51c12c41c33 − c71c40c20c12c41c60c33c52
+ c71c60c40c53c10c32c41c21 + c71c40c20c12c41c60c53c31 − c71c20c60c30c12c241c53
− c71c40c20c32c41c60c53c11 + c40c70c20c61c52c12c41c33 − c40c70c53c10c61c32c41c21
− c40c70c20c12c41c53c31c61 + c70c20c30c61c12c

2
41c53 + c40c70c20c32c41c53c11c61.

Only Q6(ε) = 0, Ξ(Q6) 6= 0, Ξ(Q6) = −a21H0.
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We compute D1(P) which has the next irreducible factors

Q1 = c62, Q2 = c40, Q3 = −c70c62c51 + c70c61c52 − c60c71c52 + c62c50c71

Q4 = −c61c70 + c71c60, Q5 = c70, Q6 = c20c40c12c41c33c
2
71c62c50

− c62c40c70c53c32c13c21 − c62c40c70c20c51c12c41c33 − c71c40c20c12c41c60c33c52
+ c71c60c40c53c10c32c41c21 + c71c40c20c12c41c60c53c31 − c71c20c60c30c12c241c53
− c71c40c20c32c41c60c53c11 + c40c70c20c61c52c12c41c33 − c40c70c53c10c61c32c41c21
− c40c70c20c12c41c53c31c61 + c70c20c30c61c12c

2
41c53 + c40c70c20c32c41c53c11c61.

Only Q6(ε) = 0, Ξ(Q6) 6= 0, Ξ(Q6) = −a21H0.

∂Res(P) = H0 =

− a21a1a2a11a
2
31∂

2a3 + 2a21a31a2a1a11∂a3∂a31 − a21a
2
31∂a3a2∂a1a11

+ a21a31a2a3a1∂
2a31a11 + a21a

2
31a2a1∂a3a1 − 2a21a2a3a1∂a

2
31a11

+ a21a2a3a31∂a1∂a31a11 + a21a
2
31a1∂a3∂a2a11 − a21a3a1∂a2∂a31a11a31

− a21a2a3a1a31∂a11∂a31 + a2
31a

2
2a3a

2
11 + a2a3a1a11a31∂a21∂a31 − a2

31a2a1a11∂a3∂a21



Order and degree bounds for sparse differential resultants

If Ξ(Q) 6= 0 then

ord(∂Res(P), Ai) ≤ ord(Ξ(Q), Ai) ≤ Ji − γ, i = 1, . . . , n
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If Ξ(Q) 6= 0 then

ord(∂Res(P), Ai) ≤ ord(Ξ(Q), Ai) ≤ Ji − γ, i = 1, . . . , n

and if (SQ) ∩ Q[CQ] = (Q) = (Res(SQ)),

deg(∂Res(P),∪τik=0∂
kAi) ≤ deg(Ξ(Q),∪τik=0∂

kAi) ≤
τi∑
k=0

deg(Q,Cλ(∂kfi)
) =

τi∑
k=0

MV−λ(∂kfi)
(P).

∂kAi = {∂a | a ∈ Ai}, τi = ord(Ξ(Q), Ai).


