Hors d'oeuvre to Malgrange ideas: Jet Bundles

Camilo Sanabria

The CUNY Graduate Center

September 5th, 2008

Definition of Jet Bundle

Let $\pi: E \to M$ be a fiber bundle, where E and M are finite dimensional manifolds (real or complex) of dimensions m+n and n respectively. Let $p \in M$. Let $1 \leqslant i \leqslant n, \ 1 \leqslant \alpha \leq m$.

- We denote by Γ_p the sections of π around p.
- Let (U, x^i) be a coordinate system of M around p. We say that (x^i, u^α) is an adapted coordinate of π if $x^i(a) = x^i(b)$ whenever $\pi(a) = \pi(b)$. One can think about the u^α as coordinate functions of the fibers above U.
- A section $\phi \in \Gamma_p$ is completely defined by the functions

$$\phi^{\alpha}(x^{1},...,x^{n}) = u^{\alpha} \circ \phi(x^{1},...,x^{n})$$
$$= u^{\alpha}(x^{1},...,x^{n}).$$

Definition of Jet Bundle

Let ϕ , $\psi \in \Gamma_p$. Using multi-index notation, we say that ϕ and ψ define the same k-th order jet at p if $\phi(p) = \psi(p)$ and

$$\frac{\partial^{|I|}\phi^{\alpha}}{\partial x^{I}}(p) = \frac{\partial^{|I|}\psi^{\alpha}}{\partial x^{I}}(p)$$

for all multi-index I with $1 \leq |I| \leq k$ and all $1 \leq \alpha \leq m$. To define the same jet bundle at p is an equivalence relation on Γ_p and so, the equivalence class of ϕ is denoted $j_p^k \phi$

The k-th order Jet Bundle of π is defined as the collection

$$J^k \pi = \{ j_p^k \phi | \ p \in M, \ \phi \in \Gamma_p \}$$

- $J^k\pi$ is a manifold
- The map $\pi_k: J^k\pi \to M$, $\pi_k(j_p^k\phi)=p$ defines a fiber bundle.
- The map $\pi_{k,0}: J^k\pi \to E$, $\pi_{k,0}(j_p^k\phi) = \phi(p)$ defines an affine bundle.
- If $k \ge l$, the map $\pi_{k,l}: J^k \pi \to J^l \pi$, $\pi_{k,l}(j_p^k \phi) = j_p^l \phi$ defines an affine bundle.
- $\cdots \rightarrow J^k \pi \rightarrow \cdots \rightarrow J^1 \pi \rightarrow E \rightarrow M$

The adapted coordinate system (x^i, u^α) on E leads to the *induced* coordinate system on $J^k\pi$, $(x^i, u^\alpha, u^\alpha_I)$, where

$$u_I^{\alpha}(j_p^k\phi) = \frac{\partial^{|I|}\phi^{\alpha}}{\partial x^I}, \quad 1 \leq |I| \leq k, \ 1 \leq \alpha \leq m.$$

One can think about the induced coordinates of a k-th order jet $j_p^k \phi$ as the coefficients of the k-th order Taylor expansion of the section ϕ around p on adapted coordinates.

Say,
$$x^i(p) = p^i$$
, then if

$$\phi^{\alpha}(x^{1},\ldots,x^{n}) = \phi^{\alpha}(p) + \sum_{i} \frac{\partial \phi^{\alpha}}{\partial x^{i}}(x^{i} - p^{i}) + \ldots + \sum_{|I| = k} \frac{1}{I!} \frac{\partial^{|I|} \phi^{\alpha}}{\partial x^{I}}(x - p)^{I} + \ldots$$

the induced coordinates of $j_p^k \phi$ are $(p^i, \phi^{\alpha}(p), \frac{\partial^{|I|} \phi^{\alpha}}{\partial x^I}(p))$.

Jet Bundles are convenient for defining differential equations. Indeed, a k-th order differential equation is now defined as a closed embedded submanifold S of $J^k\pi$. A solution is a local section $\phi \in \Gamma_U(\pi)$ ($U \subseteq M$ open), such that $j_p^k\phi \in S$ for every $p \in U$.

Example: Consider the trivial bundle $\pi: \mathbb{C}^2 \times \mathbb{C} \to \mathbb{C}^2$, given by the first projection, with global adapted coordinates (z^1, z^2, w^1) . The map $F: J^1\pi \to \mathbb{C}$ defined by:

$$F(z^1, z^2, w^1, w_1^1, w_2^1) = w_1^1 w_2^1 - 2z^2 w^1$$

gives rise to the differential equation:

$$S = \{j_p^1 \phi \in J^1 \pi | F(j_p^1 \phi) = 0\}.$$

In traditional notation:

$$\frac{\partial \phi}{\partial z^1} \frac{\partial \phi}{\partial z^2} - 2z^2 \phi = 0$$

A particular solution to S is $\phi(z^1, z^2) = z^1(z^2)^2$.

Prolongation of sections

Given an open subset $U \subseteq M$ and a section $\phi \in \Gamma_U(\pi)$ we define the k-th order prolongation of ϕ , $j^k \phi$ by setting

$$j^k\phi(p)=j_p^k\phi$$

In local coordinates

$$j^k \phi(x^1, \dots, x^n) = (x^i, \phi^\alpha, \frac{\partial^{|I|} \phi^\alpha}{\partial x^I})$$

Proposition: If $\psi \in \Gamma_U(\pi_k)$, then there is a local section $\phi \in \Gamma_U(\pi)$ satisfying $\psi = j^k \phi$ if, and only if, $\psi = j^k (\pi_{k,0} \circ \psi)$.

Prolongation of sections

Prolongation of sections

Let $\rho: H \to N$ be another fiber bundle, and (f, \overline{f}) be a bundle morphism where $\overline{f}: M \to N$ is a diffeomorphism

$$E \xrightarrow{f} H$$

$$\downarrow^{\pi} \qquad \downarrow^{\rho}$$

$$M \xrightarrow{\overline{f}} N$$

We define the k-th order prolongation $j^k(f,\overline{f}):J^k\pi\to J^k
ho$ by

$$j^{k}(f,\overline{f})(j_{p}^{k}\phi)=j_{\overline{f}(p)}^{k}\{f\circ\phi\circ\overline{f}^{-1}\}$$

Jet Bundles behave "nicely" with respect to product and morphisms. By "nice" I mean:

- $j^k(id_E) = id_{J^k\pi}$.
- if π and ρ are bundles over M then $J^k\{\pi \times \rho\} = J^k\pi \times J^k\rho$.
- if $f: \pi \to \rho$ and $g: \rho \to \sigma$ are bundle morphisms projecting to diffeomorphisms, then $j^k\{g \circ f\} = j^k g \circ j^k f$.

These properties are useful when one has a bundle where the fibers are groups. Indeed one can prolong:

- The identity section.
- The inverse morphism.
- The product morphism.
- The Lie algebra structure of the fibers

Remark: This does NOT mean that $J^k\pi$ turns into a group itself (example?).

Since $\pi_{k,0}: J^k\pi \to E$ is an affine bundle, if $\mathscr{O}_E(V)$ denotes the sheaf of coordinate functions over some open $V \subseteq \pi^{-1}U$ in E; then in $J^k\pi$:

$$\mathscr{O}_{J^k\pi}(\pi_{k,0}^{-1}V)=\mathscr{O}_E(V)[u_I^\alpha]$$

(I ranges over all multi-indexes $1 \le |I| \le k$ and $1 \le \alpha \le m = \dim(E) - \dim(M)$).

i.e. we just append some more variables with no relation in between them.

• $\cdots \to J^k \pi \to \cdots \to J^1 \pi \to E \to M$, so we define the pro-manifold through the projective limit:

$$J\pi=\lim_{\leftarrow}J^k\pi$$

• $\mathscr{O}_M \to \mathscr{O}_E \to \mathscr{O}_{J^1\pi} \to \ldots \to \mathscr{O}_{J^k\pi} \to \ldots$, so we define the sheave through the inductive limit:

$$\mathscr{O}_{J\pi} = \varinjlim \mathscr{O}_{J^k\pi}$$

In order to understand the differential structure on $J\pi$ it is useful to remember that the Jet Bundle is created starting from sections of π .

If $\phi \in \Gamma_U \pi$ is a local section, then we can think of $\phi(U)$ as a "deformation" of U on E, so that if $F:E \to \mathbb{C}$ then, the pull-back, $\phi^*(F) = F \circ \phi$ is a function on the "deformed" copy of U and so:

$$\frac{\partial}{\partial x^{i}}\phi^{*}(F)(p) = \frac{\partial F}{\partial x^{i}}(\phi(p)) + \sum_{\alpha} \frac{\partial F}{\partial u^{\alpha}}(\phi(p)) \frac{\partial \phi^{\alpha}}{\partial x^{i}}(p)$$

Pulling back the functions $\frac{\partial F}{\partial x^i}$ and $\frac{\partial F}{\partial u^{\alpha}}$ to $J^1\pi$ we get:

$$\frac{\partial}{\partial x^{i}}\phi^{*}(F)(p)=(\frac{\partial F}{\partial x^{i}}+\sum_{\alpha}u_{i}^{\alpha}\frac{\partial F}{\partial u^{\alpha}})(j_{p}^{1}\phi)$$

So we define the derivation:

$$D_{i}: \mathscr{O}_{E} \longrightarrow \mathscr{O}_{J^{1}\pi}$$

$$F \longmapsto \frac{\partial F}{\partial x^{i}} + \sum_{\alpha} u_{i}^{\alpha} \frac{\partial F}{\partial u^{\alpha}}$$

Similarly, we extend this derivation to:

$$\begin{array}{ccc} D_i: \mathscr{O}_{J^k\pi} & \longrightarrow & \mathscr{O}_{J^{k+1}\pi} \\ F & \longmapsto & \dfrac{\partial F}{\partial x^i} + \sum_{\alpha} u_i^{\alpha} \dfrac{\partial F}{\partial u^{\alpha}} + \sum_{\alpha, 1 < |I| < k} u_{I+\epsilon_i}^{\alpha} \dfrac{\partial F}{\partial u_{I}^{\alpha}} \end{array}$$

So that we get the ring $\mathcal{O}_{J_{\pi}}$ with *n*-derivations D_1, \ldots, D_n .

Just as we defined k-th order differential equations as embedded closed submanifolds of $J^k\pi$; we define, in more generality, a differential equation as a closed embedded subpro-manifold of $J\pi$. These are given by coherent sheafs of ideals in $\mathscr{O}_{J\pi}$. Actually, we will only consider coherent sheafs of differential ideals (we are looking for objects respecting the differential structure). So let $\mathscr I$ be such a sheaf of ideals, and S the closed pro-manifold in $J\pi$ defined by it. Just as before, a solution to the differential equation is a local section $\phi \in \Gamma_U \pi$ such that

$$j_p^k \phi \in S \cap J^k \pi$$
, for all $p \in U$ and all $k \leq 0$

Algebraically: a local solution to the differential system of equations $\mathscr I$ is a differential morphism of $\mathscr O_M$ -algebras:

$$\Phi: \mathscr{O}_{J\pi}/\mathscr{I} \longrightarrow \mathscr{O}_M \upharpoonright_U$$

Indeed, if $\phi^{\alpha}(x^1,\ldots,x^n)=\Phi(u^{\alpha})$ then

•
$$\frac{\partial \phi^{\alpha}}{\partial x^{i}} = \Phi(D_{i}u^{\alpha}) = \Phi(u_{i}^{\alpha})$$

•
$$\frac{\partial^{|I|}\phi^{\alpha}}{\partial x^{I}} = \Phi(D_{I}u^{\alpha}) = \Phi(u_{I}^{\alpha})$$

So the k-th prolongation of the section $\phi=(\mathbf{x}^i,\phi^\alpha)$ is a zero of $\mathscr{I}\cap\mathscr{O}_{J^k\pi}$