Entrée to Malgrange ideas: General Involutivity Theorem

Camilo Sanabria

The CUNY Graduate Center

October 3rd, 2008

Given a fiber bundle $\pi: E \to M$, we define the k-th order jet bundle $J^k\pi$ as the collection of equivalent classes of germs of sections of π , where two sections are identified if their image and all their derivatives, up to the k-th order, coincide. The class of $\phi \in \Gamma_p\pi$ is denoted by $j_p^k\phi$.

A local coordinate chart is given by the functions $(x^i, u^{\alpha}, u^{\alpha}_I)$, where:

- xⁱ are the coordinate functions of M.
- u^{α} are coordinate functions of the fibers of π .
- $I=(i_1,\ldots,i_n)$ is a multi-index, $|I|\leq k$, and $u_I^{\alpha}(j_p^k\phi)=\frac{\partial^{|I|}\phi^{\alpha}}{\partial x^I}$

• $\cdots \to J^k \pi \to \cdots \to J^1 \pi \to E \to M$, and we define:

$$J\pi = \lim_{\stackrel{\leftarrow}{}} J^k \pi$$

• $\mathscr{O}_M \to \mathscr{O}_E \to \mathscr{O}_{J^1\pi} \to \ldots \to \mathscr{O}_{J^k\pi} \to \ldots$, and we define:

$$\mathscr{O}_{J\pi} = \lim_{\longrightarrow} \mathscr{O}_{J^k\pi}$$

• Locally, $\mathscr{O}_{J\pi}$ turns into a sheave of differential ring by setting

$$D_{i}F = \frac{\partial F}{\partial x^{i}} + \sum_{\alpha} u_{i}^{\alpha} \frac{\partial F}{\partial u^{\alpha}} + \sum_{\alpha, 1 \le |I| \le k} u_{I+\epsilon_{i}}^{\alpha} \frac{\partial^{|I|} F}{\partial u_{I}^{\alpha}}$$

With all this paraphernalia, we want to think about a system of differential equations as a coherent sheaf of ideals $\mathscr I$ on $\mathscr O_{J\pi}$ that are locally differential ideals. The local solutions are given by differential morphisms of $\mathscr O_{M}$ -algebras:

$$\Phi: \mathcal{O}_{J\pi}/\mathcal{I} \longrightarrow \mathcal{O}_M(U)$$

With all this paraphernalia, we want to think about a system of differential equations as a coherent sheaf of ideals $\mathscr I$ on $\mathscr O_{J\pi}$ that are locally differential ideals. The local solutions are given by differential morphisms of $\mathscr O_M$ -algebras:

$$\Phi:\mathscr{O}_{J\pi}/\mathscr{I}\longrightarrow\mathscr{O}_M(U)$$

Arternatively, we can also think about a system of differential equations as a locally closed embedded sub-promanifold S of $J\pi$.

With all this paraphernalia, we want to think about a system of differential equations as a coherent sheaf of ideals $\mathscr I$ on $\mathscr O_{J\pi}$ that are locally differential ideals. The local solutions are given by differential morphisms of $\mathscr O_M$ -algebras:

$$\Phi:\mathscr{O}_{J\pi}/\mathscr{I}\longrightarrow\mathscr{O}_{M}(U)$$

Arternatively, we can also think about a system of differential equations as a locally closed embedded sub-promanifold S of $J\pi$. We set

$$S^k = J^k \pi \cap S$$
 $\mathscr{I}^k = \mathscr{O}_{J^k \pi} \cap \mathscr{I}$

 \mathcal{I}^k and S^k are called k-th order differential equations.

Jet solutions

We turn our attention to the computational aspect of the differential equations. So we will not restrict our attention to an \mathscr{I}^k and an S^k coming from objects in $\mathscr{O}_{J\pi}$ and $J\pi$. We simply start from elements defined on the k-th order jet.

Jet solutions

differential equations. So we will not restrict our attention to an \mathscr{I}^k and an S^k coming from objects in $\mathscr{O}_{J\pi}$ and $J\pi$. We simply start from elements defined on the k-th order jet. Not having a differential structure on $\mathscr{O}_{J^k\pi}$, we now consider k-th order jet solutions: these are simply (closed) points in S^k . Which one should think as a potential solution to the differential equation, in the sense that it is a k-th order Taylor expansion that may converge to a solution after extending it infinitely many times.

We turn our attention to the computational aspect of the

Assume $F \in \mathscr{O}_E(U)[u_I^{\alpha}]$ ($U \subseteq E$ open) is zero on S^k , and

$$j_p^k \phi = (x^i, u^\alpha, u_I^\alpha)$$

is a k-th order jet solution (i.e. $F(j_p^k \phi) = 0$).

Assume $F \in \mathscr{O}_E(U)[u_I^{\alpha}]$ ($U \subseteq E$ open) is zero on S^k , and

$$j_p^k \phi = (x^i, u^\alpha, u_I^\alpha)$$

is a k-th order jet solution (i.e. $F(j_p^k \phi) = 0$).If $\phi \in \Gamma(U)$ is a local solution of S^k , i.e. $j^k \phi(U) \subseteq S^k$

Assume $F \in \mathscr{O}_E(U)[u_I^{\alpha}]$ $(U \subseteq E \text{ open})$ is zero on S^k , and

$$j_p^k \phi = (x^i, u^\alpha, u_I^\alpha)$$

is a k-th order jet solution (i.e. $F(j_p^k \phi) = 0$). If $\phi \in \Gamma(U)$ is a local solution of S^k , i.e. $j^k \phi(U) \subseteq S^k$ then, since F is constant (zero) in S^k ,

$$D_i F(j_p^{k+1} \phi) = \frac{\partial}{\partial x^i} F \circ j^k \phi(p) = 0$$

Recall,

$$D_{i}F = \frac{\partial F}{\partial x^{i}} + \sum_{\alpha} u_{i}^{\alpha} \frac{\partial F}{\partial u^{\alpha}} + \sum_{\alpha, 1 \leq |I| \leq k} u_{I+\epsilon_{i}}^{\alpha} \frac{\partial^{|I|} F}{\partial u_{I}^{\alpha}}$$

So a necessary condition for a k-th order jet solution $j_p^k\phi$ to converge to a local solution is that there is a point in $S^{k+1}=pr_1S^k\in J^{k+1}\pi$ above $j_p^k\phi$. Where:

$$pr_1S^k:=\{\text{zeroes in }J^{k+1}\pi\text{ of }F\text{ and }D_iF|\text{ }F\text{ vanishes in }S^k\}$$

So a necessary condition for a k-th order jet solution $j_p^k \phi$ to converge to a local solution is that there is a point in $S^{k+1} = pr_1 S^k \in J^{k+1} \pi$ above $j_p^k \phi$. Where:

$$pr_1S^k := \{\text{zeroes in } J^{k+1}\pi \text{ of } F \text{ and } D_iF | F \text{ vanishes in } S^k\}$$

In other words, we solve for $\{u_{l+\epsilon_i}^{\alpha}\}_{|l|=k,i\in\{1,\dots,n\}}$ the system:

$$\sum_{\alpha,|I|=k} \frac{\partial^{|I|} F}{\partial u_I^{\alpha}} (x^i, u^{\alpha}, u_I^{\alpha}) u_{I+\epsilon_i}^{\alpha} = -(\frac{\partial F}{\partial x^i} + \sum_{\alpha,0 \leq |I| < k} u_{I+\epsilon_i}^{\alpha} \frac{\partial^{|I|} F}{\partial u_I^{\alpha}}) (x^i, u^{\alpha}, u_I^{\alpha})$$

Set $\delta_j F = \delta_j F(x^i, u^\alpha, u^\alpha_I)$ as the linear form on the \mathbb{C} -vector space with coordinates $\{u^\alpha_{I+\epsilon_i}\}_{|I|=k,i\in\{1,\dots,n\}}$ defined by:

$$\delta_j F: (u_{I+\epsilon_j}^{\alpha}) \longmapsto \sum_{\alpha,|I|=k} \frac{\partial^{|I|} F}{\partial u_I^{\alpha}} (x^i, u^{\alpha}, u_I^{\alpha}) u_{I+\epsilon_j}^{\alpha}$$

Set $\delta_j F = \delta_j F(x^i, u^\alpha, u^\alpha_I)$ as the linear form on the \mathbb{C} -vector space with coordinates $\{u^\alpha_{I+\epsilon_i}\}_{|I|=k,i\in\{1,\dots,n\}}$ defined by:

$$\delta_j F: (u_{I+\epsilon_i}^{\alpha}) \longmapsto \sum_{\alpha, |I|=k} \frac{\partial^{|I|} F}{\partial u_I^{\alpha}} (x^i, u^{\alpha}, u_I^{\alpha}) u_{I+\epsilon_j}^{\alpha}$$

Set
$$v_j = v_j(x^i, u^\alpha, u_I^\alpha)$$

$$v_{j} = \left(\frac{\partial F}{\partial x^{j}} + \sum_{\alpha, 0 \leq |I| \leq k} u_{I+\epsilon_{j}}^{\alpha} \frac{\partial^{|I|} F}{\partial u_{I}^{\alpha}}\right) (x^{i}, u^{\alpha}, u_{I}^{\alpha})$$

So the question is now: is there a vector $(u_{I+\epsilon_i}^{\alpha})$ such that:

$$(\delta_j F(u_{I+\epsilon_i}^{\alpha})) = -(v_j)?$$

A necessary and sufficient is that the linear functionals that vanishes at the image of $(\delta_j F)$ vanishes at (v_j) . In other words:

$$\sum_{j} \lambda_{j} \delta_{j} F = 0 \quad \Rightarrow \quad \sum_{j} \lambda_{j} v_{j} = 0$$

$$\sum_{j} \lambda_{j} \delta_{j} F = 0$$
 means:

• $\sum_j \lambda_j D_j F$ is constant in the fiber of $S^{k+1} \to S^k$ above $(x^i, u^\alpha, u^\alpha_I) = j^k_p \phi$

 $\sum_{j} \lambda_{j} \delta_{j} F = 0$ means:

- $\sum_j \lambda_j D_j F$ is constant in the fiber of $S^{k+1} \to S^k$ above $(x^i, u^\alpha, u^\alpha_I) = j^k_p \phi$
- $\sum_{j} \lambda_{j} D_{j} F(x^{i}, u^{\alpha}, u^{\alpha}_{l}) = \sum_{j} \lambda_{j} v_{j}$

$\sum_{j} \lambda_{j} \delta_{j} F = 0$ means:

- $\sum_j \lambda_j D_j F$ is constant in the fiber of $S^{k+1} \to S^k$ above $(x^i, u^\alpha, u^\alpha_I) = j^k_p \phi$
- $\sum_{j} \lambda_{j} D_{j} F(x^{i}, u^{\alpha}, u^{\alpha}_{l}) = \sum_{j} \lambda_{j} v_{j}$
- $\sum_{j} \lambda_{j} v_{j} = 0$ means this constant at the fiber is zero.

$\sum_{j} \lambda_{j} \delta_{j} F = 0$ means:

- $\sum_j \lambda_j D_j F$ is constant in the fiber of $S^{k+1} \to S^k$ above $(x^i, u^\alpha, u^\alpha_l) = j^k_p \phi$
- $\sum_{j} \lambda_{j} D_{j} F(x^{i}, u^{\alpha}, u^{\alpha}_{l}) = \sum_{j} \lambda_{j} v_{j}$
- $\sum_{i} \lambda_{j} v_{j} = 0$ means this constant at the fiber is zero.
- $\sum_{j} \lambda_{j} \delta_{j} F(x^{i}, u^{\alpha}, u^{\alpha}_{l}) \equiv 0$ implies that $\sum_{j} \lambda_{j} D_{j} F$ can be seen as a function over S^{k} .

$\sum_{j} \lambda_{j} \delta_{j} F = 0$ means:

- $\sum_j \lambda_j D_j F$ is constant in the fiber of $S^{k+1} \to S^k$ above $(x^i, u^\alpha, u^\alpha_l) = j^k_p \phi$
- $\sum_{j} \lambda_{j} D_{j} F(x^{i}, u^{\alpha}, u^{\alpha}_{l}) = \sum_{j} \lambda_{j} v_{j}$
- $\sum_{i} \lambda_{j} v_{j} = 0$ means this constant at the fiber is zero.
- $\sum_{j} \lambda_{j} \delta_{j} F(x^{i}, u^{\alpha}, u^{\alpha}_{l}) \equiv 0$ implies that $\sum_{j} \lambda_{j} D_{j} F$ can be seen as a function over S^{k} .

Introducing some notation we will interpret $\sum_j \lambda_j \delta_j F = 0$ as $\sum_j \lambda_j \delta_j F$ is a cycle and $\sum_j \lambda_j v_j$ will correspond to the value of a function at this cycle, vanishing at the borders.

We take M an open set of \mathbb{C}^n , and $\pi: E \to M$ an m-dimensional vector bundle over M. We set the connection defined by $(\nabla_{\frac{\partial}{\partial \omega^l}} u)^{\alpha} = \sum_{\beta} \Gamma^{\alpha}_{i\beta} u^{\beta}$:

$$D_{i} \left(\begin{array}{c} u^{1} \\ \vdots \\ u^{m} \end{array} \right) = \left(\begin{array}{c} u_{i}^{1} \\ \vdots \\ u_{i}^{m} \end{array} \right) = A_{i} \left(\begin{array}{c} u^{1} \\ \vdots \\ u^{m} \end{array} \right)$$

where A_i is the matrix with $(A_i)^{\alpha}_{\beta} = \Gamma^{\alpha}_{i\beta}$ holomorphic over M. So S^1 is defined by the ideal $\mathscr I$ generated by the

$$F_i^{\alpha}(x^i, u^{\alpha}, u_i^{\alpha}) = u_i^{\alpha} - \sum_{\beta} \Gamma_{i\beta}^{\alpha}(x^1, \dots, x^n) u^{\beta}$$

$$F_{i}^{\alpha}(x^{i}, u^{\alpha}, u_{i}^{\alpha}) = u_{i}^{\alpha} - \sum_{\beta} \Gamma_{i\beta}^{\alpha}(x^{1}, \dots, x^{n}) u^{\beta}$$

$$\delta_{j} F_{i}^{\alpha}(x^{i}, u^{\alpha}, u_{i}^{\alpha}) = u_{ij}^{\alpha}$$

$$v_{i,j}^{\alpha}(x^{i}, u^{\alpha}, u_{i}^{\alpha}) = -\sum_{\beta} u^{\beta} \frac{\partial}{\partial x^{j}} \Gamma_{i\beta}^{\alpha} + \Gamma_{i\beta}^{\alpha} u_{j}^{\beta} \pmod{F_{i}^{\alpha}}$$

$$\begin{split} F_{i}^{\alpha}(x^{i}, u^{\alpha}, u_{i}^{\alpha}) &= u_{i}^{\alpha} - \sum_{\beta} \Gamma_{i\beta}^{\alpha}(x^{1}, \dots, x^{n}) u^{\beta} \\ \delta_{j} F_{i}^{\alpha}(x^{i}, u^{\alpha}, u_{i}^{\alpha}) &= u_{ij}^{\alpha} \\ v_{i,j}^{\alpha}(x^{i}, u^{\alpha}, u_{i}^{\alpha}) &= -\sum_{\beta} u^{\beta} \frac{\partial}{\partial x^{j}} \Gamma_{i\beta}^{\alpha} + \Gamma_{i\beta}^{\alpha} u_{j}^{\beta} \pmod{F_{i}^{\alpha}} \\ &= -\sum_{\beta} (u^{\beta} \frac{\partial}{\partial x^{j}} \Gamma_{i\beta}^{\alpha} + \sum_{\gamma} \Gamma_{i\beta}^{\alpha} \Gamma_{j\gamma}^{\beta} u^{\gamma}) \pmod{F_{i}^{\alpha}} \end{split}$$

$$F_{i}^{\alpha}(x^{i}, u^{\alpha}, u_{i}^{\alpha}) = u_{i}^{\alpha} - \sum_{\beta} \Gamma_{i\beta}^{\alpha}(x^{1}, \dots, x^{n}) u^{\beta}$$

$$\delta_{j} F_{i}^{\alpha}(x^{i}, u^{\alpha}, u_{i}^{\alpha}) = u_{ij}^{\alpha}$$

$$v_{i,j}^{\alpha}(x^{i}, u^{\alpha}, u_{i}^{\alpha}) = -\sum_{\beta} u^{\beta} \frac{\partial}{\partial x^{j}} \Gamma_{i\beta}^{\alpha} + \Gamma_{i\beta}^{\alpha} u_{j}^{\beta} \pmod{F_{i}^{\alpha}}$$

$$= -\sum_{\beta} (u^{\beta} \frac{\partial}{\partial x^{j}} \Gamma_{i\beta}^{\alpha} + \sum_{\gamma} \Gamma_{i\beta}^{\alpha} \Gamma_{j\gamma}^{\beta} u^{\gamma}) \pmod{F_{i}^{\alpha}}$$

$$= -\sum_{\gamma} u^{\gamma} (\frac{\partial}{\partial x^{j}} \Gamma_{i\gamma}^{\alpha} + \sum_{\beta} \Gamma_{i\beta}^{\alpha} \Gamma_{j\gamma}^{\beta}) \pmod{F_{i}^{\alpha}}$$

$$\delta_j F_i^\alpha - \delta_i F_j^\alpha \ = \ u_{ij}^\alpha - u_{ji}^\alpha = 0$$

$$\begin{split} \delta_{j}F_{i}^{\alpha} - \delta_{i}F_{j}^{\alpha} &= u_{ij}^{\alpha} - u_{ji}^{\alpha} = 0 \\ D_{j}F_{i}^{\alpha} - D_{i}F_{j}^{\alpha} &(\mathsf{mod}\,F_{i}^{\alpha}) &= v_{i,j}^{\alpha} - v_{j,i}^{\alpha}(\mathsf{mod}\,F_{i}^{\alpha}) \\ &= \sum_{\gamma} u^{\gamma} (\frac{\partial}{\partial x^{j}}\Gamma_{i\gamma}^{\alpha} - \frac{\partial}{\partial x^{i}}\Gamma_{j\gamma}^{\alpha} \\ &+ \sum_{\beta} \Gamma_{i\beta}^{\alpha}\Gamma_{j\gamma}^{\beta} - \Gamma_{j\beta}^{\alpha}\Gamma_{i\gamma}^{\beta}) \quad (\mathsf{mod}\,F_{j}^{\alpha}) \end{split}$$

In other words we can prolong the solution to the second order if:

$$\frac{\partial}{\partial x^i} A_j - \frac{\partial}{\partial x^j} A^i - [A_i, A_j] = 0$$

Another example

This time $\pi:\mathbb{C}^n\times\mathbb{C}\to\mathbb{C}^n$ is the first projection. And we take S^1 defined the ideal generated by:

$$F_1(x^i, u, u_i) = u_1, \quad F_2(x^i, u, u_i) = x^1u_2 + x^2u_3 + \ldots + x^{n-1}u_n$$

Another example

This time $\pi: \mathbb{C}^n \times \mathbb{C} \to \mathbb{C}^n$ is the first projection. And we take S^1 defined the ideal generated by:

$$F_1(x^i, u, u_i) = u_1, \quad F_2(x^i, u, u_i) = x^1 u_2 + x^2 u_3 + \ldots + x^{n-1} u_n$$

so that:

$$\delta_j x^{j-1} F_1 = x^{j-1} u_{1,j}, \quad \delta_1 F_2 = x^1 u_{1,2} + x^2 u_{1,3} + \dots + x^{n-1} u_{1,n}$$

Whence
$$\delta_1 F_2 - \sum_j \delta_j x^{j-1} F_1 = 0$$
;

Another example

This time $\pi: \mathbb{C}^n \times \mathbb{C} \to \mathbb{C}^n$ is the first projection. And we take S^1 defined the ideal generated by:

$$F_1(x^i, u, u_i) = u_1, \quad F_2(x^i, u, u_i) = x^1u_2 + x^2u_3 + \ldots + x^{n-1}u_n$$

so that:

$$\delta_j x^{j-1} F_1 = x^{j-1} u_{1,j}, \quad \delta_1 F_2 = x^1 u_{1,2} + x^2 u_{1,3} + \ldots + x^{n-1} u_{1,n}$$

Whence $\delta_1 F_2 - \sum_i \delta_j x^{j-1} F_1 = 0$; but:

$$D_1F_2 - \sum_j D_j x^{j-1} F_1 = u_2 + x^1 u_{1,2} + \dots + x^{n-1} u_{1,n}$$
$$- (x^1 u_{1,2} + \dots + x^{n-1} u_{1,n})$$
$$= u_2$$

Bibliography

B. Malgrange, Systèmes différentiels involutifs, *Panorama et Synthèses*, **19**, Société Mathématique de France, 2005, Paris.