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Recall

Given a fiber bundle π : E → M, we define the k-th order jet
bundle Jkπ as the collection of equivalent classes of germs of
sections of π, where two sections are identified if their image and
all their derivatives, up to the k-th order, coincide. The class of
φ ∈ Γpπ is denoted by jkpφ.

A local coordinate chart is given by the functions (x i , uα, uαI ),
where:

• x i are the coordinate functions of M.

• uα are coordinate functions of the fibers of π.

• I = (i1, . . . , in) is a multi-index, |I | ≤ k , and uαI (jkpφ) = ∂|I |φα

∂x I



Recall

• · · · → Jkπ → · · · → J1π → E → M, and we define:

Jπ = lim
←

Jkπ

• OM → OE → OJ1π → . . .→ OJkπ → . . ., and we define:

OJπ = lim
→

OJkπ

• Locally, OJπ turns into a sheave of differential ring by setting

DiF =
∂F

∂x i
+

∑
α

uαi
∂F

∂uα
+

∑
α,1≤|I |≤k

uαI+εi
∂|I |F

∂uαI



Recall

With all this paraphernalia, we want to think about a system of
differential equations as a coherent sheaf of ideals I on OJπ that
are locally differential ideals. The local solutions are given by
differential morphisms of OM -algebras:

Φ : OJπ/I −→ OM(U)

Arternatively, we can also think about a system of differential
equations as a locally closed embedded sub-promanifold S of Jπ.
We set

Sk = Jkπ ∩ S I k = OJkπ ∩I

I k and Sk are called k-th order differential equations.
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Jet solutions

We turn our attention to the computational aspect of the
differential equations. So we will not restrict our attention to an
I k and an Sk coming from objects in OJπ and Jπ. We simply
start from elements defined on the k-th order jet.

Not having a differential structure on OJkπ, we now consider k-th
order jet solutions: these are simply (closed) points in Sk . Which
one should think as a potential solution to the differential
equation, in the sense that it is a k-th order Taylor expansion that
may converge to a solution after extending it infinitely many times.
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Extending a jet solution

Assume F ∈ OE (U)[uαI ] (U ⊆ E open) is zero on Sk , and

jkpφ = (x i , uα, uαI )

is a k-th order jet solution (i.e. F (jkpφ) = 0).

If φ ∈ Γ(U) is a local

solution of Sk , i.e. jkφ(U) ⊆ Sk then, since F is constant (zero) in
Sk ,

DiF (jk+1
p φ) =

∂

∂x i
F ◦ jkφ(p) = 0
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Extending a jet solution

So a necessary condition for a k-th order jet solution jkpφ to
converge to a local solution is that there is a point in
Sk+1 = pr1Sk ∈ Jk+1π above jkpφ. Where:

pr1Sk := {zeroes in Jk+1π of F and DiF | F vanishes in Sk}

In other words, we solve for {uαI+εi}|I |=k,i∈{1,...,n} the system:

∑
α,|I |=k

∂|I |F

∂uαI
(x i , uα, uαI )uαI+εi = −(

∂F

∂x i
+

∑
α,0≤|I |<k

uαI+εi
∂|I |F

∂uαI
)(x i , uα, uαI )
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Extending a jet solution

Set δjF = δjF (x i , uα, uαI ) as the linear form on the C-vector space
with coordinates {uαI+εi}|I |=k,i∈{1,...,n} defined by:

δjF : (uαI+εi ) 7−→
∑

α,|I |=k

∂|I |F

∂uαI
(x i , uα, uαI )uαI+εj

Set vj = vj(x i , uα, uαI )

vj = (
∂F

∂x j
+

∑
α,0≤|I |<k

uαI+εj
∂|I |F

∂uαI
)(x i , uα, uαI )
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Extending a jet solution

So the question is now: is there a vector (uαI+εi ) such that:

(δjF (uαI+εi )) = −(vj)?

A necessary and sufficient is that the linear functionals that
vanishes at the image of (δjF ) vanishes at (vj). In other words:∑

j

λjδjF = 0 ⇒
∑

j

λjvj = 0



Extending a jet solution

∑
j λjδjF = 0 means:

•
∑

j λjDjF is constant in the fiber of Sk+1 → Sk above

(x i , uα, uαI ) = jkpφ

•
∑

j λjDjF (x i , uα, uαI ) =
∑

j λjvj

•
∑

j λjvj = 0 means this constant at the fiber is zero.

•
∑

j λjδjF (x i , uα, uαI ) ≡ 0 implies that
∑

j λjDjF can be seen

as a function over Sk .

Introducing some notation we will interpret
∑

j λjδjF = 0 as∑
j λjδjF is a cycle and

∑
j λjvj will correspond to the value of a

function at this cycle, vanishing at the borders.
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Example: The curvature

We take M an open set of Cn, and π : E → M an m-dimensional
vector bundle over M. We set the connection defined by
(∇ ∂

∂xi
u)α =

∑
β Γαiβuβ:

Di

 u1

...
um

 =

 u1
i
...

um
i

 = Ai

 u1

...
um


where Ai is the matrix with (Ai )

α
β = Γαiβ holomorphic over M. So

S1 is defined by the ideal I generated by the

Fα
i (x i , uα, uαi ) = uαi −

∑
β

Γαiβ(x1, . . . , xn)uβ



Example: The curvature

Fα
i (x i , uα, uαi ) = uαi −

∑
β

Γαiβ(x1, . . . , xn)uβ

δjF
α
i (x i , uα, uαi ) = uαij

vαi ,j(x i , uα, uαi ) = −
∑
β

uβ
∂

∂x j
Γαiβ + Γαiβuβj (modFα

i )

= −
∑
β

(uβ
∂

∂x j
Γαiβ +

∑
γ

ΓαiβΓβjγuγ) (modFα
i )

= −
∑
γ

uγ(
∂

∂x j
Γαiγ +

∑
β

ΓαiβΓβjγ) (modFα
i )
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Example: The curvature

δjF
α
i − δiFα

j = uαij − uαji = 0

DjF
α
i − DiF

α
j (modFα

i ) = vαi ,j − vαj ,i (modFα
i )

=
∑
γ

uγ(
∂

∂x j
Γαiγ −

∂

∂x i
Γαjγ

+
∑
β

ΓαiβΓβjγ − ΓαjβΓβiγ) (modFα
j )

In other words we can prolong the solution to the second order if:

∂

∂x i
Aj −

∂

∂x j
Ai − [Ai ,Aj ] = 0
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Another example

This time π : Cn × C→ Cn is the first projection. And we take S1

defined the ideal generated by:

F1(x i , u, ui ) = u1, F2(x i , u, ui ) = x1u2 + x2u3 + . . .+ xn−1un

so that:

δjx
j−1F1 = x j−1u1,j , δ1F2 = x1u1,2 + x2u1,3 + . . .+ xn−1u1,n

Whence δ1F2 −
∑

j δjx
j−1F1 = 0; but:

D1F2 −
∑

j

Djx
j−1F1 = u2 + x1u1,2 + . . .+ xn−1u1,n

− (x1u1,2 + . . .+ xn−1u1,n)

= u2
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