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Conventions and terminology

In the differential setting, our fields are all DCF0.
Otherwise they are algebraically closed.

Our varieties V ,W , . . . , are subsets of affine or projective
space defined by appropriate polynomial equations.

All Kolchin-closed subsets (δ-varieties) we consider are
defined over a fixed arbitrary DCF0 denoted by F . We
denote by K any DCF0 containing F .

A finite-rank δ-variety is one that has dimension < ω for
any/all of the usual ordinal-valued ranks on DCF0.

Let R be a δ-ring, K ⊇ R a δ-field, L a δ-field and
ϕ : R → L a δ-homomorphism . We say R is a maximal
δ-ring (with respect to K ) if ϕ does not extend to a
δ-homomorphism with domain contained in K but strictly
containing R and codomain a δ-field.
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Compactness

A topological space X is compact if every open cover of X
admits a finite subcover.

Example: Closed, bounded intervals of R (by the l.u.b.
axiom).

Compact subsets of Hausdorff spaces are closed, and being
compact is most valuable when a space is Hausdorff.

Fact: Algebraic varieties are compact (algebraic geometers
say quasicompact), but generally not Hausdorff.
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Completeness and basic properties

Definition

An algebraic variety V is complete if for every variety W the
projection π2 : V ×W →W is a closed map (takes closed sets
to closed sets).

Completeness is a local property.

Closed subsets of complete varieties are complete.

Products of complete varieties are complete.

If ϕ : V →W is a morphism of varieties and V is
complete, then ϕ(V ) is complete.

Morphisms of complete irreducible varieties into affine
space are constant.
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The fundamental theorem of elimination theory

Example

Infinite affine varieties are not complete: Consider the second
projection of Z := xy − 1 = 0. The image π2(Z ) = {y 6= 0},
which is not closed in A1.

Fact: a complete subset of Pn must be projectively closed. In
fact,

Theorem

Projective varieties are complete.

Proof.

Projective Nullstellensatz + linear algebra.
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δ-completeness

δ-completeness of an affine or projective δ-variety is defined by
the obvious generalization. Most properties carry over to the
differential case:

δ-completeness is a local property.

δ-complete varieties are projectively closed.

Kolchin-closed subsets of δ-complete varieties are
δ-complete.

Products of δ-complete varieties are δ-complete.

If ϕ : V →W is a morphism of δ-varieties and V is
δ-complete, then ϕ(V ) is δ-complete.

BUT morphisms of irreducible δ-complete varieties into
affine space need not be constant.
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Pong

Kolchin’s example: P1 is not complete.

Theorem

(Pong) Only finite-rank δ-varieties can be δ-complete.

Theorem

(Pong) A δ-complete variety is isomorphic to a δ-complete
variety contained in A1.

So it suffices to consider subsets of A1; for convenience we
usually work with P1.

Freitag has generalized much of Pong’s paper to the case of
several commuting derivations (i.e., DCF0,m).
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Positive quantifier elimination

Positive formulas are those that contain no negation symbols.

Theorem

(van den Dries) Let T be an L-theory and ϕ(x̄) an L-formula.
Then ϕ is equivalent modulo T to a positive quantifier-free
formula iff for all M,N |= T , substructures A ⊆M, ā ∈ A,
and L-homomorphisms f : A→ N we have
M |= ϕ(ā) =⇒ N |= ϕ(f (ā)).

Proof.

Slick choice of auxiliary theory T ′ + positive atomic diagram +
compactness.
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(Part of) a valuative criterion

Let p = (p0 : p1) ∈ V ⊆ P1, and let F ⊆ R ⊆ K be a maximal
δ-ring. We say p is in R if either p0/p1 or p1/p0 is.

Theorem

(Pong, S) Let V be a δ-subvariety of P1. If for every p ∈ V
and maximal δ-ring R we have p ∈ R, then V is δ-complete.

Proof.

Use van den Dries’ PQE to show the formula ϕ(x0, x1, ȳ)

(∃x0, x1)((∧iPi (x0, x1, ȳ) = 0)∧
(∧jQj(x0, x1) = 0) ∧ (x0 = 1 ∨ x1 = 1))

is equivalent to a positive quantifier-free formula.
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Ritt and P. Blum

Definition

An element a of a δ-field K is monic over a δ-ring A ⊆ K if a
satisfies a δ-polynomial equation xn + f (x) = 0, where
f (x) ∈ A{x} and n > total degree of terms in f .

Facts:

Derivatives of monic elements are monic.

Maximal δ-rings are local differential rings.

If (R,m) is maximal, a is monic over R iff 1/a /∈ m.

a ∈ K \ R iff 1 ∈ m{a}.
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Morrison

Theorem

Maximal δ-rings are integrally closed.

Theorem

Let (R,m) be a maximal δ-ring. If a satisfies a linear
differential equation over R and 1/a /∈ R, then a ∈ R.

Proof.

Show a is integral over R. This requires monicness of a, a′, . . .
and order-reducing substitutions given by the linear differential
equation.
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First fruits

Proposition

(S) The projective closure in P1 of a linear δ-variety is
δ-complete.

Proof.

Morrison’s result + the valuative criterion.

Corollary

When using the valuative criterion, we may suppose a(n) 6= 0
for all n ∈ N.
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Some good examples

Proposition

(S) The projective closures in P1 of the following are
δ-complete:

Q(x)x ′ = P(x), where Q,P are ordinary polynomials

x ′′ = x3

xx ′′ = x ′

Proof.

Valuative criterion + integral closedness of R + a lot of pencil
lead.
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Known to be δ-complete

General classes:

Linear: all

x (n) = P(x (n−1))

Equations algebraic in F [x (n)]

First-order:

Q(x)x ′ = P(x)

(x ′)n = x + α

Second-order:

x ′′ = x3 (and friends)

xx ′′ = x ′
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Where to from here?

Hope/Guess

All finite-rank, projectively closed δ-varieties are δ-complete.

Refine 1-preserving algorithms, understand integrality in
this setting better

Generalize proof of algebraic completeness or show this
cannot be done

Direct approach: analyze QE, use Rosenfeld-Groebner
algorithm, etc.

Use the preceding to look for counterexamples

Look at interesting δ-varieties like the Manin kernel.

Algebraic D-varieties
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Thanks for listening!
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