Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ -

How do we identify δ -complete varieties?

The valuative criterion in

Where to from here?

Identifying complete differential varieties

William Simmons

University of Illinois at Chicago

Kolchin Seminar in Differential Algebra New York City, NY March 9, 2012

Conventions and terminology

Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to rom here?

- In the differential setting, our fields are all DCF₀.
 Otherwise they are algebraically closed.
- Our varieties V, W, \ldots , are subsets of affine or projective space defined by appropriate polynomial equations.
- All Kolchin-closed subsets (δ -varieties) we consider are defined over a fixed arbitrary DCF_0 denoted by \mathcal{F} . We denote by \mathcal{K} any DCF_0 containing \mathcal{F} .
- A finite-rank δ -variety is one that has dimension $< \omega$ for any/all of the usual ordinal-valued ranks on DCF_0 .
- Let R be a δ -ring, $K \supseteq R$ a δ -field, L a δ -field and $\varphi: R \to L$ a δ -homomorphism . We say R is a maximal δ -ring (with respect to K) if φ does not extend to a δ -homomorphism with domain contained in K but strictly containing R and codomain a δ -field.

Compactness

Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ -completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to

A topological space *X* is *compact* if every open cover of *X* admits a finite subcover.

- **Example:** Closed, bounded intervals of \mathbb{R} (by the l.u.b. axiom).
- Compact subsets of Hausdorff spaces are closed, and being compact is most valuable when a space is Hausdorff.
- Fact: Algebraic varieties are compact (algebraic geometers say quasicompact), but generally not Hausdorff.

Completeness and basic properties

Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ -completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to from here?

Definition

An algebraic variety V is *complete* if for every variety W the projection $\pi_2: V \times W \to W$ is a closed map (takes closed sets to closed sets).

- Completeness is a local property.
- Closed subsets of complete varieties are complete.
- Products of complete varieties are complete.
- If $\varphi: V \to W$ is a morphism of varieties and V is complete, then $\varphi(V)$ is complete.
- Morphisms of complete irreducible varieties into affine space are constant.

The fundamental theorem of elimination theory

Identifying complete differential varieties

> William Simmons

Algebraic varieties and completeness

 δ -varieties and δ completeness

How do we identify δ -complete varieties?

The valuative criterion in

Where to rom here?

Example

Infinite affine varieties are not complete: Consider the second projection of Z := xy - 1 = 0. The image $\pi_2(Z) = \{y \neq 0\}$, which is not closed in \mathbb{A}^1 .

Fact: a complete subset of \mathbb{P}^n must be projectively closed. In fact,

Theorem

Projective varieties are complete.

Proof.

Projective Nullstellensatz + linear algebra.

δ -completeness

Identifying complete differential varieties

William Simmons

Algebraic varieties and completenes

 $\begin{array}{l} \delta\text{-varieties}\\ \text{and } \delta\text{-}\\ \text{completeness} \end{array}$

How do we identify δ -complete varieties?

The valuative criterion in action

Where to

 δ -completeness of an affine or projective δ -variety is defined by the obvious generalization. Most properties carry over to the differential case:

- lacksquare δ -completeness is a local property.
- lacksquare δ -complete varieties are projectively closed.
- Kolchin-closed subsets of δ -complete varieties are δ -complete.
- Products of δ -complete varieties are δ -complete.
- If $\varphi: V \to W$ is a morphism of δ -varieties and V is δ -complete, then $\varphi(V)$ is δ -complete.
- BUT morphisms of irreducible δ -complete varieties into affine space need not be constant.

Pong

Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ -completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to rom here?

Kolchin's example: \mathbb{P}^1 is not complete.

Theorem

(Pong) Only finite-rank δ -varieties can be δ -complete.

Theorem

(Pong) A δ -complete variety is isomorphic to a δ -complete variety contained in \mathbb{A}^1 .

So it suffices to consider subsets of \mathbb{A}^1 ; for convenience we usually work with \mathbb{P}^1 .

Freitag has generalized much of Pong's paper to the case of several commuting derivations (i.e., $DCF_{0,m}$).

Positive quantifier elimination

Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to rom here?

Positive formulas are those that contain no negation symbols.

Theorem

(van den Dries) Let T be an \mathcal{L} -theory and $\varphi(\bar{x})$ an \mathcal{L} -formula. Then φ is equivalent modulo T to a positive quantifier-free formula iff for all $\mathcal{M}, \mathcal{N} \models T$, substructures $A \subseteq \mathcal{M}$, $\bar{a} \in A$, and \mathcal{L} -homomorphisms $f: A \to \mathcal{N}$ we have $\mathcal{M} \models \varphi(\bar{a}) \implies \mathcal{N} \models \varphi(f(\bar{a}))$.

Proof.

Slick choice of auxiliary theory T' + positive atomic diagram + compactness.

(Part of) a valuative criterion

Identifying complete differential varieties

William Simmons

Algebraic varieties and completenes

 δ -varieties and δ -completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to rom here?

Let $p = (p_0 : p_1) \in V \subseteq \mathbb{P}^1$, and let $\mathcal{F} \subseteq R \subseteq \mathcal{K}$ be a maximal δ -ring. We say p is in R if either p_0/p_1 or p_1/p_0 is.

Theorem

(Pong, S) Let V be a δ -subvariety of \mathbb{P}^1 . If for every $p \in V$ and maximal δ -ring R we have $p \in R$, then V is δ -complete.

Proof.

Use van den Dries' PQE to show the formula $\varphi(x_0, x_1, \bar{y})$

$$(\exists x_0, x_1)((\land_i P_i(x_0, x_1, \bar{y}) = 0)\land (\land_j Q_j(x_0, x_1) = 0) \land (x_0 = 1 \lor x_1 = 1))$$

is equivalent to a positive quantifier-free formula.

Ritt and P. Blum

Identifying complete differential varieties

William Simmons

Algebraic varieties and completenes

 δ -varieties and δ completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to

Definition

An element a of a δ -field K is *monic* over a δ -ring $A \subseteq K$ if a satisfies a δ -polynomial equation $x^n + f(x) = 0$, where $f(x) \in A\{x\}$ and n > total degree of terms in f.

Facts:

- Derivatives of monic elements are monic.
- lacktriangle Maximal δ -rings are local differential rings.
- If (R, \mathfrak{m}) is maximal, a is monic over R iff $1/a \notin \mathfrak{m}$.
- $a \in K \setminus R \text{ iff } 1 \in \mathfrak{m}\{a\}.$

Morrison

Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ -completenes

How do we identify δ -complete varieties?

The valuative criterion in action

Where to

Theorem

Maximal δ -rings are integrally closed.

Theorem

Let (R, \mathfrak{m}) be a maximal δ -ring. If a satisfies a linear differential equation over R and $1/a \notin R$, then $a \in R$.

Proof.

Show a is integral over R. This requires monicness of a, a', \ldots and order-reducing substitutions given by the linear differential equation.

First fruits

Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ -completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to from here?

Proposition

(S) The projective closure in \mathbb{P}^1 of a linear δ -variety is δ -complete.

Proof.

Morrison's result + the valuative criterion.

Corollary

When using the valuative criterion, we may suppose $a^{(n)} \neq 0$ for all $n \in \mathbb{N}$.

Some good examples

Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ completeness

How do widentify δ -complet varieties?

The valuative criterion in action

Where to

Proposition

- (S) The projective closures in \mathbb{P}^1 of the following are δ -complete:
 - Q(x)x' = P(x), where Q, P are ordinary polynomials
 - $x'' = x^3$
 - xx'' = x'

Proof.

Valuative criterion + integral closedness of R + a lot of pencil lead.

Known to be δ -complete

Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ -completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to rom here?

General classes:

- Linear: all
- $x^{(n)} = P(x^{(n-1)})$
- Equations algebraic in $\mathcal{F}[x^{(n)}]$

First-order:

- Q(x)x' = P(x)
- $(x')^n = x + \alpha$

Second-order:

- $x'' = x^3$ (and friends)
- xx'' = x'

Where to from here?

Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ -completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to from here?

Hope/Guess

All finite-rank, projectively closed δ -varieties are δ -complete.

- Refine 1-preserving algorithms, understand integrality in this setting better
- Generalize proof of algebraic completeness or show this cannot be done
- Direct approach: analyze QE, use Rosenfeld-Groebner algorithm, etc.
- Use the preceding to look for counterexamples
- Look at interesting δ -varieties like the Manin kernel.
- Algebraic D-varieties

Identifying complete differential varieties

William Simmons

Algebraic varieties and completenes

 δ -varieties and δ -completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to from here?

Thanks for listening!

References

Identifying complete differential varieties

William Simmons

Algebraic varieties and completeness

 δ -varieties and δ completeness

How do we identify δ -complete varieties?

The valuative criterion in action

Where to from here?

- P. Blum, Extending differential specializations, Proc. Amer. Math. Soc., 24 (1970), 471-474.
- S.D. Morrison, Extensions of differential places, Amer. J. Math. 100 (1978), 245-261.
- S.D. Morrison, Differential specializations in integral and algebraic extensions, Amer. J. Math. 101 (1979), 1381-1399.
- W.Y. Pong, Complete sets in differentially closed fields, J. Algebra 224 (2000), 454-466.
- J.F. Ritt, On a type of algebraic differential manifold, Trans. Amer. Math. Soc., 48 (1940), 542-552.
- L. van den Dries, Some applications of a model theoretic fact to (semi-) algebraic geometry, Indag. Math. 44 (1982), 397-401.