Identifying complete differential varieties

William Simmons

University of Illinois at Chicago

Kolchin Seminar in Differential Algebra
New York City, NY
March 9, 2012
Conventions and terminology

- In the differential setting, our fields are all DCF_0. Otherwise they are algebraically closed.
- Our varieties V, W, \ldots, are subsets of affine or projective space defined by appropriate polynomial equations.
- All Kolchin-closed subsets (δ-varieties) we consider are defined over a fixed arbitrary DCF_0 denoted by \mathcal{F}. We denote by \mathcal{K} any DCF_0 containing \mathcal{F}.
- A finite-rank δ-variety is one that has dimension $< \omega$ for any/all of the usual ordinal-valued ranks on DCF_0.
- Let R be a δ-ring, $K \supseteq R$ a δ-field, L a δ-field and $\varphi : R \to L$ a δ-homomorphism. We say R is a maximal δ-ring (with respect to K) if φ does not extend to a δ-homomorphism with domain contained in K but strictly containing R and codomain a δ-field.
A topological space X is *compact* if every open cover of X admits a finite subcover.

- **Example:** Closed, bounded intervals of \mathbb{R} (by the l.u.b. axiom).
- Compact subsets of Hausdorff spaces are closed, and being compact is most valuable when a space is Hausdorff.
- **Fact:** Algebraic varieties are compact (algebraic geometers say *quasicompact*), but generally not Hausdorff.
Completeness and basic properties

Definition
An algebraic variety V is complete if for every variety W the projection $\pi_2 : V \times W \to W$ is a closed map (takes closed sets to closed sets).

- Completeness is a local property.
- Closed subsets of complete varieties are complete.
- Products of complete varieties are complete.
- If $\varphi : V \to W$ is a morphism of varieties and V is complete, then $\varphi(V)$ is complete.
- Morphisms of complete irreducible varieties into affine space are constant.
Example

Infinite affine varieties are not complete: Consider the second projection of $Z := xy - 1 = 0$. The image $\pi_2(Z) = \{y \neq 0\}$, which is not closed in \mathbb{A}^1.

Fact: a complete subset of \mathbb{P}^n must be projectively closed. In fact,

Theorem

Projective varieties are complete.

Proof.

Projective Nullstellensatz + linear algebra.
\(\delta\)-completeness

\(\delta\)-completeness of an affine or projective \(\delta\)-variety is defined by the obvious generalization. Most properties carry over to the differential case:

- \(\delta\)-completeness is a local property.
- \(\delta\)-complete varieties are projectively closed.
- Kolchin-closed subsets of \(\delta\)-complete varieties are \(\delta\)-complete.
- Products of \(\delta\)-complete varieties are \(\delta\)-complete.
- If \(\varphi : V \rightarrow W\) is a morphism of \(\delta\)-varieties and \(V\) is \(\delta\)-complete, then \(\varphi(V)\) is \(\delta\)-complete.
- **BUT** morphisms of irreducible \(\delta\)-complete varieties into affine space need not be constant.
Kolchin’s example: \(\mathbb{P}^1 \) is not complete.

Theorem

(Pong) Only finite-rank \(\delta \)-varieties can be \(\delta \)-complete.

Theorem

(Pong) A \(\delta \)-complete variety is isomorphic to a \(\delta \)-complete variety contained in \(\mathbb{A}^1 \).

So it suffices to consider subsets of \(\mathbb{A}^1 \); for convenience we usually work with \(\mathbb{P}^1 \).

Freitag has generalized much of Pong’s paper to the case of several commuting derivations (i.e., \(DCF_{0,m} \)).
Positive quantifier elimination

Positive formulas are those that contain no negation symbols.

Theorem

(van den Dries) Let T be an \mathcal{L}-theory and $\varphi(\bar{x})$ an \mathcal{L}-formula. Then φ is equivalent modulo T to a positive quantifier-free formula iff for all $\mathcal{M}, \mathcal{N} \models T$, substructures $A \subseteq \mathcal{M}$, $\bar{a} \in A$, and \mathcal{L}-homomorphisms $f : A \to \mathcal{N}$ we have $\mathcal{M} \models \varphi(\bar{a}) \implies \mathcal{N} \models \varphi(f(\bar{a}))$.

Proof.

Slick choice of auxiliary theory $T' +$ positive atomic diagram $+$ compactness.
Let \(p = (p_0 : p_1) \in V \subseteq \mathbb{P}^1 \), and let \(\mathcal{F} \subseteq R \subseteq K \) be a maximal \(\delta \)-ring. We say \(p \) is in \(R \) if either \(p_0/p_1 \) or \(p_1/p_0 \) is.

Theorem

(Pong, S) Let \(V \) be a \(\delta \)-subvariety of \(\mathbb{P}^1 \). If for every \(p \in V \) and maximal \(\delta \)-ring \(R \) we have \(p \in R \), then \(V \) is \(\delta \)-complete.

Proof.

Use van den Dries’ PQE to show the formula \(\varphi(x_0, x_1, \bar{y}) \)

\[
(\exists x_0, x_1)((\bigwedge_i P_i(x_0, x_1, \bar{y}) = 0) \land \\
(\bigwedge_j Q_j(x_0, x_1) = 0) \land (x_0 = 1 \lor x_1 = 1))
\]

is equivalent to a positive quantifier-free formula.
William Simmons

Ritt and P. Blum

Definition

An element a of a δ-field K is monic over a δ-ring $A \subseteq K$ if a satisfies a δ-polynomial equation $x^n + f(x) = 0$, where $f(x) \in A\{x\}$ and $n >$ total degree of terms in f.

Facts:

- Derivatives of monic elements are monic.
- Maximal δ-rings are local differential rings.
- If (R, m) is maximal, a is monic over R iff $1/a \notin m$.
- $a \in K \setminus R$ iff $1 \in m\{a\}$.
Theorem

Maximal δ-rings are integrally closed.

Theorem

Let (R, \mathfrak{m}) be a maximal δ-ring. If a satisfies a linear differential equation over R and $1/a \notin R$, then $a \in R$.

Proof.

Show a is integral over R. This requires monicness of a, a', \ldots and order-reducing substitutions given by the linear differential equation.
Proposition

(S) The projective closure in \mathbb{P}^1 of a linear δ-variety is δ-complete.

Proof.

Morrison’s result + the valuative criterion.

Corollary

When using the valuative criterion, we may suppose $a^{(n)} \neq 0$ for all $n \in \mathbb{N}$.
Some good examples

Proposition

(S) The projective closures in \mathbb{P}^1 of the following are δ-complete:

- $Q(x)x' = P(x)$, where Q, P are ordinary polynomials
- $x'' = x^3$
- $xx'' = x'$

Proof.

Valuative criterion + integral closedness of R + a lot of pencil lead.
Known to be δ-complete

General classes:
- **Linear:** all
 - $x^{(n)} = P(x^{(n-1)})$
- **Equations algebraic in $\mathcal{F}[x^{(n)}]$**

First-order:
- $Q(x)x' = P(x)$
- $(x')^n = x + \alpha$

Second-order:
- $x'' = x^3$ (and friends)
- $xx'' = x'$

Identifying complete differential varieties

William Simmons

University of Illinois at Chicago
Where to from here?

Hope/Guess

All finite-rank, projectively closed δ-varieties are δ-complete.

- Refine 1-preserving algorithms, understand integrality in this setting better
- Generalize proof of algebraic completeness or show this cannot be done
- Direct approach: analyze QE, use Rosenfeld-Groebner algorithm, etc.
- Use the preceding to look for counterexamples
- Look at interesting δ-varieties like the Manin kernel.
- Algebraic D-varieties
Thanks for listening!
References