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Theorem: (Holder, 1887) The Gamma function I'(x 4+ 1) = xI'(x) satisfies no
polynomial differential equation.

Theorem: (Hardouin, 2005; van der Put, 2006) Let b(x) € C(x) and let u(x)
be a nonzero function, meromorphic on C such that

u(x+1) = b(x)u(x).

The function u(x) is differentially algebraic over 1-periodic meromorphic
functions if and only if there exists a nonzero homogeneous linear differential
polynomial L(Y) with coefficients in C such that

b'(x)
HM”)

=g(x+1)-9(x)

for some g(x) € C(x).
Ex: For M(x), L(1)=g(x+1)—g(x)???

Also for g-difference equations and systems u;(x + 1) = bi(x)ui(x).



Theorem: (Ishizaki, 1998) If a(x), b(x) € C(x) and z(x) ¢ C(x) satisfies
z(gx) = a(x)z(x) + b(x), |q| # 1 M

and is meromorphic on C, then z(x) is not differentially algebraic over
g-periodic functions.

z(x) meromorphic on C\{0} and satisfies (1):

Assume distinct zeroes and poles of a(x) are not g-multiples of each other.
Theorem: (H-S, 2007) z(x) is differentially algebraic iff a(x) = cx” and

e b= f(gx)— a(x)f(x) for some f € C(x), when a +# ¢’, or

e b= f(gx) — af(x) + dx’ for some f € C(x),d € Cwhena=(q',r € Z.



Theorem: (Roques, 2007) Let y1(x), y2(x) be lin. indep. solutions of

2 2ax 2 1 _
y(q x)— 1}’(q )+WY(X)—O
with a ¢ g” and & € g%. Then y;(x), y2(x), y1(gx) are algebraically
independent.

(H-S, 2007): y1(x), y2(x), y1(gx) are differentially independent. Give
necessary and sufficient conditions for a large class of linear differential
equations.
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Differential Galois Theory of Linear Difference Equations
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Galois Theory of Linear Difference Equations

k - field, o - an automorphism  Ex. C(x), o(x) = x+ 1, o(x) = gx
Difference Equation: o(Y) = AY A € GLn(k)

Splitting Ring: k[Y, ggvyls Y = (i) indeterminates , o(Y) = AY

M = max o-ideal
1
[’dt( )]/ [’det()

’ det

R=k ] = o-Picard-Vessiot Ring

e M is radical = R is reduced

olf C=k? ={ce k|oc=c}isalgclosed = R is unique
and R° =C

k=Coly)=-

R=Cly, §1/<y2 —1)



o-Galois Group: Gal,(g/x) = {¢ : R — R| ¢ is a ¢ k-automorphism}
Ex.

k=C a(y)=-y = R=Cly,J]/(y¥* - 1)
Gal, (R/k) = 7,/

Ex.
k=C(x),0(x) =x+1
azy—XJy+y:0:>UY:< _01 )1( )Y
R = K[Y, ﬁ(y)]/(det(Y) —1), Gal, =SLy(C)
Ex.

) —y=tiekeo( g ¥ )=(o 1)(0 1)

p€Galy = ¢(y) =y +Cp,Cs €C
Gal, = (C,+) or {0}



o ¢ € Gal,, 0(Z) =AZ = ¢(2) = Z[$], [¢] € GLa(C)
Gal, — GLj(C) and the image is Zariski closed
Gal, = G(C), Galin. alg. gp. /C.

e R = coord. ring of a G-torsor
RGala — k
dim(G) = Krull dim.xR (=~ trans. deg. of quotient field)



The structure of Gal(K/k) measures algebraic relations among the solutions

UZY—XUy+y:0:>aY:(_O1 l)y

Gal, = SLs(C)
3 =dimSLy(C) = tr. deg.kk(y1, ¥z, o(y1),0(y2))

= y1,¥2,0(y1) alg. indep. over k



Ex. fi,...,f, € k, k adifference field w. alg. closed const.

oy1) =y =t

U(yn) —Yan="F
Picard-Vessiot ring = k[y1, ..., ¥i]
Prop. y1, ..., ya alg. dep. over k if and only if

39 € k and a const coeff. linear form L s.t. L(y1,...,¥n) =@
(equiv., cifi + ...+ cafa = 0(g) — 9)

Ex. y(x+1) - y(x) = |

1 #9(x+1) —g(x) = y(x) is not alg. over C(x).



Linear Differential Algebraic Groups

P. Cassidy-“Differential Algebraic Groups” Am. J. Math. 94(1972),891-954
+ 5 more papers, book by Kolchin, papers by Sit, Buium, Pillay et al.,
Ovchinnikov

(k, 9) = a differentially closed differential field

Definition: A subgroup G C GLn(k) C k™ is a linear differential algebraic
group if it is Kolchin-closed in GLy(k), that is, G is the set of zeros in GLx(k)
of a collection of differential polynomials in n? variables.

Ex. Any linear algebraic group defined over k, that is, a subgroup of GLn(k)
defined by (algebraic) polynomials, e.g., GLa(k), SLa(k)

Ex. Let C = ker § and let G(k) be a linear algebraic group defined over k.
Then G(C) is a linear differential algebraic group (just add {dy;; = 0}/;_; to
the defining equations!)



Ex. Differential subgroups of Ga(k) = (k,+) = { 1z | z € k}
0 1

The linear differential subgroups are all of the form
Gs={zek|L(z)=0}

where L is a linear homogeneous differential polynomial.
For example, if m=1,

Gy ={zek|dz)=0}=GaC)

Ex. Differential subgroups of G5(k) = (k",+)
The linear differential subgroups are all of the form

G ={(z1,...,z2) € k" | L(z1,...,2:) =0 VL € L}

where L is a set of linear homogeneous differential polynomials.



Ex. Differential subgroups of Gn(k) = (k*,-) = GL1(k)
The connected linear differential subgroups are all of the form

/
Gi={zek |L(Z)=0}
where L is a linear homogeneous differential polynomial.

This follows from the exactness of

az

(1) — Gm(C) — Gm(k) == Ga(k) — (0)



Ex. H a Zariski-dense proper differential subgroup of SLn(k)
= 39 € SLy(k) such that gHg~' = SLn(C), C = ker(9).

In general if H a Zariski-dense proper differential subgroup of G C GLx(k), a
simple noncommutative algebraic group defined over C

= 3g € GLy(k) such that gHg~' = G(C), C = ker(9).



Differential Galois Theory of Linear Difference Equations
k - field, o - an automorphism ¢ - a derivation s.t. 00 = do

Ex.C(x): o(x)=x+1,6=2

o(x)=0qx, s=xZ
Cx,t): o(x)=x+1, §=2

Difference Equation: o(Y) = AY A € GLn(k)

Splitting Ring: k{Y, gty } = K[Y,8Y,8%Y, ..., giw]

Y = (yi,) differential indeterminates
a(Y) =AY, o(0Y)=6(cY)=A(Y)+ (JA)Y,...M = max oé-ideal

IM = Kk{Z, —

R=k{Y 2 @

1
’W} } = od-Picard-Vessiot Ring



k - o6 field
o(Y) = AY, A € GLa(k)

R = K{Z, gz} - o0-Picard-Vessiot ring

e R is reduced

o If C=k? ={c € k| oc = c} is differentially closed
= Risuniqueand R° = C



o0-Galois Group: Gal,s(R/k) ={¢: R— R| ¢ is a oé k-automorphism}

o ¢ € Galys 0(Z2) = AZ = ¢(Z) = Z[¢], [¢] € GLn(C)
Gal,s — GLn(C) and the image is Kolchin closed
Gal,s = G(C), G alin. differential alg. gp. /C.

e Gal,s is Zariski dense in Gal,

e R = coord. ring of a G-torsor
_ RGalmg — k
- Assume G connected. Then diff. dim.¢c(G) = diff. tr. deg, F
where F is the quotient field of R.



k=Coly)=—y = R=ky, 1/’ 1)
Galos(R/K) = Z/2Z

oly)—y=f fek, Gal,sCG,
= Gal,s = {c € R? | L(c) = 0} for some L € R7[4].

k =C(x),0(x)=x+1, 5(x) =1

<72y—xy—H/:0:>UY:(_o1 l)Y

Will show: R = k{Y, gty }/{det(Y) — 1}

Galsy = SLy(€)



Differential Relations Among Solutions of Linear Difference Equations
Groups Measure Relations

k - o6 - field, C = k¢ differentially closed.

Differential subgroups of G3(k) = (k", +) are all of the form

G ={(z1,...,z0) € K" | L(z1,...,2z2) =0 L e L}

where L is a set of linear homogeneous differential polynomials.

I
Proposition. Let R be a o§-Picard-Vessiot extension of k containing zi, ..., zs
such that
O’(Z,')—Z,':f,'7 i= 1,...,/7.
with f; € k. Then z1, ..., z, are differentially dependent over k if and only if

there is a homogeneous linear differential polynomial L over C such that
L(z1,...,zn)=g g€k
Equivalently, L(fi,...,f) =0o(9) — g.



Corollary. Let ..., f € C(x),0(x) = x + 1,6 = & and let z, ..., z, satisfy
o(z)—z=1f, i=1,...,n

Then zi, ..., z, are differentially dependent over F(x) (F is the field of
1-periodic functions) if and only if there is a homogeneous linear differential
polynomial L over C such that

L(z1,...,zs) =g g€ C(x)
Equivalently, L(fi,...,f) =o(g) — g

- Similar result for g-difference equations. Also for oy; = fiy;



The Gamma function is hypertranscendental.

e z(x) = I'(x)/T(x) satisfies 0(z) —z = 1

X"

o If z(x) satisfies a polynomial differential equation, then

3L e O[S 1,900 € C() st L(}) = glx +1) — g(x)
e L(1) has a pole = g(x) has a pole.

e If g(x) has a pole then g(x + 1) — g(x) has at least two poles but L(})
has exactly one pole.



If H a Zariski-dense proper differential subgroup of G C GLx(k), a simple
noncommutative algebraic group defined over C

= 3g € GLn(k) such that gHg~' = G(C), C = ker(9).

I

Proposition. Let A € GL,(k) and assume the o-Galois group of o(Y) = AY to
be a simple noncommutative linear algebraic group G of dimension ¢. Let
R = k{Z, 55z} be the ¢5-PV ring.

The differential trans. deg. of R over k is less than t

T

3B e gl,(k)s.t. o(B) = ABA™" + §(A)A™"
(in which case, (6Z — BZ)Z™" € gl (k?))



k=C(x),0(x) =x+1

o’y —xXoy+y=0=0Y= < _01 l)Y

R = k[Y, gvs]/(det(Y) — 1), Gal, = SLo(C)

y1(x), y2(x) linearly independent solutions.
y1(x), y2(x), y1(x + 1) are differentialy dependent over C(x)
i

3 ( a Z ) € gl (C(x)) st.

a b\ _ (0 1Y/ 0 1\N' /0 1\[(ab o 1\
e d )= -1 x -1 x ) T -1 x c d -1 x
This 4™ order inhomogeneous equation has no such solutions

= y1(x), y2(x), y1(x + 1) are differentialy independent over C(x)



Final Comments
e General Theory: Consider integrable
Y =A{o1,...,00},A={04,...,0s}

linear systems and measure dependence on auxillary derivations
41, ...,0r. Gan show that for

t
v(x, t) = / u¥e du
1

we have v, vx, 7xx, - .. alg. indep /C(x, t).
e Isomonodromic < constant Galois group.
e Inverse problem

e Nonlinear equations



