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Theorem: (Hölder, 1887) The Gamma function Γ(x + 1) = xΓ(x) satisfies no
polynomial differential equation.

Theorem: (Hardouin, 2005; van der Put, 2006) Let b(x) ∈ C(x) and let u(x)
be a nonzero function, meromorphic on C such that

u(x + 1) = b(x)u(x).

The function u(x) is differentially algebraic over 1-periodic meromorphic
functions if and only if there exists a nonzero homogeneous linear differential
polynomial L(Y ) with coefficients in C such that

L(
b′(x)

b(x)
) = g(x + 1)− g(x)

for some g(x) ∈ C(x).

Ex: For Γ(x), L( 1
x ) = g(x + 1)− g(x)???

Also for q-difference equations and systems ui (x + 1) = bi (x)ui (x).



Theorem: (Ishizaki, 1998) If a(x), b(x) ∈ C(x) and z(x) /∈ C(x) satisfies

z(qx) = a(x)z(x) + b(x), |q| 6= 1 (1)

and is meromorphic on C, then z(x) is not differentially algebraic over
q-periodic functions.

z(x) meromorphic on C\{0} and satisfies (1):

Assume distinct zeroes and poles of a(x) are not q-multiples of each other.

Theorem: (H-S, 2007) z(x) is differentially algebraic iff a(x) = cxn and
• b = f (qx)− a(x)f (x) for some f ∈ C(x), when a 6= qr , or
• b = f (qx)− af (x) + dx r for some f ∈ C(x), d ∈ C when a = qr , r ∈ Z.



Theorem: (Roques, 2007) Let y1(x), y2(x) be lin. indep. solutions of

y(q2x)− 2ax − 2
a2x − 1

y(qx) +
x − 1

a2x − q2 y(x) = 0 (2)

with a /∈ qZ and a2 ∈ qZ. Then y1(x), y2(x), y1(qx) are algebraically
independent.

(H-S, 2007): y1(x), y2(x), y1(qx) are differentially independent. Give
necessary and sufficient conditions for a large class of linear differential
equations.
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Differential Galois Theory of Linear Difference Equations
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Linear Differential Groups
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Galois Theory of Linear Difference Equations

k - field, σ - an automorphism Ex. C(x), σ(x) = x + 1, σ(x) = qx

Difference Equation: σ(Y ) = AY A ∈ GLn(k)

Splitting Ring: k [Y , 1
det(Y )

], Y = (yi,j ) indeterminates , σ(Y ) = AY ,
M = max σ-ideal

R = k [Y ,
1

det(Y )
]/M = k [Z ,

1
det(Z )

] = σ-Picard-Vessiot Ring

• M is radical⇒ R is reduced

• If C = kσ = {c ∈ k | σc = c} is alg closed⇒ R is unique
and Rσ = C

Ex.

k = C σ(y) = −y

R = C[y ,
1
y

]/(y2 − 1)



σ-Galois Group: Galσ(R/k) = {φ : R → R | φ is a σ k -automorphism}

Ex.

k = C σ(y) = −y ⇒ R = C[y , 1
y ]/(y2 − 1)

Galσ(R/k) = Z/2Z

Ex.

k = C(x), σ(x) = x + 1

σ2y − xσy + y = 0⇒ σY =

„
0 1
−1 x

«
Y

R = k [Y , 1
det(Y )

]/(det(Y )− 1), Galσ = SL2(C)

Ex.

σ(y)− y = f , f ∈ k ⇔ σ

„
1 y
0 1

«
=

„
1 f
0 1

«„
1 y
0 1

«
φ ∈ Galσ ⇒ φ(y) = y + cφ, cφ ∈ C

Galσ = (C,+) or {0}



• φ ∈ Galσ, σ(Z ) = AZ ⇒ φ(Z ) = Z [φ], [φ] ∈ GLn(C)

Galσ ↪→ GLn(C) and the image is Zariski closed

Galσ = G(C), G a lin. alg. gp. /C.

• R = coord. ring of a G-torsor

RGalσ = k

dim(G) = Krull dim.k R (' trans. deg. of quotient field)



The structure of Gal(K/k) measures algebraic relations among the solutions
.

Ex.

σ2y − x σy + y = 0⇒ σY =

„
0 1
−1 x

«
Y

Galσ = SL2(C)

3 = dim SL2(C) = tr . deg.k k(y1, y2, σ(y1), σ(y2))

⇒ y1, y2, σ(y1) alg. indep. over k



Ex. f1, . . . , fn ∈ k , k a difference field w. alg. closed const.

σ(y1)− y1 = f1
...

σ(yn)− yn = fn

Picard-Vessiot ring = k [y1, . . . , yn]

Prop. y1, . . . , yn alg. dep. over k if and only if

∃g ∈ k and a const coeff. linear form L s.t. L(y1, . . . , yn) = g
(equiv., c1f1 + . . .+ cnfn = σ(g)− g)

Ex. y(x + 1)− y(x) = 1
x

1
x 6= g(x + 1)− g(x)⇒ y(x) is not alg. over C(x).



Linear Differential Algebraic Groups

P. Cassidy-“Differential Algebraic Groups” Am. J. Math. 94(1972),891-954
+ 5 more papers, book by Kolchin, papers by Sit, Buium, Pillay et al.,
Ovchinnikov

(k , δ) = a differentially closed differential field

Definition: A subgroup G ⊂ GLn(k) ⊂ kn2
is a linear differential algebraic

group if it is Kolchin-closed in GLn(k), that is, G is the set of zeros in GLn(k)
of a collection of differential polynomials in n2 variables.

Ex. Any linear algebraic group defined over k , that is, a subgroup of GLn(k)
defined by (algebraic) polynomials, e.g., GLn(k), SLn(k)

Ex. Let C = ker δ and let G(k) be a linear algebraic group defined over k .
Then G(C) is a linear differential algebraic group (just add {δyi,j = 0}n

i,j=1 to
the defining equations!)



Ex. Differential subgroups of Ga(k) = (k ,+) = {
„

1 z
0 1

«
| z ∈ k}

The linear differential subgroups are all of the form

GL
a = {z ∈ k | L(z) = 0}

where L is a linear homogeneous differential polynomial.
For example, if m = 1,

Gδ
a = {z ∈ k | δ(z) = 0} = Ga(C)

Ex. Differential subgroups of Gn
a(k) = (kn,+)

The linear differential subgroups are all of the form

GLa = {(z1, . . . , zn) ∈ kn | L(z1, . . . , zn) = 0 ∀L ∈ L}

where L is a set of linear homogeneous differential polynomials.



Ex. Differential subgroups of Gm(k) = (k∗, ·) = GL1(k)
The connected linear differential subgroups are all of the form

GL
a = {z ∈ k∗ | L(

z′

z
) = 0}

where L is a linear homogeneous differential polynomial.

This follows from the exactness of

(1) −→ Gm(C) −→ Gm(k)
z 7→ ∂z

z−→ Ga(k) −→ (0)



Ex. H a Zariski-dense proper differential subgroup of SLn(k)

⇒ ∃g ∈ SLn(k) such that gHg−1 = SLn(C), C = ker(δ).

In general if H a Zariski-dense proper differential subgroup of G ⊂ GLn(k), a
simple noncommutative algebraic group defined over C

⇒ ∃g ∈ GLn(k) such that gHg−1 = G(C), C = ker(δ).



Differential Galois Theory of Linear Difference Equations

k - field, σ - an automorphism δ - a derivation s.t. σδ = δσ

Ex. C(x) : σ(x) = x + 1, δ = d
dx

σ(x) = qx , δ = x d
dx

C(x , t) : σ(x) = x + 1, δ = ∂
∂t

Difference Equation: σ(Y ) = AY A ∈ GLn(k)

Splitting Ring: k{Y , 1
det(Y )

} = k [Y , δY , δ2Y , . . . , 1
det(Y )

]

Y = (yi,j ) differential indeterminates

σ(Y ) = AY , σ(δY ) = δ(σY ) = A(δY ) + (δA)Y , . . .M = max σδ-ideal

R = k{Y , 1
det(Y )

}/M = k{Z , 1
det(Z )

} = σδ-Picard-Vessiot Ring



k - σδ field

σ(Y ) = AY ,A ∈ GLn(k)

R = k{Z , 1
det(Z )

} - σδ-Picard-Vessiot ring

• R is reduced

• If C = kσ = {c ∈ k | σc = c} is differentially closed
⇒ R is unique and Rσ = C



σδ-Galois Group: Galσδ(R/k) = {φ : R → R | φ is a σδ k -automorphism}

• φ ∈ Galσδ σ(Z ) = AZ ⇒ φ(Z ) = Z [φ], [φ] ∈ GLn(C)

Galσδ ↪→ GLn(C) and the image is Kolchin closed

Galσδ = G(C), G a lin. differential alg. gp. /C.

• Galσδ is Zariski dense in Galσ

• R = coord. ring of a G-torsor

- RGalσδ = k

- Assume G connected. Then diff. dim.C(G) = diff. tr. degk F

where F is the quotient field of R.



Ex.

k = C̃ σ(y) = −y ⇒ R = k [y , 1
y ]/(y2 − 1)

Galσδ(R/k) = Z/2Z

Ex.

σ(y)− y = f , f ∈ k , Galσδ ⊂ Ga

⇒ Galσδ = {c ∈ Rσ | L(c) = 0} for some L ∈ Rσ[δ].

Ex.

k = C̃(x), σ(x) = x + 1, δ(x) = 1

σ2y − xy + y = 0⇒ σY =

„
0 1
−1 x

«
Y

Will show: R = k{Y , 1
det(Y )

}/{det(Y )− 1}

Galδσ = SL2(C̃)



Differential Relations Among Solutions of Linear Difference Equations

Groups Measure Relations

k - σδ - field, C = kσ differentially closed.

Differential subgroups of Gn
a(k) = (kn,+) are all of the form

GLa = {(z1, . . . , zn) ∈ kn | L(z1, . . . , zn) = 0 L ∈ L}

where L is a set of linear homogeneous differential polynomials.

⇓

Proposition. Let R be a σδ-Picard-Vessiot extension of k containing z1, . . . , zn

such that
σ(zi )− zi = fi , i = 1, . . . , n.

with fi ∈ k . Then z1, . . . , zn are differentially dependent over k if and only if
there is a homogeneous linear differential polynomial L over C such that

L(z1, . . . , zn) = g g ∈ k

Equivalently, L(f1, . . . , fn) = σ(g)− g.



Corollary. Let f1, . . . , fn ∈ C(x), σ(x) = x + 1, δ = d
dx and let z1, . . . , zn satisfy

σ(zi )− zi = fi , i = 1, . . . , n.

Then z1, . . . , zn are differentially dependent over F(x) (F is the field of
1-periodic functions) if and only if there is a homogeneous linear differential
polynomial L over C such that

L(z1, . . . , zn) = g g ∈ C(x)

Equivalently, L(f1, . . . , fn) = σ(g)− g.

- Similar result for q-difference equations. Also for σyi = fiyi



The Gamma function is hypertranscendental.

• z(x) = Γ′(x)/Γ(x) satisfies σ(z)− z = 1
x .

• If z(x) satisfies a polynomial differential equation, then

∃L ∈ C[
d
dx

], g(x) ∈ C(x) s.t. L(
1
x

) = g(x + 1)− g(x)

• L( 1
x ) has a pole⇒ g(x) has a pole.

• If g(x) has a pole then g(x + 1)− g(x) has at least two poles but L( 1
x )

has exactly one pole.



If H a Zariski-dense proper differential subgroup of G ⊂ GLn(k), a simple
noncommutative algebraic group defined over C

⇒ ∃g ∈ GLn(k) such that gHg−1 = G(C), C = ker(δ).

⇓

Proposition. Let A ∈ GLn(k) and assume the σ-Galois group of σ(Y ) = AY to
be a simple noncommutative linear algebraic group G of dimension t . Let
R = k{Z , 1

det Z } be the σδ-PV ring.

The differential trans. deg. of R over k is less than t

m

∃ B ∈ gln(k) s.t. σ(B) = ABA−1 + δ(A)A−1

(in which case, (δZ − BZ )Z−1 ∈ gln(kσ))



Ex.

k = C(x), σ(x) = x + 1

σ2y − x σy + y = 0⇒ σY =

„
0 1
−1 x

«
Y

R = k [Y , 1
det(Y )

]/(det(Y )− 1), Galσ = SL2(C)

y1(x), y2(x) linearly independent solutions.

y1(x), y2(x), y1(x + 1) are differentialy dependent over C(x)

m

∃
„

a b
c d

«
∈ gl2(C(x)) s.t.

σ

„
a b
c d

«
=

„
0 1
−1 x

«′ „ 0 1
−1 x

«−1
+

„
0 1
−1 x

« „
a b
c d

« „
0 1
−1 x

«−1

This 4th order inhomogeneous equation has no such solutions
⇒ y1(x), y2(x), y1(x + 1) are differentialy independent over C(x)



Final Comments

• General Theory: Consider integrable

Σ = {σ1, . . . , σr},∆ = {∂1, . . . , ∂s}

linear systems and measure dependence on auxillary derivations
δ1, . . . , δt . Can show that for

γ(x , t) =

Z t

1
ux e−udu

we have γ, γx , γxx , . . . alg. indep /C(x , t).

• Isomonodromic⇔ constant Galois group.

• Inverse problem

• Nonlinear equations


