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Symbolic Computation in Algebra

•♦ Let k be a commutative unitary ring. An algebra in this talk
means an associative k-algebra that is free as a k-module, but
it need not be commutative or unitary.

•♦ Typical examples are free algebras in a category C, such as
that of

I finitely generated algebra,

I differential algebra,

I difference algebra,

I operated algebra.

•♦ Given a set X of variables, a free algebra over X in C is the
unique (up to isomorphism) initial object in the category
whose objects are set maps X → A, where A is an object in C.

•♦ Symbolic computation is based on rewriting systems in these
free objects.
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What is a Rewriting System?

•♦ An (abstract) rewriting system (ARS) is simply a set V
together with a binary relation, traditionally denoted by →. A
relation is just a subset of V × V .

•♦ An ARS is also known as a reduction system, or a state
transition system.

•♦ The binary relation is understood as performing some action
that changes one element to another; the action may be called
“rewriting”, “reducing”, or “transforming” an element a to b
if a→ b (or a state a being transited to another state b).

•♦ A rule is just a pair (a, b) in the relation: a→ b.
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Basic Notions for Rewriting Systems

•♦ The transitive reflexive closure of → is denoted by ∗→ or
→→ . So a ∗→ b means there is a finite chain of reductions:
a = a0 → a1 → · · · → an = b with n > 0.

•♦ An element a ∈ V is reducible if for some b ∈ V , b 6= a and
a→ b. Otherwise, it is called irreducible.

•♦ A normal form of a is a b such that b is irreducible, and
a ∗→ b. A normal form for a need not exist nor be unique.

•♦ If every element a ∈ V has a normal form, we say → is
normalizing.

•♦ terminating or noetherian if there is no infinite chain of
reductions a0 → a1 → a2 · · · . Terminating implies normalizing.
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What Makes a Good ARS for Symbolic

Computation?

•♦ Two elements a and b are joinable if there is a c such that
a ∗→ c and b ∗→ c . This is denoted by a ↓ b.

•♦ A pair of distinct reductions (a ∗→ b1, a
∗→ b2) (resp.

(a→ b1, a→ b2)) is called a fork (resp. local fork) at a. The
fork is joinable if b1 ↓ b2.

•♦ An ARS is confluent (resp. locally, or weakly, confluent) if
every fork (resp. local fork) is joinable, and

•♦ convergent if it is both terminating and confluent. In a
normalising and confluent system, every element has a unique
normal form.

•♦ Theorem (Newman’s Lemma): A terminating ARS is
confluent if and only if it is locally confluent.
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Church-Rosser Property

•♦ The symmetric closure of → is the relation a↔ b defined
as “either a→ b or b → a.”

•♦ The transitive reflexive closure of ↔ is denoted by
∗←→. It is

the smallest equivalence relation generated by →.

•♦ An ARS is said to have the Church-Rosser property if for all
a, b ∈ V , a

∗←→ b implies a ↓ b.

•♦ It is known that CR is equivalent to confluent. Indeed, CR ,
confluent, and transitivity of ↓ are all equivalent. In a
confluent system, the relations

∗←→ and ↓ are identical.

•♦ Using this, for a confluent system, if a
∗←→ b, then by CR,

a ↓ b and hence (1) if a and b are both normal forms, then
a = b (2) if b is a normal form, then a ∗→ b.
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Term Algebra

•♦ A signature Σ is a set F of function symbols, a set R of
relation symbols and an arity function ar : F t R → N.
Functions symbols with arity 0 are called constants (symbols).

•♦ The signature for abelian groups is abbreviated to
σ = (+,−, 0) and for a commutative ring, to σ = (+, ·, 0, 1).

•♦ Let X be a set (of variable symbols, disjoint from the
signature). Terms are defined inductively and the
Σ-term-algebra over X is the smallest set T (X ) satisfying:

I variables and constant symbols are terms.
I if f is a function of arity n and t1, . . . , tn are terms, then

f (t1, . . . , tn) is a term.

•♦ In computation, terms are syntactic objects representable by
trees when parsed.

•♦ T (X ) is a freely generated algebraic structure over the
function symbols of Σ and X .
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Term Rewriting Systems in Algebras

•♦ More general settings are based on many-sorted logic. For
example, modules over a ring is a two-sorted structure because
two sorts of algebraic structures are intermingled.

•♦ A term-rewriting system is a set of term-rewriting rules,
which are pairs of terms (`, r), written as `→ r . The rule is
applied to a term s if some subterm of s matches ` at some
position, in which case, s can be rewritten by substituting that
occurrence of ` by r resulting in another term t. The rule
`→ r thus generates many more (abstract) rewriting rules
s → t on the term-algebra.

•♦ Rewriting rules are typically based on interpretations of the
relation symbols R . The rewriting rules and term algebra over
X are used to provide models free over X .
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Free Modules with Given Basis

•♦ Let V be a free k-module with a given k-basis W .

•♦ For f ∈ V , the support or W -support Supp(f ) = SuppW (f )
of f is the set consisting of w ∈ W appearing in f (with
non-zero coefficients), when f is expressed as a unique linear
combination of w ∈ W with coefficients in k.

•♦ Let f , g ∈ V . We use f u g to indicate the relation that
Supp(f ) ∩ Supp(g) = ∅. If this is the case, we say f + g is a
direct sum of f and g , and by abuse, we use f u g also for
the sum f + g .

•♦ Note Supp(0) = ∅ and hence f u 0 for any f ∈ V .
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ARS to TRS, From Set to Linear Algebra

•♦ A rewriting system → on a free k-module V relative to a
fixed basis W is a binary relation (as a subset Π) of W × V .

•♦ The image π1(Π) of Π under the first projection map
π1 : W × V → W will be denoted by T .

•♦ We extend → to a term-rewriting system →Π on V by
linearity.

•♦ Let the coefficient of w in f ∈ V be cw . We define the
w-complement of f to be Rw (f ) := f − cww ∈ V , so that
f = cww u Rw (f ).

•♦ For t ∈ Supp(f ) ∩ T and t → v , we view this as a
term-rewriting rule on V , that is, we may replace t in f by v ,
resulting in a new element g := ctv + Rt(f ) ∈ V and say f
reduces to, or rewrites to, g in one-step; notation:

f →Π g , or in more detail, by f
(t,v)−→Π g .
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Simpe Term-Rewriting Systems

•♦ We say the rewriting system→ is simple if tu v for all t → v .
•♦ Example: Let W = {x , y}. Then Π = {x → y , y → x} is

simple. Every element is reducible, none has a normal form,
and Π is neither normalizing nor terminating, but is confluent.

•♦ Example: Let W1 = {xy , x , y}, W2 = {xy − x − y , x , y}. Let
Π1 = {xy → x + y}, Π12 = {x → y}, and
Π2 = {xy − x − y → 0}. Let f := xy , g = xy − x + y .
I These are simple term-rewriting systems: Π1 w.r.t W1,

Π12 w.r.t. both W1 and W2, and Π2 w.r.t. W2.
I f is Π1-reducible to x + y (W1).
I f is Π2-reducible to x + y (W2).
I f is Π12-irreducible (W1).
I f is Π12-reducible to g (W2)—normal form.
I g is Π1-reducible to 2y (W1), Π2-reducible to 2y (W2).
I g is Π12-reducible to xy − 2y (W1).
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A Hierarchy Lemma for Simple TRS

Lemma: Let V be a free k-module with a k-basis W and let
Π be a term-rewriting system on V relative to W . For any
f , g ∈ V , consider the following properties:

(1). f →Π g ;

(2). (f − g)→Π 0;

(3). (f − g) ∗→Π 0; (equivalently, (f − g) ↓Π 0);

(4). f ↓Π g ;

Then (1) =⇒ (4), (2) =⇒ (3) =⇒ (4), and if Π is simple,
also (1) =⇒ (2). None of the reverse implications holds.
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Examples

•♦ Let V be the k-submodule generated by W = {xy , x , y} of
the polynomial ring k[x , y ] in two indeterminates x , y . Let
Π := {xy → x}. Then Π is simple and T = {xy}. Let
f = 2xy + y , g = xy + x + y . Then f − g = xy − x →Π 0
(2), but f →Π 2x + y , which is irreducible and 6= g , showing
that (2) does not imply (1). Moreover, f ↓Π g (4) since
g → 2x + y , showing that (4) does not imply (1).

•♦ Π := {xy → x , xy → y} is simple. The two polynomials

f := xy + x and g := xy + y are joinable since f
(xy ,y)−→Π y + x

and g
(xy ,x)−→Π y + x . However, f − g = x − y is irreducible and

non-zero, showing that (4) does not imply (3).

•♦ As will be known later, if (4) does imply (3) for all f , g ∈ V ,
then Π is confluent.
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Another Example

•♦ Let V be the k-submodule generated by W = {xy , x , y , z} of
the polynomial ring k[x , y , z ] in three indeterminates x , y , z
and let

Π := {xy → x , xy → y , xy → z},

which is simple. Then T = {xy} and the polynomials
f := xy + x and g := xy + z are joinable to g1 := x + z , and
the polynomials g and h := xy + y are joinable to g2 := y + z .
However f and h are also joinable (to x + y) without
necessarily g1, g2 (which are irreducible) being joinable.

•♦ As already shown for any rewriting system, confluence is
equivalent to the transitivity of ↓Π.
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A Lemma before Main Theorem

Let V be a free k-module with a k-basis W and let Π
be a simple term-rewriting system on V relative to W .
Let f , g , h ∈ V . If f →Π g , then (f + h) ↓Π (g + h).
Proof. By Definition, there exist t → v and 0 6= c ∈ k such
that f = ct u Rt(f ) and g = cv + Rt(f ). Let h = bt u Rt(h),
where b ∈ k (b may be zero). Since Π is simple, we have
t u v . Since t u Rt(f ), we have t u g and

g + h = bt u (g + Rt(h)) ∗→Π bv + (g + Rt(h))

= (b + c)v + Rt(f ) + Rt(h).

On the other hand, we also have

f + h = (b + c)t u (Rt(f ) + Rt(h))
∗→Π (b + c)v + Rt(f ) + Rt(h).

Thus (f + h) ↓Π (g + h).
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Main Theorem on Confluence

Let V be a free k-module with a k-basis W and let Π be a
simple term-rewriting system on V relative to W . The
following properties on Π are equivalent.

(a). →Π is confluent, that is, for any f , g , h ∈ V , confluence

(f ∗→Π g , f ∗→Π h) =⇒ g ↓Π h.

(b). For all f , g , h ∈ V , transitivity of ↓Π

f ↓Π g , g ↓Π h =⇒ f ↓Π h.

(c). For all f , g , f ′, g ′ ∈ V , 2-additivity of ↓Π

f ↓Π g , f ′ ↓Π g ′ =⇒ (f + f ′) ↓Π (g + g ′).
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Theorem Continued

(d). For all r > 1 and f1, . . . , fr , g1, . . . , gr ∈ V ,
n-additivity of ↓Π

fi ↓Π gi (1 6 i 6 r) =⇒

(
r∑

i=1

fi

) y
Π

(
r∑

i=1

gi

)
.

(e). For all f , g , h′ ∈ V , 1-additivity of ↓Π

f ↓Π g =⇒ (f + h′) ↓Π (g + h′).

(f). For all f , g ∈ V , 1-transposition of ↓Π

f ↓Π g =⇒ (f − g) ∗→Π 0 (that is, (f − g) ↓Π 0).

(g). For all r > 1 and f1, . . . , fr , g1, . . . , gr ∈ V ,
n-transposition of ↓Π

fi ↓Π gi (1 6 i 6 r) =⇒

(
r∑

i=1

fi

)
−

(
r∑

i=1

gi

)
∗→Π 0.
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Main Theorem Continued

(h). For all r > 1 and f1, . . . , fr , g1, . . . , gr ∈ V ,
zero-sum of ↓Π

fi ↓Π gi (1 6 i 6 r) and
r∑

i=1

gi = 0 =⇒

(
r∑

i=1

fi

)
∗→Π 0.

(i). For all r > 1 and f1, . . . , fr , g1, . . . , gr ∈ V ,
n-transpose of ∗→Π

fi
∗→Π gi (1 6 i 6 r) =⇒

(
r∑

i=1

fi

)
−

(
r∑

i=1

gi

)
∗→Π 0.

(j). For all r > 1 and f1, . . . , fr , g1, . . . , gr ∈ V ,
zero-sum of ∗→Π

fi
∗→Π gi (1 6 i 6 r), and

r∑
i=1

gi = 0 =⇒

(
r∑

i=1

fi

)
∗→Π 0.
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Main Theorem Continued

(k). For all r > 1 and f1, . . . , fr ∈ V , zero-additivity of ∗→Π

fi
∗→Π 0 (1 6 i 6 r) =⇒

(
r∑

i=1

fi

)
∗→Π 0.

When any of the above holds, we also have

(l). For all f , g ∈ V , transposition of ∗→Π

f ∗→Π g =⇒ f − g ∗→Π 0.

.
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Proof Steps
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A Trivial Example

•♦ The Lemma (let alone the stronger property (`)) need not
hold if Π is not simple, even when →Π is confluent.

•♦ Example: Let V be the free-k-submodule generated by
W = {t, v} in the polynomial ring k[t, v ]. Let
Π = {t → t + v}. Then Π is confluent but not simple. (`) is
false since t ∗→Π t + v but 0 ↓Π v does not hold.

•♦ To see that →Π is confluent, note that any reduction chain for
f = at + bv (with a, b ∈ k) must end with some
gm = at + (ma + b)v for some natural number m. Thus a fork
at f ends at some gm and gn. If m > n, then by applying
m − n reductions to gn, gn

∗→Π gm and hence the two are
joinable.
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Another Trivial Example

•♦ The failure of property (`) may be used to show →Π is not
confluent.

•♦ Example: Let V be the free-k-submodule generated by
W = {t, u, v} in the polynomial ring k[t, u, v ]. Let
Π = {t → u, u → t + v}. Then Π is simple and since Property
(`) does not hold for t ∗→Π t + v , →Π is not confluent. Is the

fork (t + u
(t,u)→Π 2u, t + u

(u,t+v)→Π 2t + v
(t,u)→Π 2u + v) joinable?

•♦ The proof of the Theorem shows that none of (c), (d), (g), (i)
need hold when Π is confluent but not simple, or when Π is
simple but not confluent, since these imply (`) even when Π is
neither simple nor confluent. These properties (including
(e), (f )) are each strictly stronger than confluence.
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Some More Equivalences and Remarks

•♦ By an induction, each of the properties (g), (h), (i), (j), and
(k) is also equivalent to confluence when “For all r > 1” is
replaced by “For r = 2”.

•♦ For a simple term-rewriting system Π with →Π confluent, the
relation f ↓Π g is transitive, additive, terms on either side are
freely transposable, and f ↓Π g is interchangeable with
f − g ∗→Π 0.

•♦ The property f ∗→Π 0 for f ∈ V is additive, yet for the relation
∗→Π, only the entire right-hand side may be transposed.

•♦ The property (`) is just (i) when r = 1. However, unlike
property (f), which is (g) when r = 1, property (`) does not
imply confluence.
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Two Notions of Distance

•♦ Suppose f , g ∈ V are joinable. The joinable distance
d∨Π (f , g) between f and g is the minimum of m + n over all
possible p and reductions to p:

f m→Π p, g n→Π p, m > 0, and n > 0.

If m, n ∈ N are such that m + n = d , then by minimality there
exist distinct f0, f1, . . . , fm ∈ V and distinct g0, g1, . . . , gn ∈ V
with fm = gn and

f = f0 →Π f1 →Π · · · →Π fm, g = g0 →Π g1 →Π · · · →Π gn.

•♦ If (f ∗→Π g1, f
∗→Π g2) is a fork, we define the fork distance

d∧Π (f , g1, g2) between f and g1, g2 to be the minimum of
m + n over all reductions f m→Π g1 and f n→Π g2,
(m > 0, n > 0).
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Transitivity =⇒ 1-Additivity of ↓Π

Since f , g ∈ V are joinable, let d = d∨Π (f , g) and m + n = d
as above. If d = 0, then f = g and clearly (f + h′) ↓Π (g + h′).
If d = 1, then either f →Π g or g →Π f and these cases
follow from the Lemma. Suppose now d = s + 1 where s > 1,
and suppose by induction that for all f , g ∈ V ,

f ↓Π g , d∨Π (f , g) 6 s =⇒ (f + h′) ↓Π (g + h′).

Since d > 2, either m > 1 or n > 1 (or both). Without loss of
generality, we assume m > 1. Then f1 ↓Π g and d∨Π (f1, g) 6 s.
By the induction hypothesis, (f1 + h′) ↓Π (g + h′). It follows
by the Lemma that (f + h′) ↓Π (f1 + h′), and by the
transitivity assumption that (f + h′) ↓Π (g + h′). This
completes the induction.
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Local Base-Forks and Local Base-Confluence

•♦ A local base-fork is a fork (ct →Π cv1, ct →Π cv2) where
t → v1, t → v2 and c ∈ k, c 6= 0. The rewriting system Π is
locally base-confluent if for every local base-fork
(ct →Π cv1, ct →Π cv2), we have c(v1 − v2) ∗→Π 0.

•♦ Example. Let V be the free k-submodule of the polynomial
ring k[x , y , z , u, v ] with a k-basis W = {xyz , x , y , z , u, v}. Let
Π consist of 6 rules:

xyz → x + v , x → u,

xyz → y , y → u + v ,

xyz → z + u, z → v .

Then T = {xyz , x , y , z} and Π is a simple term-rewriting
system. The only local base-forks start at xyz ; and Π is locally
base-confluent (in particular, the local base-forks are all
joinable to u + v).
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Example Continued

•♦ Now consider the three polynomials in V :

f = xyz + x , g = xyz + y − v , h = xyz + z + u − v .

Then we have two joinable pairs:

(f
(xyz, y)−→ Π x + y , g

(xyz, x+v)−→ Π x + y),

(g
(xyz, z+u)−→ Π y + z + u − v , h

(xyz, y)−→ Π y + z + u − v).

Thus f ↓Π g and g ↓Π h. However, while we have f ↓Π h

because (x + y)
(x ,u)−→Π (u + y) and

(y + z + u − v)
(z,v)−→Π (u + y), the joinability of x + y and

y + z + u − v does not come directly from the joinability of
the local base-forks, which all join to u + v , not u + y .
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Linear Order on Reducible Terms

•♦ Let T be the set of reducible terms under Π. A partial order
4 (or its corresponding strict partial order ≺) on T is
compatible with Π if for all (t, v) ∈ Π, we have t ′ ≺ t for
any t ′ ∈ Supp(v) ∩ T (we shall abbreviate this property of
(t, v) by v ≺ t or t � v). A necessary condition that such an
order exists is that Π is simple.

•♦ Let 4 be a linear order on T and let f ∈ V . The reducible
leader of f , denoted by L(f ), or L4(f ) or LΠ,4(f ) if necessary,
is the unique maximum t ∈ Supp(f ) ∩ T .

•♦ Lemma: Let 4 be a linear order on T = π1(Π) that is
compatible with a simple term-rewriting system Π on a free
k-module V with basis W . Let f , g ∈ V and suppose

f
(t,v)→ Π g for some (t, v) ∈ Π. Then L(g) 4 L(f ), where

equality holds if and only if L(g) 6= t.
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Proof of Lemma

•♦ We may write f = (c1t1 + · · ·+ cr tr )u h for some integer
r > 1, where {t1, . . . , tr} = Supp(f ) ∩ T with t1 � · · · � tr
(hence c1, . . . , cr ∈ k are all non-zero), and h belongs to the
k-submodule of V generated by the complement W \T of T
in W .

•♦ By Definition, L(f ) = t1. Let i be the unique index, 1 6 i 6 r ,
such that ti = t. Then

g = civ + Rt(f )

= c1t1 + · · ·+ ci−1ti−1 + civ + ci+1ti+1 + · · ·+ cr tr + h.

Now t1 < ti = t � v since 4 is compatible with Π. Thus
L(g) = t1 = L(f ) if i 6= 1 and L(g) ≺ t1 if i = 1.
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Locally Base-Confluent implies Locally Confluent

•♦ Theorem. Let V be a free k-module with a k-basis W and
let Π be a simple term-rewriting system on V . Suppose we
have a linear order 4 on T compatible with Π. If Π is locally
base-confluent, it is locally confluent.

•♦ Corollary. If →Π is terminating, then it is locally
base-confluent if and only if it is confluent, in which case, →Π

is converging.

•♦ Proof of Corollary. If →Π is confluent and
(ct →Π cv1, ct →Π cv2) is a local base-fork, then cv1 ↓Π cv2.
By Property (f), cv1 − cv2

∗→Π 0 and hence Π is locally
base-confluent. The converse follows from Newman’s Lemma.
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Proof of Theorem.

•♦ Suppose Π is locally base-confluent. Let (g →Π f , g →Π h) be
a local fork in V . Then there exist (t1, v1), (t2, v2) ∈ Π such

that g
(t1,v1)−→ Π f and g

(t2,v2)−→ Π h.

•♦ To prove f ↓Π h, first suppose t1 6= t2. Without loss of
generality, we may suppose t1 � t2.

•♦ Then we may write g = c1t1 u (c2t2 u r) = c2t2 u (c1t1 u r)
for some r ∈ V , c1, c2 ∈ k and c1 6= 0, c2 6= 0.

•♦ So f = c1v1 + (c2t2 u r) and h = c2v2 + (c1t1 u r).

•♦ Hence f − h = c1(v1 − t1) + c2(t2 − v2).

•♦ Since t1 � v1 and t1 � t2 � v2, we have

f − h
(t1,v1)−→ Π c2(t2 − v2)

(t2,v2)−→ Π 0.

•♦ Thus we have f ↓Π h.
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Proof of Theorem continued

•♦ Next, we suppose t1 = t2.

•♦ Let t := t1 = t2 and g = ct u Rt(g) for some c ∈ k and
c 6= 0.

•♦ Then f = cv1 + Rt(g) and h = cv2 + Rt(g).

•♦ By hypothesis, the local base-fork (ct →Π cv1, ct →Π cv2)
implies that f − h = cv1 − cv2

∗→Π 0. By hierarchy, f ↓Π h.

•♦ Remark. If we had defined local base-fork by requiring
cv1 ↓Π cv2, then we cannot deduce f − h ∗→Π 0 from
cv1 ↓Π cv2 because we do not necessarily have cv1 − cv2

∗→Π 0.
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Extending to Other Algebras

•♦ Polynomial Algebra: basis consists of monomials

•♦ Differential Algebra: basis consists of differential monomials

•♦ Rota-Baxter Algebra: basis consists of Rota-Baxter words

•♦ Operated Polynomial Algebra: basis consists of operated
monomials
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Term-Rewriting Chains

•♦ Let Π be a term-rewriting system (not necessarily simple) on a
free k-module V relative to a basis W of V . Let T be the set
of Π-reducible terms.

•♦ Let f , g ∈ V . A term-rewriting chain in Π (or simply, a
Π-chain) from f to g of length m is a sequence of m
term-rewriting steps f m→Π g explicitly given by

C : f = g0
(t0,v0)−→Π g1

(t1,v1)−→Π g2 · · ·
(ti ,vi )−→Π · · · gm−1

(tm−1,vm−1)−→Π gm = g ,

where g0, g1, . . . , gm ∈ V , g0 = f , gm = g , and for 0 6 i < m,
(ti , vi) ∈ Π, and ti ∈ Supp(gi) ∩ T .
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Descendants

•♦ For any f ∈ V , an element t ′ ∈ T is said to be a descendant
of f if there exist some g ∈ V and some regular element
b ∈ k, such that t ′ ∈ Supp(g) and bf ∗→Π g .

•♦ The set of all descendants of f is denoted by DΠ(f ) or simply
by D(f ). Clearly, D(f ) contains Supp(f ) ∩ T by definition.

•♦ For any t ′ ∈ D(f ), a descendant chain from f to t ′ is a
Π-chain from bf to g of some length m for some regular
element b ∈ k, such that t ′ ∈ Supp(g).

•♦ A minimum descendant chain is one with the shortest
length γ(f , t ′), which is called the generation index of t ′

from f (or from f to t ′).

•♦ Note that γ(f , t ′) = 0 if and only if t ′ ∈ Supp(f ).
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Some Simple Results

•♦ For any b ∈ k and b 6= 0, we have Supp(bf ) ⊆ Supp(f ). If
furthermore, b is regular, then Supp(bf ) = Supp(f ).

•♦ Let b ∈ k be regular and the above be a Π-chain from f to g .
Then

bf = bg0
(t0,v0)−→Π bg1 · · ·

(ti ,vi )−→Π · · · bgm−1
(tm−1,vm−1)−→Π bgm = bg

is a Π-chain from bf to bg of length m.

•♦ If f ∗→Π g , then D(g) ⊆ D(f ).
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A Conjecture

•♦ Let k be a domain. Let Π be a term-rewriting system (not
necessarily simple) on a free k-module V with basis W . Let T
be the set of Π-reducible terms. Let f ∈ V and
t ∈ Supp(f ) ∩ T .

•♦ Let t ′ ∈ D(t) and m = γ(t, t ′). Let

bt = g0
(t0,v0)−→Π g1 · · ·

(ti ,vi )−→Π · · · gm−1
(tm−1,vm−1)−→Π gm,

be a given minimum descendant chain from t to t ′.

•♦ Conjecture. There is an algorithm which constructs a
descendant chain from f to t ′. In particular,

D(f ) = ∪t∈Supp(f )∩TD(t).

•♦ Corollary. D(t) ⊆ D(f ) for every t ∈ Supp(f ) ∩ T .
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Conjecture Relating Partial Order and Termination

•♦ Define a binary relation 4 on T by t ′ 4 t if t ′ is a descendant
of t. If Π is terminating, then 4 is a partial order on T .

•♦ Conjecture. Π is terminating if and only if there exists a
well-order 4 on T that is compatible with Π.
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Why an abstract approach?

•♦ Working in such generality requires obviously some
justification; I hope the following are sufficient. Any time one
introduces a new instantiation of standard bases, one has to
define more or less the same concepts, to state more or less
the same results and, what is worse, to provide more or less
the same proofs; I hope that the general concepts, results and
proofs provided by this paper will help new researchers to
avoid this trivial but cumbersome burden.

— Teo Mora
From: Seven variations on standard bases (1988)

•♦ Thank You.
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