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Notations

•♦ F, a differential field, characteristic zero

•♦ ∆ = { δ1, . . . , δm }, a set of commuting derivations

•♦ Y : y1, . . . , yn, set of differential indeterminates

•♦ Θ = { θ = δe1
1 · · · δem

m | (e1, . . . , em) ∈ Nm }, set of derivative
operators

•♦ ΘY = { θyj }θ∈Θ,16j6m, set of derivatives of yj , 1 6 j 6 m

•♦ If θ = δe1
1 · · · δem

m , then the order of θ is |θ| = e1 + · · ·+ em.

•♦ R = F{ y1, . . . , yn } = F[ΘY ] differential polynomial ring

•♦ System of PADE (partial algebraic differential equations)

Fi(y1, . . . , yn) = 0, i = 1, . . . , k

•♦ Φ = set of F1, . . . , Fk

•♦ a = [Φ], differential ideal generated by Φ
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Ranking of Derivatives

•♦ A ranking is a total order on ΘY satisfying
u 6 θu, and u 6 v ⇒ θu 6 θv for any u, v ∈ ΘY , θ ∈ Θ.

•♦ Every ranking is a well-ordering on ΘY .

•♦ If u < v , we say u has lower rank than v .

•♦ A ranking is orderly if

|θ| < |θ′| ⇒ θyi < θ′yj for all θ, θ′ ∈ Θ and 1 6 i , j 6 n.

•♦ Fix a ranking. F ∈ R, F /∈ F, the highest ranked derivative uF

occurring in F is called its leader.

•♦ F ∈ R is linear if

F (y1, . . . , yn) = a0 +

q∑
i=1

ai θiyki
(1)

and linear homogeneous if a0 = 0.
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Differential Field Extensions

•♦ G, F differential fields

•♦ G is a (differential) extension of F if G ⊇ F and

δ : G → G restricts to δ : F → F

•♦ G is a finitely generated extension of F if there exist
η1, . . . , ηn ∈ G such that G = F({ θηj }θ∈Θ,16j6n).
If so, we write G = F〈η1, . . . , ηn〉.

•♦ Example: y ′′ − 3y ′ + 2y = 0 is a linear homogeneous
(ordinary) differential polynomial equation.

•♦ ex , e2x are linearly independent solutions over Q
•♦ G = Q〈ex , e2x〉 = Q(ex) is a finitely generated extension of Q,

indeed, a Picard-Vessiot extension.
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Differential Algebraic Dependence

•♦ Let G be a differential extension of F.

•♦ Let η be a family {ηj}16j6n with ηj ∈ G. By abuse, we also
use the vector notation for η and write η = (η1, . . . , ηn) ∈ Gn.

•♦ We say η is ∆-algebraically dependent over F if the family
{ θηj }θ∈Θ,16j6n is algebraic dependent over F

•♦ If not, we say η is ∆-algebraically independent over F.

•♦ Example: (η1, η2) = (tan x , sin x) is ∆-algebraically dependent
over Q since δ(tan x)(1− sin2 x) = 1.

•♦ (η1, η2) = (x , Jn(x)) is ∆-algebraically dependent over Q.

η2
1δ

2η2 + η1δη2 + (η2
1 − n2)η2 = 0,

where Jn(x) is the nth Bessel function of the first kind, and
n ∈ N.
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Differentially Algebraic Elements

•♦ Let G be a differential extension of F.

•♦ α ∈ G is ∆-algebraic over F if it satisfies some (differential)
polynomial equation with coefficients in F. In other words, the
family {θα}θ∈Θ is algebraically dependent over F.

•♦ If not, say α is ∆-transcendental over F.

•♦ ex (resp., sin x , resp. cos x) is transcendental (not algebraic),
but ∆-algebraic over Q.

•♦ Γ(x) =

∫ ∞

0

tx−1e−tdt is ∆-transcendental (not ∆-algebraic)

over C(x).

•♦ Jn(x) is ∆-algebraic over Q(x).

•♦ G is ∆-algebraic over F if every element of G is.
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Differential Transcendence Basis

•♦ Let G be an extension of F; Σ be a family of elements of G.

•♦ The following are equivalent:

1 Σ is ∆-algebraically independent over F, and G is ∆-algebraic
over F〈Σ〉.

2 Σ is a minimal family such that G is ∆-algebraic over F〈Σ〉.
3 Σ is a maximal family that is ∆-algebraically independent

over F.

•♦ If Σ satisfies the above, then Σ is called a ∆-transcendence
basis of G over F.

•♦ ∆-transcendence basis exists (and may be the empty set).

•♦ Any two have the same cardinal number, called the
∆-dimension (or ∆-transcendence degree) of G over F.

•♦ Let F ⊆ G ⊆ H. Then
∆-dim H/F = ∆-dim H/G + ∆-dim G/F
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Univariate Polynomials and the Binomial Basis

•♦ Let k be a field of characteristic zero and let R = k[X ] be the
polynomial ring over k in one indeterminate X .

•♦ For τ ∈ N, let Rτ be the k-vector subspace of R consisting of
all polynomials of degree 6 τ .

•♦ Then Rτ has a k-basis Pτ = {X i | 0 6 i 6 τ}.
•♦ Rτ also has the k-basis Bτ = {

(
X+i

i

)
| 0 6 i 6 τ}.

•♦ Every ξ(X ) ∈ Rτ can be written uniquely in the form

ξ(X ) =
∑

06i6τ

ai

(
X + i

i

)
(2)

with ai ∈ k for 0 6 i 6 τ . Call (1) the Binomial Form.

•♦ A polynomial ξ(X ) ∈ Rτ is said to be numerical or called a
numerical polynomial if ξ(t) is an integer for all sufficiently
large integers t ∈ N.
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Numerical Polynomials in Binomial Form

•♦ A polynomial ξ(X ) ∈ Rτ is numerical if and only if all
the ai in Eq. (2) are integers.

•♦ Clearly, if all ai in Eq. (2) are integers, then ξ(X ) is numerical.

•♦ Conversely, we prove ai ∈ Z for i = 0, . . . , τ by induction on τ .

•♦ The case τ = 0 is trivial.

•♦ Making use of the binomial identity(
X + i

i

)
−

(
X + i − 1

i

)
=

(
X + i − 1

i − 1

)
,

we see that

ξ(X )− ξ(X − 1) =
∑

16i6τ

ai

(
X + i − 1

i − 1

)
is numerical, and ai ∈ Z for 1 6 i 6 τ , and hence also a0 ∈ Z.
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Ordering of Numerical Polynomials

•♦ We define an ordering relation 6 on the set of numerical
polynomials. We say ξ 6 ξ′ if ξ(t) 6 ξ′(t) for all sufficiently
large t ∈ N.

•♦ Let ξ(X ) =
m∑

i=0

ai

(
X + i

i

)
and ξ′(X ) =

m∑
i=0

bi

(
X + i

i

)
be

two numerical polynomials in Rm. Then
ξ 6 ξ′ ⇐⇒ (am, . . . , a0) 6lex (bm, . . . , b0).

•♦ Let τ be the maximum j such that aj 6= bj . By subtracting off∑m
i=τ+1 ai

(
X+i

i

)
from ξ(X ) and ξ′(X ), we may suppose τ = m.

Then ξ′(s)− ξ(s) = (bm − am)
(
s+m
m

)
+ lower terms, and this is

positive for all sufficient large s if and only if (bm − am) > 0,
which holds if and only if (am, . . . , a0) 6lex (bm, . . . , b0).

•♦ The same holds for any basis f0, f1, . . . , fm of Rm provided for
all i , deg fi = i and fi(s) > 0 for all s >> 0.

•♦ 6 is a total ordering on the set of all numerical polynomials.
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Differential Dimension Polynomial

•♦ Let η = (η1, · · · , ηn) ∈ Gn, G being an extension of F.

•♦ A finer measure of the algebraic dependence of the family Θη
is given by that of the finite family Θ(s)η, where for s ∈ N,

Θ(s)η := {θηj}θ∈Θ,|θ|6s,16j6n.

•♦ Let dim(s) = tr. deg
F

F(Θ(s)η).

•♦ There exists a (unique) polynomial ξ(X ) ∈ Q[X ]
satisfying:

1 For every sufficiently large s ∈ N, dim(s) = ξ(s).
2 deg ξ(X ) 6 m, where m = |∆|.

3 If we write ξ(X ) =
m∑

i=0

ai

(
X + i

i

)
, then

am = ∆-dim
F

(F〈η〉).

•♦ ξ(X ) = ξ
η/F(X ) is called the differential dimension

polynomial (or Kolchin polynomial) of η over F.
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Finitely Generated Extensions and Primes

•♦ Let p be a prime differential ideal in R = F{ y1, . . . , yn }
•♦ Let G = quotient field of F{ y1, . . . , yn }/p
•♦ Let ηi = yi + p ∈ F{ y1, . . . , yn }/p. Then G = F〈η1, . . . , ηn〉.
•♦ The kernel of the substitution homomorphism:

F{ y1, . . . , yn } −→ F{ y1, . . . , yn }/p = F{ η1, . . . , ηn }
defined by F 7→ F + p = F (η1, . . . , ηn) is p.

•♦ More generally, the set of differential polynomials in
R = F{ y1, . . . , yn } vanishing at any α = (α1, . . . , αn) ∈ Hn,
where H is some extension of F, is a prime differential ideal q

of R, called the defining differential ideal of α over F.

•♦ We define the differential dimension polynomial ξp/F(X )

of p over F to be ξ
η/F(X ).

•♦ If p ⊆ q, then ξp/F > ξq/F, and equality holds if and

only if p = q.
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Transforming Dependent Variables

•♦ η = (η1, . . . , ηn) ∈ Gn, ζ = (ζ1, · · · , ζn′) ∈ Gn′

•♦ Suppose for some h ∈ N, and for all j , 1 6 j 6 n we have
ηj ∈ F({ θζk }θ∈Θ(h),16k6n′), then

1 F({ θηk }θ∈Θ(s),16k6n) ⊆ F({ θζk }θ∈Θ(s+h),16k6n′)
2 ξ

η/F(X ) 6 ξ
ζ/F(X + h).

•♦ If F〈η〉 = F〈ζ〉, then there exists h ∈ N such that

ξ
ζ/F(X − h) 6 ξ

η/F(X ) 6 ξ
ζ/F(X + h).

•♦ If F(η) = F(ζ) (h = 0), then ξ
η/F = ξ

ζ/F.

•♦ ξ
η/F is a birational invariant, but not a differential

birational invariant.

•♦ τ = deg ξ
η/F, called the differential type (resp. the leading

coefficient aτ , called the typical differential dimension) of
F〈η〉 over F is a differential birational invariant.
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Transforming Independent Variables

•♦ Let C be the field of constants of F.

•♦ C = (ci ,i ′)16i ,i ′6m ∈ GL(m, C)

•♦ δi = Σm
i ′=1ci ,i ′δ

′
i ′

•♦ Then F is a ∆′-field, where ∆′ = { δ′1, · · · , δ′m }
•♦ Let G be a finitely generated extension of F. Let τ be

the differential type and aτ the typical differential
dimension of G over F. There there exists a matric C
and a subset ∆∗ of ∆′ consisting of τ linearly
independent elements such that G is a finitely
generated ∆∗ extension of F of ∆∗-dimension aτ .

•♦ The m ×m matrix C over C that gives ∆′ may be chosen
from a Zariski open set. This result is of interest mainly when
τ < m, and then a τ ×m matric suffices.
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Interpreting Differential Type and Dimension

•♦ Let G = F〈η1, . . . , ηn〉 be a finitely generated extension of F.
Let p be the defining differential ideal of η over F.

•♦ Then η is a generic zero of p over F, or loosely, the
“general solution” of a finite system of PADE with
coefficients from F:

Fi(y1, . . . , yn) = 0, i = 1, . . . , p. (3)

•♦ If ξ
η/F = 0, then [G : F] < ∞ (G is algebraic over F).

•♦ Otherwise, if τ = deg ξ
η/F, then aτ > 0, and the general

solution of Eq. (3) depends exactly on aτ arbitrary functions of
τ independent variables.

•♦ The differential type τ and typical differential dimension aτ are
invariant not only under differentially birational transformation
of the dependent variables (F〈η〉 = F〈ζ〉), but also under
transformation of the independent variables (∆ to ∆′).
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Initial Sets in m-Dimensional Lattice

•♦ The product order in Nm is defined by
(a1, . . . , am) 6 (b1, . . . , bm) if ai 6 bi for i = 1, . . . , m. This is
a partial order: two vectors need not be compatible, such as
(1, 2) and (2, 1). It is reflexive, antisymmetric and transitive.

•♦ Given a positive integer m, a subset V of Nm is an initial set
if under the natural product order of Nm, for all a, b ∈ Nm,
b ∈ V and a 6 b implies a ∈ V .

•♦ For m = 3, V is built by stacking planes, then lines, then
points away from the origin.

•♦ Example:An initial set V built from 3 planes: x = 0,1; z = 0;
4 lines based at (0, 0, 1) in the direction X (green);
at (2, 0, 0) in the direction Z (blue);
at (3, 0, 0) in the direction Z (blue);
at (2, 1, 0) in the direction of Z (blue);
and 4 points at (2, 2, 1), (2, 3, 1), (3, 1, 1), (4, 1, 1).
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Example of an Initial Set
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Three planes (x=0,1; z=0), 4 lines (3 blue 1 green), 4 points on z=1
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Cut Off at Norm 6 5
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Cut Off at Norm 6 6
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Cut Off at Norm 6 7
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Lattice points and Initial Sets

•♦ For u ∈ Nm, define the m-dimensional cone based at u to
be the set the set u + Nm = { u + e | e ∈ Nm }.

•♦ For an initial set V ⊆ Nm, let E (V ) be the set of minimal
elements with respect to the product order in Nm\V .
Elements of E (V ) are called the minimal cogenerators of
V . E (V ) is finite.2

•♦ Nm\V =
⋃

e∈E(V ) e + Nm.

•♦ Conversely, given a finite set E ⊂ Nm, the complement
V (E ) of

⋃
e∈E(V ) e + Nm is an initial set, and consists of

all points v ∈ Nm that are not greater than or equal to
any point in E under the product order.

•♦ For any a = (a1, . . . , am) ∈ V , we denote the sum of its
components by |a| and called it the norm of a.

2Dickson’s Lemma or Hilbert Basis Theorem.
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Dimension Sequence of Initial Sets

•♦ Let Nm = { 1, . . . , m }, u ∈ Nm, and J ⊆ Nm.

•♦ Define the J-cone at u to be the set uJ of all points v ∈ Nm

such that vj = uj for j /∈ J . An m-dimensional cone at u is a
Nm-cone at u. Call J the (free) direction of uJ .

•♦ A subset K ⊆ Nm is k-dimensional if K = uJ for some
J ⊂ Nm with Card(J) = k . K is properly k-dimensional in
an initial set V if K is a k-dimensional subset of V but is
not contained in any (k + 1)-dimensional subset of V .

•♦ Let V be an initial subset of Nm. The number dk(V ) of
subsets properly k-dimensional in V is finite for all
k ∈ N.

•♦ dk(V ) = 0 for k > m; dm(V ) 6 1, with equality if and
only if V = Nm, in which case, dk(V ) = 0 for all k 6= m.

•♦ The sequece { dk(V ) }
k∈N is called the dimension sequence

of V .
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Dimension Polynomials

•♦ (Peeling Lemma) Let V be an initial subset of Nm with
dimension sequence { dk(V ) }

k∈N. Then for any h,
(0 6 h 6 m) such that dh(V ) 6= 0, there exists an initial
subset V1 ⊂ V such that dk(V1) = dk(V ) if k > h,
dh(V1) = dh(V )− 1, and dk(V1) = 0 if k < h.

•♦ Let {Vj}j=1,...,n be a finite sequence of n initial sets Vj ⊆ Nmj

and let V be the disjoint union ∪n
j=1Vj .

•♦ The number of lattice points a ∈ V with |a| 6 t as a
function of t is given by a numerical polynomial ξV (X ).

•♦ A numerical polynomial obtained this way is called a
dimension polynomial.

•♦ Examples: Hilbert polynomials, Kolchin polynomials.
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Prime (Linear) Differential Ideals

•♦ For simplicity, we restrict ourselves to linear differential
ideals in R = F{y1, . . . , yn}.

•♦ Recall that F ∈ R is linear if
F (y1, . . . , yn) = a0 +

∑q
i=1 ai θiyki

.
and linear homogeneous if a0 = 0.

•♦ Let R1 = F{ y1, . . . , yn }1 be the differential vector space
consisting of all linear homogeneous differential polynomials.

•♦ A differential ideal p is linear if p = [Λ], Λ ⊂ R1.

•♦ p linear ⇒ p prime and homogeneous.

•♦ L = p ∩R1 =
∑

θ∈Θ,L∈Λ F · θL is a ∆-F-subspace of R1.

•♦ The mapping from the set of linear ∆-ideals of R to
the set of ∆-F-subspace of R1 given by p 7→ p ∩R1 is
bijective; with inverse L 7→ [L] = (L).
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Leaders of Characteristic Sets

•♦ Fix an orderly ranking. Let Lleader be set of all θyj such that it
is a leader of some L ∈ L

•♦ If u ∈ Lleader, there exists a unique Lu ∈ L of the form

u +
∑

auvv (auv ∈ F) (4)

where v ∈ ΘY , v /∈ Lleader, and v is of lower rank than u.

•♦ Every linear differential ideal p has a unique, finite, generating
set A with elements of the form (4). A is called the
canonical characteristic set of p.

•♦ For each j (1 6 j 6 n), let Ej be the set of points (e1, · · · , em)
such that δe1

1 · · · δem
m yj is a leader of an element of A.

•♦ For each j , Vj := V (Ej) = Nm\
⋃

e∈Ej
(e + Nm) is an initial set.

•♦ Then ξp/F =
∑m

j=1 ξV (Ej ). (The derivatives (when evaluated

at the generic zero η) are algebraically independent if they lie
outside the m-dimensional cones of elements of Ej ’s). 25 / 39



Example

•♦ The complement of Lleader in ΘY is an F-basis of R1/L.
Furthermore, if the ranking is orderly, and if A : A1, . . . , Ak is
the canonical characteristic set of p, where the leader of Ai is
ui , then the complement of Lleader is the set of derivatives
v ∈ ΘY that is not a derivative of any ui , i = 1, . . . , k .
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Finite Combinatorics of Stacking and Well-order

•♦ Let d = { dk }k∈N be a sequence of natural numbers
such that dk = 0 for all sufficiently large k ∈ N. Then

1 For any fixed m ∈ N, there esist only finitely many
initial subsets of Nm with dimension sequence d .

2 There exist only finitely many numerical polynomials of
the form ξV (X ), where V is an initial subset of Nm

for some m, with dimension sequence d .

•♦ (1): There are only a finite number of ways to “stack” the dh

properly h-dimensional subsets once the properly
k-dimensional subsets (k > h) have been stacked.

•♦ (2); There is a bound m0 depending on d alone such that any
dimension polynomial ξV with V ⊆ Nm with m > m0 and
dimension sequence d can be realized in Nm0 already.

•♦ The set of dimension polynomials is well-ordered by the
ordering on numerical polynomials.
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Minimal Coefficient Vector

•♦ Given a (not necessarily numerical) polynomial ξ(X ) ∈ Rτ , we
define a polynomial λ(X ) called the derived lower bound
(DLB) of ξ(X ) by

λ(X ) = ξ(X + aτ )−
(

X + aτ + τ + 1

τ + 1

)
+

(
X + τ + 1

τ + 1

)
. (5)

•♦ ξ(X ) is numerical if and only if λ(X ) is.

•♦ Let d be the degree of λ(X ); then d < τ .

•♦ We associate to ξ(X ) by induction on τ a vector κ(ξ) ∈ kτ+1

called the minimal coefficient vector of ξ as follows:

κ(ξ) =

{
(a0) if τ = 0,

(aτ , 0, . . . , 0, κ(λ)) if τ > 0,
(6)

where aτ is followed by τ − d − 1 zeros.
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Dimension Sequence and Dimension Polynomial

•♦ Let m = 3 and n = 1. Consider the dimension sequence
d = (2, 3, 2), that is, two planes, 3 lines and 2 points. We
want to define two initial sets V1, V2 with this d as their
dimension sequence but different dimension polynomials.

•♦ Define V1 to consist of the xy planes at floors 0 and 1, the
three lines at (0, 0, 2), (1, 0, 2), (2, 0, 2) in the y direction, and
the two points (3, 0, 2) and (0, 0, 3). Its dimension polynomial
is 2

(
X+2

1

)
+ 2

(
X+1

1

)
− 7. The minimum coefficient vector is

(2, 3, 2).

•♦ Observe that the minimum coefficient vector is the same as
the dimension sequence. This is the case when the dimension
polynomial is minimal for d .
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Another try and Some Conjectures

•♦ We define V2 to consist of the xz-plane, yz-plane, lines at
(1, 1, 0) in the direction z , (0, 1, 0) in the direction x , and
(0, 1, 1) in the direction x , and two points (2, 1, 2) and
(1, 2, 0). This has the same dimension polynomial as V1. This
is the minimal dimension polynomial for d .

•♦ Define V3 to consist to consist of the xy planes at floors 0 and
1, the three lines at (0, 0, 0), (0, 1, 0), (1, 0, 0) in the y
direction, and the two points (2, 0, 2) and (3, 0, 2). This has
the dimension polynomial 2

(
X+2

2

)
+ 2

(
X+1

1

)
− 6. The minimal

coefficient vector is (2, 3, 3).

•♦ Conjecture: Given a dimension sequence d , let ξV(t) be the
dimension polynomial for a finite set V of initial sets Vi , with
dimension sequence dk(V) = d . If ξ(t) is minimal among all
such ξV(t), then the minimal coefficient vector κ(ξ) of ξ(t) is
the dimension sequence d .
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Model Theory, n-types3

•♦ Let T be a theory with language L(T ). Let ϕ be a formula in
the language L(T ). Let M be a (first order) structure M and
underlying set M .

•♦ Let A ⊆ M and let L(A) = L(T ) ∪ {ca | a ∈ A} where every
ca is a new constant symbol. A is called a parameter set.

•♦ M |= ϕ means M models or satisfies ϕ.

•♦ M |= T means M |= ϕ for all sentences ϕ in L(T ).

•♦ An n-type of M over A is a set p of formulas ϕ(x1, . . . , xn)
with parameters from A in at most n free variables x1, . . . , xn

such that every finite subset p0 ⊂ p can be realized in Mn,
that is, there exists b ∈ Mn and M |= ϕ(b) for all ϕ ∈ p0.

•♦ An n-type p is complete if it is maximal with respect to
inclusion. Equivalently, for every ϕ(x1, . . . , xn) with parameters
from A, either ϕ ∈ p or ¬ϕ ∈ p.

3The introduction here should not be considered accurate or correct.
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Definable Sets

•♦ A subset X ⊂ Mn is A-definable if there is a formula
ϕ(x1, . . . , xn) with parameters from A such that
X = { u = (u1, . . . un) ∈ Mn | M |= ϕ(u1, . . . , un) }. For a
differential closed field M , an A-definable subset of Mn is a
Kolchin constructible set defined by differential equations and
inequations with coefficients from A.

•♦ The n-type of u over A is the totality of all A-definable sets
X ⊂ Mn such that u ∈ X . Identifying X with ϕ, the n-type of
u is a set p of formulas ϕ(x1, . . . , xn) with parameter from A
in at most n free variables, such that M |= p(u). Thus the
n-type of u is an n-type, denoted by tpMn (u/A), or simply
tp(u/A). The n-type of u is complete.

•♦ An n-type p is realized in M if there exists b ∈ Mn and
M |= p(b). The n-type of u over A is of course realized (by
u ∈ Mn).
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Stone Space

•♦ The set Sn(M/A) of all complete n-types of M over A can be
equipped with a topology generated by the family of clopen
sets [X ] where X is an A-definable subset of Mn, and

[X ] = {p ∈ Sn(M/A) | X ∈ p}.

Here X ∈ p means the formula ϕ defining X belongs to p.
The topological space Sn(M/A) is called the Stone space.

•♦ The Stone space is compact (that is, every open cover has a
finite subcover).
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Lasker Rank (or U-rank)

•♦ In Model Theory, the Lasker rank or U-rank is a measure of
complexity of a (complete) type, in the context of stable
theories.

•♦ For any (complete) n-type p ∈ S(A), the Lasker Rank of p is
an ordinal, denoted RU(p). For any ordinal α, “RU(p) > α”
is defined recursively as follows:

1 RU(p) > 0.

2 If α is a limit ordinal, then RU(p) > α precisely when
RU(p) > α′ for all α′ < α.

3 Otherwise, RU(p) > α + 1 precisely when there is a
forking extension q of p with RU(q) > α.

•♦ We say RU(p) = α when RU(p) > α but not RU(p) > α + 1.

•♦ If RU(p) > α for all ordinals α, we say RU(p) = ∞ (or is
unbounded, undefined).
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Expanding the Definition

•♦ Equivalence. RU(p) > β ⇐⇒ ∃{ (Bα, qα) } such that
B0 = A, q0 = p, Bα ⊆ U, qα ⊂ Bα{y}, and for all
α, α′ < β; α′ < α, the following holds:

(1α) Bα′ ⊆ Bα

(2α) qα′ ⊆ qα

(3α) ξqα′ |Bα′ > ξqα|Bα

•♦ RU(p) = β if and only if RU(p) > β and for all (Bα, qα) with
α < β such that (1α), (2α), (3α) hold, but there does not exist
(Bβ, qβ) (β < β + 1) (1β), (2β), (3β) hold. In other words, for
all (Bβ, qβ) such that (1β) and (2β) hold, (3β) fails.
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Example Computation (not verified)

•♦ Lasker Rank. Let p ∈ S(A). Define the Lasker Rank of p as
RU(p) = Sup{RU(q) + 1 | ∃B , A ⊆ B ⊂ U, q ∈ S(B), p ⊂
q}??

•♦ Example. A = k . p = [y ′′] ⊂ k{y}. Claim: RU(p) > 2.
α = 1. Need B1, q1, RU(q1) > 1, B1 ⊃ A. Let c1 ∈ Uδ be a
constant. Let B1 = k(c1). Let
q1 = [y ′ − c1] ⊂ k(c1){y} = B{y}. Then q1 ⊃ p.

•♦ Now need B0, q0, RU(q0) > 0, B0 ⊃ B1 and q0 ⊃ q1 ⊃ p. Let
B0 = B1(t) aassuming δt = 1. Let c0 ∈ Uδ and let
q0 = [y − c1t − c0] ⊂ k(c1)(c0, t){y}. So RU(q0) > 0.

•♦ RU(q1) = Supq{RU(q) + 1} > RU(q0) + 1 > 0 + 1.

•♦ RU(p) > RU(q1) + 1 > 2.
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