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1This is a preliminary report on a joint, unfinished, study work with
Phyllis Cassidy. Presented at the Kolchin Seminar in Differential Algebra
on February 22, 2013.
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F, a differential field, characteristic zero
A ={61,...,0m }, a set of commuting derivations
Y :y1,...,Yn set of differential indeterminates

©={0=067"--02|(er,...,em) € NT}, set of derivative
operators

QY = {0y }sco1<j<m set of derivatives of y;, 1 <j < m
If & =07 --- 65, then the order of O is || = e; + -+ + ep.
R=F»,...,yn} = F[OY] differential polynomial ring
System of PADE (partial algebraic differential equations)

Fi(vi,---,ya) =0, i=1...k

¢ =setof Fp,...,F
a = [®], differential ideal generated by ¢
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Ranking of Derivatives

®

@

A ranking is a total order on @Y satisfying
u<Ou, and u<v=0u<0vforany u,v e @Y 6 c 0.

Every ranking is a well-ordering on OY.
If u < v, we say u has lower rank than v.

A ranking is orderly if
0] < |0'] = Oy; < 0'y; for all 0,0" € © and 1 < i,j < n.

Fix a ranking. F € R, F ¢ F, the highest ranked derivative uf
occurring in F is called its leader.

F € R is linear if

q
Flyi,- o yn) = a0+ Y aitiy (1)
i=1

and linear homogeneous if ag = 0.
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Differential Field Extensions

® G, T differential fields
® G is a (differential) extension of F if G O F and

0:G — Grestrictstod : F — F

® G is a finitely generated extension of F if there exist

M,...,Mn € 9 such that 9 = 3:’({ QUJ }genggn).
If so, we write G = F(n1,...,10,).

® Example: y” — 3y’ + 2y =0 is a linear homogeneous
(ordinary) differential polynomial equation.

@® e~ e are linearly independent solutions over Q

® G =Q(e, e>) =Q(e&) is a finitely generated extension of Q,
indeed, a Picard-Vessiot extension.
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Differential Algebraic Dependence

® Let G be a differential extension of F.

@ Let 7 be a family {n;}1<j<» with n; € G. By abuse, we also
use the vector notation for n and write n = (ny,...,1,) € G§".

® We say 7 is A-algebraically dependent over JF if the family
{01 }oco1<j<n is algebraic dependent over F

@& If not, we say 7 is A-algebraically independent over F.

® Example: (11,72) = (tan x,sin x) is A-algebraically dependent
over Q since 6(tan x)(1 — sin’x) = 1.

& (n1,m) = (x, Jn(x)) is A-algebraically dependent over Q.
26% 102 + méne + (nf — n*)iz = 0,

where J,(x) is the n'' Bessel function of the first kind, and

n e N.
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Differentially Algebraic Elements

® Let G be a differential extension of F.

® «a € §is A-algebraic over JF if it satisfies some (differential)
polynomial equation with coefficients in F. In other words, the
family {0a}yco is algebraically dependent over F.

® If not, say « is A-transcendental over J.

& ¢~ (resp., sinx, resp. cosx) is transcendental (not algebraic),
but A-algebraic over Q.

o0

& I(x)= / t*"te~'dt is A-transcendental (not A-algebraic)
over C(XS).

® J,(x) is A-algebraic over Q(x).

® G is A-algebraic over JF if every element of G is.
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Differential Transcendence Basis

® Let G be an extension of F; ¥ be a family of elements of G.

® The following are equivalent:
> is A-algebraically independent over F, and G is A-algebraic
over F(X).
| X is a minimal family such that G is A-algebraic over F(¥).
> is a maximal family that is A-algebraically independent
over F.

® If X satisfies the above, then X is called a A-transcendence
basis of G over F.

& A-transcendence basis exists (and may be the empty set).

® Any two have the same cardinal number, called the
A-dimension (or A-transcendence degree) of G over F.

® Let FCGCH. Then
A-dim H/F = A-dim H/G + A-dim G/F

7/39



Univariate Polynomials and the Binomial Basis

@ Let k be a field of characteristic zero and let R = k[X] be the
polynomial ring over k in one indeterminate X.

® For 7 €N, let R, be the k-vector subspace of R consisting of
all polynomials of degree < 7.

® Then R, has a k-basis P, = {X' |0 < i< 71}
R. also has the k-basis B, = {(*/") |0 < i< 7}
& Every £(X) € R, can be written uniquely in the form
X+
0= % a(*]) ©
0<i<r

with a; € k for 0 </ < 7. Call (1) the Binomial Form.

<
<

@

@® A polynomial {(X) € R, is said to be numerical or called a
numerical polynomial if £(t) is an integer for all sufficiently

large integers t € N.
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Numerical Polynomials in Binomial Form

& A polynomial {(X) € R; is numerical if and only if all
the a; in Eq. (2) are integers.

Clearly, if all a; in Eq.(2) are integers, then £(X) is numerical.
Conversely, we prove a; € Z for i =0, ..., 7 by induction on 7.

The case 7 = 0 is trivial.

@ © © @

Making use of the binomial identity

(-0 0)

we see that
X+i—1)
X — X—]. = a; )
00 -ex-1= 3 (7

is numerical, and a; € Z for 1 < i < 7, and hence also ag € Z.
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Ordering of Numerical Polynomials

® We define an ordering relation < on the set of numerical
polynomials. We say & < ¢ if £(t) < &'(t) for all sufficiently
large t € N.

£l S

two numeriéa(l) polynomials in R,,. Then
féf/ < (am7...,30) <1ex (bm,...,bo).

@® Let 7 be the maximum j such that a; # b;. By subtracting off
S a (%) from £(X) and €'(X), we may suppose T = m.
Then &'(s) — &(s) = (bm — am) (*7") + lower terms, and this is
positive for all sufficient large s if and only if (b, — am) > 0,
which holds if and only if (a,,, ..., a0) <iex (bm,- - -, bo).

® The same holds for any basis fy, fi, ..., f, of R, provided for
all i, deg f; = i and fi(s) > 0 for all s >> 0.

® < is a total ordering on the set of all numerical polynomials. 1030



Differential Dimension Polynomial

® Letn=(m, - ,n,) €9G", G being an extension of F.
® A finer measure of the algebraic dependence of the family ©n
is given by that of the finite family ©(s)n, where for s € N,
O(s)n = {9771}66@,|9|<s,1<j<n-
& Let dim(s) = tr.deg 3:3"(@(5)77).

® There exists a (unique) polynomial £(X) € Q[X]
satisfying:
For every sufficiently large s € N, dim(s) = &(s).
deg&{(X) < m, where m = |A|.

(X +i
ite {(X) = il . |, th
If we write £(X) Za( ; ) then

i=0
am, = A-dim 3,(3’<77>).
& {(X)= fn/gr(X) is called the differential dimension

polynomial (or Kolchin polynomial) of 1 over F. 4



Finitely Generated Extensions and Primes

Let p be a prime differential ideal in R =F{y1,...,y,}
Let G = quotient field of F{ y1,...,y, }/p
Letpi=yi+peF{y1,...,ya}/p. Then G=F(ny, ... . n,).

The kernel of the substitution homomorphism:

F{vi ooyt —F v, Yo =F {0 }
defined by F — F +p = F(n1,...,m,) is p.

@ ®© ®© @

® More generally, the set of differential polynomials in
R =F{y,...,yn} vanishing at any a = (aq,...,a,) € H",
where JH is some extension of F, is a prime differential ideal g
of R, called the defining differential ideal of o over F.

® We define the differential dimension polynomial fp/gz(X)
of p over F to be ¢ /3_-(X).

® If p Cq, then £p/3_~ £q/3_~, and equality holds if and
only if p =q.
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Transforming Dependent Variables

Q 77:(7717~--777n) € Snv C:(gla 7<n’) € Sn/
® Suppose for some h € N, and for all j,1 < j < n we have
nj € F({ OCk Yoco(n),1<k<n), then
F{ 00k Yoco(s)1<k<n) € F({L OCk boco(s+h),1<k<n)
5,7/9-‘()() < fg/?(x + h).
& If F(n) = F((), then there exists h € N such that
€ (X = h) <& (X) < & (X +h).

® §n/3- is a birational invariant, but not a differential
birational invariant.

® T =deg fn/ff' called the differential type (resp. the leading

coefficient a,, called the typical differential dimension) of

F(n) over F is a differential birational invariant.
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Transforming Independent Variables

Let C be the field of constants of F.
C = (C;’,'/)lgi’;/gm S GL(m, C)
5; = Z’-”Zlc,;,-/(%,

Then Fis a A'-field, where A’ = {§7,---, 8/}

Let G be a finitely generated extension of F. Let 7 be
the differential type and a; the typical differential
dimension of G over F. There there exists a matric C
and a subset A* of A’ consisting of 7 linearly
independent elements such that G is a finitely
generated A* extension of F of A*-dimension a..

® ®© ®© © @®

® The m x m matrix C over € that gives A’ may be chosen
from a Zariski open set. This result is of interest mainly when
7 < m, and then a 7 X m matric suffices.
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Interpreting Differential Type and Dimension

® Let G=F(m,...,n,) be a finitely generated extension of F.
Let p be the defining differential ideal of n over F.

® Then 1 is a generic zero of p over T, or loosely, the
“general solution” of a finite system of PADE with
coefficients from F:

. y) =0 i=1..p )
¢ If¢ =0, then [G : F] < 0o (G is algebraic over F).

® Otherwise, if 7 = deg 577/5, then a, > 0, and the general
solution of Eq. (3) depends exactly on a, arbitrary functions of
T independent variables.

® The differential type 7 and typical differential dimension a, are
invariant not only under differentially birational transformation
of the dependent variables (F(n) = F(()), but also under
transformation of the independent variables (A to A').
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Initial Sets in m-Dimensional Lattice

® The product order in N is defined by
(a1,...,am) < (b1,...,bm) if a; < b fori=1,....,m. Thisis
a partial order: two vectors need not be compatible, such as
(1,2) and (2,1). It is reflexive, antisymmetric and transitive.

® Given a positive integer m, a subset V of N is an initial set
if under the natural product order of N, for all a,b € N7,
be V and a < bimplies a e V.

® For m =3, V is built by stacking planes, then lines, then
points away from the origin.

® Example:An initial set V built from 3 planes: x = 0,1; z = 0;
4 lines based at (0,0, 1) in the direction X (green);
at (2,0,0) in the direction Z (blue);
at (3,0,0) in the direction Z (blue);
at (2,1,0) in the direction of Z (blue);
and 4 points at (2,2,1),(2,3,1),(3,1,1),(4,1,1).
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Example of an Initial Set

Three planes (x=0,1; z=0), 4 lines (3 blue 1 green), 4 points on z=1
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Cut Off at Norm < 5

4
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Cut Off at Norm < 6
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Cut Off at Norm < 7
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Lattice points and Initial Sets

® For u e N", define the m-dimensional cone based at v to
be the set the set u+ N" ={u+e|eec N}

@ For an initial set V C N7, let E(V) be the set of minimal
elements with respect to the product order in N™\ V.

Elements of E(V) are called the minimal cogenerators of
V. E(V) is finite.2

& N™M\V = UeeE(V) e+ N",

® Conversely, given a finite set £ C N”, the complement
V(E) of U.ce(vy e+ N7 is an initial set, and consists of
all points v € N™ that are not greater than or equal to
any point in E under the product order.

& Forany a=(ai,...,an) € V, we denote the sum of its
components by |a| and called it the norm of a.

2Dickson’s Lemma or Hilbert Basis Theorem.
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Dimension Sequence of Initial Sets

@ LetN,={1,....m}, ueN" and J C N,,

® Define the J-cone at u to be the set u; of all points v € N”
such that v; = u; for j ¢ J. An m-dimensional cone at u is a
Np-cone at u. Call J the (free) direction of u;.

® A subset K C N" is k-dimensional if K = u; for some
J C N, with Card(J) = k. K is properly k-dimensional in
an initial set V if K is a k-dimensional subset of V but is
not contained in any (k 4+ 1)-dimensional subset of V.

@ Let V be an initial subset of N™. The number di(V) of
subsets properly k-dimensional in V is finite for all
k e N.

® di(V)=0 for k > m; d,(V) <1, with equality if and
only if V =N", in which case, di(V) =0 for all k # m.

® The sequece { dk(V) },.N is called the dimension sequence
of V.
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Dimension Polynomials

®

(Peeling Lemma) Let V be an initial subset of N with
dimension sequence { di(V) }, y- Then for any h,

(0 < h < m) such that d,(V) # 0, there exists an initial
subset V; C V such that di(V;) = di(V) if kK > h,

dp(V1) = dp(V) — 1, and di(V1) =0 if k < h.

Let {V;};—1...» be a finite sequence of n initial sets V; C N™
and let V' be the disjoint union U, V}.

The number of lattice points a € V with |a| <t as a
function of t is given by a numerical polynomial &, (X).

A numerical polynomial obtained this way is called a
dimension polynomial.

Examples: Hilbert polynomials, Kolchin polynomials.
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Prime (Linear) Differential Ideals

®

®

@ ®© @© @®

For simplicity, we restrict ourselves to linear differential
ideals in R = F{y1,...,ya}.

Recall that F € R is linear if

F(yi, s ¥n) = a0 + 27:1 a; 0;y.
and linear homogeneous if ag = 0.

Let Ry = F{y1,...,yn }1 be the differential vector space
consisting of all linear homogeneous differential polynomials.

A differential ideal p is linear if p = [A], A C R;.
p linear = p prime and homogeneous.
L=pNRi=73 po,nF 0Lisa A-F-subspace of R;.

The mapping from the set of linear A-ideals of R to
the set of A-F-subspace of R; given by p— p N R, is
bijective; with inverse £ — [L] = (£).
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Leaders of Characteristic Sets

@ Fix an orderly ranking. Let Li.qc. be set of all fy; such that it
is a leader of some L € L

® If u € Licader, there exists a unique L, € L of the form

U+ awv (aw €F) (4)

where v € OY, v & Licager, and v is of lower rank than u.

® Every linear differential ideal p has a unique, finite, generating
set A with elements of the form (4). A is called the
canonical characteristic set of p.

@ For each j (1 <j < n), let E; be the set of points (e, - , em)
such that 07" - - - d5my; is a leader of an element of A.

@ Foreachj, V;:= V(E) = N"\ [..g (e +N") is an initial set.
& Then £p/3- = > "1 &v(e)- (The derivatives (when evaluated

at the generic zero 7)) are algebraically independent if they lie
outside the m-dimensional cones of elements of EJs) 25/39



® The complement of Ligager in OY is an F-basis of Ry /L.
Furthermore, if the ranking is orderly, and if A : Ay, ... Ak is
the canonical characteristic set of p, where the leader of A; is
u;, then the complement of Li..qer is the set of derivatives
v € ©Y that is not a derivative of any u;, i =1,..., k.

02

. Leaders 620,y 5103y
49
3(*—4.')
2¢
e ?
OC S 4 © S > 51

1 2 3 4
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Finite Combinatorics of Stacking and Well-order

¢ Let d = {d,},y be a sequence of natural numbers
such that d, = 0 for all sufficiently large k € N. Then
For any fixed m € N, there esist only finitely many
initial subsets of N with dimension sequence d.
There exist only finitely many numerical polynomials of
the form £y (X), where V is an initial subset of N"
for some m, with dimension sequence d.

® (1): There are only a finite number of ways to “stack” the dj,
properly h-dimensional subsets once the properly
k-dimensional subsets (k > h) have been stacked.

@ (2); There is a bound mg depending on d alone such that any
dimension polynomial &, with V C N™ with m > my and
dimension sequence d can be realized in N™ already.

® The set of dimension polynomials is well-ordered by the

ordering on numerical polynomials.
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Minimal Coefficient Vector

@ Given a (not necessarily numerical) polynomial £(X) € R,, we
define a polynomial A\(X) called the derived lower bound
(DLB) of £(X) by

AX) = (X +a,) — (X * j7:17+ 1) + (X :_rl 1+ 1). (5)

& ¢(X) is numerical if and only if \(X) is.
Let d be the degree of A(X); then d < 7.

® We associate to £(X) by induction on 7 a vector k(&) € k™!
called the minimal coefficient vector of £ as follows:

(ao) if 7= O,
(a,,0,...,0,Kk(\)) if 7 >0,

®

R(€) = (6)

where a, is followed by 7 — d — 1 zeros.
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Dimension Sequence and Dimension Polynomial

® Let m =3 and n= 1. Consider the dimension sequence
d = (2,3,2), that is, two planes, 3 lines and 2 points. We
want to define two initial sets V4, V5 with this d as their
dimension sequence but different dimension polynomials.

® Define V; to consist of the xy planes at floors 0 and 1, the
three lines at (0,0, 2),(1,0,2),(2,0,2) in the y direction, and
the two points (3,0,2) and (0,0, 3). Its dimension polynomial
is 2(*1?) +2(*F') — 7. The minimum coefficient vector is
(2,3,2).

® Observe that the minimum coefficient vector is the same as
the dimension sequence. This is the case when the dimension
polynomial is minimal for d.
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Another try and Some Conjectures

® We define V;, to consist of the xz-plane, yz-plane, lines at
(1,1,0) in the direction z, (0, 1,0) in the direction x, and
(0,1,1) in the direction x, and two points (2,1,2) and
(1,2,0). This has the same dimension polynomial as V4. This
is the minimal dimension polynomial for d.

® Define V3 to consist to consist of the xy planes at floors 0 and
1, the three lines at (0,0, 0), (0,1,0),(1,0,0) in the y
direction, and the two points (2,0,2) and (3,0,2). This has
the dimension polynomial 2(X;2) + 2(XI“1) — 6. The minimal
coefficient vector is (2, 3, 3).

& Conjecture: Given a dimension sequence d, let &,(t) be the
dimension polynomial for a finite set V of initial sets V;, with
dimension sequence di(V) = d. If £(t) is minimal among all
such &,(t), then the minimal coefficient vector k(&) of £(t) is

the dimension sequence d.
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Model Theory, n-types®

®

@ @®

Let 7 be a theory with language £(7). Let ¢ be a formula in
the language £(7). Let M be a (first order) structure M and
underlying set M.

Let AC M and let L(A) = L(T)U{c, | a € A} where every
C, is a new constant symbol. A is called a parameter set.

M = ¢ means M models or satisfies .
M E T means M | ¢ for all sentences ¢ in L(7T).

An n-type of M over A is a set p of formulas ¢(xg, ..., X,)
with parameters from A in at most n free variables xi, ..., x,
such that every finite subset pg C p can be realized in M",
that is, there exists b € M™ and M = o(b) for all ¢ € po.

An n-type p is complete if it is maximal with respect to

inclusion. Equivalently, for every ¢(xq, ..., x,) with parameters
from A, either ¢ € p or ¢ € p.

3The introduction here should not be considered accurate or correct.
34/39



Definable Sets

@® A subset X C M" is A-definable if there is a formula
o(x1, ..., Xx,) with parameters from A such that
X={u=(u,...up) € M" | M |=p(tn,...,u,)}. Fora
differential closed field M, an A-definable subset of M" is a
Kolchin constructible set defined by differential equations and
inequations with coefficients from A.

® The n-type of u over A is the totality of all A-definable sets
X C M" such that u € X. Identifying X with ¢, the n-type of
u is a set p of formulas ¢(xg, ..., x,) with parameter from A
in at most n free variables, such that M = p(u). Thus the
n-type of u is an n-type, denoted by tp'(u/A), or simply
tp(u/A). The n-type of u is complete.

® An n-type p is realized in M if there exists b € M" and
M = p(b). The n-type of u over A is of course realized (by
ue M.
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® Theset S,(M/A) of all complete n-types of M over A can be
equipped with a topology generated by the family of clopen
sets [X] where X is an A-definable subset of M", and

[X] ={p € S.(M/A) | X € p}.

Here X € p means the formula ¢ defining X belongs to p.
The topological space S,(M/A) is called the Stone space.

@® The Stone space is compact (that is, every open cover has a
finite subcover).
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Lasker Rank (or U-rank)

®

In Model Theory, the Lasker rank or U-rank is a measure of
complexity of a (complete) type, in the context of stable
theories.

For any (complete) n-type p € S(A), the Lasker Rank of p is
an ordinal, denoted RU(p). For any ordinal o, “RU(p) > "
is defined recursively as follows:
RU(p) = 0.
B If « is a limit ordinal, then RU(p) > « precisely when
RU(p) > o for all &/ < «v.

Otherwise, RU(p) > « + 1 precisely when there is a
forking extension g of p with RU(q) > «.

We say RU(p) = o when RU(p) > « but not RU(p) > a + 1.

If RU(p) > « for all ordinals o, we say RU(p) = oo (or is
unbounded, undefined).
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Expanding the Definition

@ Equivalence. RU(p) > f <= 3{(Ba, ga) } such that
Bo=A q=p B,CU,q, C B,{y} and for all
a, o < f;a’ < a, the following holds:

(1a) By € Ba
(2a) 9o € Gu
(3a) €q.1B. > €qalBa
® RU(p) =g if and only if RU(p) > 3 and for all (B,, g.) with
a < [ such that (1), (24), (34) hold, but there does not exist

(Bs,qs) (B < B8+1)(15),(25),(35) hold. In other words, for
all (Bg, qp) such that (13) and (23) hold, (33) fails.
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Example Computation (not verified)

@ Lasker Rank. Let p € S(A). Define the Lasker Rank of p as
RU(p) = Sup{RU(q)+1|3IB,AC B CU,qg€ S(B),p C
q}7?

® Example. A= k. p=[y"] C k{y}. Claim: RU(p) > 2.

o =1. Need By, g1, RU(q1) >1,B, D A. Let ¢ € U° be a
constant. Let By = k(¢;). Let
0= [y —al Ck(a){y} = Biy}. Thenq; D p.

& Now need By, go, RU(q0) > 0,By D By and g D ¢1 D p. Let
By = Bi(t) aassuming 6t = 1. Let g € U° and let
do = [y — at — «] C k(c)(c, t){y}. So RU(qo) = 0.

® RU(q1) = Sup,{RU(q) +1} > RU(qo) +1>0+1.
¢ RU(p) = RU(q1) +1 > 2.
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