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Abstract

•♦ Objects: Systems of ordinary differential equations which are
polynomial in the unknown functions and their derivatives.

•♦ Method: Study the differential consequences of algebraic
constraints on the initial value domain by an inductive but
finite process, and exploiting the quasi-linearity of such
consequences.

•♦ Goals: To compute algebraic constraints on the initial
conditions, and when possible, an explicit representation of the
vector field, such that on the set determined by the constraint
equations (and inequations), the initial value problem of the
original system of differential equations can be solved uniquely
by solving the explicit system.
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A Quasi-Linear Example

•♦ z1(t), z2(t), z3(t) are functions of t
•♦ ż1(t), ż2(t), ż3(t) are their derivatives with respect to t

− z2ż2 + z1ż3 = z4
1

−z2ż1 + 2ż3 = 5z3

z3ż1 + z2
1 ż2 = 3z2

2

− z1ż2 + ż3 = z3

•♦ Algebraic constraints found by symbolic computation:

z2

1 = z2, z
3

1 = z3.

•♦ Explicit representation found by symbolic computation:

ż1 =
z3

z2

, ż2 = 2z2, ż3 = 3z3, z2 6= 0.
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Questions

•♦ Who have been studying these problems?

•♦ Where are the difficulties?

•♦ What determines the set of consistent initial values?

•♦ When is the solution unique?

•♦ When does an explicit form ż = r(z) exist?

•♦ How can symbolic methods help?
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Theoretical Developments

•♦ Campbell (1980,1985,1987), Campbell and Gear (1995),
Campbell and Griepentrog (1995)
Gear and Petzold (1983,1984),
Gear (1988, 2006), Reich (1988, 1989):
G. Thomas (1996, 1997), J. Tuomela (1997, 1998)
singularities, constant rank conditions, linear and
differentiation index

•♦ Rabier and Rheinboldt (1991, 1994, 1996):
general existence and uniquenss theory for differential-algebraic
systems on π-submanifolds

•♦ Kunkel and Mehrmann (1994, 1996, 2006):
local invariants, strangeness index, and canonical forms for
linear systems with variable coefficients, numerical solutions
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Numerical Methods

•♦ difficulties with implicit, unprocessed, high index systems:
constant rank condition, and stability

•♦ Campbell (1987):
reduce index through differentiations, drift-off

•♦ Kunkel and Mehrmann (1996a, 1996b):
numerical methods requiring a priori knowledge of local and/or
global invariants
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Recent Approaches

•♦ Campbell and Griepentrog (1995):
combining symbolic with numerical methods

•♦ Thomas (1996):
symbolic computation of differential index for quasi-linear
systems based on algebraic geometry and prolongation

•♦ Thomas (1997), Rabier and Rheinboldt (1994b) :
singularities, impasse points

•♦ Tuomela (1997a):
regularizing singular systems with jet spaces
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Contents

•♦ transformations to quasi-linear systems

•♦ the concepts of essential degree and algebraic index and
algorithms to compute these

•♦ algorithms for prolongation and completion

•♦ generalized concepts of quasi-linearity

•♦ sufficient conditions for existence and uniqueness theorem

•♦ algorithm to compute constraints on initial conditions

•♦ algorithm to compute explicit vector field

•♦ examples and implementation in Axiom
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Set Up

•♦ z = (z1, . . . , zn): indeterminate functions of t

•♦ ż = (ż1, . . . , żn): their derivatives with respect to t

•♦ x0: a point in Cn, complex n-space

•♦ (X,P) = (X1, . . . .Xn,P1, . . . ,Pn): algebraic indeterminates

•♦ f1, . . . , fm: polynomials in X,P over C

•♦ Initial value problem:

f1(z1, . . . , zn, ż1, . . . , żn) = 0,
...

fm(z1, . . . , zn, ż1, . . . , żn) = 0,

z(0) = x0.
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Explicit Representation, Rational Form

A system is explicit or explicitly given if m > n and
f1, . . . , fm have the form

fi = Pi − ri(X), where ri(X) ∈ C(X) for 1 6 i 6 n,

fn+k ∈ C[X], for 1 6 k 6 m − n.

•♦ Write ri(X) = Ri(X)/S(X) with a common denominator S(X)
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Explicit Representation, Polynomial Form

•♦ Introduce new indeterminates X0,P0.

•♦ Equivalent system: gi ∈ C[X0,X,P0,P] for 1 6 i 6 m + 2

gi = Pi − X0Ri(X) for 1 6 i 6 n,

gn+k = fn+k for 1 6 k 6 m − n,

gm+1 = X0S(X)− 1,

gm+2 = P0 + X 3
0

n∑

i=1

∂S(X)

∂Xi

Ri(X).
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Basic Transformations

•♦ Non-autonomous to autonomous

•♦ High order to first order

•♦ Analytic to differential algebraic

•♦ Non-linear to quasi-linear
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Analytic To Differential-Algebraic

•♦ Composite functions f ◦ U ◦ z

•♦ f (t) satisfies a LODE with constant coefficients and specific
initial conditions. For example, f (t) = x reαt cos βt.

•♦ Or: f (t) satisfies a quasi-linear polynomial ODE that is easily
integrable. For example, f (t) = 1/t or f (t) = log(t).

•♦ U(X1, . . . ,Xn) is a polynomial in C[X]

•♦ Add new dependent variable u(t) = U(z1(t), · · · , zn(t))

•♦ Add new dependent variables w1(t),w2(t), . . .

•♦ Apply Chain Rule
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Example

•♦ sin(U(z)), cos(U(z)) may be replaced by w1(t),w2(t)
•♦ Adding quasi-linear ODE’s

0 = ẇ1(t)− w2(t)u̇(t),

0 = ẇ2(t) + w1(t)u̇(t),

u(t) = U(z1(t), . . . , zn(t)),

u̇(t) =
n∑

i=1

∂U

∂Xi

(z1(t), . . . , zn(t))żi(t)

•♦ Adding initial conditions

u(0) = U(z1(0), . . . , zn(0)),

w1(0) = sin(u(0)),

w2(0) = cos(u(0)).
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Non-linear Polynomial Systems

•♦ Algebraic Indeterminates:

X = (X1, · · · ,Xn),

P = (P1, · · · ,Pn).

•♦ Polynomials gi(X,P) ∈ C[X,P] for 1 6 i 6 m.

•♦ Dependent Variables: z = (z1, . . . , zn)

•♦ First Order Derivatives: ż = ż1, . . . , żn

•♦ System of ODE:

gi(z1, · · · , zn, ż1, · · · , żn) = 0, 1 6 i 6 m

•♦ Initial conditions: z(0) = x0
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Transformed to Quasi-Linear System

•♦ New algebraic indeterminates:

Y = (Y1, · · · ,Y2n),

Q = (Q1, · · · ,Q2n).

•♦ New polynomial system: fk(Y,Q) ∈ C[Q,P] for
1 ≤ k 6 n + m

fk = Qk − Yn+k (1 6 k 6 n),

fn+k = gk(Y1, . . . ,Y2n) (1 6 k 6 m),

•♦ New system of ODE:

fk(w1, · · · ,w2n, ẇ1, · · · , ẇ2n) = 0, 1 6 k 6 2n

•♦ New initial conditions:

wk(0) = zk(0), 1 6 k 6 n

wn+k(0) = żk(0), 1 6 k 6 n
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Proposition

Let I be some interval on the real line. There is a bijection
between

•♦ the set of twice differentiable curves

ϕ : I −→ Cn

such that (ϕ(t), ϕ̇(t)) satisfies the system of algebraic
equations

gi(ϕ(t), ϕ̇(t)) = 0 (t ∈ I , 1 6 i 6 m)

and
•♦ the set of differentiable curves

σ : I −→ C2n

such that (σ(t), σ̇(t)) satisfies the system of algebraic
equations

fk(σ(t), σ̇(t)) = 0, (t ∈ I , 1 6 k ≤ n + m).
F. Leon Pritchard, York College; William Sit, City College,CUNY Algebraic Constraints on Initial Values of Differential Equations



Essential P-degree

•♦ C[X,P] = C[X1, . . . ,Xm,P1, . . . ,Pn]

•♦ F is a finite subset and J a non-zero ideal of C[X,P]

•♦ Define the P-degree of F : degP F = max{degP f | f ∈ F}
•♦ Define the essential P-degree of J :

edegP(J) = min{degP F | J = (F ), F finite}

•♦ For the zero ideal, define essential P-degree to be −∞.

•♦ Essential P-degree basis: finite set F such that

(F ) = J , and degP F = edegP(J).
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Example

•♦ f1 = X1P2 + P2, f2 = X1P1, and f3 = P1P2

•♦ J = (f1, f2, f3), essential P-degree = 1

•♦ F = { f1, f2 } is an essential P-degree basis.

•♦ The differential system is given by

z1ż2 + ż2 = 0

z1ż1 = 0

ż1ż2 = 0

but we can replace it by the quasi-linear system

z1ż2 + ż2 = 0

z1ż1 = 0
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Essential P-degree Basis Algorithm

•♦ F , a finite subset of C[X,P]

•♦ Choose any term ordering on X

•♦ Choose any degree-compatible term-ordering on P

•♦ Combine into an elimination term ordering X < P

•♦ Compute a Gröbner basis G of the ideal J = (F )

•♦ Select the least d such that the elements Ed of P-degree 6 d
in G generates J

•♦ Then d is essential P-degree and

•♦ Ed is an essential P-degree basis of J .
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Remarks on Essential P-degree Basis

•♦ An essential P-degree basis of an ideal J presents J using the
lowest degree in P possible.

•♦ An essential P-degree basis in general has fewer elements than
a Gröbner basis.

•♦ Computation of essential P-degree basis may be built into the
Buchberger algorithm for efficiency.

•♦ Concept may be applied with |X | 6= |P|, in particular, with
|X | = 0

•♦ The P-degree of a Gröbner basis may be higher than the
essential P-degree.
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P-strong Generators

•♦ J an ideal in C[X,P] of edegP d
•♦ F a subset of J
•♦ F is P-strong if it has the following property:

Every f ∈ J of P-degree 6 d has a representation

f =
N∑

j=1

hj fj

for some N, where for each j = 1, · · · ,N,
•♦ hj ∈ C[X,P], hj 6= 0,
•♦ fj ∈ F and
•♦ P-deg hj fj 6 P-deg f .

•♦ In the essential P-degree algorithm, Ed is a P-strong essential
P-degree basis.
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Example

Not every essential P-degree basis is P-strong.

•♦ F = { f1, f2 } ⊂ R = C[X1,X2,P1,P2]

•♦ f1 = X1P1 − X2, f2 = X1P2 − X1

•♦ J = (F )

•♦ F is an essential P-degree basis of J but not P-strong.

•♦ f = P2f1 − P1f2 = X1P1 − X2P2

•♦ f ∈ J , has P-degree 1, but cannot be represented as
h1f1 + h2f2 for any h1, h2 ∈ R such that the P-degrees of h1f1
and h2f2 are at most 1.
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Prolongation of an Ideal

•♦ J ideal in C[X,P]

•♦ R = R(J) =
√

J ∩ C[X] =
√

J ∩ C[X]

•♦ For arbitary h ∈ C[X], let

∇h =

n∑

j=1

∂h

∂Xj

Pj .

•♦ ∇R = {∇q | q ∈ R}

•♦ J∗ = (J ∪ R(J) ∪∇R(J)) is called the prolongation ideal of J .
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Proposition

•♦ J an ideal in C[X,P]

•♦ J∗ its prolongation

•♦ I some interval on the real line

•♦ ϕ : I −→ Cn any smooth curve Then

f (ϕ(t), ϕ̇(t)) = 0, f ∈ J , t ∈ I

if and only if

f (ϕ(t), ϕ̇(t)) = 0, f ∈ J∗, t ∈ I .
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Algorithm for Prolongation

•♦ J generated by f1, · · · , fm ∈ C[X,P]

•♦ Compute J ∩ C[X] and generators q1, . . . , qN ∈ C[X] of its
radical R(J). Then

J∗ = (f1, . . . , fm, q1, . . . , qN ,∇q1, . . . ,∇qN).

•♦ Prolongation of J can be effectively computed from any set of
generators.

•♦ Concept is independent of generators or term-ordering, thus
permits flexibility in implementation.

•♦ Prolongation only introduces polynomials of P-degree at most
one.
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Completeness and Completion Ideal

•♦ An ideal J is complete if J = J∗.

•♦ The completion ideal of J is the smallest complete ideal J̃
containing J .

•♦ The zero ideal and C[X,P] are complete.

•♦ J ∩ C[X] = 0 implies J complete.

•♦ The intersection of an arbitrary family of complete ideals of
C[X,P] is complete.

•♦ The completion ideal J̃ of J exists and is unique.
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Geometric Property

•♦ first jet domain V = algebraic set of zeros of J

•♦ initial domain W = algebraic set of zeros of J ∩ C[X]
= algebraic set of zeros of R(J)

•♦ π : V −→W implies π(V ) = W and
W contains a non-empty open set if V 6= ∅ (Closure Theorem)

•♦ tangent variety T (W ) = algebraic set of zeros in C2n of
(R(J) ∪ ∇R(J))

•♦ for x ∈ W , the tangent space to W at x is

Tx(W ) = { p ∈ Cn | (x, p) ∈ T (W ) }.

•♦ J complete implies V ⊆ T (W )
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Algorithm for Completion

•♦ J an ideal in C[X,P].

•♦ The sequence of prolongation ideals defined by

J0 = J ⊆ J1 = J∗ ⊆ · · · ⊆ Jk = (Jk−1)∗ ⊆ · · ·

is stationary.

•♦ The algebraic index p is the smallest index k such that
Jk = Jk+1

•♦ The completion ideal can be effectively computed: J̃ = Jp.

•♦ Algebraic index and completion concepts are ideal theoretic.

•♦ Total flexibility in implementation

•♦ Use of an essential P-degree basis for J keeps P-degree low.
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Quasi-Linearities

•♦ J an ideal of C[X,P]

•♦ J is (essentially) quasi-linear if edegP(J) 6 1.

•♦ J is eventually quasi-linear if J̃ is quasi-linear.

•♦ Quasi-linearity is effectively decidable.

•♦ Eventual quasi-linearity is effectively decidable.

•♦ J quasi-linear implies J̃ quasi-linear.

•♦ Polynomial version of an explicit system is quasi-linear.
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Associated Quasi-Linear Ideal

•♦ J an ideal of C[X,P] of essential P-degree d

•♦ E a P-strong subset of J

•♦ L(J), set of all polynomials of P-degree at most 1 in J

•♦ The associated quasi-linear ideal of J is J` = (L(J)).

•♦ J` = (L(J) ∩ E ), hence effectively computable.

•♦ V ⊆ V ` and W = W ` (hence T (W ) = T (W `))

•♦ J is complete if and only if J` is complete.

•♦ ind J` 6 ind J .
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Linear Rank at a Point

•♦ J an ideal of C[X,P]

•♦ L(J), set of all polynomials of P-degree at most 1 in J

•♦ x ∈ Cn, f ∈ L(J)

•♦ P-homogeneous form: f 1 =
n∑

i=1

Pi

∂f

∂Pi

•♦ H(x) = { f 1(x,P) | f ∈ L(J) } (vector space)

•♦ The (linear) rank of J at x is defined by

rank J(x) = dimC H(x)

•♦ rank J(x) = rank J`(x)

•♦ J1 ⊆ J2 implies rank J1(x) 6 rank J2(x)
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Quasi-linear SubSystems

•♦ J an ideal of C[X,P]

•♦ F = { f1, . . . , fm } ⊂ L(J)

•♦ Write fi =
∑n

j=1
αi ,j(X)Pj − γi(X), αi ,j(X), γi(X) ∈ C[X].

•♦ The system fi = 0, 1 6 i 6 m in matrix notation is




α1,1(X) α1,2(X) . . . α1,n(X)
α2,1(X) α2,2(X) . . . α2,n(X)

...
... · · · ...

αm,1(X) αm,2(X) . . . αm,n(X)







P1

P2

...
Pn


 =




γ1(X)
γ2(X)

...
γm(X)




•♦ Or simply: L(X) : A(X)PT = c(X)

•♦ For x ∈ Cn, let ρF (x) = rank A(x).
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Computing Linear Rank at x

•♦ J an ideal of C[X,P]

•♦ F a finite subset of L(J), x ∈ Cn

•♦ Then rank J(x) > ρF (x).
Equality if either

•♦ x ∈ W and F is P-strong for J` or
•♦ x ∈ π(V ) and F is an essential P-degree basis of J`

•♦ rank J(x) is effectively computable for any x ∈ W , since we
can compute a P-strong essential P-basis F for J` and ρF (x).
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Maximum Rank Lemmas

•♦ J an ideal of C[X,P]

•♦ x ∈ W with rank J(x) = n

•♦ Then there exists a unique p ∈ Cn such that (x, p) ∈ V .

•♦ If J is quasi-linear, then rank J(x) = n if and only if the fiber
π−1(x) is finite and non-empty.

•♦ Notation: W 0 = { x ∈ W | π−1(x) is finite }
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Example

•♦ J = (P1 − X2,P
2
2 − 1)

•♦ J is complete, but not quasi-linear.

•♦ J` = (P1 − X2)

•♦ x = (x1, x2) ∈ C2 implies
π−1(x) = { (x1, x2, x2, 1), (x1, x2, x2,−1) }

•♦ (π`)−1(x) = { (x1, x2, x2, p2) | p2 ∈ C }

•♦ W = W 0 = W ` = C2 and (W `)0 = ∅.

•♦ rank J(x) = 1 for any x ∈ W 0
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Solutions to Example

•♦ System of ODEs: ẋ = y , ẏ 2 = 1
•♦ Two solutions for each initial condition (x , y) = (x0, y0)

x = ±t2

2
+ y0t + x0, y = ±t + y0,

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
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Theorem for Quasi-Linear Ideal

Let J be a quasi-linear ideal in C[X,P]. There exist a
computable non-negative integer ν, and ν non-empty, affine,
effectively computable, Zariski basic open subsets U1, . . . ,Uν

of the initial domain W of J with these properties:
•♦ W 0 = ∪ν

k=1
Uk ; in particular, W 0 is an effectively computable

constructible subset of Cn.
•♦ For each k, 1 6 k 6 ν, the set Yk = π−1(Uk) is an affine,

non-empty, Zariski basic open subset of the jet domain V of J .

•♦ For each k, 1 6 k 6 ν, the restriction πk of π to Yk is an
isomorphism from Yk to Uk as affine sets.

•♦ For each k, 1 6 k 6 ν, the inverse isomorphism
ηk : Uk −→ Yk is an everywhere defined rational map.

•♦ There is an unique isomorphism η : W 0 −→ π−1(W 0) of affine
schemes such that π(η(x)) = x for x ∈ W 0. Morever,
η|Uk

= ηk for 1 6 k 6 ν.
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Classical Existence and Uniqueness Theorem

Let D be an open subset of Cn, and let the system v on D be
given by ż(t) = r(z(t)) for t ∈ R, where r : D −→ Cn is some
analytic map. Then for any x0 ∈ D, there exist an interval
Bε = (−ε, ε) some ε > 0, some open neighborhood O of x0,
and an analytic map ψ : Bε ×O −→ D such that O ⊆ D, and
for every x ∈ O, we have

•♦ ψ(0, x) = x

•♦ the map ψx : Bε −→ D defined by t 7→ ψ(t, x) is the unique
solution defined on Bε satisfying the system v and the initial
condition z(0) = x.
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Algebraic Setting

•♦ J be an ideal in C[X,P]

•♦ x ∈ Cn, Bε = (−ε, ε) be an open interval in R

•♦ M be a constructible subset of Cn

•♦ A differentiable map ϕ : Bε −→ M is a differentiable map
ϕ : Bε −→ Cn whose image is contained in M .

•♦ A solution to the initial value problem (J , x) on Bε in M is a
differentiable map ϕ : Bε −→ M such that ϕ(0) = x and
f (ϕ(t), ϕ̇(t)) = 0 for all t ∈ Bε and for all f ∈ J . We also say:

•♦ ϕ satisfies the initial value problem (J , x)

•♦ (J , x) admits a solution in M

•♦ the image of ϕ is an integral curve of J through x.
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Existence and Uniquenss Theorem I

Let J be a complete quasi-linear ideal in C[X,P], let V and
W be respectively the jet and initial domain of J , and let
x0 ∈ W 0. Then there exist some Euclidean open subset U of
W 0 containing x0, some interval Bε = (−ε, ε) for some ε > 0,
and a mapping ϕ : Bε ×U −→W 0, such that for every x ∈ U ,
we have

•♦ ϕ(0, x) = x;

•♦ the map ϕx(t) defined by t 7→ ϕ(t, x) is the unique solution
on Bε in W 0 to the initial value problem (J , x); and

•♦ the map ϕ is the restriction of an analytic map
ψ : Bε ×O −→ Cn where O is a Euclidean open subset of Cn

containing x0 such that U = W 0 ∩ O.
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Sketch of Proof

•♦ x0 ∈ W 0 implies for some n × n determinant det ∆(x0) 6= 0.

•♦ Let f1, . . . , fn define the matrix for ∆.

•♦ On D = { x ∈ Cn | ∆(x) 6= 0 }, define v1 : ż(t) = r(z(t)).

•♦ Let q1, . . . , q` generate J ∩ C[X].

•♦ Completeness implies ∆ · ∇qi =
∑`

i ′=1
hii ′qi ′ +

∑n

j=1
qij fj .

•♦ On D × C` define v2:

ż(t) = r(z(t)), ẇi(t) =
m∑

i ′=1

hii ′(z(t))

∆(z(t))
wi ′(t) 1 6 i 6 `, t ∈ R.

•♦ Let ϕ : Bε × U −→ D be a solution to v1.

•♦ For any x ∈ U , (ϕ(t, x), 0) and
(ϕ(t, x), q1(ϕ(t, x)), . . . , q`(ϕ(t, x))) are solutions to v2.

•♦ ϕ(t, x) ∈ W 0.
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Algorithm for the General Case

•♦ J an ideal in C[X,P]

•♦ Compute its completion ideal J̃

•♦ Compute a P-strong essential P-degree basis f1, . . . , fm of the
associated quasi-linear ideal J̃` of J̃

•♦ Compute an irredundant representation U1, . . . ,Uν of
M0 = W̃ 0

•♦ For 1 6 k 6 ν, compute the vector field rk on Uk using
Cramer’s Rule.

•♦ For any initial condition x0, use any Uk containing x0 and
integrate the vector field rk .
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A Quasi-Linear Example Revisited

•♦ z1(t), z2(t), z3(t) are functions of t

•♦ ż1(t), ż2(t), ż3(t) are their derivatives with respect to t

− z2ż2 + z1ż3 = z4
1

−z2ż1 + 2ż3 = 5z3

z3ż1 + z2
1 ż2 = 3z2

2

− z1ż2 + ż3 = z3

•♦ Ideal version: J generated by polynomials

− X2P2 + X1P3 − X 4
1 ,

−X2P1 + 2P3 − 5X3,
X3P1 + X 2

1 P2 − 3X 2
2 ,

− X1P2 + P3 − X3.
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Illustration of Algorithm

•♦ J contains an algebraic constraint of total degree 7 in X.
•♦ The ideal has index 3.
•♦ an essential P-degree basis of the completion ideal is

− X 2
1 + X2, − X1X2 + X3,

− X1X3 + X 2
2 , − X 3

2 + X 2
3 ,

2X1P1 − P2, X2P1 − X3,
X3P1 − X 2

2 , X2P2 − 2X 2
2 ,

X1P2 − 2X3, P3 − 3X3.
X3P2 − 2X2X3,

•♦ M0 = W̃ 0 = { (x1, x2, x3) ∈ C3 | x2 6= 0, x2 = x2
1 , x3 = x3

1 }
•♦ an explicit system on M0 is:

P1 =
X3

X2

, P2 = 2X2, P3 = 3X3, X2 6= 0.
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Statistics

first second
prolongation prolongation

max deg in algebraic constraints 36 10
max coefficient in constraints 95 digits 30 digits
max P-degree in system 4 4
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Non Quasi-Linear Example Revisited

•♦ x(t), y(t) functions of t

•♦ p(t), q(t) their derivatives with respect to t

pq = xy
−yp + 3xq = 3x2 + 6

4q2 = 9x2

p2 = x2 − 4

•♦ The ideal J corresponding to this system is complete and has
essential P-degree 2.
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Illustration of the Algorithm

•♦ An essential P-degree basis gives another presentation:

q2 = y 2 + 9,
27p + 6xyq = 4y 3 + 54y ,

(4y 2 + 54)q = 6xy 2 + 81x ,
0 = 9x2 − 4y 2 − 36.

•♦ Retaining only the quasi-linear equations: rank (J , x) = 2
whenever 27(4y 2 + 54) 6= 0.

•♦ The explicit system is

v : p =
2y

3
, q =

3x

2
.

•♦ The integral curve v satisfying x(0) = x0, y(0) = y0 is

x = x0 cosh(t) +
2

3
y0 sinh(t), y = y0 cosh(t) +

3

2
x0 sinh(t).
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Comments on Example

•♦ This solution exists and lies on the hyperbola
9x2 − 4y 2 − 36 = 0 whenever (x0, y0) does.

•♦ The solution satisfies q2(t) = y 2(t) + 9 for all t.

•♦ When 2y 2
0 + 27 = 0, we have x2

0 + 2 = 0.

•♦ The four points (±
√
−2,±3

√
−3/2) are equilibrium solutions

J`.

•♦ They are not solutions to J , nor are equilibrium points of v.

•♦ At these 4 initial conditions, (J`, x) does not have uniqueness
solutions, but (J , x) does.

•♦ The sets of solutions for J` and J are not the same.
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Existence and Uniqueness Theorem II

Let J = (g1, . . . , gm) be an ideal in C[X,P], and consider the
system of differential algebraic equations

g1(z1, . . . , zn, ż1, . . . , żn) = 0,
...

gm(z1, . . . , zn, ż1, . . . , żn) = 0.

Then we can effectively compute

•♦ (1) a Zariski-closed subset M of Cn and some integer ν > 0;

•♦ (2) for each k, 1 6 k 6 ν, a non-empty Zariski open subset
Uk of M ;

•♦ (3) for each k, 1 6 k 6 ν, an n-dimensional vector
rk = (rk,1, . . . , rk,n) of rational functions in C(X)n, everywhere
defined on Uk such that
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•♦ (4) the union M0 = ∪ν
k=1

Uk is irredundant;

•♦ (5) for every ε > 0 and for every x ∈ M0, the image of a
differentiable map ψx : Bε −→ M0 is an integral curve of J
through x if and only if ψx(0) = x and for every k, 1 6 k 6 ν,
such that x ∈ Uk , we have ψ̇x(t) = rk(ψx(t));

•♦ (6) for every x0 ∈ M0, there exist some ε > 0, some open
neighborhood U of x0 in M0 and a map ϕ : Bε × U −→ M0

such that for every x ∈ U , the image of the map
ϕx : Bε −→ M0 defined by t 7→ ϕ(t, x) is an integral curve of
J through x; and

•♦ (7) for any x /∈ M , the initial value problem (J , x) does not
admit a solution on Bε in Cn for any ε > 0.
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Algorithm for Explicit Form

•♦ Input: (1) An essential P-degree basis f1, . . . , fm for a
complete quasi-linear ideal J in C[X,P], or in matrix form

L : A(X)PT = c(X)

•♦ (2) Polynomials q1, . . . , q` generating J ∩ C[X] (defining W )

•♦ Output: An irredundant representation of W 0 = ∪ν
k=1

Uk and
for each Uk , a vector of rational functions rk(X) for the vector
field v : ż(t) = rk(z(t))

•♦ May use in (1) only those fi which has P-degree 1, and in (2)
those fi which has P-degree 0.

•♦ Each Uk will be given by defining equations and inequations.
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Subroutines

Adapted from Sit’s (1992) algorithm for parametric linear
equations.

•♦ Determinants(A(X)) returns the set ∆ of all non-zero
determinants of n × n submatrices of A(X) if none of these
determinants are constants; otherwise, it returns {∆} where ∆
is one such non-zero, constant determinant. We assume that
any determinant returned by this routine carries with it the
row index set a.

•♦ MinGenerator(h), where h = (h1, . . . , hs) is a family of
polynomials. This procedure returns a minimal subfamily
H = (hi1 , . . . , hik) of h such that for every j , 1 6 j 6 s, hj

belongs to the radical of (H).
•♦ Solve(L, a) returns the unique solution vector ra(X) of

rational functions in C(X) to the linear system
Aa(X)PT = ca(X).
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Algorithm for Explicit Form

begin
S ←− ∅
if m < n then

return W 0 = ∅
else

h ←− Determinants(A(X))
H ←− MinGenerator(h)
for ∆a ∈ H do

Da ←− { x ∈ Cn | ∆a(x) 6= 0 }
Ua ←− Da ∩W
ra ←− Solve(L(X), a)
S ←− S ∪ { a }

end
return { (Ua, ra) | a ∈ S }

end
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Axiom Implementation

•♦ [makeSytem(F ):] creates internal representation S for the
ideal J given by polynomials F = { f1, . . . , fm } ⊂ Q[X]

•♦ [matrixView(S):] displays system S in matrix form if the ideal
represented by S is quasi-linear.

•♦ [algebraicSystem(S):] displays a generating set of polynomials
in J ∩Q[X], when the ideal J has representation S .

•♦ [linearize(S):] computes a system S ` representing the
associated linear ideal J` of the ideal J , where J is represented
by the system S .

•♦ [prolong(S):] computes the system S∗ representing the
prolongation J∗ of the ideal J where J is represented by S .

•♦ [complete?(S):] returns true if the ideal J represented by S is
complete, and false otherwise.
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•♦ [completion(S):] computes the representation S̃ for the

completion J̃ of J , when J is represented by S .

•♦ [index(S):] computes index of J , when J is represented by S .

•♦ [parSolve(S):] computes the algebraic conditions for the
matrix A(X) associated with a quasi-linear ideal J represented
by S to have rank n and computes the rational functions ri(X)
which represent coordinates of P such that when x ∈ W and
satisfies the algebraic conditions, p = (r1(x), . . . , rn(x))
satisfies the linear system A(X) = c(X). Adapted from the
ParametricLinearEquations package.

•♦ The data structure S allows caching of all prolongation and
completion computations. Routines that cache results:
prolong, index, complete? and completion.

•♦ An essential P-degree basis is kept for all ideals.
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Unconstrained and Underdetermined Ideals

•♦ J an ideal in C[X,P]

•♦ J is unconstrained if J ∩ C[X] = (0).

•♦ unconstrained implies complete

•♦ J is underdetermined if (W̃ `)0 = ∅

•♦ Intuitively, underdetermined means there is no initial
conditions x0 that will guarantee a unique solution. Either
some dependent variable will be arbitrary, or there are multiple
integral curves through x0.

•♦ These properties are algorithmically decidable.
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Example of Underdetermined Ideal

•♦ J = (X1X2 − 1, P2
1 − X 2

1 , P2
2 − X 2

2 )

•♦ Index 1 with J̃ = (P2
1 − X 2

1 , P2 + X 2
2 P1, X1X2 − 1),

•♦ W̃ is the hyperbola X1X2 = 1.

•♦ rank J̃`(x) = 1 for any x ∈ W̃ .

•♦ J is underdetermined, W̃ `
0

= ∅.
•♦ z = (ϕ1, ϕ2), ϕ2 arbitrary, ϕ2(t) 6= 0 for all t, and ϕ1 = 1/ϕ2.

•♦ Differential algebraic system: z1z2 = 1, ż2
1 = z2

1 , ż2
2 = z2

2

•♦ Initial conditions z(0) = (x1, x2) where x1x2 = 1

•♦ Two solutions (x1e
±t , x2e

∓t)
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Quasi-linearization of Ideals

•♦ J be an ideal in C[X,P].

•♦ Y = (Y1, · · · ,Y2n) and Q = (Q1, · · · ,Q2n) indeterminates

•♦ λ : C[X,P] −→ C[Y] where λ(g) = g(Y1, · · · ,Y2n)

•♦ Quasi-linearization of J is the ideal in C[Y,Q] given by

q`(J) = ({Qk − Yn+k | 1 6 k 6 n } ∪ { λ(g) | g ∈ J })

•♦ J = (g1, . . . , gm) implies

{Qk − Yn+k | 1 6 k 6 n } ∪ { λ(gi) | 1 6 i 6 m }

is a Q-strong essential Q-degree basis for q`(J).

•♦ q`(J∗) ⊆ q`(J)∗.
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Quasi-linearization Helps

•♦ J = (X1X2 − 1, P2
1 − X 2

1 , P2
2 − X 2

2 ) (underdetermined ex.)

•♦ q`(J) = (Q1 − Y3, Q2 − Y4, Y1Y2 − 1, Y 2
3 − Y 2

1 , Y 2
4 − Y 2

2 )

•♦ q̃`(J) = (Q4 − Y2, Q3 − Y1, Q2 + Y3Y
2
2 , Q1 − Y3,

Y1Y2 − 1, Y4 + Y3Y
2
2 , Y 2

3 − Y 2
1 )

•♦ q̃`(W ) : Y1Y2 − 1 = 0, Y4 + Y3Y
2
2 = 0, Y 2

3 − Y 2
1 = 0

•♦ rank q̃`(J)(y) = 4 for any y ∈ q̃`(W )

•♦ Translation:
Y1 Y2 Y3 Y4 Q1 Q2 Q3 Q4

z1 z2 ż1 ż2 ż1 ż2 z̈1 z̈2

•♦ Second Order System: z̈1 = z1, z̈2 = z2

•♦ Constraints: z1z2 = 1, ż2
1 = z2

1 , z̈2 = −ż1z
2
2

•♦ It is necessary to decide the branch by giving ż1(0) only.
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Underdetermined Quasi-Linear Example

•♦ System:

(−x + y)ẋ + xẏ + (x2 − 1)ż = 0
y ẋ + (x2 + 1)ẏ + x3ż = 0

•♦ Solutions: Every constant point is an equilibrium solution.

•♦ Complete System (Index 0)

•♦ Explicit System: No algebraic constraints. k arbitrary.

ẋ = k

ẏ = k(x4 − (x3 + x2 − 1)y)

ż = k(−x3 − x + (x2 − x + 1)y)

•♦ We can obtain unique solution by adding any quasi-linear
equation g(X,P) = 0, for example ẋ = 1.

F. Leon Pritchard, York College; William Sit, City College,CUNY Algebraic Constraints on Initial Values of Differential Equations



Underdetermined Quasi-linear Systems

•♦ J complete, quasi-linear ideal, underdetermined

•♦ Assume W is irreducible.

•♦ ρ = max{ rank J(x) | x ∈ W } < n

•♦ g1, . . . , gν (ν 6 n − ρ) polynomials of P-degree 1

•♦ J1 = (J , g1, . . . gν)

•♦ Suppose W1 contains a point x0 with rank J1(x0) = ρ+ ν.

•♦ Then J1 ∩ C[X] = J ∩ C[X].
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Primary Decomposition

•♦ J complete, but not necessarily quasi-linear

•♦ R(J) =
√

J ∩ C[X]

•♦ R = Q1 ∩ · · · ∩Qr : irredundant primary (prime) decomposition

•♦ Ki = (J ∪ Qi ∪∇Qi)

•♦ J quasi-linear implies Ki quasi-linear

•♦ J complete implies Ki complete and Ki ∩ C[X] = Qi .
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Conclusions

•♦ Approach is ideal theoretic, providing maximum flexibility in
implementation

•♦ Applies to all eventually quasi-linear systems without any
transformation

•♦ Applies to overdetermined as well as underdetermined systems

•♦ Applies to non-linear systems either by a transformation or by
dropping some non-linear equations

•♦ Any system may be completed with no a priori conditions.

•♦ Existence and Uniqueness theorem holds for computed initial
conditions

•♦ Provides equivalent explicit form ready for numerical methods
and dynamical analysis
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