On Certain Towers of Extensions by Antiderivatives

V. Ravi Srinivasan, University of Oklahoma

September 26, 2008

Differential Fields

A field F with a map $':F\to F$ satisfying

- (a+b)' = a' + b'
- $\bullet \quad (ab)' = a'b + ab'$

is called a *differential field* and the map $^\prime$ is called a *derivation* on F. A *differential field* extension E of F is a differential field such that $E \supset F$ and the restriction of the derivation of E to F coincides with the derivation of F.

Field of Constants: Let $(\mathbf{F}, ')$ be a differential field. The differential field $\mathbf{C} := \{c \in \mathbf{F} | c' = 0\}$ is called the field of constants.

Antiderivative Extensions

For the rest of the talk we will assume that the constants ${\bf C}$ of the differential field ${\bf F}$ is algebraically closed and of characteristic 0.

Definition 1. A differential field extension $\mathbf{E} \supset \mathbf{F}$ is a *No New Constant* (NNC) extension if the constants of \mathbf{E} are the same as the constants of \mathbf{F} .

Definition 2. Let $E \supset F$ be a NNC extension. An element $u \in E$ is an antiderivative if $u' \in F$. A differential field extension $E \supset F$ is an antiderivative extension of F if for $i = 1, 2, \dots, n$ there exists $u_i \in E$ such that $u'_i \in F$ and $E = F(u_1, u_2, \dots, u_n)$.

THEOREM 3. Let $E \supset F$ be a differential field extension and let $u \in E$ such that $u' \in F$. Then u is transcendental over F or $u \in F$.

- I. Kaplansky, **An Introduction to Differential Algebra**, Hermann, Paris, (1957).
- A. Magid, Lectures on Differential Galois Theory, University Lecture Series. American Mathematical society 1994, 2nd edn.

Some Observations: Consider the differential field ($\mathbf{C}(x)$, '), where ' = $\frac{d}{dx}$

- 1. $(\mathbf{C}(x), ')$ has no nontrivial differential subfields
- 2. (C(x), ') contains no solutions of the differential operator $L(Y) = Y' \frac{1}{x}$.

THEOREM 4. Let $E \supset F$ be a NNC differential field extension and for $1 = 1, 2, \dots, n$ let $u_i \in E$ be antiderivatives. If u_i are algebraically dependent over F then there is a tuple $(c_1, \dots, c_n) \in \mathbb{C}^n \setminus \{0\}$ such that $\sum_{i=1}^n c_i u_i \in F$.

- A. Ostrowski, *Sur Les Relations Algébriques Entre Les Intégrales Indéfines*, Acta Mathematica, **78**, (1946), 315-318.
- E.R. Kolchin, Algebraic Groups and Algebraic Dependence, Amer. J. of Math, 90, No.4. (1968), 1151-1164.
- J. Ax, *On Schanuel's Conjectures*, Ann. of Math (2) **93** (1971), 252-268. MR **43**
- M. Rosenlicht, On Liouville's Theory of Elementary Functions, Pacific J. Math (2) **65** (1976), 485-492
- The above theorem also works for any family of derivations $\{\partial_i|i\in I\}$ on ${\bf E}$ that satisfies $\cap_{i\in I} ker\partial_i={\bf C}$

Exponential of an Integral

THEOREM 5. Let $\mathbf{E} \supset \mathbf{F}$ be a differential field extension and let $u \in \mathbf{E}$ such that $\frac{u'}{u} \in \mathbf{F}$. Then u is transcendental over \mathbf{F} or $u^n \in \mathbf{F}$ for some $n \in \mathbb{N}$.

THEOREM 6. Let $\mathbf{E} \supset \mathbf{F}$ be a NNC differential field extension and let $\mathfrak{e}_1, \cdots, \mathfrak{e}_m \in \mathbf{E}$ be such that $\frac{\mathfrak{e}'_j}{\mathfrak{e}_j} \in \mathbf{F}$. If $\mathfrak{e}_1, \cdots, \mathfrak{e}_m$ are algebraically dependent over \mathbf{F} then there exist $(r_1, \cdots, r_m) \in \mathbb{Z}^n \setminus \{0\}$ such that $\prod_{j=1}^m \mathfrak{e}_j^{r_j} \in \mathbf{F}$.

THEOREM 7. (Kolchin-Ostrowski) Let $\mathbf{E} \supset \mathbf{F}$ be a NNC differential field extension and let $\mathfrak{l}_1, \cdots, \mathfrak{l}_n, \, \mathfrak{e}_1, \cdots, \mathfrak{e}_m \in \mathbf{E}$ be such that $\mathfrak{l}_i' \in \mathbf{F}$ and $\mathfrak{e}_j' \in \mathbf{F}$. If $\mathfrak{l}_1, \cdots, \mathfrak{l}_n, \mathfrak{e}_1, \cdots, \mathfrak{e}_m$ are algebraically dependent over \mathbf{F} then there exist $(c_1, \cdots, c_n) \in C^n \setminus \{0\}$ such that $\sum_{i=1}^n c_i \mathfrak{l}_i \in \mathbf{F}$ or there exists $(r_1, \cdots, r_m) \in \mathbb{Z}^n \setminus \{0\}$ such that $\prod_{j=1}^m \mathfrak{e}_j^{r_j} \in \mathbf{F}$.

Tower of Extensions by Antiderivatives

Let F be a characteristic zero differential field with an algebraically closed field of Constants C and let F_{∞} be a complete Picard-Vessiot closure of F (every homogeneous linear differential equation over F_{∞} has a full set of solutions in F_{∞} and it has C as its field of constants and F_{∞} is minimal with respect to these properties). All the differential fields under consideration are subfields of F_{∞}

Definition 8. A differential field extension E of F is called a *tower of extension by antiderivatives* if there are differential fields E_i , $0 \le i \le n$ such that

$$\mathbf{E} := \mathbf{E}_n \supseteq \mathbf{E}_{n-1} \supseteq \cdots \supseteq \mathbf{E}_1 \supseteq \mathbf{E}_0 := \mathbf{F}$$

and \mathbf{E}_i is an extension by antiderivatives of \mathbf{E}_{i-1} for each $1 \le i \le n$.

THEOREM 9. Let $\mathbf{M} \supseteq \mathbf{F}$ be differential fields and let

$$\mathbf{E} := \mathbf{E}_n \supset \mathbf{E}_{n-1} \supset \cdots \supset \mathbf{E}_1 \supset \mathbf{E}_0 := \mathbf{F}$$

be a tower of extensions by antiderivatives. Then $u \in \mathbf{E}$ is algebraic over \mathbf{M} only if $u \in \mathbf{M}$.

Thus the above theorem shows that if $\mathbf{E} \supseteq \mathbf{K} \supsetneq \mathbf{M} \supseteq \mathbf{F}$ are differentials fields and \mathbf{E} is an extension by antiderivatives of \mathbf{F} then \mathbf{K} is purely transcendental over \mathbf{M} .

Infiniteness of F_{∞}

THEOREM 10. Let $\mathbf{E} \supseteq \mathbf{F}$ be a NNC extension. If there is an $\mathfrak{x} \in \mathbf{E} \setminus \mathbf{F}$ such that $\mathfrak{x}' \in \mathbf{F}$ then for any $n \in \mathbb{N}$ and distinct $\alpha_1, \dots, \alpha_n \in \mathbf{C}$, the elements $\mathfrak{y}_i \in \mathbf{F}_{\infty}$ such that $\mathfrak{y}'_{\alpha_i} = \frac{1}{\mathfrak{x} + \alpha_i}$ are algebraically independent over $\mathbf{F}(\mathfrak{x})$. Moreover, the differential field $\mathbf{F}(\mathfrak{y}_{\alpha}, \mathfrak{x})$, where $\mathfrak{y}'_{\alpha} = \frac{1}{\mathfrak{x} + \alpha}$ and $\alpha \in \mathbf{C}$ is not imbeddable in any Picard-Vessiot extension of \mathbf{F} .

Let $F_0 := F$ and let F_i be the Picard-Vessiot closure of F_{i-1} .

Remark 11. Thus if $E\supseteq F$ are differential fields such that $\mathfrak{x}\in E\setminus F$ and $\mathfrak{x}'\in F$ then the differential field $F(\mathfrak{y}_{\alpha},\mathfrak{x}),\ \mathfrak{y}'_{\alpha}=\frac{1}{\mathfrak{x}+\alpha}$ and $\alpha\in C$ is not imbeddable in any Picard-Vessiot extension of F and thus $\mathfrak{y}_{\alpha}\notin F_1$. We may apply the above theorem again for the element \mathfrak{y}_{α} with F_1 as the ground field. Then for any $\mathfrak{z}_{\beta}\in F_{\infty}$ such that $\mathfrak{z}'_{\beta}=\frac{1}{\mathfrak{y}_{\alpha}+\beta},\ \beta\in C$, we obtain that the differential field $F_1(\mathfrak{z}_{\beta},\mathfrak{y}_{\alpha})$ is not imbeddable in any Picard-Vessiot extension of F_1 and thus $\mathfrak{z}_{\beta}\notin F_2$. A repeated application of the theorem proves the following: If F is a differential field that has a proper extension by antiderivatives then for given any n, F_n has proper extensions by antiderivatives.

Algebraic Independence of Certain class of antiderivatives

THEOREM 12. Let $E \supseteq F$ be differential fields, $\mathfrak{x}_1, \dots, \mathfrak{x}_l \in E$ be antiderivatives of F and assume that $\mathfrak{x}_1, \dots, \mathfrak{x}_l$ are algebraically independent over F. For each $i=1,\dots,m$ let $A_i,B_i,C_i\in F[\mathfrak{x}_1,\dots,\mathfrak{x}_l]$, $(A_i,B_i)=(A_i,C_i)=(B_i,C_i)=1$ be polynomials satisfying the following condition

C1: C_i is an irreducible polynomial, $C_i \nmid C_j$ if $i \neq j$ and $C_i \nmid B_j$ for any $1 \leq i, j \leq m$.

Let $\mathfrak{y}_1, \dots, \mathfrak{y}_m \in \mathbf{F}_{\infty}$ be antiderivatives of $\mathbf{F}(\mathfrak{x}_1, \dots, \mathfrak{x}_l)$ with $\mathfrak{y}'_i = \frac{A_i}{C_i B_i}$. Then $\mathfrak{y}_1, \dots, \mathfrak{y}_m$ are algebraically independent over $\mathbf{F}(\mathfrak{x}_1, \dots, \mathfrak{x}_l)$.

Tower of Extensions by J-I-E Antiderivatives

Let $\mathfrak{y}_{11},\cdots,\mathfrak{y}_{1n_1}$ be algebraically independent antiderivatives of \mathbf{F} and for $i=1,2,\cdots,k$, let $\mathbf{E}_i:=\mathbf{E}_{i-1}(\mathfrak{y}_{i1},\mathfrak{y}_{i2},\cdots,\mathfrak{y}_{in_i})$, where $\mathbf{E}_0:=\mathbf{F}$ and for $i\geq 2$, let $\mathfrak{y}_{i1},\mathfrak{y}_{i2},\cdots,\mathfrak{y}_{in_i}$ are J-I-E antiderivatives of \mathbf{E}_{i-1} , that is, $\mathfrak{y}'_{ij}=\frac{A_{ij}}{C_{ij}B_{ij}}$ and for each $2\leq i\leq k$ and for all $1\leq j\leq n_i$, $A_{ij},B_{ij},C_{ij}\in\mathbf{E}_{i-2}[\mathfrak{y}_{i-11},\cdots,\mathfrak{y}_{i-1n_{i-1}}]$ are polynomials such that $(A_{ij},B_{ij})=(B_{ij},C_{ij})=(A_{ij},C_{ij})=1$ and satisfying the following conditions

C1: C_{ij} is an irreducible polynomial for each i, j. For every i, $C_{is} \nmid C_{it}$ (that is, they are non associates) if $s \neq t$ and $C_{is} \nmid B_{it}$ for any $1 \leq s, t \leq n_i$.

C2: For each i and for every j, $1 \le j \le n_i$ there is an element $\mathfrak{y}_{C_{ij}} \in \{\mathfrak{y}_{i-11}, \cdots, \mathfrak{y}_{i-1n_{i-1}}\}$ such that the partial $\frac{\partial C_{ij}}{\partial \mathfrak{y}_{C_{ij}}} \neq 0$ and $\frac{\partial A_{ij}}{\partial \mathfrak{y}_{C_{ij}}} = \frac{\partial B_{ij}}{\partial \mathfrak{y}_{C_{ij}}} = 0$.

Definition 13. We call

$$\mathbf{E} := \mathbf{E}_k \supset \mathbf{E}_{k-1} \supset \cdots \supset \mathbf{E}_2 \supset \mathbf{E}_1 \supset \mathbf{E}_0 := \mathbf{F}$$

a tower of extensions by J-I-E antiderivatives. Note that \mathbf{E}_1 is an ordinary antiderivative extension of \mathbf{F} .

Let
$$I_i := \{\mathfrak{y}_{ij} | 1 \leq j \leq n_i\}$$
, $\Lambda_t := Span_{\mathbf{C}} \cup_{i=1}^t I_i$, $\Lambda_0 = \{0\}$ and $\mathbf{E} := \mathbf{E}_k$.

Generalized Kolchin-Ostrowski Theorem

THEOREM 14. Let $\mathbf{E}_k \supset \mathbf{K} \supset \mathbf{F}$ be an intermediate differential field. If $\cup_{j=1}^k I_i$ is algebraically dependent over \mathbf{K} then there is a nonzero $\mathfrak{s} \in \mathbf{K} \cap \Lambda_k$.

Differential Subfields of J-I-E tower

THEOREM 15. For every differential subfield K of $E := E_k$, the field generated by F and $S_k := K \cap \Lambda_k$ equals the differential field K. That is

$$K = F(S_k)$$
.

Moreover \mathbf{K} itself is a tower of extensions by antiderivatives, namely

 $\mathbf{K} = \mathbf{F}(S_k) \supset \mathbf{F}(S_{k-1}) \supset \mathbf{F}(S_{k-2}) \supset \cdots \supset \mathbf{F}(S_1) \supset \mathbf{F},$ where $S_i := S_k \cap \Lambda_i$.

Example

Let $\mathbf{C} := \mathbb{C}$ denote the complex numbers, \mathbf{C}_{∞} the complete Picard-Vessiot closure of \mathbf{C} , $x \in \mathbf{C}_{\infty}$ be an element whose derivative is 1, $\tan^{-1}(x) \in \mathbf{C}_{\infty}$ be an element such that

$$(\tan^{-1}(x))' = \frac{1}{1+x^2}$$

and let $\tan^{-1}(\tan^{-1}(x)) \in \mathbf{C}_{\infty}$ be an element such that

$$\left(\tan^{-1}(\tan^{-1}(x))\right)' = \frac{1}{(1 + (\tan^{-1}(x))^2)(1 + x^2)}.$$

Then

$$\mathbf{C}\langle \tan^{-1}(\tan^{-1}(x))\rangle$$

$$= \mathbf{C}(\tan^{-1}(\tan^{-1}(x)), \tan^{-1}(x), x).$$

Remark 16. The J-I-E extensions may have non-elementary functions. For example; if $a_i \in \mathbb{C}$ are distinct constants for $i=1,\cdots,n$ then the elements $\mathfrak{y}_i:=\int \frac{\ln(x)}{x-a_i}$ are J-I-E antiderivatives of the differential field $\mathbf{C}(x,\ln(x))$ with $\mathfrak{y}'_i:=\frac{A_i}{C_iB_i}$ where $A_i:=\ln(x),\ B_i:=1$ and $C_i:=x-a_i$. These \mathfrak{y}_i 's are non-elementary functions*. From theorem 12 we see that these \mathfrak{y}_i 's are algebraically independent over $\mathbf{C}(x,\ln(x))$ and from theorem15 we see that any differential field $\mathbf{K},\ \mathbf{C}(x,\ln(x),\mathfrak{y}_i|1\leq i\leq n)\supseteq\mathbf{K}\supseteq\mathbf{C}$ is of the form $\mathbf{C}(S)$, where $S\subset\mathrm{span}_{\mathbf{C}}\{x,\ln(x),\mathfrak{y}_i|1\leq i\leq n\}$ is a finite set. Moreover $\mathbf{C}(S)$ itself is a tower of (Picard-Vessiot) extensions by antiderivatives.

^{*}Elena Anne Marchisotto, Gholam-Ali Zakeri, *An Invitiation to Integration in Finite Terms*, Math.Assoc.Amer (4) **25** (Sep., 1994), 295-308.

A Normal Tower of J-I-E Antiderivatives Iterated Logarithms

Let ${\bf C}$ be an algebraically closed characteristic zero differential field with a trivial derivation and let ${\bf C}_{\infty}$ be the complete Picard-Vessiot Closure of ${\bf C}$.

Let $\Lambda_1 := \{\ln(x+c) | c \in \mathbf{C}\}$, where $\ln(x+c) \in \mathbf{C}_{\infty}$ and $\ln(x+c)' = \frac{1}{x+c}$. We observe that $\mathbf{C}(x,\Lambda_1; \ ' = \frac{d}{dx})$ is a differential field.

• Any subset $S \subset \{x\} \cup \Lambda_1$ is algebraically independent over \mathbf{C} .

Differential subfields of $C(x, \Lambda_1)$

THEOREM 17. For $u \in C(x, \Lambda_1) \setminus C(x)$, there is a set $S \subset \Lambda_1$ such that the singly generated differential field

$$\mathbf{C}\langle u\rangle = \mathbf{C}(x, L_1, \cdots, L_t),$$

where $L_i \in Span_C S$. Moreover, if $u = \frac{P}{Q}$, $P, Q \in C[x, \Lambda_1]$, (P, Q) = 1 then the linear forms L_i 's can be explicitly computed.

Let $\mathcal{L}_{0,0}:=x$ be a solution of the differential equation Y'=1. We recursively define $\mathcal{L}_{\vec{c},n}$ for $\vec{c}\in\mathbf{C}^n$, $n\in\mathbb{N}$ as the solution of the differential equation

$$Y' = \frac{\mathcal{L}'_{\pi(\vec{c}), n-1}}{\mathcal{L}_{\pi(\vec{c}), n-1} + \psi_n(\vec{c})},$$
 (1)

where $\psi_n : \mathbf{C}^n \to \mathbf{C}$ is the map $\psi_n(c_1, \dots, c_n) = c_n$ and $\pi : \mathbf{C}^n \to \mathbf{C}^{n-1}$ is the map

$$\begin{cases} \pi(c_1, \cdots, c_n) = (c_1, \cdots, c_{n-1}), & \text{when } n > 1; \\ \pi(c) = 0, & \text{when } n = 1. \end{cases}$$

- $\mathcal{L}_{\vec{c},n}$ is called an n-th level iterated logarithm.
- One can think of $\mathcal{L}_{\vec{c},n}$ as $\ln(\ln \cdots (\ln(x+c_1)) \cdots + c_{n-1}) + c_n)$.

We denote $\mathcal{L}_{\pi(\vec{c}),n-1}$ by $\pi(\mathcal{L}_{\vec{c},n})$.

Notations: $\Lambda_n := \{\mathcal{L}_{\vec{c},n} | \vec{c} \in \mathbf{C}^n\}, \ \Lambda_0 := \{x\}, \ \mathcal{L}_0 = \mathbf{C}(\Lambda_0), \ \mathcal{L}_n := \mathbf{C}(\cup_{i=0}^n \Lambda_i) \text{ for all } n \in \mathbb{N}, \ \Lambda_\infty = \cup_{i=0}^\infty \Lambda_i \text{ and } \mathcal{L}_\infty = \mathbf{C}(\Lambda_\infty).$

We observe that

- Given any finite set $S \subset \Lambda_{\infty}$ there is an $n \in \mathbb{N}$ such that $\pi(S) = \{x\}$.
- $C(S, \pi(S), \pi^2(S), \dots, \pi^n(S) = x) = C\langle S \rangle$ and we call the LHS, the container differential field of S.

Algebraic Independence of Iterated logarithms

THEOREM 18. Let $S_{n-1} \subset \Lambda_{n-1}$ be a finite set whose elements are antiderivatives of a differential field \mathbf{F} and let $S_n \subset \Lambda_n$ be such that $\pi(S_n) \subseteq S_{n-1}$. Suppose that S_{n-1} is algebraically independent over \mathbf{F} then S_n is algebraically independent over $\mathbf{F}(S_{n-1})$.

• Under the assumption $\pi(S_n) \subseteq S_{n-1}$ the differential field $\mathbf{F}(S_{n-1}, S_n)$ becomes an antiderivative extension of $\mathbf{F}(S_{n-1})$.

Note that x is not algebraic over C and therefore from the above theorem Λ_1 is algebraically independent over C(x), Λ_2 is algebraically independent over $C(x,\Lambda_1)$ and so on..

Thus Λ_n is algebraically independent over \mathfrak{L}_{n-1} .

Normality: For any differential automorphism $\sigma \in \mathcal{G}(\mathbf{C}_{\infty}|\mathbf{C})$, $\sigma(x) = x + c_{\sigma}$ where $c_{\sigma} \in \mathbf{C}$ and therefore $\sigma(\ln(x+a)) = \ln(x+a+c_{\sigma}) + d(\sigma,a)$, $d(\sigma,a) \in \mathbf{C}$. Thus $\sigma(\mathbf{C}(x)) \subseteq \mathbf{C}(x)$ and $\sigma(\mathbf{C}(x,\Lambda_1)) \subseteq \mathbf{C}(x,\Lambda_1)$.

A similar argument should show that

ullet \mathfrak{L}_n is a normal extension for every n and therefore \mathfrak{L}_∞ is also normal.

THEOREM 19. Let \mathbf{F} be a differential field finitely generated over its constants \mathbf{C} , \mathbf{E} be a Picard-Vessiot extension of \mathbf{F} , and let $\mathbf{F} \subset \mathbf{E} \subset \mathfrak{L}_{\infty}$. If $\sum_{j=1}^{s} a_j y_j \in \mathbf{E}$ for some $a_j \in \mathbf{C}^*$, $y_j \in \bigcup_{i=0}^{\infty} \Lambda_i$ and $s \in \mathbb{N}$ then $\pi^i(y_j) \in \mathbf{F}$ for all $i \in \mathbb{N}$ and thus $y_j' \in \mathbf{F}$.

Essential Iterated logarithms:

Let $u \in \mathfrak{L}_{\infty}$. Then, there are $P, Q \in \mathbf{C}[\Lambda_{\infty}]$ such that $u = \frac{P}{Q}$. Thus $u \in \mathbf{C}[T]$, where $T \subset \Lambda_{\infty}$ and T is finite.

The essential iterated logarithms of u is the set $\mathcal{E}:=\{y\in T|\frac{\partial P}{\partial y}\neq 0 \text{ or } \frac{\partial Q}{\partial y}\neq 0\}$

THEOREM 20. Let $u \in \mathfrak{L}_n \setminus \mathfrak{L}_{n-1}$, \mathcal{E} the essential set of logarithms of u and let \mathcal{F} be the container differential field \mathcal{E} . Then the differential field

$$\mathbf{C}\langle u\rangle = \mathbf{C}(\mathcal{S}, \pi(\mathcal{E}), \pi^2(\mathcal{E}), \cdots, x),$$

where S is a finite nonempty subset of $Span_{\mathbb{C}}\mathcal{E}$. Moreover, if $u=\frac{P}{Q}$, $P,Q\in\mathbb{C}[\Lambda_{\infty}]$, (P,Q)=1 then the set of linear forms S can be explicitly computed.

Examples

Let C be the field of Complex numbers.

1) Let

$$u = \frac{5x^3 \ln(x+1) + \ln(x+e) + 27x^3 \ln(x+\sqrt{2})}{\ln(x) + x(\ln(x+2) - 17\ln(x+3))^2}.$$

Then

$$C\langle u \rangle = C(x, \ln(x+e), \ln(x), 5\ln(x+1) + 27\ln(x+\sqrt{2}), \ln(x+2) - 17\ln(x+3))$$

2) Let $y_1 := \ln(\ln(\ln(x-i)+2)+3)$, $y_2 := \ln(\ln(x+i)+\sqrt{3})$, $y_3 := \ln(x+\frac{5}{6})$, $y_4 := \ln(\ln(x+\frac{1}{2})+\frac{1}{2})$, $y_5 := \ln(x+\sqrt{5})$, $y_6 := \ln(x+5+i)$, $y_7 := \ln(\ln(\ln(x)+i))$ and let

$$P := \ln(x+i)^2 \ln(x-i)(y_1-y_3)^5 + x^3 \ln(x)(y_2-y_5)^2,$$

$$Q := \ln(\ln(x) + i)^{2} (y_{5} - y_{7})^{7} + x \ln(x - i)^{3} \ln(\ln(x - i) + 2)^{2} (y_{6} - y_{4})^{12}$$

and

$$u = \frac{P}{Q}.$$

Then

$$C\langle u \rangle = C(\ln(x-i), \ln(x+i), \ln(\ln(x)+i), \ln(x+\frac{1}{2}), \\ \ln(x), x, \ln(\ln(x-i)+2), y_1 - y_3, y_2 - y_5, \\ y_6 - y_4, y_5 - y_7)$$