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Differential Fields

A field F with a map /' : F — F satisfying

e (a+b)=d+V
o (ab) =db+ at/

is called a differential field and the map '’ is
called a derivation on F. A differential field
extension E of F is a differential field such that
E D F and the restriction of the derivation of
E to F coincides with the derivation of F.

Field of Constants: Let (F, /) be a differ-
ential field. The differential field C = {c €
F| ¢ = 0} is called the field of constants.



Antiderivative Extensions

For the rest of the talk we will assume that
the constants C of the differential field F is
algebraically closed and of characteristic O.

Definition 1. A differential field extension E D
F is a No New Constant (NNC) extension if the
constants of E are the same as the constants
of F.

Definition 2. Let E D F be a NNC extension.
An element u € E is an antiderivative if ' € F.
A differential field extension E D F is an an-
tiderivative extension of F if for:=1,2,---,n
there exists u; € E such that v, € F and E =

F<u17u27 e 7un)-



THEOREM 3. Let E D F be a differential
field extension and let uw € E such that v’ € F.
Then u is transcendental over ¥ or u € F.

e I. Kaplansky, An Introduction to Differential Alge-
bra, Hermann, Paris, (1957).

e A. Magid, Lectures on Differential Galois The-
ory, University Lecture Series. American Mathematical
society 1994, 2nd edn.

Some Observations: Consider the differential
field (C(x), '), where = %

1. (C(z), ') has no nontrivial differential sub-
fields

2. (C(x), ') contains no solutions of the dif-
ferential operator L(Y) =Y’ — 1.



THEOREM 4. Let E D F be a NNC differ-
ential field extension and for 1 = 1,2,---.,n
let w; € E be antiderivatives. If u; are alge-
braically dependent over ¥ then there is a tuple
(c1,-+,cn) € C*\ {0} such that Y7 _; cu; € F.
e A. Ostrowski, Sur Les Relations Algébriques Entre

Les Intégrales Indéfines, Acta Mathematica, 78, (1946),
315-318.

e E.R. Kolchin, Algebraic Groups and Algebraic Depen-
dence, Amer. J. of Math, 90, No.4. (1968), 1151-1164.

e J. AX, On Schanuel’s Conjectures, Ann. of Math (2)
93 (1971), 252-268. MR 43

e M. Rosenlicht, On Liouville’s Theory of Elementary
Functions, Pacific J. Math (2) 65 (1976), 485-492

e [ he above theorem also works for any fam-
ily of derivations {9;|i € I} on E that satisfies
Njerkerd; = C



Exponential of an Integral

THEOREM b. Let E D F be a differential
field extension and let uw € E such that %’ e F.
Then wu is transcendental over F or u™ € F for
some n € N,

THEOREM 6. Let E D F be a NNC differ-
ential field extension and let ¢1,--- ,e;m € E be
/

such that Z—J e F. Ifeq,--- ,em are algebraically
J

dependent over F then there exist (ri,-+- ,rm) €

7™\ {0} such that [[{lqe; 7 eF.

THEOREM 7. (Kolchin-Ostrowski) Let E D

F be a NNC differential field extension and let
[1, -, In, e1,--- ,em € E be such thatl, ¢ F and

-7 cF. Ifly,--- ,Iln,e1, -+ ,em are algebraically
dependent over F then there exist (¢1, -+ ,cn) €

C"\ {0} such that 3, c;l; € F or there exists

(ri,--- rm)EZ”\{O} such that T e, 7 eF.



Tower of Extensions by Antiderivatives

Let F be a characteristic zero differential field
with an algebraically closed field of Constants
C and let F be a complete Picard-Vessiot
closure of F (every homogeneous linear dif-
ferential equation over F has a full set of
solutions in F and it has C as its field of
constants and F« is minimal with respect to
these properties). All the differential fields un-
der consideration are subfields of F

Definition 8. A differential field extension E of
F is called a tower of extension by antideriva-
tives if there are differential fields E;, 0 <i:<n
such that

E=E,OE, 12---0E1 2Eg:=F

and E; is an extension by antiderivatives of
E;, 1 foreach 1 <17 < n.



THEOREM 9. Let M D F be differential fields
and let

E=E,DE, 1D---DE1 DEqg:=F

be a tower of extensions by antiderivatives.
Then uw € E is algebraic over M only if uw € M.

Thus the above theorem shows that if E D
K O M D F are differentials fields and E is
an extension by antiderivatives of F then K is
purely transcendental over M.

Infiniteness of F

THEOREM 10. Let E DO F be a NNC exten-
sion. If there is an t € E\ F such that ¢/ € F
then for any n € N and distinct a1, -+ ,an € C,
the elements n; € Foo such that v, = zc—l}ozz- are
algebraically independent over F(x). Moreover,
the differential field F(ya,t), where y!, = HLQ
and o« € C js not imbeddable in any Picard-

Vessiot extension of F.




Let Fo := F and let F, be the Picard-Vessiot
closure of F,;_1.

Remark 11. Thus if E DO F are differential
fields such that t €¢ E\ F and ¢/ € F then the
differential field F(ha,1), 1), = HLQ and a € C
IS not imbeddable in any Picard-Vessiot exten-
sion of F and thus yo € F1. We may apply the
above theorem again for the element y, with
F, as the ground field. Then for any 3 € F
such that 3’5 = %L-Fﬂ 3 € C, we obtain that the
differential field F1(33,ba) is not imbeddable in
any Picard-Vessiot extension of F; and thus
33 ¢ Fo. A repeated application of the theorem
proves the following: If F is a differential field
that has a proper extension by antiderivatives
then for given any n, F;, has proper extensions

by antiderivatives.



Algebraic Independence of Certain class of antideriva-
tives

THEOREM 12. LetE D F be differential fields,
1, - ,x € E be antiderivatives of F and as-
sume that yq1,--- ,x; are algebraically indepen-
dent overF. Foreachi=1,--- ,m let A;, B;, C;
€ Flry,---,ul, (A, B) = (A, C) = (B, C;) =
1 be polynomials satisfying the following con-
dition

Cl: C; is an irreducible polynomial, C; { C; if
i 7% j and C; 1 B; for any 1 <i,j5 <m.

Let vy, -+ ,9m € Foo be antiderivatives of F(x1,
1) with v, = A¥-. Then vy,--- 9, are

algebraically independent over F(zq1, - ,151).



Tower of Extensions by J-I-E Antideriva-
tives

Let 11, - ,91n, D€ algebraically independent
antiderivatives of F and for : = 1,2,--- ,k, let
E; := E;_1(9;1,9i2, " ,0in;), Where Eg := F
and for ¢« > 2, let v;1,9;0, - ,0iy, are J-I-E
antiderivatives of E;_1, that is, U;,] = CA”w
andforeach2<z<kandforall1<g§
nq, Azga zng c E;_o[hi—11,--- aUz—lni_l] are

polynomials such that (A4;;,B;;) = (B, ;)
= (4;;,C;;) = 1 and satisfying the following
conditions

C1: Cij is an irreducible polynomial for each
i,j. For every i, C;s 1 C; (that is, they are
non associates)if s = t and C;s t B;; for any
1 <s,t<n;.

C2: For each i and for every 5, 1 < j5 < n; there
is an element UC € {vi—11," " »,i—1n,_, SUCH

that the partlal ” ;é 0 a 8A@J —83@7 —

30 S oue,;




Definition 13. We call
E=EKE.DE. 1D:---DE>yDE; DEg:=F

a tower of extensions by J-I-E antiderivatives.
Note that E; is an ordinary antiderivative ex-
tension of F.

Let I; := {n;;|1 < j <n;}, Ay := Spanc Ul I;,
/\O — {O} and E = Ek

Generalized Kolchin-Ostrowski Theorem

THEOREM 14. Let E;, D K D F be an in-
termediate differential field. If US_1I; is al-
gebraically dependent over K then there is a
nonzero s €¢ KN Ag.



Differential Subfields of J-I-E tower

THEOREM 15. For every differential subfield
K of E := E;, the field generated by F and
S, = KN AL equals the differential field K.

That is
K = F(Sy).

Moreover K itself is a tower of extensions by
antiderivatives, namely

K =F(S;) D F(Sk_1) DF(St_2) D---DF(S1) DOF,

where S; := S N \;.



Example

Let C := C denote the complex numbers, Cs
the complete Picard-Vessiot closure of C, x &€
Coso be an element whose derivative is 1, tan—1(z)
€ Cx be an element such that

1
14+ z2

and let tan~I(tan 1(z)) € Cx be an element
such that

(tan_l(tan_l(m)))

(tan~(2)) =

/ 1
(14 (tan71(@)2)(1 + 22)

T hen

C(tan~!(tan™1(2)))
= C(tan"Y(tan 1 (2)),tan " 1(2), z).



Remark 16. The J-I-E extensions may have
non-elementary functions. For example; if a; €
C are distinct constants for : = 1,--- ,n then
the elements y; := | '”(x? are J-I-E antideriva-
tives of the differential field C(x,In(x)) with
n, = CAB where A; :=In(xz), B; ;=1 and C; :=
T — a;. These h;'S are non-elementary func-
tions*. From theorem 12 we see that these y;’s
are algebraically independent over C(x,In(x))
and from therorem15 we see that any differen-
tial field K, C(z,In(z),9;/1 <i<n) DK DC is
of the form C(S), where S Cspanc{z,In(x),v;|
1 <i<n}is a finite set. Moreover C(S) it-
self is a tower of (Picard-Vessiot) extensions

by antiderivatives.

*Elena Anne Marchisotto, Gholam-Ali Zakeri, An Invitiation to In-
tegration in Finite Terms, Math.Assoc.Amer (4) 25 (Sep., 1994),
295-308.



A Normal Tower of J-I-E Antiderivatives

Iterated Logarithms

Let C be an algebraically closed characteris-
tic zero differential field with a trivial deriva-
tion and let C be the complete Picard-Vessiot
Closure of C.

Let A1 :={In(x + ¢)|c € C}, where In(x + ¢) €

Cxo and In(z + ¢) = x_1|_c. We observe that

C(z,A1; "= 2) is a differential field.

i

e Any subset S C {x}U/Aq is algebraically inde-
pendent over C.

Differential subfields of C(xz, A1)
THEOREM 17. Foru € C(z,N\1)\C(x), there

is a set S C A1 such that the singly generated
differential field

C<U’> — C(CB, Ll) T 7Lt)7

where L; € SpancS. Moreover, if u = 5 PQec
Clz,N\1], (P,Q) = 1 then the linear forms L;'s
can be explicitly computed.



Let Lo := x be a solution of the differential
equation Y/ = 1. We recursively define Lan for
c e C" n €N as the solution of the differential

equation
/
ﬁw(é’),n—l + ¢n(C)
where ¢, : C"* — C is the map ¢Yn(cy, -+ ,cn) =
cn, and ©: C* — C* 1 is the map

7T(017"' ,Cn> — (Cla"' 7Cn—1)7 when n > 11
w(c) = 0, when n = 1.

® Lz, is called an n—th level iterated logarithm.

e One can think of Lz, asIn(In--- (In(z+c1)) - -+
cn—1) +cn).



We denote L, (7 n—1 by m(Lz,).

Notations: A, = {Lz,|c € C"}, Ag = {z},
Lo = C(A\g), £n := C(UEgA;) for all n € N,

We observe that

e Given any finite set S C A thereisan n € N
such that n(S) = {z}.

o C(S,7(S),m2(89), - ,7™(S) = z) = C(S) and
we call the LHS, the container differential field
of S.



Algebraic Independence of Iterated logarithms

THEOREM 18. Let S,,_1 C \,,_1 be a finite
set whose elements are antiderivatives of a dif-
ferential field ¥ and let S, C \n, be such that
w(Sp) C S,_1. Suppose that S,_q1 is alge-
braically independent over ¥ then S, is alge-
braically independent over F(S,,_1).

e Under the assumption «(S,) C S,,_1 the dif-
ferential field F(S,,_1, Sn) becomes an antideriva-
tive extension of F(S,,_1).

Note that x is not algebraic over C and there-
fore from the above theorem Aq is algebraically
independent over C(x), N> is algebraically in-
dependent over C(xz,/A1) and so on..

Thus Ay, is algebraically independent over £,,_1.



Normality: For any differential automorphism
o € G(Cx|C), o(x) = =+ ¢ where ¢, € C
and therefore o(In(z +a)) = In(x + a4+ ¢c5) +
d(o,a), d(o,a) € C. Thus U(C(az)) C C(z) and

o(C(x,A1)) C C(x,A1).
A similar argument should show that

e £, IS a normal extension for every n and
therefore £~ is also normal.

THEOREM 19. Let F be a differential field
finitely generated over its constants C, E be
a Picard-Vessiot extension of F, and let F C
E C £x. If 3% _ja;y; € E for some a; € C*,
y; € U2 o/N\; and s € N then « Z(y]) c F for all
1 € N and thus y] cF.



Essential Iterated logarithms:

Let u € £00. Then, there are P, (Q € C[Ax] such
that u = g. Thus u € C[T], where T C As and
T is finite.

The essential iterated logarithms of w is the
setg::{y€T|%—1;7éO or%—g#O}

THEOREM 20. Let u € £, \ £,_1, £ the es-
sential set of logarithms of uw and let F be the
container differential field £. Then the differ-
ential field

C<u> — C(Saﬂ-(g)vﬂ-Q(g)a e 7x)7

where § is a finite nonempty subset of Spanc€.
Moreover, if u = g, P,Q € C[Ax], (P,Q) =1
then the set of linear forms & can be explicitly
computed.



Examples
Let C be the field of Complex numbers.

1) Let

L 523In(x 4+ 1)+ In(z +¢e) + 2723 In(z + V2)
In(z) + :c(ln(a: +2)—17In(z + 3))2

T hen

Clu) = C(:c, In(z + e),In(x),5In(z+ 1)
+27In(z + v2),In(z +2) — 17 In(z + 3))



2) Let y1 ;= In(In(In(x — %) +2) 4+ 3), yo =
In(in(z+)++v/3), y3 := In(z+3), ya := In(In(z+
3) +3), ys i=In(z + V5), ys := In(z + 5+ 1),
y7 ;= In(In(In(z) + 7)) and let

P := In(z+44)? In(z—i) (y1—y3)°+2° In(2) (y2—ys5)*,

Q :=In(In(x) + i) (ys — vr)”
+zIn(z —i)3In(In(z — i) + 2)?(yg — yq)*?

and

D%

T hen

CWQ=COMw—DJMx+@Jmm@O+UJMx+%L

In(z), z, In(In(z — i) + 2),y1 — y3, Y2 — ys,
Y6 — Ya,Ys — Y7)



