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Differential Fields

A field F with a map ′ : F → F satisfying

• (a+ b)′ = a′ + b′

• (ab)′ = a′b+ ab′

is called a differential field and the map ′ is

called a derivation on F. A differential field

extension E of F is a differential field such that

E ⊃ F and the restriction of the derivation of

E to F coincides with the derivation of F.

Field of Constants: Let (F, ′ ) be a differ-

ential field. The differential field C := {c ∈
F| c′ = 0} is called the field of constants.



Antiderivative Extensions

For the rest of the talk we will assume that

the constants C of the differential field F is

algebraically closed and of characteristic 0.

Definition 1. A differential field extension E ⊃
F is a No New Constant (NNC) extension if the

constants of E are the same as the constants

of F.

Definition 2. Let E ⊃ F be a NNC extension.

An element u ∈ E is an antiderivative if u′ ∈ F.

A differential field extension E ⊃ F is an an-

tiderivative extension of F if for i = 1,2, · · · , n
there exists ui ∈ E such that u′i ∈ F and E =

F(u1, u2, · · · , un).



THEOREM 3. Let E ⊃ F be a differential

field extension and let u ∈ E such that u′ ∈ F.

Then u is transcendental over F or u ∈ F.

• I. Kaplansky, An Introduction to Differential Alge-
bra, Hermann, Paris, (1957).

• A. Magid, Lectures on Differential Galois The-

ory, University Lecture Series. American Mathematical

society 1994, 2nd edn.

Some Observations: Consider the differential

field (C(x), ′ ), where ′ = d
dx

1. (C(x), ′ ) has no nontrivial differential sub-

fields

2. (C(x), ′ ) contains no solutions of the dif-

ferential operator L(Y ) = Y ′ − 1
x.



THEOREM 4. Let E ⊃ F be a NNC differ-

ential field extension and for 1 = 1,2, · · · , n
let ui ∈ E be antiderivatives. If ui are alge-

braically dependent over F then there is a tuple

(c1, · · · , cn) ∈ Cn \ {0} such that
∑n
i=1 ciui ∈ F.

• A. Ostrowski, Sur Les Relations Algébriques Entre
Les Intégrales Indéfines, Acta Mathematica, 78, (1946),
315-318.

• E.R. Kolchin, Algebraic Groups and Algebraic Depen-
dence, Amer. J. of Math, 90, No.4. (1968), 1151-1164.

• J. Ax, On Schanuel’s Conjectures, Ann. of Math (2)
93 (1971), 252-268. MR 43

• M. Rosenlicht, On Liouville’s Theory of Elementary

Functions, Pacific J. Math (2) 65 (1976), 485-492

• The above theorem also works for any fam-

ily of derivations {∂i|i ∈ I} on E that satisfies

∩i∈Iker∂i = C



Exponential of an Integral

THEOREM 5. Let E ⊃ F be a differential

field extension and let u ∈ E such that u′
u ∈ F.

Then u is transcendental over F or un ∈ F for

some n ∈ N.

THEOREM 6. Let E ⊃ F be a NNC differ-

ential field extension and let e1, · · · , em ∈ E be

such that
e′j
ej
∈ F. If e1, · · · , em are algebraically

dependent over F then there exist (r1, · · · , rm) ∈
Zn \ {0} such that

∏m
j=1 e

rj
j ∈ F.

THEOREM 7. (Kolchin-Ostrowski) Let E ⊃
F be a NNC differential field extension and let

l1, · · · , ln, e1, · · · , em ∈ E be such that l′i ∈ F and
e′j
ej
∈ F. If l1, · · · , ln,e1, · · · , em are algebraically

dependent over F then there exist (c1, · · · , cn) ∈
Cn \ {0} such that

∑n
i=1 cili ∈ F or there exists

(r1, · · · , rm) ∈ Zn \ {0} such that
∏m
j=1 e

rj
j ∈ F.



Tower of Extensions by Antiderivatives

Let F be a characteristic zero differential field

with an algebraically closed field of Constants

C and let F∞ be a complete Picard-Vessiot

closure of F (every homogeneous linear dif-

ferential equation over F∞ has a full set of

solutions in F∞ and it has C as its field of

constants and F∞ is minimal with respect to

these properties). All the differential fields un-

der consideration are subfields of F∞

Definition 8.A differential field extension E of

F is called a tower of extension by antideriva-

tives if there are differential fields Ei, 0 ≤ i ≤ n

such that

E := En ⊇ En−1 ⊇ · · · ⊇ E1 ⊇ E0 := F

and Ei is an extension by antiderivatives of

Ei−1 for each 1 ≤ i ≤ n.



THEOREM 9.Let M ⊇ F be differential fields

and let

E := En ⊃ En−1 ⊃ · · · ⊃ E1 ⊃ E0 := F

be a tower of extensions by antiderivatives.

Then u ∈ E is algebraic over M only if u ∈ M.

Thus the above theorem shows that if E ⊇
K ) M ⊇ F are differentials fields and E is

an extension by antiderivatives of F then K is

purely transcendental over M.

Infiniteness of F∞

THEOREM 10. Let E ⊇ F be a NNC exten-

sion. If there is an x ∈ E \ F such that x′ ∈ F

then for any n ∈ N and distinct α1, · · · , αn ∈ C,

the elements yi ∈ F∞ such that y′αi =
1

x+αi
are

algebraically independent over F(x). Moreover,

the differential field F(yα, x), where y′α = 1
x+α

and α ∈ C is not imbeddable in any Picard-

Vessiot extension of F.



Let F0 := F and let Fi be the Picard-Vessiot

closure of Fi−1.

Remark 11. Thus if E ⊇ F are differential

fields such that x ∈ E \ F and x′ ∈ F then the

differential field F(yα, x), y′α = 1
x+α and α ∈ C

is not imbeddable in any Picard-Vessiot exten-

sion of F and thus yα /∈ F1. We may apply the

above theorem again for the element yα with

F1 as the ground field. Then for any zβ ∈ F∞
such that z′β = 1

yα+β, β ∈ C, we obtain that the

differential field F1(zβ, yα) is not imbeddable in

any Picard-Vessiot extension of F1 and thus

zβ /∈ F2. A repeated application of the theorem

proves the following: If F is a differential field

that has a proper extension by antiderivatives

then for given any n, Fn has proper extensions

by antiderivatives.



Algebraic Independence of Certain class of antideriva-

tives

THEOREM 12.Let E ⊇ F be differential fields,

x1, · · · , xl ∈ E be antiderivatives of F and as-

sume that x1, · · · , xl are algebraically indepen-

dent over F. For each i = 1, · · · ,m let Ai, Bi, Ci
∈ F[x1, · · · , xl], (Ai, Bi) = (Ai, Ci) = (Bi, Ci) =

1 be polynomials satisfying the following con-

dition

C1: Ci is an irreducible polynomial, Ci - Cj if

i 6= j and Ci - Bj for any 1 ≤ i, j ≤ m.

Let y1, · · · , ym ∈ F∞ be antiderivatives of F(x1,

· · · , xl) with y′i = Ai
CiBi

. Then y1, · · · , ym are

algebraically independent over F(x1, · · · , xl).



Tower of Extensions by J-I-E Antideriva-

tives

Let y11, · · · , y1n1
be algebraically independent

antiderivatives of F and for i = 1,2, · · · , k, let
Ei := Ei−1(yi1, yi2, · · · , yini), where E0 := F

and for i ≥ 2, let yi1, yi2, · · · , yini are J-I-E

antiderivatives of Ei−1, that is, y′ij =
Aij

CijBij
and for each 2 ≤ i ≤ k and for all 1 ≤ j ≤
ni, Aij, Bij,Cij ∈ Ei−2[yi−11, · · · , yi−1ni−1

] are
polynomials such that (Aij, Bij) = (Bij, Cij)
= (Aij, Cij) = 1 and satisfying the following
conditions

C1: Cij is an irreducible polynomial for each
i, j. For every i, Cis - Cit (that is, they are
non associates)if s 6= t and Cis - Bit for any
1 ≤ s, t ≤ ni.
C2: For each i and for every j, 1 ≤ j ≤ ni there
is an element yCij ∈ {yi−11, · · · , yi−1ni−1

} such

that the partial
∂Cij
∂yCij

6= 0 and
∂Aij
∂yCij

=
∂Bij
∂yCij

= 0.



Definition 13. We call

E := Ek ⊃ Ek−1 ⊃ · · · ⊃ E2 ⊃ E1 ⊃ E0 := F

a tower of extensions by J-I-E antiderivatives.

Note that E1 is an ordinary antiderivative ex-

tension of F.

Let Ii := {yij|1 ≤ j ≤ ni}, Λt := SpanC ∪ti=1 Ii,

Λ0 = {0} and E := Ek.

Generalized Kolchin-Ostrowski Theorem

THEOREM 14. Let Ek ⊃ K ⊃ F be an in-

termediate differential field. If ∪kj=1Ii is al-

gebraically dependent over K then there is a

nonzero s ∈ K ∩ Λk.



Differential Subfields of J-I-E tower

THEOREM 15.For every differential subfield

K of E := Ek, the field generated by F and

Sk := K ∩ Λk equals the differential field K.

That is

K = F(Sk).

Moreover K itself is a tower of extensions by

antiderivatives, namely

K = F(Sk) ⊃ F(Sk−1) ⊃ F(Sk−2) ⊃ · · · ⊃ F(S1) ⊃ F,

where Si := Sk ∩ Λi.



Example

Let C := C denote the complex numbers, C∞
the complete Picard-Vessiot closure of C, x ∈
C∞ be an element whose derivative is 1, tan−1(x)

∈ C∞ be an element such that

(tan−1(x))′ =
1

1 + x2

and let tan−1(tan−1(x)) ∈ C∞ be an element

such that(
tan−1(tan−1(x))

)′
=

1

(1 + (tan−1(x))2)(1 + x2)
.

Then

C〈tan−1(tan−1(x))〉
= C(tan−1(tan−1(x)), tan−1(x), x).



Remark 16. The J-I-E extensions may have

non-elementary functions. For example; if ai ∈
C are distinct constants for i = 1, · · · , n then

the elements yi :=
∫ ln(x)
x−ai are J-I-E antideriva-

tives of the differential field C(x, ln(x)) with

y′i :=
Ai
CiBi

where Ai := ln(x), Bi := 1 and Ci :=

x − ai. These yi’s are non-elementary func-

tions∗. From theorem 12 we see that these yi’s

are algebraically independent over C(x, ln(x))

and from therorem15 we see that any differen-

tial field K, C(x, ln(x), yi|1 ≤ i ≤ n) ⊇ K ⊇ C is

of the form C(S), where S ⊂spanC{x, ln(x), yi|
1 ≤ i ≤ n} is a finite set. Moreover C(S) it-

self is a tower of (Picard-Vessiot) extensions

by antiderivatives.

∗Elena Anne Marchisotto, Gholam-Ali Zakeri, An Invitiation to In-
tegration in Finite Terms, Math.Assoc.Amer (4) 25 (Sep., 1994),
295-308.



A Normal Tower of J-I-E Antiderivatives

Iterated Logarithms

Let C be an algebraically closed characteris-
tic zero differential field with a trivial deriva-
tion and let C∞ be the complete Picard-Vessiot
Closure of C.

Let Λ1 := {ln(x+ c)|c ∈ C}, where ln(x+ c) ∈
C∞ and ln(x + c)′ = 1

x+c. We observe that

C(x,Λ1;
′ = d

dx) is a differential field.

• Any subset S ⊂ {x}∪Λ1 is algebraically inde-
pendent over C.

Differential subfields of C(x,Λ1)

THEOREM 17. For u ∈ C(x,Λ1)\C(x), there
is a set S ⊂ Λ1 such that the singly generated
differential field

C〈u〉 = C(x, L1, · · · , Lt),
where Li ∈ SpanCS. Moreover, if u = P

Q, P,Q ∈
C[x,Λ1], (P,Q) = 1 then the linear forms Li‘s
can be explicitly computed.



Let L0,0 := x be a solution of the differential

equation Y ′ = 1. We recursively define L~c,n for

~c ∈ Cn, n ∈ N as the solution of the differential

equation

Y ′ =
L′
π(~c),n−1

Lπ(~c),n−1 + ψn(~c)
, (1)

where ψn : Cn → C is the map ψn(c1, · · · , cn) =

cn and π : Cn → Cn−1 is the map{
π(c1, · · · , cn) = (c1, · · · , cn−1), when n > 1;
π(c) = 0, when n = 1.

• L~c,n is called an n−th level iterated logarithm.

• One can think of L~c,n as ln(ln · · · (ln(x+c1)) · · ·+
cn−1) + cn).



We denote Lπ(~c),n−1 by π(L~c,n).

Notations: Λn := {L~c,n|~c ∈ Cn}, Λ0 := {x},
L0 = C(Λ0), Ln := C(∪ni=0Λi) for all n ∈ N,

Λ∞ = ∪∞i=0Λi and L∞ = C(Λ∞).

We observe that

• Given any finite set S ⊂ Λ∞ there is an n ∈ N
such that π(S) = {x}.

• C(S, π(S), π2(S), · · · , πn(S) = x) = C〈S〉 and

we call the LHS, the container differential field

of S.



Algebraic Independence of Iterated logarithms

THEOREM 18. Let Sn−1 ⊂ Λn−1 be a finite

set whose elements are antiderivatives of a dif-

ferential field F and let Sn ⊂ Λn be such that

π(Sn) ⊆ Sn−1. Suppose that Sn−1 is alge-

braically independent over F then Sn is alge-

braically independent over F(Sn−1).

• Under the assumption π(Sn) ⊆ Sn−1 the dif-

ferential field F(Sn−1, Sn) becomes an antideriva-

tive extension of F(Sn−1).

Note that x is not algebraic over C and there-

fore from the above theorem Λ1 is algebraically

independent over C(x), Λ2 is algebraically in-

dependent over C(x,Λ1) and so on..

Thus Λn is algebraically independent over Ln−1.



Normality: For any differential automorphism

σ ∈ G(C∞|C), σ(x) = x + cσ where cσ ∈ C

and therefore σ(ln(x+ a)) = ln(x+ a+ cσ) +

d(σ, a), d(σ, a) ∈ C. Thus σ
(
C(x)

)
⊆ C(x) and

σ
(
C(x,Λ1)

)
⊆ C(x,Λ1).

A similar argument should show that

• Ln is a normal extension for every n and

therefore L∞ is also normal.

THEOREM 19. Let F be a differential field

finitely generated over its constants C, E be

a Picard-Vessiot extension of F, and let F ⊂
E ⊂ L∞. If

∑s
j=1 ajyj ∈ E for some aj ∈ C∗,

yj ∈ ∪∞i=0Λi and s ∈ N then πi(yj) ∈ F for all

i ∈ N and thus y′j ∈ F.



Essential Iterated logarithms:

Let u ∈ L∞. Then, there are P,Q ∈ C[Λ∞] such

that u = P
Q. Thus u ∈ C[T ], where T ⊂ Λ∞ and

T is finite.

The essential iterated logarithms of u is the

set E := {y ∈ T |∂P∂y 6= 0 or ∂Q
∂y 6= 0}

THEOREM 20. Let u ∈ Ln \ Ln−1, E the es-

sential set of logarithms of u and let F be the

container differential field E. Then the differ-

ential field

C〈u〉 = C(S, π(E), π2(E), · · · , x),

where S is a finite nonempty subset of SpanCE.
Moreover, if u = P

Q, P,Q ∈ C[Λ∞], (P,Q) = 1

then the set of linear forms S can be explicitly

computed.



Examples

Let C be the field of Complex numbers.

1) Let

u =
5x3 ln(x+ 1) + ln(x+ e) + 27x3 ln(x+

√
2)

ln(x) + x
(
ln(x+ 2)− 17 ln(x+ 3)

)2 .

Then

C〈u〉 = C
(
x, ln(x+ e), ln(x),5 ln(x+ 1)

+ 27 ln(x+
√

2), ln(x+ 2)− 17 ln(x+ 3)
)



2) Let y1 := ln(ln(ln(x − i) + 2) + 3), y2 :=

ln(ln(x+i)+
√

3), y3 := ln(x+5
6), y4 := ln(ln(x+

1
2) + 1

2), y5 := ln(x+
√

5), y6 := ln(x+ 5 + i),

y7 := ln(ln(ln(x) + i)) and let

P := ln(x+i)2 ln(x−i)(y1−y3)5+x3 ln(x)(y2−y5)2,

Q := ln(ln(x) + i)2(y5 − y7)
7

+ x ln(x− i)3 ln(ln(x− i) + 2)2(y6 − y4)
12

and

u =
P

Q
.

Then

C〈u〉 =C(ln(x− i), ln(x+ i), ln(ln(x) + i), ln(x+
1

2
),

ln(x), x, ln(ln(x− i) + 2), y1 − y3, y2 − y5,

y6 − y4, y5 − y7)


