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Main Problem

Given: {f1, . . . , fs} ⊆ k[x1, . . . , xn]

Want: efficient representation of the algebraic set V = {x ∈ kn :
f1(x) = · · · = fs(x) = 0}

Algorithmic tools:
Gröbner bases
Triangular sets

Example: Consider {x2y2 − x2 − y2 + 1, xy} ⊆ k[x , y ] and x < y
Gröbner bases =⇒ {xy , x2 + y2 − 1, y3 − y}
Triangular sets =⇒ ∆1 = {x2 − 1, y}, ∆2 = {x , y2 − 1}
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Motivation

To turn theoretical bounds for effective differential elimination and Null-
stellensatz into bounds for practical algorithms.

(A.Ovchinnikov, G.Pogudin, N.T.Vo, 2016)

To reduce the complexity of Hrushovski’s algorithm for computing the
differential Galois group of a linear differential equation.
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Goal

Analyze the complexity of triangular representations of algebraic sets.

Compare the complexity of computing triangular representations with
the one of computing Gröbner bases.
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Triangular Sets

k : an algebraically closed field with characteristic zero

Fix an ordering on the variables: x1 < x2 < · · · < xn

class(f ): the highest variable appearing in f , where f ∈ k[x1, . . . , xn]

Definition

Let ∆ = {g1, . . . , gm} ⊆ k[x1, . . . , xn]. We say that ∆ is a triangular set if
class(gi ) < class(gj) for all i < j .

Example. ∆ = {x31 + 2, x1 − x2, x
2
5 − x24 + 5x3 + 1} ⊆ k[x1, . . . , x10]

is a triangular set because class(x31 + 2) = x1, class(x1 − x2) = x2, and
class(x25 − x24 + 5x3 + 1) = x5.
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Representation of an Ideal by Triangular Sets

Example(Szántó)

Consider I =
〈
x2y2 − x2 − y2 + 1, xy

〉
⊆ k[x , y ] and x < y .

V (I ) = V (∆1) ∪ V (∆2) for ∆1 = {x2 − 1, y} and ∆2 = {x , y2 − 1} .

Question: Can we always find such a representation?
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Representation of an Ideal by Triangular Sets

Theorem (Szántó,1997)

Let I ⊆ k[x1, . . . , xn] be an ideal. There exists an algorithm which computes
“unmixed” triangular sets ∆1 . . . ,∆r such that

√
I = Rep(∆1) ∩ · · · ∩ Rep(∆r ).

Intuition.
√
I = 〈∆1〉 ∩ · · · ∩ 〈∆r 〉.

Remark. In general, 〈∆〉 ⊆ Rep(∆).

Example. Let ∆ = {x3 − x , xy} be a triangular set in k[x , y ] with x < y .
x3y = y(x3 − x) + xy ⇒ y ∈ Rep(∆). But y /∈ 〈∆〉.

Mengxiao Sun (CUNY Graduate Center) 7 / 15



Main Results(degree bounds)

Szántó’s Algorithm:

Input: {f1, . . . , fs} ⊆ k[x1, . . . , xn]

Output: {∆1, . . . ,∆r} such that
√
I =

⋂r
i=1 Rep(∆i ), where I = 〈f1, . . . , fs〉

Theorem (Amzallag, Pogudin, S, and Vo, 2016)

Let I = 〈f1, . . . , fs〉 ⊆ k[x1, . . . , xn] be an ideal. Assume that the degree of
fi is at most d for 1 ≤ i ≤ s and the codimension of I is m. In case s is not
too large(s ≤ dm), the degree of any polynomial in the output or during
the computation of Szántó’s algorithm does not exceed

nd6m3
.
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Main Results(number of components)

Theorem (Amzallag, Pogudin, S, and Vo, 2016)

Let I = 〈f1, . . . , fs〉 ⊆ k[x1, . . . , xn] be an ideal. Assume that the degree of
fi is at most d for 1 ≤ i ≤ s and the codimension of I is m. In case s is not
too large(s ≤ dm), the number of “unmixed” triangular sets in the output
of Szántó’s algorithm is at most(

n

m

)
((m + 1)dm + 1)m .
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Gröbner Basis Methods

It is well known that Gröbner bases provide a solution of representing
a polynomial ideal or its corresponding algebraic set.

The degree bound for computing a Gröbner basis is double-exponential
in the dimension of the given polynomial ideal.

Mayr and Ritscher(2013): 2( d2m2

2 + d
2 )2

n−m
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Comparison to Degree Bounds for Gröbner Basis Methods

Laplagne(2006) proposed an algorithm for computing the generators of
the radical of a polynomial ideal using Gröbner bases.

four applications of Gröbner basis computation

We compare our degree bound of Szántó’s algorithm with the one of Laplagne’s
algorithm.
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Comparison to Degree Bounds for Gröbner Basis Methods

Given I = 〈f1, . . . , fs〉 ⊆ k[x1, . . . , xn]. Let m be the codimension of I and
d be the degree bound of fi , 1 ≤ i ≤ s.

n m d Our Bound Laplagne’s Bound

2 2 2 6 · 1010 4 · 1012501

3 2 · 1013 8 · 1019787

4 9 · 1014 3 · 1024968

3 2 2 8 · 1010 2 · 10186742

3 3 · 1013 2 · 10303324

4 2 2 2 · 1011 2 · 102891351

3 3 · 1013 6 · 104756660

4 2 · 1015 106082886

3 2 2 · 1019 2 · 103104704

3 5 · 1025 3 · 104974233
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Thank You!
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