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Mathematics is full of theorems which have computable bounds.

For example:

Theorem

For every d , n there is an r so that if K is an algebraically closed
field, S ⊆ K [X1, . . . ,Xn] is a set of polynomials of total degree
≤ d, and g ∈ (S) where g has total degree ≤ d then g =

∑
i ci fi

where the ci have degree ≤ r .

Theorem

For every d , n there is an r so that if K is an algebraically closed
field, S ⊆ K [X1, . . . ,Xn] is a set of polynomials of total degree
≤ d, if gh ∈ (S) implies g ∈ (S) or h ∈ (S) whenever deg(gh) ≤ r ,
then (S) is either prime or contains 1.
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One often sees in the literature assertions that:

A proof shows that computable bounds exist but does not say
what they are, or

A proof shows that an algorithm terminates but does not give
a running time.

On the other hand, the proof-theoretic perspective on bounds says:

The existence of computable bounds is a syntactic
property of a statement. In particular, there are no
non-effective proofs that computable bounds exist.
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Suppose we have fixed a suitable language (like the language of
rings or the language of differential rings) and a collection of
structures K (like fields, or polynomial extensions of algebraically
closed fields).

Definition

A ΠN
2 statement is a statement of the form

∀n1, . . . , nk ∀K ∈ K ∃b1, . . . , bd K � φn1,...,nk ,b1,...,bd

where each φn1,...,nk ,b1,...,bd is a first-order sentence in the language.

Note that we’re mixing the “internal” language—the language of
fields—with an “external” language where we quantify over things
like the natural numbers.
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In this example:

For every d , n there is an r so that if K is an
algebraically closed field, S ⊆ K [X1, . . . ,Xn] is a set of
polynomials of total degree ≤ d, and g ∈ (S) where g
has total degree ≤ d then g =

∑
i ci fi where the ci have

degree ≤ r .

once d , n, r are fixed, we can write down a formula of first-order
logic expressing that the statement holds in K .

Note that the language of rings allows us to quantify over arbitrary
polynomials (by quantifying over elements of K [X1, . . . ,Xn]) or
over polynomials of bounded degree ≤ n (by writing the polynomial
as a sum of monomials and quantifying over coefficients), but does
not allow us to directly quantify over the degree.
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Definition

The ΠN
2 statement

∀n1, . . . , nk ∀K ∈ K ∃b1, . . . , bd K � φn1,...,nk ,b1,...,bd

has (computable) bounds if for each K ∈ K, there is a computable
function BK such that, for all n1, . . . , nk , the witnesses b1, . . . , bd

are bounded by BK (n1, . . . , nk).

The statement has uniform (computable) bounds if the bound BK

is just B and does not depend on the choice of K .
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Some observations about ΠN
2 statements:

Under reasonable assumptions on K, every provable ΠN
2

statement has computable bounds.

If K is closed under ultraproducts then every provable ΠN
2

statement has uniform bounds.

The proofs of these statements are constructive.

Theorem

Suppose we have a proof that a ΠN
2 statement holds in some

reasonable class of structures K. Then we can extract explicit
bounds from this proof.
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Statements which are not ΠN
2 typically do not have computable

bounds (although there are exceptions).

For example, the Ritt problem essentially asks whether a certain
ΠN

3 statement has computable bounds.
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These results come out of foundational proof theory techniques,
going back to Gentzen.

Formally, if one takes a seemingly non-constructive proof of a ΠN
2

statement and formalizes it in a theory (like Peano arithmetic, or
the theories of reverse math), various results tell us how to
translate the proof into a constructive one.

The original proofs, via cut-elimination, are quite slow (the process
of transforming a proof is itself often too slow to carry out in
practice).

But newer proofs via the “functional interpretation” actually give a
linear time transformation of a non-constructive proof into a
constructive proof. The cost is that the new proof is in a theory of
higher type functionals.
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What sort of bounds can we hope for by this kind of extraction?

Definition

The fast-growing hierarchy of functions is given by transfinite
recursion:

f0(n) = n + 1,

fα+1(n) = f n
α (n),

fλ(n) = fλ[n](n) (where λ[n] is a canonical sequence of
ordinals approaching λ from below).

fω has rate of growth similar to the Ackermann function.
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A reasonable theory T has a related ordinal o(T ) called its
proof-theoretic ordinal. For example, the proof-theoretic ordinal of

Peano arithmetic is ε0 = ωω
ω···

.

Theorem

Suppose we prove a ΠN
2 statement in T . Then the statement is

bounded by some fα with ωα < o(T ).
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In practice, however, very few proofs achieve these worst-case
bounds. Actual examples show that when a theorem is proven in
Peano arithmetic, the bounds obtained by these methods are
frequently around the Ackermann function.

Many examples actually end up substantially lower, on the order of
multiple exponentials or towers of exponentials.

This isn’t surprising: the bounds obtained by extraction are exactly
those “hidden in the original proof”, so they should often be
similar to what one gets by writing down bounds from constructive
but unoptimized proofs.

On the other hand, hand-optimization will essentially always get
improvements. Often a different proof describes a fundamentally
better algorithm, and gives a better order of magnitude.
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If ΠN
2 statements are essentially constructive, where do

nonconstructive proofs of ΠN
2 statements come from?

One common source is that they go through intermediate steps
which fail to be ΠN

2 and which are genuinely nonconstructive. In
algebraic contexts, one standard example is Noetherianity.

Theorem

If I1 ⊆ I2 ⊆ · · · is an increasing sequence of ideals in K [X1, . . . ,Xn]
then there is an N such that for every m ≥ N, Im ⊆ IN .

This is ΠN
3 :

∀〈In〉n ∃N ∀m ≥ N Im ⊆ IN .

This is genuinely non-constructive—if we had a function
calculating N from (a computable description of) the sequence 〈In〉
then we could compute the halting problem.
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The functional interpretation tells us that we should instead look
at a notion of local Noetherianity:

Theorem

If I1 ⊆ I2 ⊆ · · · is a computable increasing sequence of ideals in
K [X1, . . . ,Xn] so that Ii is finitely generated by polynomials of
degree ≤ D(i) and F : N→ N is a function then there is an N,
computable from D and F and 〈In〉, such that IF (N) ⊆ IN .

Furthermore, any ΠN
2 statement which follows from Noetherianity

also follows from local Noetherianity, and bounds on local
Noetherianity suffice to give bounds on the ΠN

2 statement.

It is not a coincidence that local Noetherianity is itself a ΠN
2

sentence (where we allow the data to include the functions D and
F ).
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For example, recall Buchberger’s algorithm for computing a
Gröbner basis: given the set of polynomials F in K [X1, . . . ,Xn],

1 Set T0 := S .
2 Given Ti :

Calculate a polynomial sf ,g = a
Lf

f − a
Lg

g for some f , g ∈ Ti so

that sf ,g 6∈ (Ti ).
Reduce sf ,g relative to Ti .
Set Ti+1 = Ti ∪ {sf ,g}.

3 If Ti+1 is a Gröbner basis, terminate. Otherwise repeat.

The easy proof of termination goes through Hilbert’s Basis
Theorem: the Ti generate a strictly increasing sequence of ideals,
so this process must terminte.
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Bucherger’s algorithm stops when Ti+1 ⊆ Ti , so we can just take
F (m) = m + 1. The sequence of ideals 〈Tn〉 is computable and the
degrees are bounded.

So local Noetherianity gives us an actual bound M so that, for
some m ≤ M, Tm+1 ⊆ Tm. This gives us a numeric bound on the
running time of Buchberger’s algorithm.
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In fact, these bounds are quite poor relative to the actual bounds.

The bounds on local Noetherianity involve an Ackermannian
number of iterations of the function F —that is, M = O(FA(n)(1))
where:

A is the Ackermann function, and

n is the number of variables in the polynomial ring.
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Another source of nonconstructive proofs is the use of
ultraproducts. The main theorem that makes ultraproducts useful
is the transfer theorem, which says

Theorem

Suppose Ki is a sequence of structures and that, for each
n1, . . . , nd , there exist b1, . . . , bk so that, for almost every i ,

Ki � φn1,...,nd ,b1,...,bk .

Then the ultraproduct K ∗ satisfies φn1,...,nd ,b1,...,bk .

Exactly what ultraproducts do is preserve uniform ΠN
2 statements.
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Whenever we prove a non-ΠN
2 statement in an ultraproduct, the

functional interpretation tells us how to reinterpret it as a ΠN
2

statement about the original structures.

For example, here’s a theorem from van den Dries and Schmidt:

Theorem

Let Ki be a sequence of fields, K ∗ the ultraproduct, and K [X ]∗int
the ultraproduct (Ki [X ])∗. If I is an ideal of K ∗[X ] then√

IK [X ]int ⊆
√

I · K [X ]∗int .

That is, anything in the radical ideal generated by I in the larger
ring K [X ]∗int is a linear combination of things in the ideal

√
I from

the smaller ring.
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At least when I is given by finitely many generators, this turns out
to be the ΠN

2 statement:

Theorem

For every d , d ′, n there is an r so that if S ⊆ K [X ], each S has
total degree ≤ d, deg(f ) ≤ d ′, and f ∈

√
S then f r ∈ (S).
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van den Dries and Schmidt give a proof in the ultraproduct where
the main ideas are:

the prime decomposition of a radical ideal, and

non-prime ideals have low degree witnesses to non-primality
(i.e. if (S) is not prime then there is fg ∈ (S) with deg(fg)
bounded based on deg(S) so that f , g 6∈ (S)).
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An effective proof: let d , d ′, n be given and suppose S ⊆ K [X ],
each S has total degree ≤ d , and deg(f ) ≤ d ′, and f ∈

√
(S).

We construct a tree of finitely generated ideals indexed by 0, 1
sequences so that deg(Sσ) ≤ D(deg(S), |σ|). S〈〉 = S .

If (Sσ) is not prime, there is a witness gh ∈ (Sσ) with deg(gh) a
computable function of deg(S), |σ|. Define Sσ_〈0〉 = Sσ ∪ {g} and
Sσ_〈1〉 = Sσ ∪ {h}. If (Sσ) is prime, σ is a leaf.

Let M be the witness given by local Noetherianity applied to D and
F (i) = i + 1. If any branch had length longer than M, we would
contradict local Noetherianity. So there are at most 2M leaves.

Since f ∈ (Sσ) for every leaf σ, f 2M ∈ (S).
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In fact, there is a simple proof using Gröbner bases and the
Rabinowitsch trick which gives double exponential bounds.

In the sense of reverse mathematics, proving that a statement
(proven using Hilbert’s Basis Theorem) has Ackermannian lower
bounds is essentially equivalent to showing that Hilbert’s Basis
Theorem is the only way to prove the statement.

More precisely:

Theorem

Over RCA0, Hilbert’s Basis Theorem is equivalent to the totality
of the Ackermann function.
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Theorem

Suppose K1, . . . ,Kn, . . . is a sequence of structures (possibly all the
same) and K ∗ is their ultraproduct. Suppose some sentence σ is
true in K ∗, where σ is a sentence of first-order logic extended by
quantifiers over the natural numbers.

Then there is a ΠN
2 sentence

∀n1, . . . , nk ∃b1, . . . , bd σ
ND
n1,...,nk ,b1,...,bd

(where the ni , bj may include higher order functionals) so that, for
each n1, . . . , nk there are b1, . . . , bd , almost every Ki satisfies
σNDn1,...,nk ,b1,...,bd

.
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In general, when we prove a theorem in an ultraproduct, the
functional interpretation tells us to look for a corresponding
theorem we can prove in the original structures.

Other than applications of Noetherianity, most results in the area
of field theory and differential field theory actually stay entirely in
the ΠN

2 realm.

Some more striking examples have shown up in other areas.
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The best studied example is the notion of locally stable or
metastable convergence.

Definition

A sequence 〈an〉 converges metastably if for every ε > 0 and every
F : N→ N, there is an N so that for all m ∈ [N,F (N)],

||aN − am|| < ε.

Metastable convergence was introduced independently by
Avigad-Gerhardy-Towsner and by Tao, and has been studied in the
context of ergodic theory and fixed point theory in Banach spaces.
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Some proofs appear to use ultraproducts because the
corresponding proofs involve rather complicated statements whose
finite version is unwieldy.

For example, a theorem from Banach space theory (“the James
space is not locally unconditional”) involves an intermediate step
showing that certain limits can exchange:

Theorem

Under suitable assumptions (in a probability measure space),

lim
n

lim
p

∫
fngp dµ = lim

p
lim
n

∫
fngp dµ.
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Depending on some assumptions about convergence, this could be
interpreted several different ways, but the relevant one is

∀ε > 0 ∀n, p ∃m > n, q > p ∀k > m, r > q ∃l > m, s > r

|
∫

fmgs dµ−
∫

flgq dµ| < ε.

Unfortunately, this is a ΠN
4 statement. The functional

interpretation tells us that the corresponding finite statement is:

Theorem

For every ε > 0, every n, p, and all (suitably monotone) functions
K,R, there are m ≥ n and q ≥ p, and functions L, S so that,
setting

l = L(K(m, q,L,S),R(m, q,L,S)),

s = S(K(m, q,L,S),R(m, q,L,S)),

|
∫

fmgs dµ−
∫

flgq dµ| < ε.
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Theorem (Gilmore-Robinson)

In characteristic 0, a field k is Hilbertian if and only if there is a
t ∈ kU \ k such that k(t) ∩ kU = k(t).

This characterization of Hilbertianity says:

∃t ∈ kU such that

∀exa ∈ k t 6= a,
∀exp ∈ k(t)[x ] ∀c ∈ kU

(p(c) = 0→ ∃exu ∈ k(t) p(u) = 0).



Π2 Statements Noetherianity Ultraproducts Applications in Other Areas Ritt-Noetherianity

We obtain the following characterization of Hilbertianity for
countable fields:

There are functions

U : Pfin(k)× N→ Pfin(k), and
D : Pfin(k)× N→ N

such that for any finite sets S ,T ⊆ k and any natural
number b, there is a t ∈ k \ T so that for each S0 ⊆ S
and b0 ≤ b, whenever p ∈ k[x ] such that

the degree of p is at most b0

each coefficient in p has the forum
∑

i≤b0
ai t

ci

where ai ∈ S0 and |ci | ≤ b0,

then if p has a root in k, p has a root of the form∑
i≤D(S0,b0) ai t

ci where ai ∈ U(S0, b0) and
ci ≤ D(S0, b0).
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Ultraproducts transform complicated statements about the
uniformity of different bounds into simple statement of the sort
more common in mathematics.

In fact, this appears to be the entire role of ultraproducts in
mathematics outside of model theory and set theory.
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We work over a differential field K with a derivation δ.

Definition

K{X} is the differential polynomial extension by infinitely many
new variables δkX together with the obvious extension
δ(δkX ) = δx+1X .

Theorem (Raudenbush)

If I1 ⊆ I2 ⊆ · · · is an increasing sequence of radical differential
ideals then there is an N such that IN+m = IN for all m.
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Like Noetherianity in the algebraic setting, Ritt-Noetherianity is
often used to prove that algorithms terminate, but doesn’t
explicitly give bounds.

Getting a local version is complicated by the fact that the best
known bounds for checking membership in a radical ideal are
Ackermannian using the differential nullstellensatz, when we are
precisely interested in analying bounds on statements like the
differential nullstellensatz.
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We treat membership in a radical differential ideal as an existential
statement.

Definition

We say f ∈≤d {I} if f ∈ (θg | g ∈ I and ord(θ) ≤ d).

Definition

The local Ritt-Noetherianity of K{X} says that for any functions
O,D,F there are M, L (computable from O,D,F ) so that
whenever I1 ⊆ I2 ⊆ · · · is an increasing sequence of radical
differential ideals in K{X} so that Ii is generated by elements of
order ≤ O(i , L) and degree ≤ D(i , L), there is an m ≤ M so that
each h ∈ IF (m,L) also has h ∈≤L(O(m,L),D(m,L)) Im.
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