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Symmetry of Differential Equations

Definition: Given a differential equation

∆(x, y(k)) = 0

a Lie group G is a symmetry group of the equation if it sends solutions to
solutions:

∆(g · (x, y(k))) = 0 whenever ∆(x, y(k)) = 0

Example:
dy

dx
=
y3 + x2y − x− y
x3 + xy2 − x+ y

is invariant under rotations

X = x cos θ − y sin θ

Y = x sin θ + y cos θ
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Sophus Lie (1842–1899)

Using symmetries, Lie devel-
oped a theory for solving dif-
ferential equations.

Differentialgleichungen (1891):

The older examinations on ordinary differential

equations as found in standard books are not sys-

tematic. The writers developed special integra-

tion theories for homogeneous differential equa-

tions, for linear differential equations, and other

special integrable forms of differential equations.

However, the mathematicians did not realize

that these special theories are all contained in

the term infinitesimal transformations, which is

closely connected with the term of a one para-

metric group.
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Group Foliation: Historical Overview

Group foliation of differential equations:

1895: Lie laid out the basic ideas in 2 examples

1904: Vessiot formalized Lie’s ideas

1969 –: Fluid dynamics (Ovsiannikov and Soviet mathematicians)

2001: Heavenly and complex Monge–Ampère equations (Martina,
Nutku, Sheftel, and Winternitz)

2005/08: EDS formulation (Anderson, Fels, and Pohjanpelto)

2015: Moving frame formulation (Thompson – V)

Group foliation of finite difference equations

Today: (With Thompson, R.) Group foliation of finite difference equations, Commun.

Nonlinear Sci. Numer. Simul. 59 (2018), 235–254.
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Geometric setting

Consider {zn = (xn, yn) |n ∈ Z}:

x

y

zn

zn+1
zn+2

zn+3

zn−1

Definition: The kth order forward discrete jet at n is

z[k]n = (zn, zn+1, . . . , zn+k)

= minimum # of points to approximate x, y,
dy

dx
, . . . ,

dky

dxk

The kth order forward discrete jet space is

J[k] =
⋃
n∈Z

z[k]n
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Finite difference equations

Definition: A finite difference equation of order k is

E(n, z[k]n ) = En(zn, . . . , zn+k) = 0

In many applications finite difference equations are used to approximate
differential equations.

Example:
dy

dx
= (k + xa)yb can be approximated by(

xa+1
n+1

a+ 1
+
y1−bn+1

b− 1

)
−
(
xa+1
n

a+ 1
+
y1−bn

b− 1

)
+k(xn+1−xn) = 0, xn+1−xn = h

Applications:

I Numerical modeling
I Discrete Quantum/General Relativity theory
I Discrete time economics
I Chaos
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Symmetry of Finite Difference Equations

Definition: A Lie group G is a symmetry group of En(z
[k]
n ) = 0 if it sends

solutions to solutions:

En(g · z[k]n ) = 0 whenever En(z[k]n ) = 0

Note: G acts on z
[k]
n by the product action:

g · (zn, zn+1, . . . , zn+k) = (g · zn, g · zn+1, . . . , g · zn+k)

Example: The equations(
xa+1
n+1

a+ 1
+
y1−bn+1

b− 1

)
−
(
xa+1
n

a+ 1
+
y1−bn

b− 1

)
+k(xn+1−xn) = 0 xn+1−xn = h

are invariant under G = (R,+):

Xn = xn + ε
Y 1−b
n

b− 1
=
y1−bn

b− 1
+
xa+1
n

a+ 1
− (xn + ε)a+1

a+ 1
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Group Foliation – Outline
Goal: Solve finite difference equations that admit a group of symmetry

Outline of the solution:

1. Project the (unknown) solutions into the space of invariants
2. Solve the problem in the space of invariants

I Typically easier to solve than the original equation

3. Reconstruct the solution to the original equation

space of invariants

Solution to E = 0

Projection

Reconstruction

EQUIVARIANT MOVING FRAMES!
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Equivariant Moving Frames

Let G act on J[k]

Defintion: A moving frame is a G-equivariant map

ρ : J[k] → G

G-equivariance means

ρn(g · z[k]n ) = ρn(z[k]n ) g−1

A moving frame is constructed by choosing a (discrete) cross-section.
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Discrete Cross-Section

Definition: A subset K ⊂ J[k] is a cross-section if the restriction K|n is a
submanifold of J[k]|n, which is transverse and of complementary dimension
to the group orbits.

J[k]|n−1

K|n−1

J[k]|n

K|n

J[k]|n+1

K|n+1
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Moving Frame Construction
Provided the action is

1) regular
z
[k]
n

2) free

z
[k]
n

G
z
[k]
n

= {e}

the moving frame at z
[k]
n is the unique group element ρn(z

[k]
n ) sending z

[k]
n

onto the cross-section K

K|n

z

ρ(z)

ρ(z) · z

g
g · z

ρ(g · z) = ρ(z) g−1

z = z
[k]
n
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Moving Frame: Example
I Product action

Xn = xn + ε,
Y 1−b
n

b− 1
=
y1−bn

b− 1
+
xa+1
n

a+ 1
− (xn + ε)a+1

a+ 1
I Choose a cross-section

K = {xn = 0}
I Solve the normalization equation(s)

0 = Xn = xn + ε ⇒ ρn : εn = −xn

a = b = 0:

Xn = xn + ε

Yn = yn + ε

{xn = 0}

(xn, yn)

εn = −xn
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Invariantization

Definition: The invariantization of zm w.r.t. ρn = ρn(z
[k]
n ) is the invariant

ιn(zm) = ρn · zm

Proof: g · ιn(zm) = ρn(g · z[k]n ) · g · zm = ρn(z
[k]
n ) · g−1 · g · zm = ιn(zm)

Example: If

Xn = xn + ε,
Y 1−b
n

b− 1
=
y1−bn

b− 1
+
xa+1
n

a+ 1
− (xn + ε)a+1

a+ 1

then

ιn(xn+1) = xn+1 + εn

∣∣∣
εn=−xn

= xn+1 − xn

Jn = ιn

(
y1−bn

b− 1

)
=
y1−bn

b− 1
+
xa+1
n

a+ 1

Notation: We introduce the normalized (joint) invariants

In = ιn(zn) and I[k]n = ιn(z[k]n )
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Generating Invariants

Let
S : Z→ Z S(n) = n+ 1

denote the forward shift operator

Definition: A set of invariants Igen generates the algebra of joint invariants
if any invariant I can be expressed as a function of the invariants in Igen

and their shifts.

Definition: Let ρn be moving frame. The Maurer–Cartan invariant(s) is
(are)

mn = ρn ρ
−1
n+1 ∈ G

The invariance of mn follows from the equivariance of ρn:

mn(g · z[k]n ) = ρn(g · z[k]n ) ρ−1n+1(g · z
[k]
n+1)

= ρn(z[k]n ) g−1 g ρ−1n+1(z
[k]
n+1) = mn(z[k]n )

13 / 24



S TAT E  U N I V E R S I T Y  O F  N E W  YO R K

Generating Invariants

Proposition: The order zero normalized invariants

In = ιn(zn)

together with the Maurer–Cartan invariants

mn = ρn ρ
−1
n+1

generate the algebra of joint invariants.

To prove this statement, we introduce the recurrence relations that relate
normalized invariants and their shifts.
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Recurrence Relations

Proposition: The invariants

ιn(zm) ιn+1(zm)

are related by the recurrence relation

ιn(zm) = mn · ιn+1(zm),

Proof: ιn(zm) = ρn · zm = ρn · ρ−1n+1 · ρn+1 · zm = mn · ιn+1(zm)

In general,
ιn(zm) = mn ·mn+1 · · ·mn+k−1 · ιn+k(zm)

Letting m = n+ k yields

ιn(zn+k) = mn ·mn+1 · · ·mn+k−1 · Sk(In) In = ιn(zn)

15 / 24



S TAT E  U N I V E R S I T Y  O F  N E W  YO R K

Generating Invariants

From
ιn(zn+k) = mn ·mn+1 · · ·mn+k−1 · Sk(In)

⇒ The normalized invariants ιn(zn+k) are expressible in terms of

In = ιn(zn), mn, (1)

and their shifts.

Let In(z
[k]
n ) be an invariant function. Since

In = ιn(In)

we have that
In(z[k]n ) = In(ιn(z[k]n )) = In(I[k]n )

⇒ Any invariant can be expressed in terms of (1) and there shifts.
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Example

For
ρn = εn = −xn

where have
mn = ρn ρ

−1
n+1 = εn − εn+1 = −xn + xn+1

and

ιn(xn) = 0 Jn = ιn

(
y1−bn

b− 1

)
=
y1−bn

b− 1
+
xa+1
n

a+ 1

⇒ mn and Jn generate the algebra of joint invariants:

ιn(xn+1) = mn · S[ιn(xn)] = mn · 0 = mn

ιn

(
y1−bn+1

b− 1

)
= mn · S

[
ιn

(
y1−bn

b− 1

)]
= mn · Jn+1 = Jn+1 −

ma+1
n

a+ 1

and so on.
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Group Foliation

Solution steps:

1. Project the (unknown) solutions into the space of invariants

2. Solve the problem in the space of invariants

3. Reconstruct the solution to the original equation

space of invariants

Solution to E = 0

Projection

Reconstruction
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Step 1: Projection
Let En(z

[k]
n ) = 0 be a system of finite difference equations with symmetry

group G.
I Construct a moving frame
I Invariantize the equations

En(ιn(z[k]n )) = En(I[k]n ) = 0

I Use the recurrence relations to express I
[k]
n in terms of In, mn and

their shifts

Ẽn(In,mn, . . . In+k,mn+k) = 0 (resolving system)

Example:. In terms of mn and Jn = ιn(yn) the equations(
y1−bn+1

b− 1
+
xa+1
n+1

a+ 1

)
−
(
y1−bn

b− 1
+
xa+1
n

a+ 1

)
+k(xn+1−xn) = 0 xn+1−xn = h

are
Jn+1 − Jn + kmn = 0 mn = h
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Step 2: Solve the Resolving System

Solving
Ẽn(In,mn, . . . In+k,mn+k) = 0

we obtain
In = I(n) mn = m(n)

Example:. The solution to

Jn+1 − Jn + kHn = 0 mn = h

is
Jn = J0 − (k h)n mn = h
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Step 3: Reconstruction

Solution in the space of invariants  original solution

Definition: Let
ρn = ρ−1n

The reconstruction equation is

ρn+1 = ρnmn

Since
In = ιn(zn) = ρn · zn

the solution to En(z
[k]
n ) = 0 is

zn = ρ−1n · In = ρn · In
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Example

Let ρn = εn. Since mn = h, the reconstruction equation is

ρn+1 = ρnmn ⇒ εn+1 = εn + mn = εn + h

so that εn = hn+ ε0. Since

ιn(xn) = 0 ιn(yn) = [(b− 1)Jn]1/(1−b)

we have

xn = ρn · 0 = hn+ ε0

yn = ρn · [(b− 1)Jn]1/(1−b) = (1− b)1/(1−b)
[
k xn +

x1+an

1 + a
+ C

]1/(1−b)
where C = −J0 − k ε0.
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Concluding Remarks

I Computations can be done symbolically:
I Does not require the coordinate expressions for

ρn In mn

I Requires expressions for the group action, the choice of a cross-section,
and the recurrence relations

I Ideas developed in this talk can be adapted to differential equations

I Results appear in

(With Thompson, R.). Group foliation of finite difference
equations, Commun. Nonlinear Sci. Numer. Simul. 59
(2018), 235–254.
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Thank you!
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