
Galois Theory of 

Algorithms

Noson S. Yanofsky

Brooklyn College, The Graduate Center, CUNY

The Kolchin Seminar in Differential Algebra

The Graduate Center, CUNY

September 3, 2010



Motivation: What is an Algorithm?

In Corman, Leiserson, Rivest, and Stein’s Introduction to Algorithms, 2nd Ed.
Section 1.1:  a definition of an algorithm:

Informally, an algorithm is any well-defined computational procedure that 
takes some value, or set of values, as input and produces some value, or 
set of values, as output.

 “Informally”?!? 

 “well-defined”?

 “procedure”?

2



Motivation: Other Peoples 

Definitions

 Turing, Gurevich and others say “An algorithm is 

a program in this language/system/machine.”

 This is not the way we use the word. A program 

is an implementation or realization of an 

algorithm.

 A professor teaches an algorithm to a class and 

assigns them to program it. They all come back 

with programs. They are not all the same 

program. They are all the same algorithm.

3



Definition of an Algorithm

Functions

4



Definition of an Algorithm

Functions
sort *

5



Definition of an Algorithm

Functions
sort * find max *

6



Definition of an Algorithm

Programs

Functions
sort * find max *

7



Definition of an Algorithm

Programs

Functions
sort * find max *

8



Definition of an Algorithm

Programs

Functions
sort * find max *

9



Definition of an Algorithm

Programs

Functions
sort * find max *

*   * *   *

10



Definition of an Algorithm

Programs

Functions
sort * find max *

mergesorta

*   * *   *

11



Definition of an Algorithm

Programs

Functions
sort * find max *

quicksortymergesorta

*   * *   *

12



Definition of an Algorithm

Programs

Functions
sort * find max *

mergesortb quicksortymergesorta quicksortx

*   * *   *

13



Definition of an Algorithm

*   *
Programs

Functions
sort * find max *

*   *

mergesortb quicksortymergesorta quicksortx

14



Definition of an Algorithm

*   *
Programs

Algorithms

Functions
sort * find max *

*   *

mergesortb quicksortymergesorta quicksortx

15



Definition of an Algorithm

*   *
Programs

Algorithms

Functions
sort * find max *

*   *

mergesortb quicksortymergesorta quicksortx

16



Definition of an Algorithm

*   *
Programs

Algorithms

Functions
sort * find max *

mergesort *

*   *

mergesortb quicksortymergesorta quicksortx

17



Definition of an Algorithm

*   *
Programs

Algorithms

Functions
sort * find max *

mergesort * * quicksort

*   *

mergesortb quicksortymergesorta quicksortx

18



Definition of an Algorithm

*   *
Programs

Algorithms

Functions
sort * find max *

mergesort * * quicksort * babysearchbinarysearch *

*   *

mergesortb quicksortymergesorta quicksortx

19



Definition of an Algorithm

An algorithm is defined to be an equivalence class 
of programs. It is a set of programs that 
implement that algorithm.

We look at the set of all programs and partition 
them. Two programs are deemed equivalent if 
they are “essentially” the same. A program is a 
representative of an algorithm, i.e. a 
representative of the equivalence class.

20



Definition of an Algorithm: 

Analogies
 Frege: The number 42 is an equivalence class of all finite sets that 

have 42 elements in it. Look at all finite sets and say two are 
equivalent if there exists a one-to-one correspondence between 
them. Every set with 42 elements is an “implementation” or 
“realization” of 42. 

 The rational number 3/5 is an equivalence class of fractions like 3/5. 
Look at all pairs of numbers (x,y) and make the following 
equivalence relation.

(x,y) ~ (x’,y’) If and only if xy’=yx’.

6/10 and 60/100 are other “implementation” or “realizations” of 3/5.

 “An object is the sum of all its descriptions.”

21



Big Picture

Programs

Algorithms

Functions

22



The Programs

Descriptions of Primitive Recursive 
functions. 

 Initial functions: 

null n(x)=0

successor  s(x)=x+1

projections
in

n

i xxxx ),...,,( 21

NNf k:

23



The Programs

Descriptions of Primitive Recursive 
functions. 

 Composition. h(x)=(f o g)(x)=f(g(x))

 Bracket. Given and 

 Recursion. Given and 

We get 

NNf k:

am NNf : bm NNg :

)(),()(....:, xgxfxhNNgfh bam

an NNf :
aan NNg 1:

an NNh 1:

24



The Programs --- Recursion

)),,,...,,(,,...,,()1,,...,,(

),...,,()0,,...,,(

212121

2121

ttxxxhxxxgtxxxh

xxxfxxxh

nnn

nn

25



The Programs --- Examples.

Addition: 

Multiplication:

Predecessor:

Subtraction: m-0=m

m-(n+1)=P(m-n)

)()1(

0

nmsnm

mm

mnmnm

m

*)1(*

00*

ttP

P

)1(

0)0(

26



The Programs --- Examples

27



The Programs --- The context

Primitive 

recursive

Recursive

All functions

Ackermann 

function

halting function

28

Composition, 

bracket , 

recursion and

unbounded 

minimization. 

Composition, 

bracket and 

recursion



The Programs

Descriptions are trees whose leaves are 

decorated by initial functions and whose 

internal nodes are colored by C, R, B.

29



The Programs: An Example

30



The Programs as a graph

31



Structures: P.R. Programs 

 The set of P.R. programs form a directed graph with extra 

structure.

 Vertices are powers of natural numbers: N, N2, N3,…

 Edges are P.R. programs from Nm to Nn.

 There is a composition of edges: compose one P.R. program with 

another. Not associative.

 For every Nn there is an identity edge. But it does not act like a unit.

 There is a product function (not a functor): f and g go to <f,g>. (Bracket)

 There is a recursion function (not a functor): f and g go to f#g. 

(Recursion.)

32



The Equivalences

 Composition is Associative: (PoQ)oR ~ Po(QoR)

 Identity programs as Units: Id o P ~ P ~ P o Id

 For unrelated processes: 

Process1 ~ Process2

Process2 Process1

33



The Equivalences

 For unrelated processes:

For i=1 to n For i=1 to n

Process1 ~ Process1

Process2 For i=1 to n

Process2

 For i=1 to n For i=1 to n-1

Process1 ~ Process1

Process1

 Others

34



The Equivalences: An Example

35



Structures: P.R. Algorithms 

 The set of P.R. algorithms form a category with extra structure.
 Objects are powers of natural numbers: N, N2, N3,…

 Morphisms are algorithms from Nm to Nn.

 Composition of edges: compose algorithms. Associative.

 For every Nn there is an identity morphism. It acts like a unit.

 There is a product bifunctor: f and g go to <f,g>. (Bracket)

 The category has a weak natural number object. (Recursion.)

 Main Theorem: The category of P.R. algorithms is the initial object in 
the 2-category of categories with products and weak natural number 
objects. 

 (The other categories with such structure correspond to algorithms 
with oracles. Other information is added.)

36



Natural Number Object

37



Structures: P.R. Functions 

 The set of P.R. functions form a category with extra structure.
 Objects are powers of natural numbers: N, N2, N3,…

 Morphisms are functions from Nm to Nn.

 Composition of edges: compose functions. Associative.

 For every Nn there is an identity map. It acts like a unit.

 There is a product bifunctor: f and g go to <f,g>. (Bracket)

 The category has a STRONG natural number object. (Recursion.)

 Theorem: The category of P.R. functions is the initial object in the 2-
category of categories with products and STRONG natural number 
objects. 

 (The other categories with such structure correspond to primitive 
recursive functions with oracles. Other information is added.)

38



Analogies to Other Areas

Programs

Algorithms

Functions

Braid

Diagrams

Braid

Groups

Symmetric

Groups

Syntax

Semantics

In Between

39



Analogies to Other Areas

• Just as we can only represent an algorithm by giving a program, so too,

the only way to represent a braid is by giving a braid diagram.

• Just as our set of Programs does not have enough structure to form a

category, so too, the set of Braid Diagrams does not have a worthwhile

structure. One can compose braid diagrams sequentially and parallel.

But there is no associativity. 

• Just as we can get the category of algorithms by looking at equivalence

classes of programs, so too, we can get braids by looking at equivalence

classes of braid diagrams. With braid diagrams we look at Reidermeister

moves to determine when two braid diagrams are really the same.

Here we look at relations to tell when two programs are the same.

Braid

Diagrams

Braid

Groups

Symmetric

Groups

40



Analogies to Other Areas

• Just as we are not giving the final word about what relations to use, so too,

there is no final word about which Reidermeister moves to use. Depending

on your choice, you will get braids, ribbons, oriented ribbons etc.

• Just as our category of Algorithms is the free category with products

and weak natural number objects generated by the empty category, so too,

the category of Braids is the free braided monoidal category generated

by one object.

• Just as we can go down to the level of functions by making two algorithms

that perform the same function equivalent, so to, we can add a relation

that two strings can cross each other and get Symmetric Groups.

• Just as the main focus of computer scientists are algorithms and not programs,

so to, the main focus of topologists is braids and not braid diagrams.

Braid

Diagrams

Braid

Groups

Symmetric

Groups

41



PRdesc

PRalgIPRalgC

PRalgCat

PRalgCatNPRalgCatX

PRalgCatXN

PRfunc

Possible Graphs of Algorithms

Associative Composition: (fog)oh ~ fo(goh)

Unit of Composition: f o id ~ f ~ id o f

Associative Bracket: <<f,g>,h> ~ <f,<g,h>>

Comp dist over brac: <f,g>oh ~ <foh,goh>

Brak is almost commut: <f,g> ~ tw o <g,f>

Twist is idempotent: tw o tw ~ id

Twist is coherent

Axioms of a natural number object

NNO and product respect each other

42



Galois Theory of Algorithms

Programs Programs

In order to study the possible quotients of programs we look at

automorphisms of programs. This forms a group. 

43



Galois Theory of Algorithms 

Programs

Functions

Programs

Aut(P/F)

We don’t just want to mix up programs. The automorphism must preserve 

functionality. Φ(mergesortx)=quicksorta.

44



Philosophical Sidebar

Galois theory is the study of how a subfield 

sits inside a larger field. 

or more generally:

Galois theory is the study of how a sub-

object sits inside a larger object.

Co-Galois theory is the study of how a 

quotient object is inside an object.

45



Galois Theory of Algorithms

Programs

Algorithms

Functions

Programs

Look at the automorphisms of programs that preserve algorithms. 

Φ(mergesortx)=mergesortz. This is a group Aut(P/A) and is a subgroup

of Aut(P/F).

46



Galois Theory of Algorithms

Programs

Algorithms

Functions

Programs

Algorithms

There is no reason to think that it is a normal subgroup… but we can still get 

the quotient set:

*  Aut(P/A)  Aut(P/F)  Aut(A/F)  *

47



Galois Theory of Algorithms

Programs

Algorithms

Functions

Algorithms’

Aut(P/P)= {Id}

Aut(P/F)

Aut(P/A’)

Aut(P/A)

Intermediate algorithmic

universes

Automorphism Groups

48



Fundamental Theorem of Galois Theory

The lattice of subgroups of Aut(P/F) 

is equivalent to

The dual lattice of intermediate algorithmic 
universes.

Intuition: 

Two programs will be exchangeable  

if and only if  

they are considered the same algorithm.

49



Galois Theory of Algorithms –

Future Directions

Classical Galois Theory
 Zassenhaus lemma for algorithms.

 Schreier refinement theorem for algorithms.

 Jordan-Holder theorem for algorithms.

 Krull-Schmidt theorem for algorithms.

Applications
 Extend to all computable functions. 

 Calculate some groups.

 Morphisms between algorithms: Compilers.

 Impossibility results.

50



References

 Yu. I. Manin A Course in Mathematical Logic for Mathematicians 2nd

ed. Springer (2010) (Chapter IX).

 Yu. I. Manin “Renormalization and computation I: motivation and 
background”. http://arxiv.org/abs/0904.4921

 Yu. I. Manin “Renormalization and Computation II: Time Cut-off and 
the Halting Problem”. http://arxiv.org/abs/0908.3430

 Yu. I. Manin and N. Yanofsky “Enriched Programming Methods with 
Unrestricted Parallelism”. Work in Progress.

 N. Yanofsky “Galois Theory of Algorithms”. Almost ready.

 N. Yanofsky “Towards a Definition of an Algorithm”. 
http://arxiv.org/abs/math/0602053

51



Thank You!

52


